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Abstract

In this study, we investigate the return propagation mechanism across four clean
energy indices, namely, the NASDAQ OMX Green Economy Index, NASDAQ OMX
Solar Energy Index, NASDAQ OMX Wind Energy Index, and NASDAQ OMX
Geothermal Energy Index ranging from December 21st, 2010 until June 2nd, 2023
by using a novel DCC-GARCH-based R2 decomposed connectedness approach. This
framework allows us to efficiently decompose dynamic conditional R2 goodness-of-fit
measures into its decomposed components. Furthermore, we introduce the concept
of minimum R2 decomposed connectedness portfolios and multivariate hedging
portfolios. We find that the dynamic total connectedness is heterogeneous over time
and economic-event dependent. In addition, the empirical results highlight that the
NASDAQ OMX Green Economy Index is a net transmitter of shocks while all others
are net receivers of shocks. Finally, we find that our proposed portfolio technique
outperforms the NASDAQ OMX Green Economy Index as well as all alternative
multivariate portfolio techniques regarding the hedging effectiveness score and the
Sharpe ratio.
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1 Introduction

The alarming escalation of climate change in recent times, along with its catastrophic

consequences necessitates immediate action to minimize greenhouse gas emissions and

prevent irreversible damage to the global ecosystem. Governments worldwide have

emphasized the importance of promoting a gradual and well-structured transition to

clean energy, with the goal of sustainable economic development. In alignment with

the 2015 Paris Agreement, countries invest substantially in green energy to mitigate

greenhouse gases. This shift towards green finance plays a crucial role in directing capital

investments into environmentally friendly projects, which supports the development of

a net-zero economy and offers significant environmental benefits (Alkathery et al., 2022;

Zhang et al., 2023; Demiralay et al., 2023).

Recent evidence suggests that the clean energy sector is undergoing substantial growth

not only in terms of a growing share of renewable energy in the production of electricity

but also in terms of net investments in the clean energy sector per se (see, inter alia,

Bloomberg, 2019; Dutta, 2019; Jaeger, 2021; International Energy Agency, 2022; Lee

et al., 2023). It follows that the stock market for renewable energy has a key role to play,

providing funds in support of the transition towards clean energy. In this regard, countries

in pursuit of sustainable development goals and smaller fossil fuel consumption may be

in a better position to achieve these objectives under the premise of a well-developed and

financially solid stock market for clean energy (Zeqiraj et al., 2020; Lv et al., 2023).

Motivated by such dynamics and the potential impact of the stock market on

government policies aiming to achieve crucial sustainability goals, in this paper we focus

on the investigation of the financial stability of the renewable energy sector, considering

that the performance and growth of clean energy indices may influence policy and

investment decisions. In effect, our motivation relates to the potential negative impact

on the process of achieving sustainable goals, stemming from volatility fluctuations of

publically traded companies involved in the production of clean energy. It should be

noted that, in order to capture these fluctuations different financial indices have been

suggested (Burke and Stephens, 2018). One prominent set of clean energy indices is the

NASDAQ OMX Green Economy Index Family. To the best of our knowledge, this is the
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only set of indices that covers Solar, Wind, and Geothermal Energy Indices separately.

With these in mind, the objective of our study is to investigate network dynamics

across clean energy stocks that may affect stability in the clean energy sector and,

by implication, the overall transition towards sustainable development. By considering

network dynamics within the clean energy sector, we attain a better understanding of

the underlying transmission mechanisms that affect the potential growth of the different

sources of clean energy and we underscore potential sources of systemic risk that threaten

financial stability and sustainable growth in the clean energy market. To be more explicit,

our main objective is to investigate the propagation mechanism between the NASDAQ

OMX Green Economy Index and its subset of alternative energy indices – including

the NASDAQ OMX Solar Energy Index, NASDAQ OMX Wind Energy Index, and

NASDAQ OMX Geothermal Energy Index – by using the DCC-GARCH R2 decomposed

connectedness approach and to create various bivariate and multivariate portfolios to

decrease the investment risk and increase the reward-to-volatility ratio.

Hence, we position our study among the recent relevant literature that focuses

on connectedness dynamics across networks of clean energy assets (see, inter alia,

Chatziantoniou et al., 2022; Naeem et al., 2022; Demiralay et al., 2023). A more explicit

look at the relevant literature is provided in the Literature Review Section.

In turn, the contribution of our study is threefold. First, we introduce the

novel DCC-GARCH R2 decomposed connectedness approach which allows us to

examine conditional variance-covariances, correlations, R2 goodness-of-fit measures,

and decomposed R2 contributions in a dynamic fashion. This does not only introduce a

new type of connectedness approach, but it also expands on the DCC-GARCH toolbox

by highlighting how the DCC-GARCH model can be demonstrated as a generalization of

multiple linear regression models and how R2 and decomposed R2 contributions can be

computed. Another crucial aspect of this approach is the concept of dynamic conditional

R2 goodness-of-fit measure, which helps determine the predictability of the left-hand side

(LHS) at different points in time. A higher dynamic conditional R2 measure indicates a

greater likelihood of understanding how a specific series responds to a shock in another

series. The larger the dynamic conditional R2 measure, the more likely it is that we can
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explain how a particular series will adjust to a shock in another series. By concentrating

on this particular group of alternative energy indices, we aim to understand how key

technologies, which currently attract over 75% of global investment in renewable energy

(International Renewable Energy Agency, 2021), contribute to the overall clean energy

transmission mechanism.

Second, we put forth two novel portfolio methodologies, namely the minimum

bivariate R2 portfolio and the minimum R2 decomposed connectedness portfolio. These

portfolios illustrate a substantial reduction in investment risk as well as increasing in

reward-to-volatility ratio which is of crucial importance due to the unique technical

characteristics of clean energy markets which make them more susceptible to speculative

shocks compared to traditional energy markets (Bohl et al., 2013). The primary objective

of these techniques is to minimize the interdependencies among financial assets. We

proceed to juxtapose this framework against well-known benchmark portfolio techniques

as well as the Green Economy Index. Furthermore, we elucidate the utilization of

dynamic conditional beta coefficients for the construction of a multivariate hedging

portfolio. The efficacy of all portfolios is assessed based on the hedging effectiveness

proposed by Ederington (1979) and the Sharpe ratio introduced by (Sharpe, 1994).

Third, we provide new empirical evidence to the renewable energy literature which is

rather silent when it comes to examining the market risk of the renewable energy sector

and investigating the transmission mechanism of renewable energy components such as

wind, solar, and geothermal energy.

Our findings highlight that the market risk is time-varying and economic-event

dependent. Notably, we observe peaks in market risk during key events such as the

Arab Spring in 2012, the COVID-19 pandemic in 2020, and the Russo-Ukrainian war

in 2022. Additionally, our findings indicate that the Green Economy Index serves as

a net transmitter of shocks, while all alternative energy indices act as net receivers of

shocks throughout the analyzed period. Furthermore, our analysis demonstrates that

all connectedness-based portfolio techniques surpass both the minimum variance and

minimum correlation portfolios in terms of hedging effectiveness and Sharpe ratios.

The remainder of the paper is structured as follows. Section 2 provides an overview of
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the state-of-the-art literature. Section 3 introduces and describes the employed dataset

while Section 4 outlines our implemented methodologies. Section 5 interprets and

discusses the obtained empirical results. Finally, Section 6 concludes the study.

2 Literature review

Recently, there has been significant attention focused on investigating the propagation

mechanism of clean energy assets. Many researchers, including including Chatziantoniou

et al. (2022), Naeem et al. (2022), Ha (2023), Demiralay et al. (2023), and Tiwari et al.

(2022), have explored the interdependencies and spillovers among clean energy indices.

Connectedness-dynamics lie at the heart of this study and therefore the relevant strand

of the connectedness literature constitutes our main point of reference. In the pages that

follow, we provide an essential account of relevant studies in order to accentuate the

positioning of our study among existing literature and to better highlight our motivation.

2.1 Clean energy ‘across asset’ connectedness

A growing body of literature has emerged, examining the interconnectedness between the

clean energy market and various other domains. Among the many, Ren and Lucey (2022),

Li et al. (2023a), and Patel et al. (2023) have investigated the relationship between clean

energy and cryptocurrencies, while Zeng et al. (2023) have explored its connection with

agricultural commodities. Furthermore, Umar et al. (2022), Bouoiyour et al. (2023), Gong

et al. (2023), and Li et al. (2023b) have studied the association between clean energy and

traditional energy markets.

In turn, the impact of clean energy on equity markets has been analyzed by Kuang

(2021), Broadstock et al. (2022), and Mensi et al. (2022). Finally, the interaction between

clean energy and industrial/precious metal markets has been investigated by Gustafsson

et al. (2022), Hanif et al. (2023), and Yahya et al. (2023).

In addition, Gong et al. (2023) utilize the quantile time-frequency connectedness

approach introduced by Chatziantoniou et al. (2022) to examine the interconnections

among Bio Fuel, Fuel Cell, Solar, Wind, and Geothermal energy indices, along with

natural gas. The empirical findings suggest that natural gas plays a central role as the
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primary transmitter of shocks, exerting a significant influence on the clean energy market.

In other words, a shock in natural gas has a more substantial impact on clean energy

indices compared to the reverse scenario. This discovery is further corroborated by Li et al.

(2023a). Furthermore, the study reveals that crude oil acts as a net receiver in relation to

all clean energy assets. By contrast, Zeng et al. (2023) apply the TVP-VAR connectedness

approach (Antonakakis et al., 2020a) and obtain compelling evidence supporting the

notion that Geothermal Energy and Bio/Clean Fuels have a significant influence on

spillover shocks in grain commodity markets.

Along a similar vein, Li et al. (2023a) employ a quantile connectedness approach

(Chatziantoniou et al., 2021) and show that the NASDAQ OMX Green Economy Index

serves as the primary transmitter of shocks, both at the lower and upper ends of the

quantile spectrum, affecting the Chinese stock market and Bitcoin. These findings align

with the results obtained by Mensi et al. (2022), demonstrating the dominant impact of

clean energy assets over the S&P500 across various quantiles.

2.2 Clean energy ‘within-sector’ connectedness

While the interdependencies across the clean energy market and other financial asset

classes are well studied, our understanding of the internal relationships and spillover effects

within the clean energy sector remains limited. In a recent study by Ha (2023), compelling

evidence has emerged regarding the noteworthy association between solar energy, biogas

energy, biofuel energy, geothermal energy, and carbon emission futures.

