Research at the LIT AI Lab
Learn More About What We Do!
LIT Projects
Armin Biere | Logic Technology for Computer Science Education |
Alexander Egyed | Collaborative Engineering in a Multi-Tool Environment |
Sepp Hochreiter | |
Günter Klambauer | Deep Learning for In-Silico Toxicogenetics Testing |
LIT AI Lab Seminar
Please see here the actual list of talks.
Selected Publications
Armin Biere, Daniel Kröning: SAT-Based Model Checking. Handbook of Model Checking: 277-303, 2018
Mastthias Dorfer, Jan Hajic jr., Andreas Arzt, Harald Frostel, Gerhard Widmer: Learning Audio - Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification. Transactions of the International Society for Music Information Retrieval (in press, 2018).
Marijn J. H. Heule, Oliver Kullmann, Armin Biere: Cube-and-Conquer for Satisfiability. Handbook of Parallel Constraint Reasoning: 31-59, 2018
Hochreiter, S., & Schmidhuber, J.: Long short-term memory. Neural computation, 9(8), 1735-1780, 1997
Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J.: (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium NIPS 2017: 6629-6640
Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter: Self-Normalizing Neural Networks. NIPS 2017: 972-981, 2017
Bernhard Lehner, Jan Schlüter, Gerhard Widmer: Online, Loudness-Invariant Vocal Detection in Mixed Music Signals. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 26 (8), 1369-1380.
Kristina Preuer, Richard P. I. Lewis, Sepp Hochreiter, Andreas Bender, Krishna C. Bulusu, Günter Klambauer: DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 34(9): 1538-1546 (2018)
Gerhard Widmer: Getting Closer to the Essence of Music: The Con Espressione Manifesto. ACM Transactions on Intelligent Systems and Technology 8(2), Article 19, 2016.