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The Topic for Today

❖ There is is very influential framework for causal inference 
in health and social sciences: the Rubin causal model 
(Rubin 1974).  

❖ But that framework raises a worry: it assumes a 
controversial logical principle called Conditional 
Excluded Middle (Dawid 2000). 

❖ In reply, I will argue that the Rubin causal model can 
receive an update that dispenses with that logical principle.  

❖ This will be done while preserving an important fruit of 
the framework: instrumental variable estimation of LATE 
(Imbens & Angrist 1994).



1. Introducing the Controversy 



Cured t = 1
i = …

Counterfactual Variables in the Rubin Causal Model



Cured t = 1
i = 1

Counterfactual Variables in the Rubin Causal Model



Cured t = 1
i = 1

Counterfactual Variables in the Rubin Causal Model

means that,  
if individual i took the treatment (Take =1), 
i would be cured (Cured = 1).



Cured t = 0
i = 1

Cured t = 1
i = 1

Counterfactual Variables in the Rubin Causal Model

means that,  
if individual i took the treatment (Take =1), 
i would be cured (Cured = 1).

means that,  
if individual i did not take the treatment (Take =0),  
i would be cured (Cured = 1).



An Assumption: Conditional Excluded Middle (CEM)

Consider an individual i who actually does not take the treatment. 
Then Conditional Excluded Middle says the following:

               either  or . Cured t = 1
i = 1 0

The result that i 
would have if i 
took the treatment 

is either being cured,  
or not being cured.

Either [if i took the treatment, i would be cured], 
or [if i took the treatment, i would not be cured].

CEM



Dawid’s (2000) Argument Against CEM

The statistician Dawid (2000) raises a worry: 
❖ In an indeterministic world, there is no such thing as the result that i would 

have if i took the treatment. For i could be cured, and could be not cured. 
❖ So, assuming CEM is assuming a kind of fatalism/determinism. 
❖ Even some proponents of the Rubin causal model agree that this is a 

problem, such as Robins and Greenland (2000).

               either  or . Cured t = 1
i = 1 0

The result that i 
would have if i 
took the treatment 

is either being cured,  
or not being cured.

Either [if i took the treatment, i would be cured], 
or [if i took the treatment, i would not be cured].

CEM



CEM has been quite controversial in 
philosophy of language since 1970’s. 



Lewis’ (1973) Argument Against CEM

(1) Suppose that we are in an indeterministic world. 

(2) So, if i took the treatment, i would have a nonzero probability to be cured, 
and would have a nonzero probability to be not cured. 

(3) So, if i took the treatment, i could be cured, and could be not cured. 

(4) Suppose for reductio that (B) holds,  
namely, if i took the treatment, i would not be cured. 

(5) Then, by (3) and (4), we have: 
if i took the treatment, i would not be cured and could be cured, 
which is absurd. 

(6) So, by the reductio argument (4)-(5), it follows that (B) is false. 

(7) By the same argument, (A) is false, too.

CEM     Either (A) if i took the treatment, i would be cured, 
              or (B) if i took the treatment, i would not be cured.



A Potentially Powerful Argument for CEM

A very large group of philosophers—those in the 
naturalist tradition—generally take seriously a type 
of argument. 

The idea is that the success of our best scientific 
theory T provides good reason for us to believe in the 
assumptions that are indispensable in that theory T.  



A Potentially Powerful Argument for CEM

CEM is assumed, and seems to be indispensable, in 
our best theory of causal inference in health and social 
sciences—the theory that led to one half of the 2021 
Nobel Prize in Economics (Imbens and Angrist 1994).  

So, it seems that we should accept CEM.



Plan for Today

I love the Rubin causal model and its applications. But I am 
skeptical of CEM. 

I will give the Rubin causal model an update,  
a fully stochastic update that  

❖ preserves the Nobel prize winning application  
(i.e. estimation of LATE) 

❖ dispenses with CEM. 