This relationship is particularly significant in both the low-frequency band spanning

from 2020 to mid-2022 and the high-frequency band beginning in 2022 and extending

to mid-2022, which coincides with the onset of the Russo-Ukrainian war. Furthermore,

Dogan et al. (2022) conducted a comprehensive analysis of the transmission mechanism

within the renewable energy sector. They specifically examined the S&P Green Bond

Index, NASDAQ OMX BioFuels, NASDAQ OMX Fuel Cell, NASDAQ OMX Geothermal,

NASDAQ OMX Solar, and NASDAQ OMX Wind Energy Index using TVP-VAR

connectedness measures. The study spanned from August 1st, 2014 to February 4th,

2022. The findings indicate that the S&P Green Bond Index serves as the primary
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recipient of shocks, influenced by all renewable energy assets. Notably, the empirical

results highlight the presence of time-varying market risk, with the highest peak observed

at the onset of the COVID-19 pandemic in early 2020.

In a separate investigation by Tiwari et al. (2022), the authors explored the

propagation mechanism across various indices, including the S&P Green Bond, Solactive

Global Solar, Solactive Global Wind, S&P Global Clean Energy, and Carbon Emissions.

The study encompassed the period from January 4th, 2015 to September 22nd, 2020.

Utilizing both LASSO-VAR and TVP-VAR-based connectedness measures, the authors

found that the dynamic total connectedness varied over time, with two notable peaks

occurring in 2016 and 2020. These peaks were associated with significant events such as

the Chinese crisis, the OPEC cut, and the emergence of the COVID-19 pandemic.

Furthermore, a study conducted by Chatziantoniou et al. (2022) delved into the

network dynamics of multiple clean energy indices, namely the S&P Global Clean

Energy Index, S&P Green Bond Index, MSCI Global Environment, and Sustainability

Index World. Spanning from November 28th, 2008 to January 12th, 2022, the researchers

employed quantile time-frequency connectedness dynamics to examine the transmission of

shocks within this network. The results highlighted the S&P Global Clean Energy Index

as the primary transmitter of shocks, while the remaining indices were predominantly

influenced by the network. Notably, the findings revealed that the MSCI Global

Environment and Sustainability Index World acted as transmitters, while the S&P Global

Clean Energy and S&P Green Bond Index served as recipients of short- and long-term

frequency shocks in the transmission mechanism. Furthermore, it was observed that

the degree of interconnectedness, both in terms of short-term and long-term frequency,

increased at the lower and upper ends of the quantile spectrum. Additionally, Liu et al.

(2021) conducted a study utilizing a time-varying copula and conditional Value-at-Risk

model to explore the dependence and systemic risk between eight green bonds and clean

energy assets. The findings strongly supported the presence of risk spillovers across these

markets, reinforcing the interconnected nature of green bonds and clean energy assets.
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2.3 Clean energy connectedness and investment portfolios

On another note, there is limited knowledge regarding the efficiency of bivariate and

multivariate portfolios in the green bond and clean energy markets. While many studies

have explored how clean energy assets can diversify other asset classes, little is known

about the effectiveness of portfolios solely based on clean energy assets. For instance,

Ren and Lucey (2022) provide suggestive evidence that clean energy can serve as a safe

haven for dirty cryptocurrencies.

Similarly, Goodell et al. (2022) highlight that green assets support the diversification

of Bitcoin. Asl et al. (2021) calculate bivariate optimal portfolio weights (Kroner and

Ng, 1998) and bivariate hedge ratios (Kroner and Sultan, 1993) between natural gas and

various clean energy assets. They find that the hedge ratio between S&P Global Clean

Energy and natural gas is negative, while the hedge ratios with respect to Heating Oil,

Gasoline, Crude Oil, and Propane are positive. This suggests that investors can hedge

S&P Global Clean Energy by taking a long position in natural gas or short positions in

other traditional energy assets. Interestingly, the optimal weight of S&P Global Clean

Energy in bivariate portfolios consistently exceeds 50%, except when it comes to the S&P

Global Oil Index.

In addition, Kuang (2021) shows that clean energy stocks outperform dirty stocks

but underperform equity markets. Additionally, he observed significant variations in the

risk-return profiles across clean energy sub-sectors and concluded that the minimum-tail

risk strategy outperforms the minimum-variance portfolio (Markowitz, 1952).

Constructing portfolios that encompass various asset classes is often an attractive

strategy for investors seeking to diversify their portfolio risk. However, it is crucial to

emphasize the significance of building portfolios exclusively comprised of clean energy

assets, as this approach not only contributes to improving the state of the environment

and supporting green projects but also aligns with the objective of sustainable economic

growth. In line with this objective, Tiwari et al. (2022) pursue a study involving the

creation of bivariate hedge ratios, as well as bivariate and multivariate portfolios based

on a selection of assets such as the S&P Green Bond, Solactive Global Solar, Solactive

Global Wind, S&P Global Clean Energy, and Carbon Emissions. The findings of this
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study highlight the inherent challenges in effectively hedging clean energy assets against

each other, as evidenced by the limited effectiveness of hedging measures (Ederington,

1979).

However, it is worth noting that optimal bivariate portfolio weights have proven more

successful in reducing portfolio variance, with the exception of the S&P Green Bond Index.

Notably, neither the minimum variance portfolio nor the minimum correlation portfolio

(Christoffersen et al., 2014) achieve significant risk reduction, whereas the minimum

connectedness portfolio (Broadstock et al., 2022) successfully attain this objective.

Lastly, the study reveals that the minimum connectedness portfolio outperformed

other portfolios during the COVID-19 pandemic period, highlighting its resilience and

performance in challenging market conditions.

2.4 Clean energy connectedness and methods

While previous research has predominantly focused on investigating interdependencies

using the connectedness approach (Diebold and Yılmaz, 2009, 2012, 2014), we align

ourselves with this line of inquiry. However, the methodologies currently employed rely

on rolling-window VAR or TVP-VAR models, which necessitate the standardization

of spillovers through row sum normalization. This normalization technique has faced

substantial criticism from Caloia et al. (2019), Lastrapes and Wiesen (2021), and Balcilar

et al. (2021). To address this concern, we adopt the recently developed concept of R2

decomposed connectedness measures (Balli et al., 2023; Naeem et al., 2023; Zhang et al.,

2023).

Gabauer et al. (2023) have established a connection between R2 measures and the

generalized forecast error variance decompositions (GFEVD) concept proposed by Koop

et al. (1996) and Pesaran and Shin (1998). Their work demonstrates that in the case of

random walk series, the GFEVD collapses to bivariate R2 goodness-of-fit measures.

Building upon this link, Naeem et al. (2023) suggest estimating multivariate linear

regression (MLR) models and decomposing the R2 goodness-of-fit measure, which always

falls between zero and unity, using the R2 decomposition method introduced by Genizi

(1993). Balli et al. (2023) further extend this concept by incorporating lagged RHS
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variables in the MLR, enabling the examination of both contemporaneous and lagged

connectedness measures. Nonetheless, both frameworks rely on rolling-window techniques,

which suffer from the multiple testing problem and may smooth out mean and volatility

dynamics due to the window size chosen.

Consequently, the connectedness measures can be significantly affected by the

arbitrarily selected window size. To address this limitation and provide truly time-varying

connectedness measures, we employ the DCC-GARCH approach (Engle, 2002), which

allows us to explore dynamic conditional correlations and covariances. Additionally, by

leveraging these two measures, we can also present multivariate hedging portfolios that

are based on the dynamic conditional betas (Engle, 2016) as well as two novel multivariate

connectedness portfolios.

3 Data

This research study utilizes a daily dataset obtained from Datastream, which covers

the period from December 1st, 2010 to June 2nd, 2023. The dataset focuses on

four indices: NASDAQ OMX Green Economy Index (GRE), NASDAQ OMX Solar

Energy Index (SOL), NASDAQ OMX Wind Energy Index (WIN), and NASDAQ OMX

Geothermal Energy Index (GEO). The NASDAQ OMX Green Economy Index is a

market-capitalization weighted benchmark crafted to monitor the performance of around

330 companies spanning various industries closely linked with sustainable development.

Furthermore, the NASDAQ OMX Wind, Solar, and Geothermal Indices are sub-sector

indices of the Green Economy Index designed to track companies that produce energy

through wind, solar, and geothermal power, respectively.

Thus, the NASDAQ OMX Green Economy Index can be seen as a proxy for the clean

energy market portfolio, as it comprises companies engaged in various subsectors

associated with the green economy. These subsectors typically involve industries

and technologies that prioritize environmental sustainability, renewable energy, clean

technology, and other environmentally friendly practices. As a result, all the indices used

in this study serve as indicators of the industry’s progress, attracting attention from

investors, policymakers, and stakeholders with an interest in sustainable development.
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This study aims to examine the transmission mechanism among these indices,

providing insights into the interdependencies and shock spillovers of assets. By

monitoring, forecasting, and formulating economic policies accordingly, the aim is to

prevent adverse spillovers that could lead to financial instability in the clean energy

sector.

In order to adequately process the employed series, it is required that each series is

stationary. Since the Elliott et al. (1996) unit-root test concludes that the raw series are

non-stationary, we analyze the daily percentage changes of each series. Table 1 presents

the summary statistics. Based on the standard two-sided t-test, the mean return of

GRE, SOL, and WIN are positive and statistically significant at the 10% significance

level. On average, SOL has the highest mean return, followed by WIN, GRE, and GEO.

However, it’s important to note that GEO’s mean return does not demonstrate statistical

significance at any conventional level. Notably, GRE has the lowest variance, while SOL

exhibits the highest variance, making it the most volatile and risky asset. Additionally,

the summary statistics indicate that GRE, SOL, and WIN are significantly left-skewed,

whereas GEO is significantly right-skewed. This suggests a higher probability of extreme

negative returns for GRE, SOL, and WIN, and the opposite for GEO. Moreover, all series

are found to be significantly leptokurtic and non-normally distributed, indicating fatter

tails compared to normally distributed series. Furthermore, all series are stationary and

exhibit ARCH/GARCH errors, indicating mean-reverting processes with heteroscedastic

volatilities. Finally, all Kendall rank correlation coefficients are positive and statistically

significant, at least at the 1% significance level, implying that a positive change in one

series results in a positive change in all other series.

[INSERT TABLE 1 AROUND HERE.]

