

#### **General Outline**

IMEC a short overview



 Strategic Research Agenda of the European Photovoltaic Plateform

 OrgaPVnet a coordination Action towards Organic based Solar Cells

Conclusions

hotoVoltaic

orgaPVnet

TECHNOLOGY PLATFORM

#### **General Outline**

IMEC a short overview



 Strategic Research Agenda of the European Photovoltaic Plateform

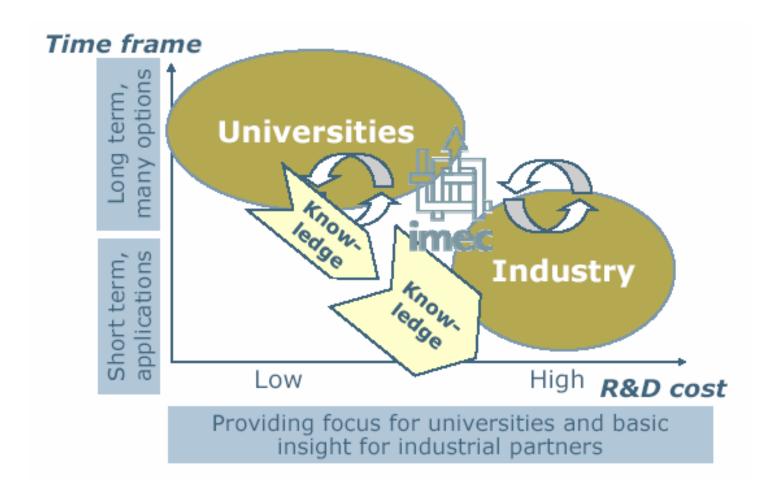
 OrgaPVnet a coordination Action towards Organic based Solar Cells

Conclusions

hotoVoltaic

TECHNOLOGY PLATFORM

#### **IMEC:** Mission Statement


« To perform research & development, ahead of industrial needs by 3 to 10 years, in microelectronics, nanotechnology, design methods and technologies for ICT »

#### Performance criteria:


- Being a worldwide center of excellence (total contract revenue, publications, invited papers)
- Being excellent in exploratory work
   (number of PhDs, projects and publications with universities)
- with impact on local industry
   (new spin offs, collaborations, training)



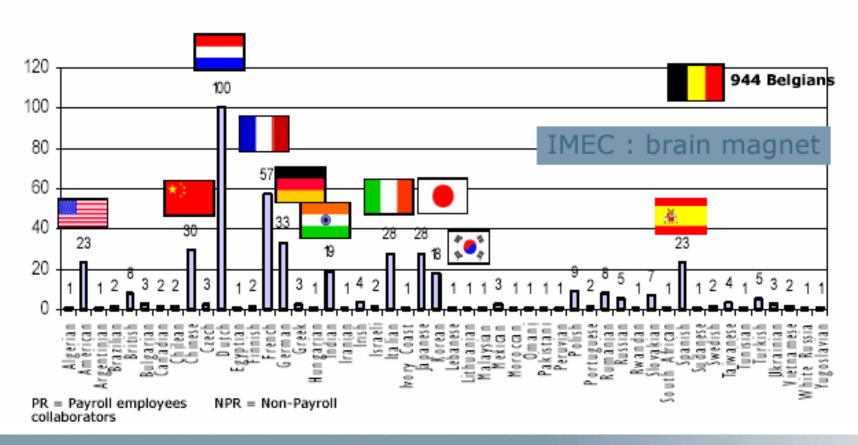
### IMEC : as a « Transformer »



