Optical head of the RD spectrometer attached to a UHV chamber in front of a low strain window. The polarization optics (polarizer and analyzer) as well as the photoelastic modulator (PEM) are inside the optical head, whereas the light source (Xe lamp) and the optical spectrometer are connected via optical fibers.
Reflectance Difference Spectroscopy (RDS) is an optical technique which measures the difference in reflectivity at normal incidence for light linearly polarized along two orthogonal directions [1]. RDS was initially developed as a reliable tool for monitoring the growth of cubic semiconductors: in this case the response of the optically isotropic bulk cancels out, leaving only the contributions of the surface and interfaces were the cubic symmetry is broken. At the Atomic Physics and Surface Science division (AOP), RDS has been successfully applied to surface science research and has become an indispensable tool for the investigation of surface electronic structures [2], adsorption/desorption kinetics [3], organic and inorganic thin film growth [4], ion and photon irradiation on single crystal surfaces [5], etc. Recently, RDS has also been applied to the study of nanomaterials like metal clusters [6] and nanopatterned surfaces. The pronounced sensitivity of RDS to surface adsorbates [7], orientation and conformation of organic molecules [8], surface strain [9], particle and surface plasmons [10], opens a broad field of applications for RDS - not only in fundamental scientific research but also in surface analytics and process control in industrial environments [11].
The spectrometer shown in Fig. 1 is a commercial instrument (UVISEL, Horiba Jovin-Yvon), in which the polarization of the light of a Xe lamp is periodically modulated by means of a photoelastic modulator (PEM) and directed onto the sample at normal incidence. Upon reflection, the modulated signal is spectroscopically analyzed by means of a diffraction grating monochromator and a photo-multiplier tube in the photon energy range from 1.5 to 5.5 eV. The present setup allows well resolved detection of optical anisotropies of the order of 10-4.
Besides in spectroscopic mode, data can also be acquired in kinetic mode by recording RD transients at a single photon energy, thus allowing the real-time monitoring of kinetic or time-critical processes such as adsorption/desorption, ordering phenomena, or phase transitions [12].
Inside the VT-STM chamber the sample can be magnetized, and the RDS can be used to characterize the magnetic properties via the (polar) magneto-optic Kerr effect (MOKE) [13]. In contrast to conventional MOKE setups operating at a fixed single wavelength, RD-MOKE supplies the full spectral information.
Ex-situ, the instrument can be combined with a computer-controlled sample rotation stage to obtain so-called azimuth-dependent RDS (ADRDS) spectra, which can be used to precisely determine the orientation of the optical axes in complex anisotropic samples, such as semi-crystalline extruded polymers [14] or to remove interference fringes in partially transparent substrates or films [15].
Meanwhile, we have started to build our own RDS equipment and to develop new instruments and applications (see, for instance, the rotating-compensator based RCRDS design [16]).
For more information please contact: Lidong Sun, Michael Hohage or Peter Zeppenfeld
References:
- P. Weightman, D.S. Martin, R.J. Cole, T. Farrell
Reflection anisotropy spectroscopy
Rep. Prog. Phys. 68 (2005) 1251 - L.D. Sun, M. Hohage, P. Zeppenfeld, R. E. Balderas-Navarro
Origin and temperature dependence of the surface optical anisotropy on Cu(110)
Surf. Sci. 589 (2005) 153 - L.D. Sun, E. Demirci, R.E. Balderas-Navarro, A. Winkler, M. Hohage, P. Zeppenfeld
Optical characterization of methanol adsorption on the bare and oxygen precovered Cu(110) surface
Surf. Sci. 604 (2010) 824 - L.D. Sun, G. Weidlinger, M. Denk, R. Denk, M. Hohage, P. Zeppenfeld
Stranski-Krastanov growth of para-sexiphenyl on Cu(110)-(2x1)O revealed by optical spectroscopy
Phys. Chem. Chem. Phys. 12 (2010) 14706 - T. Brandstetter, M. Draxler, M. Hohage, P. Zeppenfeld, T. Stehrer, J. Heitz, N. Georgiev, D. Martinotti, H.-J. Ernst
Effects of laser irradiation on the morphology of Cu(110)
Phys. Rev. B 78 (2008) 035433 - J.M. Flores-Camacho, L.D. Sun, N. Saucedo-Zeni, G. Weidlinger, M. Hohage, P. Zeppenfeld
Optical anisotropies of metal clusters supported on a birefringent substrate
Phys. Rev. B 78 (2008) 075416 - L.D. Sun, M. Hohage, P. Zeppenfeld, R.E. Balderas-Navarro, K. Hingerl
Enhanced optical sensitivity to adsorption due to depolarization of anisotropic surface states
Phys. Rev. Lett. 90 (2003) 106104 - Y. Hu, K. Maschek, L. D. Sun, M. Hohage, P. Zeppenfeld
para-sexiphenyl thin film growth on Cu(110) and Cu(110)-(2x1)O surfaces
Surf. Sci. 600 (2006) 762 - L. D. Sun, M. Hohage, P. Zeppenfeld, R. E. Balderas-Navarro, Kurt Hingerl
Strain oscillations probed with light
Phys. Rev. Lett. 96 (2006) 016105 - J.M. Flores-Camacho, G. Weidlinger, N. Saucedo-Zeni, L.D. Sun, M. Hohage, P. Zeppenfeld
In-situ characterization of metal clusters supported on a birefringent substrate using reflectance difference spectroscopy
Appl. Phys. A 98 (2010) 499 - K. Schmidegg, M. Bergsmann, M. Hohage, L.D. Sun, P. Zeppenfeld
In-line monitoring of ultra-thin metallic films on PET substrates with sub-nm resolution
SVC Technical Conference Proceedings (2007) 677 - L.D. Sun, M. Hohage, P. Zeppenfeld
Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy
Phys. Rev. B 69 (2004) 045407 - R. Denk, M. Hohage, P. Zeppenfeld
Extreme sharp spin reorientation transition in ultrathin Ni films grown on Cu(110)-(2x1)O
Phys. Rev. B 79 (2009) 073407 - K. Schmidegg, L.D. Sun, P. Zeppenfeld
Optical and mechanical anisotropies of oriented poly(ethylene terephthalate) films
Appl. Phys. Lett. 89 (2006) 051906 - K. Schmidegg and P. Zeppenfeld
Separation of coherent and incoherent contributions to reflectance difference spectra
Appl. Phys. Lett. 90 (2007) 231903 - C. G. Hu, L.D. Sun, Y.N. Li, J.M. Flores-Camacho, M. Hohage, X.T. Hu, P. Zeppenfeld
A rotating-compensator based reflectance difference spectrometer for fast spectroscopic measurements
Rev. Sci. Instrum. 81 (2010) 043108