4 Methodology

This section begins by exploring the core mechanics of the standard multivariate linear

regression (MLR) model, aiming to establish the foundation for understanding how the

DCC-GARCH model can be viewed as an extension of the MLR model. Following that,

an overview of the DCC-GARCH model (Engle, 2002) will be presented, highlighting
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the construction of dynamic conditional correlations and subsequently the dynamic

conditional variance-covariances. The concept of dynamic conditional R2 goodness-of-fit

measure will then be introduced, along with its decomposition (Genizi, 1993) to provide

detailed insights concerning the R2 contribution of each RHS variable. Subsequently, the

incorporation of the decomposed R2 measures into the dynamic connectedness framework

will be demonstrated and discussed in detail. Finally, both novel connectedness portfolios

and the multivariate hedging portfolio are presented together with two benchmark

portfolios and portfolio performance statistics.

4.1 Multivariate linear regression revisited

The MLR can be considered a workhorse in empirical finance and econometrics. In most

studies, proposed models are compared to the MLR to illustrate the superiority of the

outlined model. However, our case differs slightly as we illustrate the MLR as a fallback

model of our employed DCC-GARCH model. In this context, we consider Z = [y,X] as

a T ×K+1 dimensional matrix, encompassing both the dependent or LHS variable y and

the independent or RHS variables X where K stands for the number of employed assets

and T for the time period. For our purpose, we are interested in two fundamental concepts

of the MLR, namely, the estimation of the regression coefficients and the computation of

the R2 goodness-of-fit measure. We start by outlining the MLR:

y = Xb+ ϵ (1)

where ϵ and b represent an T × 1 dimensional error vector and an K × 1 dimension

regression coefficient vector, respectively. To simplify matters, we make the assumption

that all series, denoted as Z, have been adjusted for the mean value, hence the exclusion

of the intercept. To calculate the regression coefficients and determine the R2 measure of

goodness-of-fit, it is necessary to establish the partitioning of the variance-covariance and

correlation matrices mentioned below.

H =

 Hyy Hxy

Hyx Hxx

 , R =

 1 Rxy

Ryx Rxx

 .
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Hyy, Hxx, and Hxy stand for the variance of the LHS variable, variance-covariances across

the RHS variables, and the covariances between the RHS and LHS variables. The same

concept applies to the correlation matrix, R.

To obtain the regression coefficients, the following matrix operation must be

performed:

b̂ =(X ′X)−1X ′y (2)

=H−1
xx Hxy. (3)

Consequently, the regression coefficients can be determined exclusively using the

variance-covariance matrix, H .

In order to compute the R2 goodness-of-fit measure, we utilize an alternative concept

by rearranging the following formula:

R2 =1− (y −Xb̂)′(y −Xb̂)

y′y
(4)

=H ′
xyH

−1
xx HxyH

−1
yy (5)

=R′
xyR

−1
xxRxy. (6)

These relations illustrate that in order to calculate regression coefficients and the

R2 goodness-of-fit measure, one simply needs to have access to the unconditional

variance-covariance matrix, H . As the DCC-GARCH model provides us with dynamic

conditional variance-covariances, we are able to compute dynamic conditional betas

(Engle, 2016), along with dynamic conditional R2 goodness-of-fit measures.

4.2 DCC-GARCH

In the spirit of Engle (2002), we can outline the dynamic conditional correlations

generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model as
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follows1:

ut =D−1
t zt zt ∼ N(0,Ht), ut ∼ N(0, I), Dt = diag({h1/2

1t , ..., h
1/2
Kt })

Qt =(1− a− b)Q̄+ aut−1u
′
t−1 + bQt−1

Rt =diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Ht =DtRtDt

where zt and ut are K + 1 × 1 dimensional return and standardized residual vectors,

respectively. Q̄t, Ht, and Rt are K + 1 × K + 1 dimensional unconditional variance,

conditional variance-covariance, and conditional correlation matrix, respectively.

In a two-step estimation procedure, Engle (2002) demonstrated that estimating the

DCC-GARCH model does not result in biased estimates. Initially, K univariate GARCH

models are estimated to derive Dt. Then, the shock parameter, a, and the persistence

parameter, b, of the DCC-GARCH model are estimated to obtain Rt and subsequently

Ht. The log-likelihood function can be expressed as the combined sum of the volatility

and correlation components:

L(θ, ϕ) =LV (θ) + LC(θ, ϕ) (7)

LV (θ) =− 1
2

T∑
t=1

K∑
i=1

(log(2π) + log(hi,t) +
z2i,t
hi,t

) (8)

LC(θ, ϕ) =− 1
2

T∑
t=1

(Klog(2π) + 2log(|Dt|) + log(|Rt|) + u′
tR

−1
t ut) (9)

where LV (θ) and LC(θ, ϕ) stand for the volatility and correlation component of the

log-likelihood function, respectively.

In the first step, the parameter θ represents the estimated univariate GARCH

parameters, while the parameter ϕ represents the DCC-GARCH parameter in the second

step. To maximize the log-likelihood, it is possible to maximize the first and second steps

separately. Therefore, we maximize the log-likelihood based on Antonakakis et al. (2021)
1We have chosen the DCC-GARCH model because it is, aside from the CCC-GARCH model

(Bollerslev, 1990), the only multivariate GARCH model that does not suffer from the curse of
dimensionality. Additionally, it is the only multivariate GARCH model that allows conditional volatilities
to follow different GARCH specifications.
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selection criterion for univariate GARCH.2 Antonakakis et al. (2021) utilize the omnibus

family GARCH(1,1) model (see, Hansen and Lunde, 2005) proposed by (Hentschel, 1995):

h
λ/2
t =ω + αh

λ/2
t−1(|zt−1 − η| − γ(zt−1 − ζ))δ + βh

λ/2
t−1. (10)

This equation represents the Box-Cox transformation for the conditional standard

deviation whose shape is determined by λ, and the parameter δ transforms the absolute

value function which it subjects to rotations and shifts through the η and ζ parameters,

respectively. Furthermore, ω, γ, α, and β represent the intercept, leverage term,

shock, and persistence parameters, respectively. By restricting the parameters of the

omnibus family GARCH model the following GARCH models can be estimated: GARCH

(Bollerslev, 1986), Integrated GARCH (Engle and Bollerslev, 1986), Exponential GARCH

(Nelson, 1991), Absolute Value GARCH (Schwert, 1990), Threshold GARCH (Zakoian,

1994), GJR-GARCH (Glosten et al., 1993), Nonlinear GARCH (Higgins et al., 1992),

Nonlinear Asymmetric GARCH (Engle and Ng, 1993), and Asymmetric Power ARCH

(Ding et al., 1993) models.3

To further enhance the maximization of the log-likelihood function, we adopt a

method similar to Antonakakis et al. (2023) that introduces greater flexibility into

the DCC-GARCH(1,1) model. This is achieved by estimating multiple bivariate

DCC-GARCH models, allowing for varying parameters a and b. Estimating a single

DCC-GARCH model for multiple assets assumes that the correlation dynamics between

each pair are the same, resulting in identical parameter estimates for all pairs in the

bivariate DCC-GARCH models. Moreover, this approach offers an additional benefit as

it enables us to employ Engle and Sheppard (2001) DCC-GARCH test. This test allows

us to estimate whether all pairs exhibit constant or dynamic conditional correlations, as

well as dynamic conditional R2 goodness-of-fit measures.
2In simple terms, Antonakakis et al. (2021) introduce a univariate GARCH selection criterion, which

is essentially an adjusted Bayesian Information Criterion (BIC). This criterion not only penalizes based
on the total number of parameters but also considers the number of statistically insignificant parameters.
Moreover, it incorporates knock-out criteria derived from significant misspecification test statistics such
as VaR, CVaR, VaR Duration, Sign Bias, and Q2(20) test statistics. For more details, interested readers
are directed to Antonakakis et al. (2021).

3For detailed information about the parameter restrictions as well as on conditional distributions,
interested readers are referred to Ghalanos (2020).
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If both variances remain constant over time (first stage) and all correlations are also

constant (second stage), the estimated regression coefficients and R2 will be identical to

those retrieved from the MLR model. The statistical significance of first-stage regression

coefficients can be verified by the magnitude of the t-test while the DCC-GARCH

test of Engle and Sheppard (2001) is used to test whether we deal with constant

conditional correlations (Bollerslev, 1990) or dynamic conditional correlations (Engle,

2002). Therefore, the DCC-GARCH model can be seen as an extension of the MLR

model.

4.3 Dynamic conditional R2 and R2 decomposed measures

In order to compute the dynamic conditional R2 goodness-of-fit measure, we simply

replace the components of H in Equation (6) by the dynamic components of Ht. Thus,

dynamic conditional R2 goodness-of-fit measures are obtained as follows,

R2
t = R′

xy,tR
−1
xx,tRxy,t. (11)

Dynamic conditional R2 goodness-of-fit measures are of crucial interest as they provide

an assessment of the predictive power or explanatory ability of a statistical model in

a time-varying fashion. If a series is hedged with another, the use of high dynamic

conditional R2 measures will indicate the potential success of the hedging strategy, as

it demonstrates that the variability of the series can be significantly explained by a

single variable. Furthermore, in terms of stock selection and risk management, high

dynamic conditional R2 values are highly relevant given that they provide information

about expected future dependencies.

As pointed out in Gabauer et al. (2023), the sum of bivariate R2 measures is unlikely

to be equal to the R2 measure of an MLR since chances are high that the RHS variables

are correlated with each other. This is exactly the problem Genizi (1993) dealt with

when developing his R2 decomposition procedure. Fortunately, this procedure can be

reformulated in order that it solely depends on the correlation matrix. The initial idea

has been that K correlated series are transformed into K independent latent series, ft, by

means of principal component analysis (PCA) in order to preserve 100% of the variation of
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the k correlated series. By assuming that the correlated series have a mean of zero and unit

variance, the variance-covariance matrix is equal to the correlation matrix. This is true

as the correlation matrix is nothing else than a standardized variance-covariance matrix.

Thus, in order to make the RHS variables independent of each other the symmetric and

positive definite Rxx,t matrix will be decomposed using the eigenvalue decomposition. The

following set of equations will describe how the R2 decomposition procedure is conducted:

Rxx,t =VtΛ
2
tVt = Rxf,tR

′
xf,t (12)

Rxf,t =VtΛtV
′
t (13)

R2
t =R2

xf,t(R
−1
xf,tRxy,t)

2 (14)

=R2
xf,tR

2
fy,t (15)

where Vt represents the eigenvectors and Λ2
t the diagonal eigenvalue matrix obtained by

decomposing Rxx,t. The square root of the Rxx,t is then equal to the correlations between

xt and ft, Rxf,t. Finally, the K × 1 decomposed R2 vector, R2
t is obtained by the matrix

product of R2
xf,t and R2

fy,t. From an intuitive standpoint, if we consider the squared sum

of the correlations between the LHS variable, yt, and the latent variables, we can observe

that it is equivalent to R2. This is because it represents the special scenario where the

sum of bivariate R2 measures matches the R2 value obtained from an MLR where the

LHS variable is regressed on all latent variables. It is important to highlight that in

bivariate regression models, R2 is equal to the squared correlation between the LHS and

RHS variables. Since R2
xf,t possesses the property of having row sums and column sums

equal to one, it quantifies the impact of RHS variables in predicting the LHS variable.