## **IMEC**: Campus & Associated laboratories

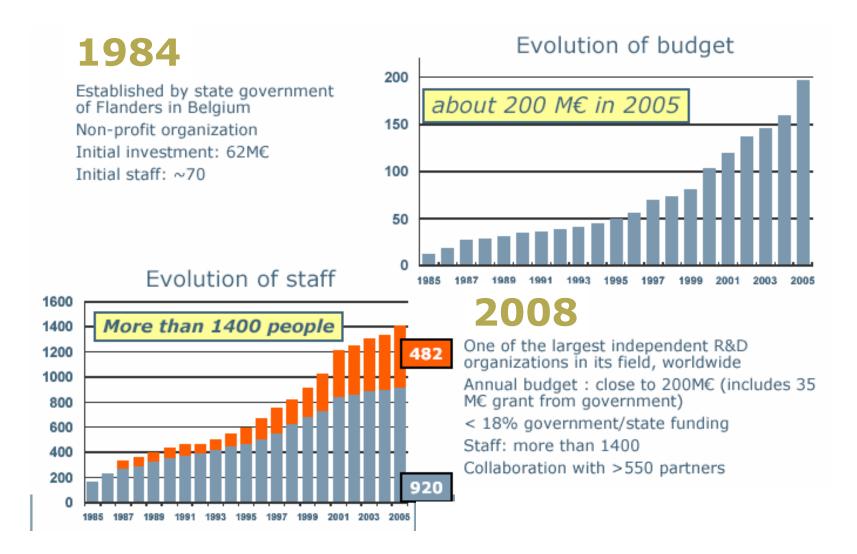





Hasselt (IMOMEC)

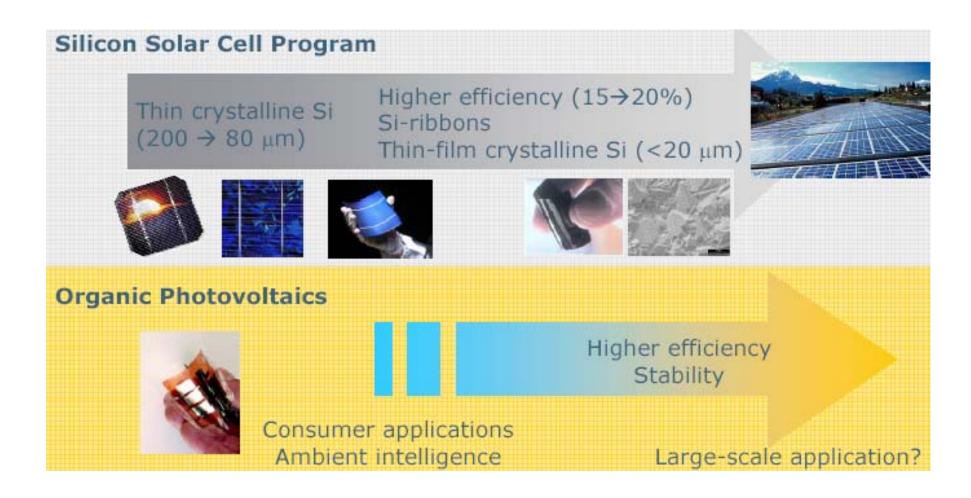
Ghent University (UGent/INTEC)

Vrije Universiteit Brussels (VUB/ETRO)