To that end, many key ideas from the Rubin causal model will 
be integrated into 

❖ a causal Bayes net, 

❖ not to be confused with Pearl’s structural equation model, 
which still assumes CEM.



2. The Rubin Causal Model:  
A Crash Course 



What If One Took the Treatment?

Take  
= ?

Cured  
= ?



What If One Took the Treatment?

If Take  
= 1

Take  
= ?

Cured  
= ?

flip



What If One Took the Treatment?

If Take  
= 1

Take  
= ?

Cured  
= ?

Cured  
= 1

If i took the treatment,  
i would be cured. 

flip

Cured  
= 0

If i took the treatment,  
i would not be cured. 

or



What If One Took the Treatment?

If Take  
= 1

Take  
= ?

Cured  
= ?

Cured  
= 1

If i took the treatment,  
i would be cured. 

flip

Cured  
= 0

If i took the treatment,  
i would not be cured. 

or

CEM is built in. 
In symbol,  = 1 or 0.Cured t=1

i



What If One Didn’t Take the Treatment?

If Take  
= 0

Take  
= ?

Cured  
= ?



What If One Didn’t Take the Treatment?

If Take  
= 0

Take  
= ?

Cured  
= ?

Cured  
= 1

flip

Cured  
= 0

or

If i didn’t take the treatment,  
i would be cured. 

If i didn’t take the treatment,  
i would not be cured. 



Def: Individual Treatment Effect (ITE)

If Take  
= 1

Take  
= ?

Cured  
= ?

If Take  
= 0

flip

flip
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= 1

Take  
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Cured  
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If Take  
= 0

flip

Cured  
= 0

Cured  
= 0

flip individual treatment effect  
= the difference 
= 0



Def: Individual Treatment Effect (ITE)

If Take  
= 1

Take  
= ?

Cured  
= ?

If Take  
= 0

flip

Cured  
= 1

Cured  
= 0

individual treatment effect  
= the difference 
= 1 (improvement)

flip



Def: Individual Treatment Effect (ITE)

If Take  
= 1

Take  
= ?

Cured  
= ?

If Take  
= 0

flip

Cured  
= 0

Cured  
= 1

flip individual treatment effect  
= the difference 
= –1 (deterioration)



Def: Average Treatment Effect (ATE)

individual treatment effect of #1

individual treatment effect of #2
…

individual treatment effect of #N

taking the average  
= average treatment effect 

ATE can be easily estimated if we can perform a perfect RCT: if we 
can randomly select people and force each to flip a card according 
to the result of a coin toss. Crux: We often cannot do that!



3. LATE Comes to Rescue



Original Setup

Take  
= ?

Cured  
= ?



Add Assignment to Treatment/Control Group

Take  
= ?

Cured  
= ?

Assign  
= ?

flip a coin 
to decide



Add a New Card:  
What If One Were Assigned to the Treatment Group

Take  
= ?

Cured  
= ?

Assign  
= ?

flip a coin 
to decide

Take  
= 1

flip

Take  
= 0

or

If Assign  
= 1



Add a New Card:  
What If One Were Assigned to the Control Group

Take  
= ?

Cured  
= ?

Assign  
= ?

flip a coin 
to decide

Take  
= 1

flip

Take  
= 0

or

If Assign  
= 0



How the Game Plays Out

Take  
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= 1

flip a coin 
to decide



How the Game Plays Out
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How the Game Plays Out

Take  
= 0

Cured  
= ?

Assign  
= 1

If Assign  
= 1

flip a coin 
to decide

Take  
= 0

flip



How the Game Plays Out

Take  
= 0

Cured  
= ?

Assign  
= 1

If Assign  
= 1

flip a coin 
to decide

Take  
= 0

If Take  
= 0

flip



How the Game Plays Out

Take  
= 0

Cured  
= 0

Assign  
= 1

If Assign  
= 1

flip a coin 
to decide

flip

Take  
= 0

If Take  
= 0

flip

Cured  
= 0



Def: Subpopulation 1, Always-Takers

Take  
= ?