4.4 Dynamic connectedness measures

By investigating the propagation mechanism of financial markets, we are able to provide

relevant insights on several crucial economic aspects. Firstly, the analysis sheds light on

the current market risk, allowing for a comprehensive understanding of the prevailing

market conditions. Secondly, it assesses the prediction accuracy of the network, enabling

more reliable predictions as well as revealing essential spillover channels. Furthermore,

we identify whether variables act as net transmitters or net receivers of shocks, providing
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a deeper understanding of financial market contagion.

In accordance with the connectedness approach of Diebold and Yılmaz (2012, 2014),

we introduce a novel framework where the conventional scaled GFEVD matrix is replaced

by the R2 decomposition matrix, R2d. This matrix is retrieved by changing K times

the LHS and RHS variables and stacking the R2 decomposed measures in an iterative

manner. Thus, R2d
t = [R2

1,t, ...,R
2
i,t, ...,R

2
K,t]. Table 2 represents the revised schematic of

the DCC-GARCH R2 decomposed connectedness approach in time t:

[INSERT TABLE 2 AROUND HERE.]

The unity values on the diagonal of the connectedness tables can be viewed in a

similar manner to the unity values on the diagonal of a correlation matrix. Meanwhile,

the off-diagonal elements represent the predictive contribution series j has on series i.

Consequently, R2d
12,t stands for the predictive contribution of series 2 on series 1 in time

t. By summing up the predictive contribution all series j have on series i in time t,

we obtain the total directional connectedness FROM others which is equal to the R2

goodness-of-fit measure where series i is considered as the LHS variable while the others

are RHS variables:

FROMi,t =
K∑

k=1,k ̸=i

R2d
ik,t = R2

i,t. (16)

On the contrary, by aggregating the predictive contribution series i has on all other

variables j in time t, we retrieve the total directional connectedness TO others

demonstrating the overall predictive relevance variable i holds for the network:

TOi,t =
K∑

k=1,k ̸=i

R2d
ki,t. (17)

The difference between the total directional connectedness TO and FROM others is

defined as the NET total connectedness which reports the importance of variable i

concerning its predictive performance:

NETi,t = TOi,t − FROMi,t. (18)
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If NETi,t > 0 (NETi,t < 0), variable i is considered as a net transmitter (receiver) of

shocks in time t. The rationale behind being a net transmitter of shock is that whenever

a shock in variable i occurs it is assumed that all other variables j will be adjusted to this

shock due to the contemporaneous relation and its predictive contribution.

Furthermore, the net pairwise directional connectedness illustrates the net transmission

on the bilateral level. The NPDCij,t represents the difference in the predictive

contribution between variable i and variable j in time t:

NPDCij,t = R2d
ij,t −R2d

ji,t. (19)

Whenever variable i contributes more (less) to the prediction of variable j than vice versa

in time t, NPDCij,t > 0 (NPDCij,t < 0).

We now turn to the cornerstone of the connectedness approach, the total connectedness

index (TCI) which assesses the interdependence within the network and is often used as

a proxy for market risk. As the TCI is considered to be equal to the average total

directional connectedness TO others or total directional connectedness FROM others, the

TCI becomes equivalent to the averaged conditional R2 goodness-of-fit measure:

TCIt =
1

K

K∑
k=1

TOk,t =
1

K

K∑
k=1

FROMk,t ==
1

K

K∑
k=1

R2
k,t. (20)

Since R2 falls between zero and one, the Total Connectedness Index (TCI) also falls within

this range, effectively solving the problem of normalizing connectedness (see, Caloia et al.,

2019; Lastrapes and Wiesen, 2021; Chatziantoniou and Gabauer, 2021; Balcilar et al.,

2021). The intuition behind this is that the TCI tends to be high when series are highly

correlated and moving in the same direction. This is particularly evident during periods

of financial turbulence when a majority of financial assets experience significant negative

percentage changes.

Finally, we introduce two pairwise connectedness index (PCI) approaches, which

operate similarly to the TCI but focus on bilateral connections. The original PCI metric
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has been proposed by Chatziantoniou and Gabauer (2021) and can be computed as follows,

PCICij,t = 2 ·

(
R2,d

ij +R2,d
ji

R2,d
ii +R2,d

ij +R2,d
ij +R2,d

jj

)
(21)

while the second PCI approach is based upon the model-free connectedness approach of

Gabauer et al. (2023). Interestingly, this metric is solely based on the dynamic conditional

correlations of the DCC-GARCH model:

PCIRij,t =
2 ·R2

ij,t

1 +R2
ij,t

(22)

Both PCI metrics are used to minimize the interdependencies in different portfolio

strategies.

4.5 Multivariate portfolio analysis

This section aims to explore various portfolio strategies, emphasizing the significance of

adapting to evolving market conditions and the relevance of portfolio restructuring. It

will delve into both bivariate and multivariate portfolio techniques, demonstrating the

advantages of diversification and asset allocation in a dynamic environment. Initially,

we will outline bivariate and multivariate hedging portfolios, followed by portfolios that

prioritize mitigating investment risk. The evaluation of different portfolio strategies will

be conducted using metrics such as the Sharpe ratio and hedging effectiveness.

4.5.1 Hedge ratios

We will begin by implementing the bivariate hedge strategy proposed by Kroner and

Sultan (1993). Their study demonstrates the effectiveness of hedging the risk associated

with holding a long position in asset i through an investment in a short position of asset

j. In this context, the hedge ratio determines the expenses associated with hedging a 1

USD long position in asset i with a HRij,t USD short position in asset j. This can be

mathematically formulated as follows

HRij,t =
Hij,t

Hjj,t

(23)

19

Electronic copy available at: https://ssrn.com/abstract=4810641



where Hij,t and Hjj,t stand for the conditional covariance between asset i and j and the

conditional variance of asset j.

4.5.2 Multivariate hedging portfolio

The concept of the multivariate hedging strategy is derived from the dynamic conditional

beta concept outlined in Engle (2016). In this strategy, the dynamic conditional beta

indicates the investment amount in multiple short positions that act as a hedge for a 1

USD long position in yt. By employing this approach, we anticipate a larger reduction in

portfolio risk and less volatile hedge ratios, which ultimately improves the predictability of

future hedge ratios within the context of portfolio rebalancing strategies. The calculation

of dynamic conditional betas is done in the following manner:

bt = H−1
xx,tHxy,t. (24)

As a result, to hedge a 1 USD yt position, one can invest bt USD in shorting other assets.

The performance of this strategy is expected to yield better results during periods where

strong positive or negative correlations among assets are present, as well as when the level

of predictive accuracy is high. Therefore, the dynamic conditional R2 measures should be

monitored when pursuing this strategy.

4.5.3 Optimal bivariate portfolio weights

To mitigate the risk of a two-asset portfolio in the face of volatile financial market

movements, we utilize the optimal bivariate portfolio weight strategy proposed by Kroner

and Ng (1998). This approach assumes that investors hold a portfolio with a no-shorting

constraint. Furthermore, this approach assumes that expected returns are zero, and

thereby the problem is to find the optimal portfolio weights that minimize the portfolio

risk. We compute the portfolio weights of asset i using the following formula:

wij,t =
Hjj,t −Hij,t

Hii,t − 2Hij,t +Hjj,t

. (25)

To ensure adherence to the no-shorting constraint - portfolio weights must fall between
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zero and unit - the following restrictions are imposed on the weights:

wij,t =


0 if wij,t < 0

wij,t if 0 ≤ wji,t ≤ 1

1 if wij,t > 1

(26)

where wij,t and 1− wij,t are the weights of asset i and j in a 1 USD portfolio at time t.

4.5.4 Global minimum risk portfolios

In the pursuit of minimizing portfolio risk, we shift our focus towards multivariate

portfolio strategies. These strategies, as explored by Markowitz (1952), Christoffersen

et al. (2014), and Broadstock et al. (2022), are built on a common concept but employ

distinct metrics for risk minimization. To provide a comprehensive understanding, we

begin by outlining the general framework and subsequently delve into the process of

obtaining diverse portfolio weights. The global minimum risk portfolio can be seen as a

minimization optimization problem which can be formulated as follows,

argmin
wt

w′
tPtwt s.t. w′

t1 = 1, 0 ≤ wt ≤ 1. (27)

where w denotes the K × 1 dimensional portfolio weights vector in time t that

results from minimizing the K ×K dimensional asset risk matrix, P . The portfolio risk

minimization strategies have evolved over time. Initially, Markowitz (1952) proposed

the use of the variance-covariance matrix, Ht. However, Christoffersen et al. (2014)

argued that minimizing the correlations, Rt, is more relevant for risk reduction. Building

on these studies, Broadstock et al. (2022) have demonstrated that minimizing PCIC
t

not only significantly reduces portfolio risk but also outperforms both the Markovitz

and Christoffersen strategies. Inspired by the findings of Broadstock et al. (2022), we

suggest adopting the approach of minimizing PCIR
t , which relies on dynamic conditional

correlations. Additionally, we propose reducing interdependencies across assets by

minimizing R2d
t .
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4.5.5 Portfolio performance

The portfolio performance is assessed using two metrics: the Sharpe ratio (Sharpe, 1994)

and the hedging effectiveness (Ederington, 1979).

The Sharpe ratio (SR), often referred to as the reward-to-volatility ratio, is calculated

as follows,

SR =
x̄p√

var(xp)
(28)

where x̄p and var(xp) stand for the average portfolio return and the portfolio variance,

respectively. A higher SR indicates greater returns relative to the portfolio risk. By

comparing the SR of different portfolios, we can determine the highest portfolio return

given the same level of volatility. Alternatively, we use the Value-at-Risk and the

conditional Value-at-Risk as the denominator.

Ederington (1979) introduced the concept of Hedging Effectiveness (HE) which

provides insight into the degree of risk reduction achieved by investing in a portfolio

rather than investing solely in a single asset i. To determine the significance of this

reduction, we utilize the HE test statistics developed by Antonakakis et al. (2020b). The

HE can be computed in the following manner,

HEi = 1− var(xp)

var(xi)
(29)

where var(xi) denotes the variance of asset i, and HEi provides information on the

percentage-wise risk reduction by investing in a portfolio compared to asset i. Thus, A

high (low) HE index indicates a high (low) risk reduction.