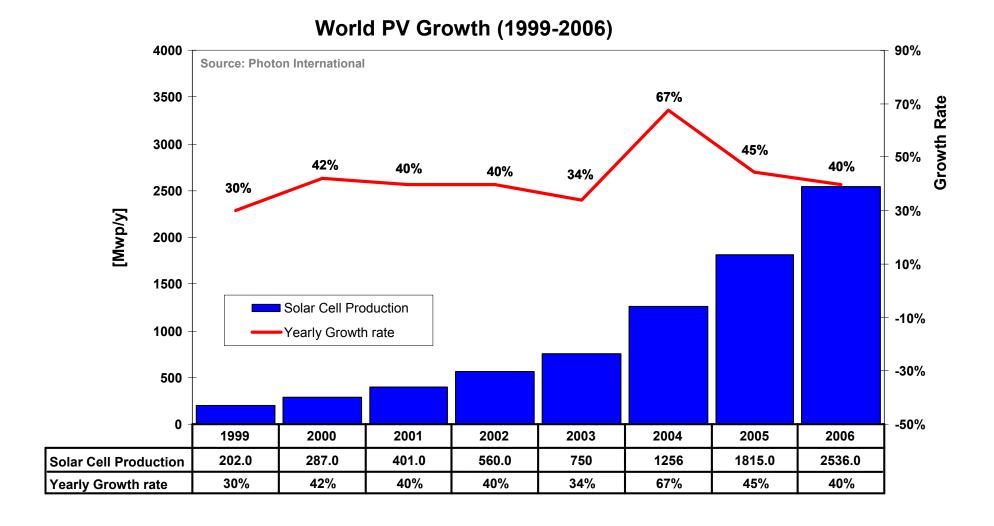

#### **IMEC:** more than 50 nationalities

Foreign collaborators (PR + NPR): number per nationality 51 foreign nationalities, 944 Belgians (in 2005)






### **IMEC:** 1984 - 2008






## SOLAR + : IMEC Internal Roadmap



#### **PV** market





## PV-markets are booming

- Also for 2007 a growth of 40% probably occurred bringing total production level > 3.5 GWp/year
- Strong increase of the thin-film PV-technologies with many new players entering the field
- Traditional equipment/material suppliers and chip producers are more and more turning towards PV (e.g. Applied Materials, ...)
- The expectations on PV are high which should result in a continued growth rate of at least 40%/year
- There is a strong need for a Roadmap to guide R&D in Europe



#### **General Outline**

IMEC and its activity on Organic Solar cells



TECHNOLOGY PLATFORM

 Strategic Research Agenda of the European Photovoltaic Plateform

 OrgaPVnet a coordination Action towards Organic based Solar Cells

Conclusions

orgaPVnet

hotoVoltaic

## The PV Technology Platform

- The PV Technology Platform
  - Structure
  - The Strategic Research Agenda (SRA)
  - SRA contents summarized

## The PV Technology Platform: Structure





http://www.eupvplatform.org

- Contributes to a rapid development of a world-class cost competitive European PV for a sustainable electricity production
- Involves stakeholders in the formulation of research programmes
- Ensures strong links and coordination between industry, research & market.
- Implements the strategic plan

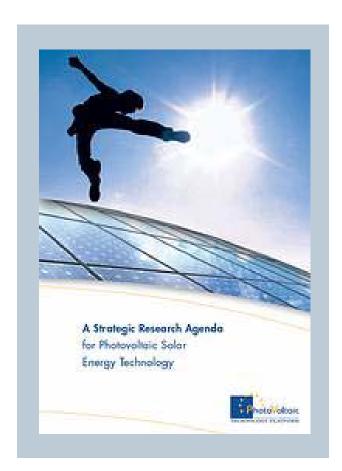
#### The PV Technology Platform: 4 working groups

- Adressing different field of activity
  - Policy and Instruments (WG1)
  - Market Deployement (WG2)
  - Science, Technology & Applications (WG3)
  - Developing Countries (WG4)

### The PV Technology Platform: results

Key result over the 2 first years

#### **Strategic Research Agenda (SRA)**


- prepared by WG3, 25 members
- started end of 2005

#### WG3: 4 subgroups

- -Cell & modules technology
- -Balance of system (BoS) components & systems
- -Standards, Quality Assurance, Safety & Environmental Aspects
- -Socio-economic and enabling research

## Strategic Research Agenda: what is it?

- Defines broadly supported overall dev. targets for PV technology
- Outlines research fields & topics to be adressed to reach these targets
- First complete version now available through webpage www.eupvplatform.org
- Printed version 12 June 2007
- Implementation process can now start - Formal Implementation Plan to be prepared during 2008



#### **Outline**

- The PV Technology Platform
  - Structure
  - The Strategic Research Agenda (SRA)
  - SRA contents summarized
- OrgaPVnet European Project
  - Structure
  - Contents summarized
- Conclusions

#### SRA Contents Summarised: Terminology

#### **Terminology**

```
• short term (ST): 2008 ~ 2013
```

medium term (MT): 2013 ~ 2020

long term (LT): 2020 ~ 2030+

» 2013: end of FP7

#### **Research Priorities**

- <u>Timing</u> for a use in Commercial products/applications
   (But NOT to an expected widespread use)
- <u>Cost Targets</u> demonstration of the technology in pilot scale production/installation
   (Commercial production/price/1 or 2 years later)

### SRA contents summarised: starting principles



 SHORT-TERM Research should be fully dedicated to the COMPETITIVENESS of the EU industry.