Cured  
= ?

Assign  
= ?

If Assign  
= 1

If Assign  
= 0

flip

flip

Take  
= 1

Take  
= 1

always-taker



Def: Subpopulation 2, Never-Takers

Take  
= ?

Cured  
= ?

Assign  
= ?

If Assign  
= 1

If Assign  
= 0

flip

flip

Take  
= 0

Take  
= 0

never-taker



Def: Subpopulation 3, Compliers

Take  
= ?

Cured  
= ?

Assign  
= ?

If Assign  
= 1

If Assign  
= 0

flip

flip

Take  
= 1

Take  
= 0

complier



Def: Subpopulation 4, Defiers

Take  
= ?

Cured  
= ?

Assign  
= ?

If Assign  
= 1

If Assign  
= 0

flip

flip

Take  
= 0

Take  
= 1

defier



Def: LATE

LATE, i.e. 

Local  
Average  
Treatment  
Effect 
(of the subpopulation of compliers) 

= the average of the individual treatment effects of the compliers 



Identification Result (Imbens and Angrist 1994)

In this card game (in more general settings captured by the 
assumptions stated by Imbens and Angrist),  

if people are randomly selected from the population and then assigned 
to the treatment/control group by flipping a coin,  

if there are no defiers,  

then LATE can be expressed solely in terms some quantities that can be 
estimated without forcing anyone to take the treatment: 

LATE =
Pr (Cured = 1 ∣ Assign = 1) − Pr (Cured = 1 ∣ Assign = 0)

Pr (Take = 1 ∣ Assign = 1) − Pr (Take = 1 ∣ Assign = 0)



4. A Fully Stochastic Update



Original Setup



Single Cards  Decks of Cards→



Use Decks to Get Rid of Determinism

If Take  
= 1

If Take  
= 1

If Take  
= 1

individual i

If i took the treatment, i would randomly draw a card 
from this deck to determine the medical result.



Use Decks to Get Rid of Determinism

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 1

Cured  
= 1

reveal

individual i



Use Decks to Get Rid of Determinism

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 1

Cured  
= 1

In symbol,  
  =  2/3.Pr t = 1

i (Cured = 1)

If i took the treatment, i would 
have a certain probability of 
being cured: 2/3.

The proportion of the “Cured = 1” 
cards in the deck for “If Take = 1” 
is equal to 2/3.

individual i

reveal



Individual Treatment Effect (ITE) Redefined

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 1

Cured  
= 1

Cured  
= 0

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 0

individual i

reveal

reveal



Individual Treatment Effect (ITE) Redefined

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 1

Cured  
= 1

Cured  
= 0

Cured  
= 0

Cured  
= 1

If Take  
= 1

If Take  
= 1

If Take  
= 0

 
= 1/3
Pr t = 0

i (Cured = 1)

difference 
= 1/3

Individual 
Treatment 
Effect for i 

individual i

 
= 2/3
Pr t = 1

i (Cured = 1)

reveal

reveal



Def: Degree of Compliance

Take  
= 0

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 1

Take  
= 1

Take  
= 0

Take  
= 0

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 0

individual i

reveal

reveal



Def: Degree of Compliance

individual i

difference 
= 1/3

Degree of 
Compliance 
for i 

 
= 2/3
Pr a = 1

i (Take = 1)

 
= 1/3
Pr a = 0

i (Take = 1)

Take  
= 0

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 1

Take  
= 1

Take  
= 0

Take  
= 0

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 0

reveal

reveal



Degree of Compliance Can Be Negative

difference 
= −1/3

Degree of 
Compliance 
for i 

individual i

 
= 1/3
Pr a = 1

i (Take = 1)

 
= 2/3
Pr a = 0

i (Take = 1)

Take  
= 0

Take  
= 0

If Take  
= 1

If Take  
= 1

If Assign  
= 1

Take  
= 1

Take  
= 0

Take  
= 1

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 0

reveal

reveal



Defiers and Compliers Refined

A defier is  
- an individual with degree of compliance < 0. 