5 Empirical results

The empirical results section is organized as follows. We begin by presenting the

DCC-GARCH estimation results and the selection of univariate GARCH models,

including their misspecification tests. Moreover, we discuss and present the dynamic

conditional R2 and R2 decomposed measures. Next, we proceed to discuss the outcomes

of our proposed connectedness approach. Initially, we provide an overview of the clean

22

Electronic copy available at: https://ssrn.com/abstract=4810641



energy propagation dynamics through the use of averaged connectedness measures.

Subsequently, we delve into the dynamic connectedness plots, offering a more detailed

explanation. Finally, we concentrate on comparing bivariate and multivariate portfolio

techniques and evaluate the performance of multivariate portfolios using various portfolio

statistics.

5.1 DCC-GARCH estimation

Table 3 presents the estimation results of the bivariate mixed DCC-GARCH model.

Following Antonakakis et al. (2021), we employ different models to capture the conditional

volatility of GRE, SOL, WIN, and GEO, namely the exponential GARCH (Nelson, 1991),

standard GARCH (Bollerslev, 1986), and twice the Threshold GARCH (Zakoian, 1994)

models. Since the standardized residuals appear to be non-normally distributed, we

enhance the modeling by incorporating Student’s t, skew Student’s t, and skew generalized

error distributions, as recommended by the GARCH selection algorithm. Our findings

indicate that, except for SOL, all models account for asymmetric effects, wherein negative

returns increase conditional volatilities. It should be noted that the Exponential GARCH

model effectively incorporates the scaled disturbance term to account for asymmetric

effects. In contrast, the Threshold GARCH model utilizes an indicator variable to capture

negative disturbances, elucidating the reason behind the negative sign of the leverage

parameter in the former and the positive sign in the latter. Given the significance of all

α and β coefficients, at least at the 10% level, we can conclude that variances exhibit

time-varying behavior.

Furthermore, we observe a high degree of persistence in the conditional volatility, as

shown by the proximity of all β coefficients to unity. Additionally, it is important to note

that the data exhibit fat tails and skewed distributions, as reflected in the parameters of

the conditional distribution. While the Student’s t distribution approximates a normal

distribution when the degree of freedom is 30, and the generalized error distribution

approximates a normal distribution when the shape parameter is 2, it is evident that

in all four cases, the standardized residuals display fat tails. Moreover, the statistically

significant skewness parameters of GRE, SOL, and GEO indicate that the standardized
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residual distributions are asymmetrical.

[INSERT TABLE 3 AROUND HERE.]

In addition, it is worth noting that all bivariate DCC-GARCH models identify the

conditional correlations to be time-varying according to the DCC-GARCH test of Engle

and Sheppard (2001). This is further supported by the statistical analysis presented

in Table 3, which reveals that all multivariate DCC-GARCH parameters (a and b)

are significantly different from zero at least at the 1% significance level. Estimated a

parameters are located on the lower triangular, while the b parameters are reported on the

upper triangular. In a similar fashion, we present the dynamic conditional correlations

(lower triangular) and the degrees of freedom based on the Student’s t distribution

(upper triangular) for each bivariate DCC-GARCH model. Our findings demonstrate

that all dynamic conditional correlations as well as the degrees of freedom are statistically

significantly different at least at the 1% significance level.

To evaluate the presented GARCH specification, we performed different misspecification

tests which are summarized in Table 4. A significant outcome in the Sign Bias test (Engle

and Ng, 1993) would suggest incorporating (further) leverage parameters to account for

asymmetric effects. The Q2(20) statistics (Fisher and Gallagher, 2012) were employed to

determine whether additional α and β parameters are necessary to accurately capture

conditional volatility. Non-significant test results indicate that the employed model

effectively captures the conditional volatility.

[INSERT TABLE 4 AROUND HERE.]

We also utilized the Value-at-Risk (VaR) test proposed by Christoffersen (1998) to

assess whether there is a statistically significant difference between observed losses and

estimated VaR. Additionally, the conditional Value-at-Risk (CVaR) test by Christoffersen

et al. (2001) is employed to evaluate the GARCH model’s ability to estimate potential

losses at the 5% quantile level. Finally, we apply the Value-at-Risk Duration (VaR Dur.)

test by Christoffersen and Pelletier (2004) to examine the model’s capability to capture the

duration of extreme events. If the VaR Duration test is significant, it would imply that the

model fails to accurately estimate the time duration of losses surpassing the VaR threshold.
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The significance of any of these tests would suggest the consideration of an alternative

GARCH model. Thus, the fact that none of the misspecification tests is significant at

any conventional levels, we can conclude that the presented univariate GARCH models

accurately capture conditional volatility and different VaR-based measures.

5.1.1 Dynamic conditional variance-covariances

Based upon the presented mixed bivariate DCC-GARCH estimation, we obtain dynamic

conditional variance-covariances and dynamic conditional correlation measures.

Figure 1 presents the dynamic conditional variance-covariances. We find that SOL,

WIN, and GEO are more volatile than GRE. Besides the individual volatility dynamics, we

observe that three major volatility peaks can be observed in all series, namely, during the

Arab Spring of 2012, the COVID-19 outbreak in 2020, and during the Russo-Ukrainian

war in 2022. These three common volatility peaks are also shown in the conditional

covariances which reflect bivariate interdependencies.

[INSERT FIGURE 1 AROUND HERE.]

5.1.2 Dynamic conditional betas

As previously demonstrated, the dynamic conditional betas can be computed based on

the dynamic conditional variance-covariances. As shown in Figure 2 the interdependences

between the employed series vary considerably. Notably, the pronounced variation in these

interdependencies is primarily driven by the variances of SOL, WIN, and GEO, which are

at least twice the size of GRE, as shown in Table 1. For comparison, we have included

the regression coefficients of the associated OLS models. Noteworthy deviations from the

OLS estimates are observed not only during periods of economic and financial turmoil but

also amidst changes in the clean energy market. Interestingly, while all OLS estimates

are significantly positive, we have observed some periods where dynamic conditional betas

become negative, providing accurate updates on concealed market dynamics that cannot

be captured by assuming a constant relationship throughout the sample period.

[INSERT FIGURE 2 AROUND HERE.]
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5.1.3 Dynamic conditional correlations

Figure 3 illustrates the dynamic conditional correlations. A strong correlation between

the GRE and SOL is evident, which can be attributed to the greater accessibility and

versatility of solar energy compared to wind energy. This has led to a higher prevalence

of solar energy installations, particularly in the last two decades, as the cost of such

installations significantly decreased, resulting in substantial investments (Li et al., 2015).

However, an interesting finding is a significant decline in this correlation between 2021

and mid-2022, which can potentially be linked to the supply chain disruptions caused by

the COVID-19 pandemic.

[INSERT FIGURE 3 AROUND HERE.]

It is worth noting that the differences in correlation dynamics between the GRE and

the three alternative energy sources are due to the utilization of bivariate DCC-GARCH

models. If a single DCC-GARCH model were used, the evolution of dynamic conditional

correlation would exhibit similar patterns, albeit with different magnitudes. Among

the energy sources, GRE, SOL, and GEO display more volatile dynamic conditional

correlations, whereas WIN demonstrates relatively stable relationships with the others.

An intriguing observation is that the dynamic conditional correlations involving GRE

and the market portfolio consistently increase during times of economic and financial

turmoil. However, an exception to this trend is seen in the relationship between GRE and

GEO during the Russo-Ukrainian war. Lastly, it is important to note that all correlations

remain strictly positive throughout the sample period, except for SOL and GEO, which

exhibited short periods of slightly negative correlations during 2018 and at the end of the

sample period.

5.1.4 Dynamic conditional R2 and R2 decomposed measures

In the following analysis, we examine the R2 and decomposed R2 goodness-of-fit measures

computed using dynamic conditional correlations. Among the variables, GRE and SOL

exhibit the highest R2 values, explaining approximately 80% of the variation in the LHS

variable. Overall, our findings suggest that GRE has the greatest explanatory power for

alternative energy sources, followed by SOL, WIN, and GEO.
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[INSERT FIGURE 4 AROUND HERE.]

Specifically, in the case of GRE, SOL accounts for the majority of the dynamics,

followed by WIN, while GEO explains the smallest fraction. However, during the Arab

Spring of 2012, SOL emerged as a more influential factor in explaining the variance in

WIN compared to GRE or GEO. Nevertheless, over time, the predictive power of GRE

increases, overshadowing SOL, and leaving only a small fraction of predictability for GEO.

Interestingly, certain time periods reveal that SOL has a greater impact on the R2 value

of GEO. Conversely, WIN appears to have lesser significance in influencing the dynamics

of GEO.

Notably, we observe that crisis periods are associated with increased R2 goodness-of-fit

measures, possibly due to high uncertainty leading to similar behaviors among series

within the same sector. Consequently, high R2 measures could be considered as a measure

of market risk, indicating periods of heightened co-movements.

5.2 R2 decomposed connectedness approach

We begin by explaining the averaged connectedness measures and then continue with

the dynamic connectedness plots which provide us with a more detailed look at the

time-varying behavior considering that averaged values are concealing dynamics.

The connectedness table is shown in Figure 5. As in the case of the correlation matrix,

the diagonal is equal to 100% illustrating that regression of the series on itself would

explain 100% of the variation in the LHS variable. The off-diagonal values illustrate the

R2 decomposed connectedness measures and thus the influence series j (column) has on

series i (row). The row sum is equal to the R2 goodness-of-fit measure of a time-varying

multivariate linear regression model and represents the degree of variance explainability

or predictability of the LHS variable by means of the RHS variables. Thus, R2 is equal

to the FROM total directional connectedness.

[INSERT TABLE 5 AROUND HERE.]

Furthermore, the TCI is equal to the average explained variance in the LHS variable. If

the TCI is high it is assumed that the market risk is high due to the fact that all variables
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are highly interconnected and thus illustrate a high level of co-movement. Finally, the

TO total directional connectedness measure is equal to the sum of decomposed R2 values

of series i. Thus, it can be interpreted as the overall contribution of predictability series

i has on all others in the network.

We find that the TCI is equal to 38.18% which means that the series in the network

explain on average almost 40% of the variation in each variable. This can already be

considered a high value given that we are dealing with a small network and that the

degree of predictability strongly varies among assets. By having a closer look we see that

GRE reaches an average FROM value of 54.93% which means that on average all other

series explain 54.93% of the variation in GRE. SOL reaches a value of 46.42% while the

FROM measure of WIN and GEO are equal to 29.92% and 21.45%, respectively. On

the contrary, we find that GRE explains 60.05% of the variation while SOL, WIN, and

GEO can determine 45.06%, 27.79%, and 19.81% of the variance in the network. Thus,

GRE is considered the main net transmitter of shocks while SOL, WIN, and GEO are

net receivers of shocks. On the net pairwise transmitting level, we see that GRE explains

more of the variance of all others than others explain GRE variance. The second strongest

predictive variable is SOL as it is on the net predicting end of WIN and GEO while WIN

and GEO are mainly on the net receiving end of predictability.