#### No EXCLUSIVITY

- PV comes and will come in different forms
- SRA does not exclude technologies but sets overall targets
   & research priorities for each formats in order to reach the defined targets
- Need to address ALL PARTS of the value chain
  - From materials to final product, incl. manufacturing and socio-economic aspects



### SRA contents summarised: starting principles

#### Need to address ST, MT and LT research SEPARATLY

- Use budget firewalls <u>between</u> ST/MT/LT (specific budgets)
- Specific priorities within each category

#### Research spending ratios:

- public/private R&D shares 1:1, growing to 1:2
- private R&D typically ST/MT 3:1
- public R&D typically ST/MT/LT 2:2:1
- ⇒resulting typical <u>total</u> R&D shares

  <u>ST/MT/LT</u> of <u>6:3:1</u> moving to 10:5:1

  as private sector funding will increase

# **SRA contents summarised:** Choices on cost targets

#### Based an a detailed analysis of cost reduction potential:

Same cost targets for all flat-plate PV module technologies:

Indicative cost targets for BoS (roof-top systems):

Turn-key concentrator system cost targets:

Costs, not prices

• LT: 0.5 - 0.8 €/Wp

### SRA contents summarised: Any PV techn. dev. targets

Cost – direct relation with manufacturing/installation → R&D

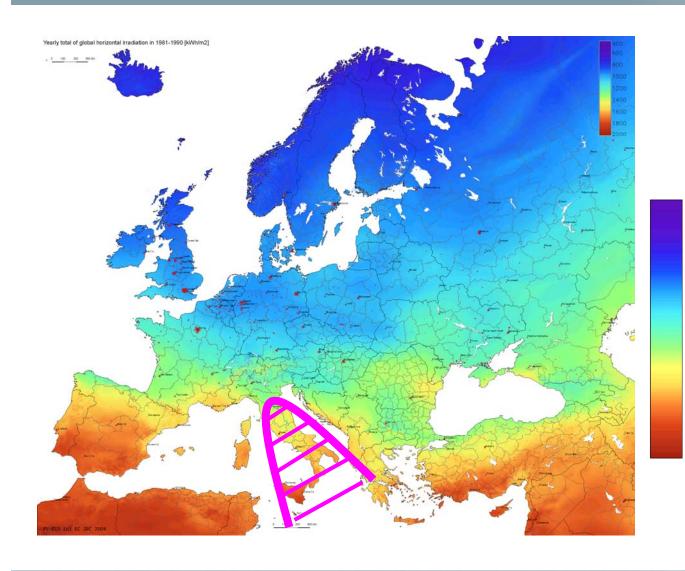
Price – Crucial parameter for application & market development

| Constant 2007 values                                             | 1980     | Today       | 2015                                                     | 2030                                                   | Long term potential |
|------------------------------------------------------------------|----------|-------------|----------------------------------------------------------|--------------------------------------------------------|---------------------|
| Typical turn-key system price (2007 €/Wp, excl. VAT)             | >30      | 5           | 2.5/2.0                                                  | 1                                                      | 0.5                 |
| (2007 €/WÞ, exci. VAT)                                           |          | (range 4-8) | (range 2-4)                                              |                                                        |                     |
| Typical electricity generation costs South Europe (2006 €/kWh)   | >2       | 0.30        | 0.15/0.12<br>(competitive<br>with retail<br>electricity) | 0.06<br>(competitive<br>with wholesale<br>electricity) | 0.03                |
| Typical commercial <i>flat- plate</i> module efficiencies        | up to 8% | up to 15%   | Up to 20%                                                | up to 25%                                              | up to 40%           |
| Typical commercial concentrator module efficiencies              | (~10%)   | up to 25%   | Up to 30%                                                | up to 40%                                              | up to 60%           |
| Typical system energy pay-<br>back time Southern Europe<br>(yrs) | >10      | 2           | 1                                                        | 0.5                                                    | 0.25                |