A complier is  
- an individual with degree of compliance > 0.

individual i

difference 
= −1/3

Degree of 
Compliance 
for i 

 
= 1/3
Pr a = 1

i (Take = 1)

 
= 2/3
Pr a = 0

i (Take = 1)

Take  
= 0

Take  
= 0

If Take  
= 1

If Take  
= 1

If Assign  
= 1

Take  
= 1

Take  
= 0

Take  
= 1

Take  
= 1

If Take  
= 1

If Take  
= 1

If Assign  
= 0

reveal

reveal



Def: DATE (A Generalization of LATE)

DATE, i.e. 

Degree-of-compliance-weighted  
Average  
Treatment  
Effect 
of the subpopulation of compliers 

= a weighted average of the individual treatment effects of the compliers,  
    with the weights set to be degrees of compliance  



Def: DATE (A Generalization of LATE)

DATE, i.e. 

Degree-of-compliance-weighted  
Average  
Treatment  
Effect 
of the subpopulation of compliers 

= a weighted average of the individual treatment effects of the compliers,  
    with the weights set to be degrees of compliance  

In the special case in which 
every deck turns out to be a 
single card, …

= 1
= –1, 0, 1

… DATE degenerates to LATE.



5. New Theorem: 
An Identification Result for DATE



Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

U

Assign Take Cured



Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

Pr(U = i) 
= …

U

Assign Take Cured

the randomly 
chosen person the i-th individual



Pr(U = i) 
= 1/N (the population size)

Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

U

Assign Take Cured

the randomly 
chosen person the i-th individual



Pr(Assign = 1) 
= a constant

Pr(U = i) 
= 1/N (the population size)

Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

U

Assign Take Cured

the randomly 
chosen person the i-th individual



Pr(Cured = 1|U = i, Take = 1) 
= proportion of “Cured = 1” in i’s deck 

Pr(Cured = 1|U = i, Take = 0) 
= proportion of “Cured = 1” in i’s deck

Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

Pr(Assign = 1) 
= a constant

Pr(U = i) 
= 1/N (the population size)

U

Assign Take Cured

the randomly 
chosen person the i-th individual



Pr(Cured = 1|U = i, Take = 1) 
= proportion of “Cured = 1” in i’s deck 

Pr(Cured = 1|U = i, Take = 0) 
= proportion of “Cured = 1” in i’s deck

Assume the true causal model is a causal Bayes net  
with the following DAG and unknown parameters

Pr(Assign = 1) 
= a constant

Pr(U = i) 
= 1/N (the population size)

U

Assign Take Cured

the randomly 
chosen person the i-th individual

Pr(Take = 1|U = i, Assign = 1) 
= proportion of “Take = 1” in i’s deck 

Pr(Take = 1|U = i, Assign = 0) 
= proportion of “Take = 1” in i’s deck



New Theorem (No Assuming CEM)
Assume that there 
are no defiers and 
that the true 
causal model is a 
causal Bayes net 
of this form:



New Theorem (No Assuming CEM)
Assume that there 
are no defiers and 
that the true 
causal model is a 
causal Bayes net 
of this form:

Then we have:

DATE =
Pr (Cured = 1 ∣ Assign = 1) − Pr (Cured = 1 ∣ Assign = 0)

Pr (Take = 1 ∣ Assign = 1) − Pr (Take = 1 ∣ Assign = 0)



New Theorem (No Assuming CEM)

Then we have:

DATE =
Pr (Cured = 1 ∣ Assign = 1) − Pr (Cured = 1 ∣ Assign = 0)

Pr (Take = 1 ∣ Assign = 1) − Pr (Take = 1 ∣ Assign = 0)

In the special case in which every deck turns out to be a single card, this 
result degenerates to the classic result of LATE. 