5.2.1 Dynamic total connectedness

Figure 5 presents the dynamic total connectedness which illustrates the market risk in

a time-varying fashion. As discussed in previous sections, we have compelling empirical

evidence showing that significant events such as the Arab Spring in 2012, the COVID-19

pandemic outbreak in 2020, and the Russo-Ukrainian war in 2022 have had a profound

impact on the clean energy market dynamics. The TCI supports these findings, with

noticeable spikes observed in 2012, 2020, and 2022.

[INSERT FIGURE 5 AROUND HERE.]

Although the 2022 peak is relatively smaller compared to some peaks between

2013 and 2020, it’s important to note that we reached an all-time low by the end of

2021. This suggests that the clean energy market is becoming more stable and less
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susceptible to shocks from external markets, likely due to substantial investments and the

implementation of Environmental, Social, and Governance (ESG) scores (see, Broadstock

et al., 2021). Therefore, the 2022 peak holds significance as it experienced a rapid

increase, doubling its previous level during the Russo-Ukrainian war. Importantly, these

three peaks directly correlate with economic and financial crises, distinguishing them

from other peaks. While the impacts of investments in solar, wind, and geothermal

energy sectors are challenging to disentangle from one another, the TCI consistently

demonstrates substantial differences associated with changing market conditions (see,

Baruník and Křehlík, 2018; Bouri et al., 2021).

5.2.2 Net total directional connectedness

Finally, we focus on the net total directional connectedness which points out the series

that are dominating the market or are dominated by the market. Figure 6 demonstrates

that almost throughout the entire sample period GRE has been a net transmitter of shocks

while WIN, SOL, and GEO are considered as net receivers of shocks. Interestingly, we find

that WIN and SOL appear to be net transmitters during the Arab Spring of 2012 while

GRE became a net receiver of shocks during this period. This could be partially attributed

to the fact that the Arab Spring had a positive influence on the Desertec Industrial

Initiative project (USD 550 billion) as awareness and interest in turning sunshine into

energy has increased across North African and Middle Eastern economies (Kirschbaum,

2011).

[INSERT FIGURE 6 AROUND HERE.]

Another relevant observation is that SOL is on the net transmitting end at the sample

period which might be another indication of how economic and financial crises shape the

dynamics in the clean energy market. This is also in line with the finding that GRE

almost became a net receiver at the beginning of the Russo-Ukrainian war and is at low

levels at the end of the sample period. Also, the net receiving measures of WIN are at

their lowest level while the opposite is true in the case of GEO.
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5.3 Portfolio and risk management

In this section, we discuss and interpret the results with respect to bivariate and

multivariate hedging and minimum-risk portfolios. We proceed by evaluating the

performance of the multivariate portfolios using well-established measures such as

hedging effectiveness (Ederington, 1979) and various Sharpe ratio metrics (Sharpe, 1994).

Additionally, we conduct a comparative analysis of the constructed multivariate portfolios

against the GRE, which serves as the current market portfolio, employing the information

ratio as a key metric for assessment.

We begin by analyzing the performance of the individual series, examining key metrics

such as annualized return, annualized standard deviation, and three different Sharpe ratios

based on various risk measures. These findings are presented in Table 6.

We start by looking at the performance of the individual series. Table 6 shows the

annualized return, annualized standard deviation as well as three Sharpe ratios that are

based on different risk measures. As we can see SOL has the highest annual return of

13% followed by WIN with 10.1%, GRE with 8.5%, and GEO with 3.4%. Nevertheless,

we should also take into consideration the annualized risk that comes with each asset.

The lowest risk can be obtained by investing in GRE which serves as a market portfolio

(18.2%), followed by GEO (26.8%), WIN (27.2%), and SOL (33.3%). Notably, we see a

direct relationship: The higher the returns, the higher the risk.

[INSERT TABLE 6 AROUND HERE.]

Upon examining the original Sharpe ratio, which represents the return per standard

deviation, it becomes evident that GRE emerges as the most appealing investment with

the highest value (0.470). It is closely followed by SOL (0.391), WIN (0.373), and GEO

(0.127). Similarly, when considering the Sharpe ratio based on VaR at the 5% quantile

level, a similar ranking emerges, with SOL being the most attractive investment (2.371),

followed by WIN (2.339), GRE (2.324), and GEO (1.789). In terms of the Sharpe ratio

based on the CVaR at the 5% quantile level, SOL stands out as the most attractive option

(2.371), followed closely by WIN (2.339), GRE (2.324), and GEO (1.789).
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5.3.1 Hedging portfolios

When it comes to hedging portfolios, the primary objective is to minimize both risk and

return by effectively hedging one asset with another or multiple assets. Thus, theoretically,

the optimal hedge should aim for returns and risk to be close to zero, along with the Sharpe

ratio. This is caused by the fact that hedges are commonly employed to safeguard the

worth of an investment or portfolio rather than to generate extra profits. By striving for

a zero return, the hedge plays a role in maintaining the overall position’s value relatively

steady, irrespective of shifts in the market.

To achieve this, we employ the bivariate hedge ratio technique developed by Kroner

and Sultan (1993) to hedge one asset with another. Table 7 presents the results of this

technique, revealing a significant reduction in investment risk for all asset pairs. Notably,

the largest decrease in variance, amounting to 53.6%, is achieved by hedging GRE with

SOL. Similarly, hedging SOL with GRE results in the second largest reduction, lowering

the initial investment risk by 46.8%.

The empirical results reveal a consistent decrease in both annualized returns and

annualized standard deviations across all cases. This decline is also reflected in lower

Sharpe ratios, except for the GRE/GEO pair, which exhibited a higher Sharpe ratio of

0.537 compared to the original ratio of 0.470. Notably, the GEO/WIN and WIN/GRE

pairs emerged as the most effective hedging combinations, generating annualized returns

of -0.002 and 0.010, respectively. Moreover, the GEO/WIN pair demonstrates the most

stable hedge ratio (10.5%), with a mean of 0.255. Consequently, a 1 USD investment in

GEO can be hedged by shorting WIN by 0.255 USD.

[INSERT TABLE 7 AROUND HERE.]

When evaluating our proposed multivariate hedging technique, as presented in Table 8,

we observe that all hedging effectiveness metrics either improved or remained equal

compared to their bivariate counterparts. Notably, the multivariate approach achieved a

60.5% reduction in investment risk for GRE and a 29.1% reduction for WIN, slightly higher

than the bivariate hedge ratio reduction of 28.0%. Although the decrease is marginal, it

is essential to consider that utilizing the multivariate hedging portfolio consistently yields

superior performance in terms of percentage reduction in investment risk.
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Furthermore, the empirical evidence indicates that the annualized returns and

annualized standard deviations of the multivariate hedging portfolio are either lower or

equal to those of the bivariate hedge ratios, with the exception of the annualized returns

for WIN/GRE and GEO. This trend is also observed in the Sharpe Ratios.

Additionally, it is worth mentioning that the incorporation of additional hedging

factors could have potentially introduced noise and adversely affected the performance

of the multivariate hedging portfolio. In summary, the multivariate hedging portfolio

demonstrates a notable advantage over its bivariate counterpart in terms of risk mitigation

for investments by lowering annualized returns and decreasing standard deviations, leading

to generally lower Sharpe ratios in most instances.

[INSERT TABLE 8 AROUND HERE.]

5.3.2 Minimum risk portfolios

We will now explore bivariate and multivariate portfolio techniques aimed at minimizing

risk while indirectly maximizing the Sharpe ratio, which reflects the highest return

attainable given a specific level of investment risk. Our analysis begins with the empirical

findings of Kroner and Ng (1998), who provide optimal bivariate portfolio weights in

Table 9. The results indicate that not all bivariate portfolios result in a significant

reduction in investment risk. For instance, when constructing a portfolio between GRE

and SOL, we observe a slight increase of 1.5% in investment risk compared to GRE

alone. Similarly, portfolios involving GRE and WIN or GEO show minor reductions

in risk, which are only statistically significant at the 10% and 5% significance levels,

respectively. Interestingly, the portfolio comprising GRE and SOL demonstrates a slight

improvement in the Sharpe ratio, increasing from 0.470 to 0.481. However, this limited

risk reduction in the portfolio can be attributed to the substantial weight assigned to

GRE, which ranges between 0.971 and 1.000 in 95% of cases. Moreover, our analysis

reveals that all combinations involving GRE yield high Sharpe ratios, while bivariate

portfolios involving alternative energy sources reach a maximum Sharpe ratio of 0.393,

significantly lower than 0.481. Consequently, a multivariate portfolio approach should be

pursued to determine whether considering multiple assets can further enhance the Sharpe
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ratio.

[INSERT TABLE 9 AROUND HERE.]

When considering multivariate portfolio techniques, one significant advantage is

the ability to combine a variety of assets, which can potentially result in greater

portfolio diversification and reduced investment risk. In this study, we compare several

benchmark models: the minimum variance portfolio (Markowitz, 1952), the minimum

correlation portfolio (Christoffersen et al., 2014), and the minimum connectedness

portfolio (Broadstock et al., 2022). Additionally, we propose two portfolio frameworks:

the minimum bivariate R2 and the minimum R2 decomposed connectedness portfolio.

Table 10 presents the empirical results of our multivariate portfolio analysis. Notably,

the main distinction of the minimum variance portfolio by Markowitz (1952) is its focus

on the GRE, with an average weight of 72.6%. Although this weight varies between

20.8% and 99.8%, investing predominantly in the GRE reduces the overall investment

risk by 13.2%. Another significant finding is that alternative energy sources have small

average weights, ranging from 1.7% to 18.1%. This observation aligns with the strategy

employed by many investment companies, aiming to outperform a specific stock market

index by investing a majority of their portfolio in the index and allocating the remainder

to hand-selected stocks.