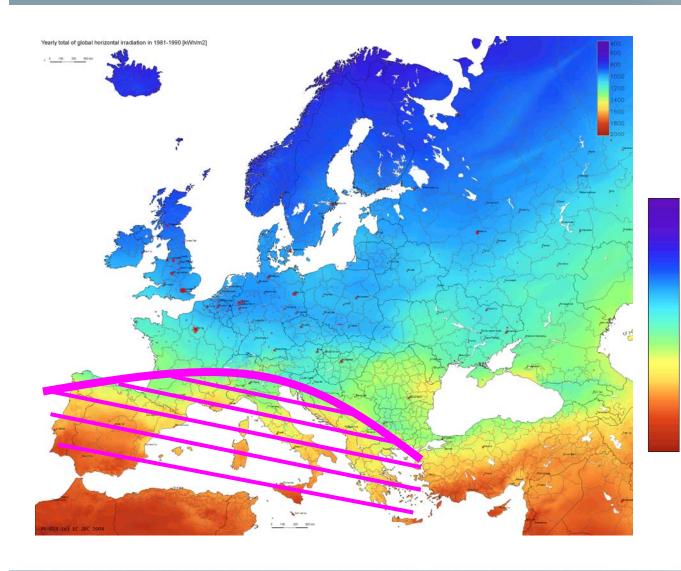


### SRA contents summarised: Any PV techn. dev. targets

- The conversion from turn-key prices to generation costs requires several assumptions
- SRA assumes:
  - An average performance ratio of 75%
  - Operation & maintenance (1% of the system price)
  - economic value depreciation over 25 years
  - 4% discount rate
- Overall aim of short-term research is for the price of PV electricity to be comparable to the retail price of electricity for small consumers in southern Europe by 2015 & in most of Europe in 2020. (Grid parity)