Assume that there 
are no defiers and 
that the true 
causal model is a 
causal Bayes net 
of this form:



6. Wrap Up



To Dawid (2000) and other skeptics of  
the Rubin causal model in statistics

❖ I agree that CEM is invalid.  

❖ But that poses no threat to the Rubin causal model and its application to the 
estimation of LATE. 

❖ For the result of LATE can be obtained even without assuming CEM, as 
shown by the new theorem.



To Pearl (2009) and followers  
in computer science and philosophy of science 

❖ Pearl claims that (i) structural equation models can do everything that can 
be done by (ii) causal Bayes nets. So, at some point, he only uses the 
former and no longer mentions the latter. 

❖ I recommend a reconsideration:  

❖ (i) is committed to CEM, as shown by Pearl’s semantics. 
❖ (ii) is not. This is why (ii) can do something that (i) cannot do:  

an identification result for DATE without assuming CEM.



To Imbens (2020) and followers  
in econometrics and epidemiology

❖ Imbens question the value of DAGs (causal graphs) in causal inference, for 
two reasons. 

❖ Not helpful for proving theorems. 

❖ Not helpful for stating the assumptions used in those proofs. 

❖ I think Imbens is right when we still work with CEM. 

❖ But things change when we wish to drop CEM.  

❖ When we try to give a fully stochastic update to the Rubin causal model 
and the result of LATE, it is easy to do it with a causal Bayes net and the 
DAG that comes with it.  

❖ Let me elaborate on the next page …



Probabilistic Potential Outcomes as  
Parameters of a Causal Bayes Net

Cured t = 1
i

ordinary  
potential  
outcome

= the medical result (being cured, or not) 
    that i would have if i took the treatment 
= Boolean-valued, 0 or 1 (in the Rubin causal model)



Probabilistic Potential Outcomes as  
Parameters of a Causal Bayes Net

Cured t = 1
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θ t = 1
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ordinary  
potential  
outcome

probabilistic 
version

= the medical result (being cured, or not) 
    that i would have if i took the treatment 
= Boolean-valued, 0 or 1 (in the Rubin causal model)

a stochastic upgrade by Robins & Greenland 
(1989, 2000) on “probability of causation”, but 
sometimes not easy to use to state assumptions 



Probabilistic Potential Outcomes as  
Parameters of a Causal Bayes Net

Cured t = 1
i

θ t = 1
i

ordinary  
potential  
outcome

probabilistic 
version

= the medical result (being cured, or not) 
    that i would have if i took the treatment 
= Boolean-valued, 0 or 1 (in the Rubin causal model)

a stochastic upgrade by Robins & Greenland 
(1989, 2000) on “probability of causation”, but 
sometimes not easy to use to state assumptions 

= the probability of being cured  
    that i would have if i took the treatment  
= the proportion of “Cured = 1” cards 
    in a certain deck that i possesses 
= probability-valued, an unknown parameter in [0, 1] 

written  in the abovePr t = 1
i (Cured = 1)



Probabilistic Potential Outcomes as  
Parameters of a Causal Bayes Net

Cured t = 1
i

θ t = 1
i

a parameter in a 
causal Bayes net

Then we can use a DAG to easily express assumptions (such 
as exclusion restriction). The proof for DATE is simple, too. 

ordinary  
potential  
outcome

probabilistic 
version = the probability of being cured  

    that i would have if i took the treatment  
= the proportion of “Cured = 1” cards 
    in a certain deck that i possesses 
= probability-valued, an unknown parameter in [0, 1] 

written  in the abovePr t = 1
i (Cured = 1)

= the medical result (being cured, or not) 
    that i would have if i took the treatment 
= Boolean-valued, 0 or 1 (in the Rubin causal model)

a stochastic upgrade by Robins & Greenland 
(1989, 2000) on “probability of causation”, but 
sometimes not easy to use to state assumptions 

U

A T C



Thank You!

U

Assign Take Cured



Proof



Proof