In contrast, the minimum correlation portfolio of Christoffersen et al. (2014) primarily

focuses on alternative energy sources, with an average GRE weight of only 8.1%. The

largest proportions are invested in GEO (34.6%), followed by WIN (31.1%), and SOL

(26.2%). Table 3 and Figure 3 clearly demonstrate that GEO exhibits the lowest

correlations with individual series, closely followed by WIN, SOL, and GRE. This

strategy yields a Sharpe ratio of 0.508. It is important to note that this technique

significantly reduces investment risk associated with alternative energy investments while

substantially increasing the risk of investing solely in GRE. However, the Sharpe ratio,

which represents returns relative to a given level of risk, is considerably higher for the

minimum correlation portfolio compared to the minimum variance portfolio.

Next, we examine the minimum connectedness portfolio of Broadstock et al. (2022),

which focuses on minimizing dynamic pairwise connectedness and interconnectedness

33

Electronic copy available at: https://ssrn.com/abstract=4810641



across series. While Tiwari et al. (2022) point out that the minimum correlation portfolio

and the minimum connectedness portfolio lead to similar results, they have also found

that the latter outperforms the former. This is also what we find in our empirical findings.

It seems that the minimum connectedness portfolio attempts to combine elements of both

the minimum variance and minimum correlation portfolios, as its weights fall within the

bounds of these two benchmark frameworks. Notably, this approach outperforms both

benchmarks as it reaches an annualized Sharpe ratio of 0.515.

[INSERT TABLE 10 AROUND HERE.]

Then, we focus on the minimum bivariate R2 portfolio which can also be considered

as a portfolio derived from the connectedness literature. In this event, we use the

finding of Gabauer et al. (2023) that the (unscaled) GFEVD is equal to the bivariate

R2 goodness-of-fit measures. Thus, this approach is similar to the minimum correlation

portfolio as it represents the squared dynamic conditional correlation measures while being

derived from the connectedness approach of Diebold and Yılmaz (2012). Interestingly,

we observe that the portfolio weights obtained using this technique are quite similar to

those of the minimum correlation portfolio. However, the minimum correlation portfolio

exhibits a slightly stronger representation for smaller weights and dampens the magnitude

of larger weights. As a result, this technique leads to slightly higher hedging effectiveness

metrics compared to the minimum correlation portfolio and also achieves a higher Sharpe

ratio.

Finally, we shed light on the minimum R2 decomposed connectedness portfolio. In

contrast to the minimum connectedness portfolio and the minimum bivariate R2 portfolio,

this technique utilizes asymmetric connectedness measures, which provide additional

insights into the predictive performance of the employed series. Since the diagonal

elements are always equal to unity and each row sum is than unity, it can be assumed

that the matrix is positive semidefinite and invertible. Although this portfolio technique

yielded the lowest Sharpe ratio of 0.509 among the connectedness portfolios, it still

outperforms both benchmarks. Moreover, the minimum R2 decomposed connectedness

portfolio not only exhibits significant superiority over the minimum variance portfolio in
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terms of the Sharpe ratio but also enhances the hedging effectiveness of the minimum

correlation portfolio.

5.3.3 Portfolio performance

In order to compare the various constructed portfolios with each other and with the

current market portfolio, which is represented by the GRE, we conducted various

statistical analyses. Table 11 reports a wide range of adjusted Sharpe ratios and the

Information ratio between the GRE and various alternative portfolio techniques. Our

empirical analysis reveals compelling evidence that the minimum bivariate R2 portfolio

consistently outperforms all other approaches. This conclusion is supported by the

annualized Sharpe ratio, calculated based on standard deviation, Value-at-Risk, and

Conditional Value-at-Risk, which consistently surpasses the alternatives. Similarly, the

minimum connectedness portfolio developed by Broadstock et al. (2022) demonstrates

superior performance, while the minimum R2 decomposed connectedness portfolio

presents striking results compared to the minimum correlation portfolio.

[INSERT TABLE 11 AROUND HERE.]

It is noteworthy that not only does the minimum correlation portfolio fall short, but all

the connectedness-based portfolios consistently outperform the GRE, which serves as the

market portfolio. Thus, we argue that constructing a portfolio based on the minimization

of interconnectedness not only enhances the financial stability of the clean energy market

but also yields a more stable market portfolio.

In conclusion, all three connectedness portfolios outperform both benchmarks

while offering distinct methods for constructing portfolios. Introducing two additional

connectedness portfolio techniques not only contributes to the risk and portfolio literature

but also provides practical applications for measuring asset interconnectedness. Up until

now, the connectedness literature has primarily focused on monitoring, predicting, and

evaluating market risk. However, the work by Broadstock et al. (2022) stands out as the

only one that offers a practical tool for estimating connectedness measures with direct

relevance to risk and portfolio management.
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6 Concluding remarks

In this study, we examine the return transmission mechanism among four clean energy

indices: the NASDAQ OMX Green Economy Index (GRE), NASDAQ OMX Solar

Energy Index (SOL), NASDAQ OMX Wind Energy Index (WIN), and NASDAQ OMX

Geothermal Energy Index (GEO). Our analysis covers the period from December 1st,

2010 to June 2nd, 2023.

For this purpose, we have introduced a novel and efficient DCC-GARCH-based R2

decomposed connectedness approach that allows us to examine connectedness measures

in a time-varying fashion. This novel framework has been used in order to investigate the

propagation mechanism across four renewable energy indices, we propose the novel and

efficient DCC-GARCH-based R2 decomposed connectedness approach. This approach

does not only allow us to analyze connectedness measures in a time-varying fashion, but

it also comes with the concept of dynamic conditional R2 goodness-of-fit measure, which

provides information about the expected degree of predictability.

We also introduce the minimum bivariate R2 portfolio and the minimum R2

decomposed connectedness portfolio, which aim to minimize interdependencies across

series. Moreover, our study utilizes the dynamic conditional beta framework to model a

multivariate hedging portfolio. The portfolio performance is evaluated based upon the

Sharpe ratio (Sharpe, 1994) and the hedging effectiveness (Ederington, 1979).

The empirical findings reveal that the dynamic total connectedness varies over time

and is influenced by economic events. Specifically, we identify three peaks associated

with the Arab Spring in 2012, the COVID-19 pandemic in 2020, and the Russo-Ukrainian

war in 2022. Furthermore, our results indicate that GRE acts as the primary net

transmitter of shocks, while the other three alternative energy sources are net receivers

of shocks. We also find that connectedness portfolios outperform minimum variance

and minimum correlation portfolios. Additionally, creating bivariate and multivariate

portfolios solely based on clean energy assets can significantly reduce portfolio risk. In

fact, the multivariate hedging portfolio reduces the risk of holding a single asset by at

least 23%.

These empirical results offer several benefits for practitioners and policymakers.
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The connectedness analysis reveals the propagation mechanism across renewable energy

sources which is crucial for policymakers to understand cross-market interdependencies.

Furthermore, the clean energy market spillover analysis is also essential to design effective

investment strategies that have positive effects on the amount of funding from investors

concerning green energy projects facilitating the path to net-zero economies.

While our study focuses exclusively on the interconnectedness of the clean energy

market, avenues for future research could explore different financial assets and expand

the network to include commodity markets such as agricultural, livestock, industrial, and

precious metal markets.
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Table 1: Summary statistics

GRE SOL WIN GEO

Mean 0.039∗ 0.071∗ 0.053∗ 0.027
(0.055) (0.059) (0.082) (0.362)

Variance 1.311∗∗∗ 4.390∗∗∗ 2.934∗∗∗ 2.852∗∗∗
Skewness -0.517∗∗∗ -0.175∗∗∗ -0.137∗∗∗ 0.718∗∗∗

(0.000) (0.000) (0.002) (0.000)
Ex.Kurtosis 9.089∗∗∗ 4.599∗∗∗ 3.734∗∗∗ 14.437∗∗∗

(0.000) (0.000) (0.000) (0.000)
JB 10990.261∗∗∗ 2794.169∗∗∗ 1840.851∗∗∗ 27644.162∗∗∗

(0.000) (0.000) (0.000) (0.000)
ERS -6.053∗∗∗ -9.569∗∗∗ -11.933∗∗∗ -11.570∗∗∗

(0.000) (0.000) (0.000) (0.000)
Q2(20) 2312.705∗∗∗ 1585.716∗∗∗ 247.003∗∗∗ 324.849∗∗∗

(0.000) (0.000) (0.000) (0.000)

Kendall rank correlation coefficients

GRE 1.000∗∗∗ 0.483∗∗∗ 0.360∗∗∗ 0.309∗∗∗
SOL 0.483∗∗∗ 1.000∗∗∗ 0.269∗∗∗ 0.242∗∗∗
WIN 0.360∗∗∗ 0.269∗∗∗ 1.000∗∗∗ 0.185∗∗∗
GEO 0.309∗∗∗ 0.242∗∗∗ 0.185∗∗∗ 1.000∗∗∗

Notes: ***,**,* denote significance at 1%, 5%, and 10% significance levels while values in parentheses represent p-values; Skewness: D’Agostino
(1970) test; Kurtosis: Anscombe and Glynn (1983) test; JB: Jarque and Bera (1980) normality test; ERS: Elliott et al. (1996) unit-root test;

Q2(20): Fisher and Gallagher (2012) weighted Portmanteau test statistics.

Table 2: Connectedness table schematic
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Table 3: Bivariate DCC-GARCH(1,1) with mixed univariate GARCH estimation table

GRE SOL WIN GEO

Univariate GARCH parameters

Exponential Bollerslev Threshold Threshold
GARCH GARCH GARCH GARCH

µ 0.042∗∗∗ 0.070∗∗∗ 0.070∗∗∗ 0.011
ω -0.004 0.057 0.039 0.026
α 0.177∗∗∗ 0.057∗∗∗ 0.075∗∗ 0.085∗
β 0.984∗∗∗ 0.929∗∗∗ 0.920∗∗∗ 0.922∗∗∗
γ -0.106∗∗∗ 0.386∗∗∗ 0.323∗∗∗

Conditional distribution parameters

SSTD SGED STD SSTD

shape 7.414∗∗∗ 1.346∗∗∗ 5.424∗∗∗ 4.173∗∗∗
skew 0.873∗∗∗ 0.978∗∗∗ 0.918∗∗∗

Multivariate GARCH parameters: a \ b

GRE 0.937∗∗∗ 0.988∗∗∗ 0.937∗∗∗
SOL 0.042∗∗∗ 0.986∗∗∗ 0.963∗∗∗
WIN 0.009∗∗∗ 0.012∗∗∗ 0.985∗∗∗
GEO 0.034∗∗∗ 0.025∗∗∗ 0.010∗∗∗

DCC \ Student’s t dof

GRE 10.169∗∗∗ 9.304∗∗∗ 8.217∗∗∗
SOL 0.649∗∗∗ 11.057∗∗∗ 10.888∗∗∗
WIN 0.514∗∗∗ 0.396∗∗∗ 9.511∗∗∗
GEO 0.421∗∗∗ 0.339∗∗∗ 0.275∗∗∗

Notes: Estimation results of DCC-GARCH (Engle, 2002) with mixed univariate GARCH models (Antonakakis et al.,
2021); ***,**,* denote significance at 1%, 5%, and 10% significance levels while values in parentheses represent p-values.