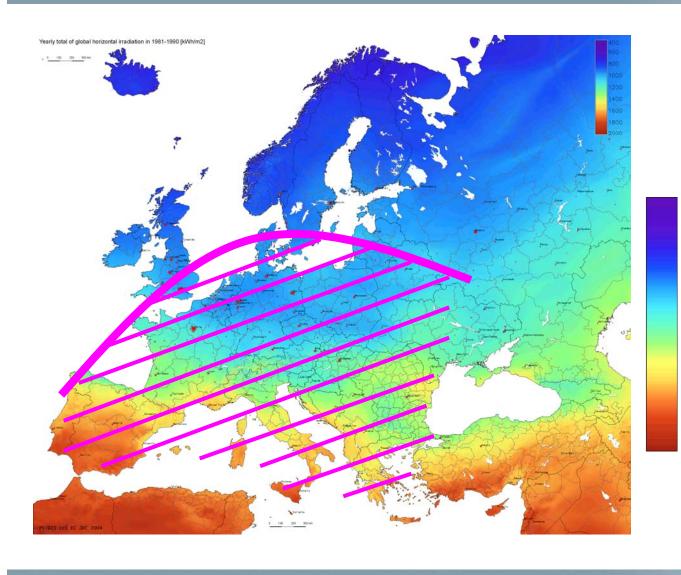

### SRA contents summarised: Any PV techn. dev. targets

Cost – direct relation with manufacturing/installation → R&D

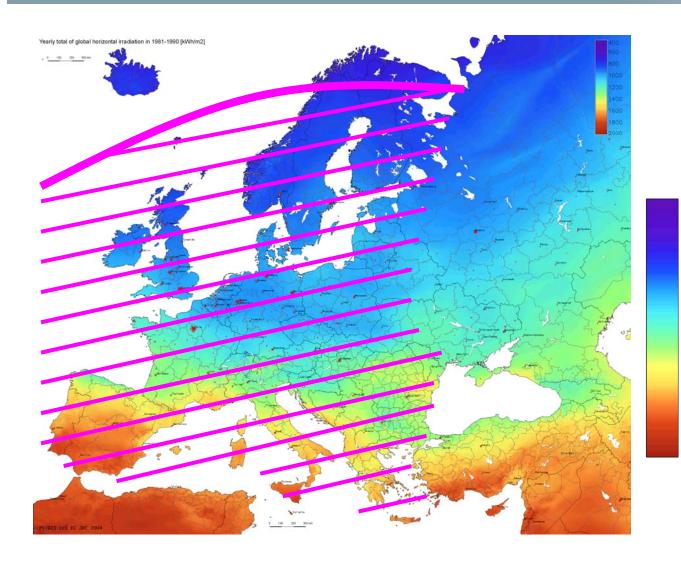

Price – Crucial parameter for application & market development

| Constant 2007 values                                             | 1980     | Today       | 2015                                                     | 2030                                                   | Long term potential |
|------------------------------------------------------------------|----------|-------------|----------------------------------------------------------|--------------------------------------------------------|---------------------|
| Typical turn-key system price (2007 €/Wp, excl. VAT)             | >30      | 5           | 2.5/2.0                                                  | 1                                                      | 0.5                 |
| (2007 e, wp, exci. var)                                          |          | (range 4-8) | (range 2-4)                                              |                                                        |                     |
| Typical electricity generation costs South Europe (2006 €/kWh)   | >2       | 0.30        | 0.15/0.12<br>(competitive<br>with retail<br>electricity) | 0.06<br>(competitive<br>with wholesale<br>electricity) | 0.03                |
| Typical commercial <i>flat- plate</i> module efficiencies        | up to 8% | up to 15%   | Up to 20%                                                | up to 25%                                              | up to 40%           |
| Typical commercial concentrator module efficiencies              | (~10%)   | up to 25%   | Up to 30%                                                | up to 40%                                              | up to 60%           |
| Typical system energy pay-<br>back time Southern Europe<br>(yrs) | >10      | 2           | 1                                                        | 0.5                                                    | 0.25                |






| irradiation<br>(kWh/m²·yr) | 9    |
|----------------------------|------|
| 600                        | 0.50 |
| 1000                       | 0.30 |
| 1400                       | 0.21 |
| 1800                       | 0.17 |
|                            |      |




| irradiation<br>(kWh/m²·yr) | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - |
|----------------------------|-----------------------------------------|
| 600                        | 0.42                                    |
| 1000                       | 0.25                                    |
| 1400                       | 0.18                                    |
| 1800                       | 0.14                                    |
|                            |                                         |



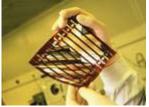


| irradiation<br>(kWh/m²·yr) | 3 - 1 - 3 - 1 - 1 - 1 - 1 |
|----------------------------|---------------------------|
| 600                        | 0.33                      |
| 1000                       | 0.20                      |
| 1400                       | 0.14                      |
| 1800                       | 0.11                      |
|                            |                           |



| irradiation<br>(kWh/m²·yr) | 9    |
|----------------------------|------|
| 600                        | 0.17 |
| 1000                       | 0.10 |
| 1400                       | 0.07 |
| 1800                       | 0.06 |
|                            |      |

#### SRA contents summarised: R&D topics addressed


- Cell & module technologies
  - wafer-based crystalline silicon
  - existing thin-film technologies
  - emerging & novel technologies
- Concentrator systems
- Balance-of-System (BoS) components













- Standards, quality assurance, safety and environmental aspects
- Socio-economic aspects of PV

#### SRA contents summarised: R&D topics addressed

- Cell & module technologies
  - wafer-based crystalline silicon
  - existing thin-film technologies
- A Strategic Research Agendes
  for Philosophius Salar
  Senegy Technology

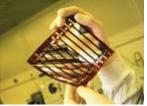
  Selection Salar
  Senegy Technology

emerging & novel technologies

www.eupvplatform.org

- Concentrator technologies
- Balance-of-System (BoS) components and systems
- Standards, QA, safety and environmental aspects
- Socio-economic and enabling research

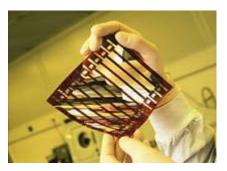
#### SRA contents summarised: R&D topics addressed