STD: Student’s t; SSTD: skew Student’s t; SGED: skew generalized error distribution,

Table 4: Evaluation of univariate GARCH performance

Sign Bias Q2(20) VaR CVaR VaR Dur.

GRE 1.111 12.775 1.955 −678.032 1.115
(0.267) (0.248) (0.162) (0.943) (0.770)

SOL 1.618 15.327 2.673 −686.697 1.134
(0.106) (0.108) (0.102) (0.933) (0.933)

WIN 0.753 4.927 2.422 −683.814 1.127
(0.451) (0.959) (0.120) (0.870) (0.540)

GEO 0.510 6.609 0.001 −627.929 1.006
(0.610) (0.857) (0.974) (0.700) (0.583)

Notes: Notes: ***,**,* denote significance at 1%, 5%, and 10% significance levels while values in parentheses represent
p-values. Sign Bias: Engle and Ng (1993) test; Q2(20): Weighted Portmanteau test statistics (Fisher and Gallagher, 2012);

VaR: Value-at-Risk test (Christoffersen, 1998); CVaR: Conditional Value-at-Risk test (Christoffersen et al., 2001); VaR
Dur.: Value-at-Risk Duration (Christoffersen and Pelletier, 2004). All VaR test statistics are based on the 5% quantile level.
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Table 5: Averaged connectedness measures

GRE SOL WIN GEO FROM

GRE 100.00 29.53 15.47 9.93 54.93
SOL 31.42 100.00 8.71 6.30 46.42
WIN 17.38 8.95 100.00 3.58 29.92
GEO 11.25 6.58 3.62 100.00 21.45

TO 60.05 45.06 27.79 19.81 152.72
Inc.Own 160.05 145.06 127.79 119.81 TCI
NET 5.12 -1.36 -2.13 -1.63 38.18

Notes: Averaged R2 decomposed connectedness measures are based on a DCC-GARCH (Engle, 2002) with mixed
univariate GARCH models (Antonakakis et al., 2021).

Table 6: Asset performance

GRE SOL WIN GEO

Return 0.085 0.130 0.101 0.034
Std.Dev. 0.182 0.333 0.272 0.268

Sharpe Ratio

Std.Dev. 0.470 0.391 0.373 0.127
VaR 4.758 3.962 3.757 1.789
CVaR 2.324 2.371 2.339 1.789

Table 7: Hedge ratios

Mean Std.Dev. 5% 95% HE p-value Return Risk SR

GRE/SOL 0.336 0.146 0.144 0.612 0.536 0.000 0.057 0.124 0.460
GRE/WIN 0.308 0.114 0.165 0.533 0.345 0.004 0.058 0.147 0.391
GRE/GEO 0.290 0.149 0.108 0.593 0.278 0.000 0.083 0.154 0.537
SOL/GRE 1.400 0.440 0.734 2.194 0.468 0.000 -0.015 0.243 -0.064
SOL/WIN 0.472 0.174 0.224 0.824 0.195 0.004 0.063 0.298 0.210
SOL/GEO 0.459 0.212 0.170 0.841 0.169 0.000 0.117 0.303 0.386
WIN/GRE 0.950 0.338 0.477 1.614 0.280 0.000 0.010 0.231 0.044
WIN/SOL 0.352 0.163 0.127 0.645 0.205 0.000 0.070 0.242 0.290
WIN/GEO 0.325 0.149 0.150 0.624 0.098 0.000 0.089 0.258 0.344
GEO/GRE 0.696 0.300 0.274 1.207 0.227 0.000 -0.045 0.236 -0.190
GEO/SOL 0.264 0.124 0.087 0.497 0.176 0.000 -0.021 0.243 -0.087
GEO/WIN 0.255 0.105 0.126 0.457 0.098 0.004 -0.002 0.255 -0.007

Notes: Results are based on the hedge ratio of Kroner and Sultan (1993), hedging effectiveness of Ederington (1979), and
the test statistics for the hedging effectiveness of Antonakakis et al. (2020b).
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Table 8: Multivariate hedging portfolios

Mean Std.Dev. 5% 95% HE p-value Return Risk SR

GRE/SOL 0.251 0.123 0.086 0.490
0.605 0.000 0.042 0.114 0.364GRE/WIN 0.158 0.054 0.086 0.264

GRE/GEO 0.122 0.074 0.021 0.257

SOL/GRE 1.234 0.492 0.571 2.154
0.474 0.000 -0.013 0.241 -0.055SOL/WIN 0.090 0.170 -0.173 0.353

SOL/GEO 0.088 0.136 -0.126 0.317

WIN/GRE 0.804 0.351 0.304 1.383
0.291 0.000 0.025 0.229 0.107WIN/SOL 0.094 0.168 -0.168 0.397

WIN/GEO 0.064 0.076 -0.049 0.208

GEO/GRE 0.521 0.288 0.119 1.003
0.228 0.000 -0.050 0.236 -0.214GEO/SOL 0.083 0.119 -0.101 0.289

GEO/WIN 0.059 0.074 -0.046 0.184
Notes: Results are based on our proposed multivariate hedging strategy, hedging effectiveness of Ederington (1979), and

the test statistics for the hedging effectiveness of Antonakakis et al. (2020b).

Table 9: Optimal bivariate portfolio weights

Mean Std.Dev. 5% 95% HE p-value SR

GRE/SOL 0.971 0.096 0.791 1.000 -0.015 0.669 0.481
GRE/WIN 0.885 0.159 0.527 1.000 0.061 0.075 0.424
GRE/GEO 0.787 0.204 0.346 1.000 0.072 0.035 0.423
SOL/GRE 0.029 0.096 0.000 0.209 0.697 0.000 0.481
SOL/WIN 0.378 0.180 0.121 0.707 0.447 0.000 0.393
SOL/GEO 0.307 0.159 0.067 0.608 0.467 0.000 0.308
WIN/GRE 0.115 0.159 0.000 0.473 0.581 0.000 0.424
WIN/SOL 0.622 0.180 0.293 0.879 0.173 0.000 0.393
WIN/GEO 0.426 0.188 0.134 0.773 0.406 0.000 0.348
GEO/GRE 0.213 0.204 0.000 0.654 0.573 0.000 0.423
GEO/SOL 0.693 0.159 0.392 0.933 0.180 0.000 0.308
GEO/WIN 0.574 0.188 0.227 0.866 0.389 0.000 0.348

Notes: Results are based on the optimal bivariate portfolio weight framework of Kroner and Ng (1998), hedging
effectiveness of Ederington (1979), and the test statistics for the hedging effectiveness of Antonakakis et al. (2020b).
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Table 10: Multivariate portfolio analysis

Mean Std.Dev. 5% 95% HE p-value SR

Minimum variance portfolio (MVP)

GRE 0.726 0.247 0.208 0.998 0.132 0.000

0.404SOL 0.017 0.061 0.000 0.131 0.741 0.000
WIN 0.077 0.112 0.000 0.307 0.612 0.000
GEO 0.181 0.165 0.000 0.542 0.601 0.000

Minimum correlation portfolio (MCP)

GRE 0.081 0.069 0.000 0.209 -0.345 0.000

0.508SOL 0.262 0.065 0.129 0.345 0.598 0.000
WIN 0.311 0.050 0.221 0.381 0.399 0.000
GEO 0.346 0.032 0.286 0.391 0.382 0.000

Minimum connectedness portfolio (MPP)

GRE 0.136 0.053 0.042 0.220 -0.301 0.000

0.515SOL 0.251 0.036 0.183 0.305 0.611 0.000
WIN 0.294 0.031 0.240 0.341 0.419 0.000
GEO 0.319 0.019 0.282 0.342 0.402 0.000

Minimum bivariate R2 portfolio (MRP)

GRE 0.085 0.069 0.000 0.211 -0.343 0.000

0.527SOL 0.259 0.066 0.128 0.342 0.599 0.000
WIN 0.311 0.047 0.235 0.380 0.400 0.000
GEO 0.344 0.032 0.287 0.397 0.383 0.000

Minimum R2 decomposed connectedness portfolio (M2P)

GRE 0.200 0.017 0.173 0.231 -0.250 0.000

0.509SOL 0.236 0.016 0.210 0.262 0.627 0.000
WIN 0.273 0.018 0.241 0.301 0.442 0.000
GEO 0.292 0.014 0.266 0.310 0.425 0.000

Notes: Results are based on global minimum risk frameworks (Markowitz, 1952; Christoffersen et al., 2014; Broadstock
et al., 2022), hedging effectiveness of Ederington (1979), and the test statistics for the hedging effectiveness of Antonakakis

et al. (2020b).

Table 11: Portfolio performance

MVP MCP MPP MRP M2P

Std.Dev. based Sharpe ratio 0.404 0.508 0.515 0.527 0.509
VaR based Sharpe ratio 4.417 5.432 5.505 5.633 5.389
CVaR based Sharpe ratio 2.921 3.409 3.458 3.503 3.274

Information ratio (GRE) −0.223 0.157 0.165 0.187 0.150
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Figure 1: Dynamic conditional variance-covariances

Notes: The dynamic conditional variances and covariances are retrieved from the DCC-GARCH framework (Engle, 2002)
with mixed univariate GARCH models (Antonakakis et al., 2021).
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Figure 2: Dynamic conditional betas

Notes: The dynamic conditional betas are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed univariate
GARCH models (Antonakakis et al., 2021).

Figure 3: Dynamic conditional correlations

Notes: The dynamic conditional correlations are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed
univariate GARCH models (Antonakakis et al., 2021).
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Figure 4: Dynamic conditional R2 decomposed measures

Notes: The dynamic conditional R2 decomposed goodness-of-fit measures are based on the DCC-GARCH framework
(Engle, 2002) with mixed univariate GARCH models (Antonakakis et al., 2021). and the R2 decomposition approach of

Genizi (1993).

Figure 5: Dynamic total connectedness

Notes: Dynamic total connectedness measures rest on the DCC-GARCH framework (Engle, 2002) with mixed univariate
GARCH models (Antonakakis et al., 2021).
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Figure 6: Net total directional connectedness

Notes: Net total directional connectedness measures rest on the DCC-GARCH framework (Engle, 2002) with mixed
univariate GARCH models (Antonakakis et al., 2021).
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