- Cell & module technologies
  - wafer-based crystalline silicon
  - existing thin-film technologies





- emerging & novel technologies
- Concentrator technologies
- Balance-of-System (BoS) components and systems







- Standards, QA, safety and environmental aspects
- Socio-economic and enabling research



#### SRA contents summarised: Emerging & Novel tech.







polymer PV

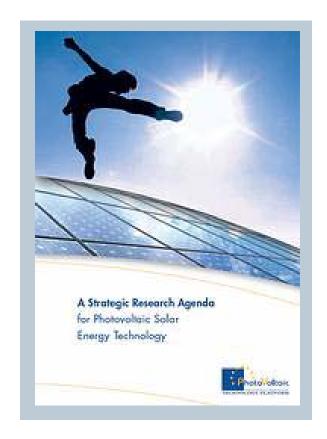
dye PV

thermo PV

- Content
  - Advanced inorganic solar cell technologies
  - Organic based solar cell technologies
  - Thermophotovoltaics
- Improvement of <u>efficiency</u> and <u>stability</u> to the level needed for first commercial applications
- Product concepts and <u>first generation manufacturing</u> <u>technologies</u>

# Emerging Technologies: Material aspects

(non-exhaustive)


| Class                                               | Technology                                                                          | Materials synthesis                                                                                                                                                                                                                                                                                                | Materials analysis                                                                                                                                                       |
|-----------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced inorganic<br>solar cell<br>technologies    | Spheral CIS (on glass beads)                                                        | Efficient coating methods                                                                                                                                                                                                                                                                                          | Local analysis                                                                                                                                                           |
|                                                     | Polycrystalline Si<br>solar cells                                                   | Low-cost seed layer procedures<br>Reducing intra-grain defect densities<br>Passivation of defects                                                                                                                                                                                                                  | Local intra-grain analysis<br>(morphological and opto-<br>electrical)                                                                                                    |
| Organic solar cell<br>technologies                  | Dye sensitized<br>solar cells                                                       | Dye development for longer wavelengths QD's as sensitizer Solid state electrolytes Methods for control and reduction of interface recombination                                                                                                                                                                    | Local morphological and opto-<br>electrical analysis                                                                                                                     |
|                                                     | Full-organic bilayer<br>and bulk donor-<br>acceptor<br>heterojunction<br>structures | Low-bandgap organic materials QD's and metallic nanoparticles Improved intrinsic stability Improved stability of nanomorphology Low-cost deposition methods (printing, organic vapor phase deposition) Low-cost TCO's with controllable workfunction Low-permeability barriers (H <sub>2</sub> O, O <sub>2</sub> ) | Local morphological and opto-<br>electrical analysis<br>Exciton dissociation<br>Interface recombination<br>Metal-organic semiconductor<br>interfaces and their stability |
| Thermophotovoltaics TPV Cells & Modules (Ge, GaSb,) |                                                                                     | Growth of low-E <sub>g</sub> antimonide materials (InGaAsSb,) Window layers Ge with adapted specs Ge on Si with buried IR-reflector                                                                                                                                                                                | Measurement systems to make comparable measurements under well-defined high IR-fluxes                                                                                    |
|                                                     | Selective emitters                                                                  | Low-cost methods ceramic and selective rear-earth emitters containing $\rm Er_2O_3$ , $\rm Yb_2O_3$ , Photonic structures withstanding high temperatures                                                                                                                                                           | Standards to compare emission performance of selective emitters                                                                                                          |



| Class                                      | Technology                                                                              | Materials synthesis                                                                                                                                                                                                                                                                                                                                                                                                   | Materials analysis                                                                                                                                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced inorganic solar cell technologies | Spheral CIS (on glass beads)                                                            | Efficient coating methods                                                                                                                                                                                                                                                                                                                                                                                             | Local analysis                                                                                                                                           |
|                                            | Polycrystalline Si<br>solar cells                                                       | Low-cost seed layer procedures<br>Reducing intra-grain defect densities<br>Passivation of defects                                                                                                                                                                                                                                                                                                                     | Local intra-grain analysis<br>(morphological and opto-<br>electrical)                                                                                    |
| Organic solar cell technologies            | Dye<br>sensitized<br>solar cells                                                        | <ul> <li>Dye development for longer wavelengths</li> <li>QD's as sensitizer</li> <li>Solid state electrolytes</li> <li>Methods for control and reduction of interface recombination</li> </ul>                                                                                                                                                                                                                        | Local morphological and opto-electrical analysis                                                                                                         |
|                                            | Full-organic<br>bilayer and<br>bulk donor-<br>acceptor<br>heterojunctio<br>n structures | <ul> <li>Low-bandgap organic materials</li> <li>QD's and metallic nanoparticles</li> <li>Improved intrinsic stability</li> <li>Improved stability of nanomorphology</li> <li>Low-cost deposition methods         <ul> <li>(printing, organic vapor phase deposition)</li> <li>Low-cost TCO's with controllable workfunction</li> <li>Low-permeability barriers (H<sub>2</sub>O, O<sub>2</sub>)</li> </ul> </li> </ul> | Local morphological and opto-electrical analysis Exciton dissociation Interface recombination Metal-organic semiconductor interfaces and their stability |
| Thermophotovoltaics                        | TPV Cells & Modules<br>(Ge, GaSb,)                                                      | Growth of low-E <sub>g</sub> antimonide materials (InGaAsSb,) Window layers                                                                                                                                                                                                                                                                                                                                           | Measurement systems to make comparable measurements under well-defined high IR-fluxes                                                                    |
|                                            | Selective emitters                                                                      | Low-cost methods ceramic and selective rear-earth emitters containing $\mathrm{Er_2O_3}$ , $\mathrm{Yb_2O_3}$ , Photonic structures withstanding high temperatures                                                                                                                                                                                                                                                    | Standards to compare emission performance of selective emitters                                                                                          |



#### More informations



www.eupvplatform.org

jef.poortmans@imec.be

#### **General Outline**

IMEC a short overview



 Strategic Research Agenda of the European Photovoltaic Plateform

 OrgaPVnet a Coordination Action towards Organic based Solar Cells

Conclusions

hotoVoltaic

TECHNOLOGY PLATFORM

## orgaPVnet - FP6 European Project

- Coordination Action towards stable and low-cost organic based solar cell technologies and their applications
- Started on 01/11/2006 End date 30/04/2009
- Duration 30 months
- 22 partners / Coordinator IMEC
- 15 European and Associated Countries
- 4 SMEs & 1 Industrial















orgaPVnet



























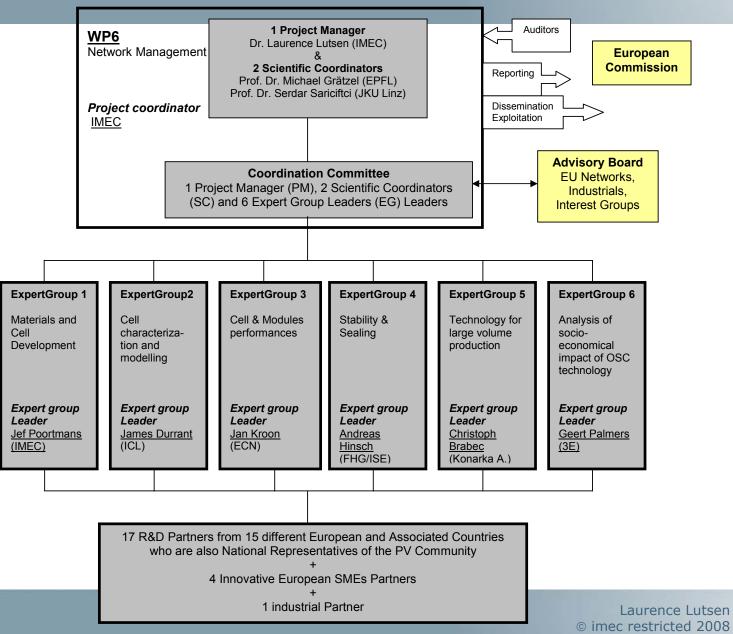




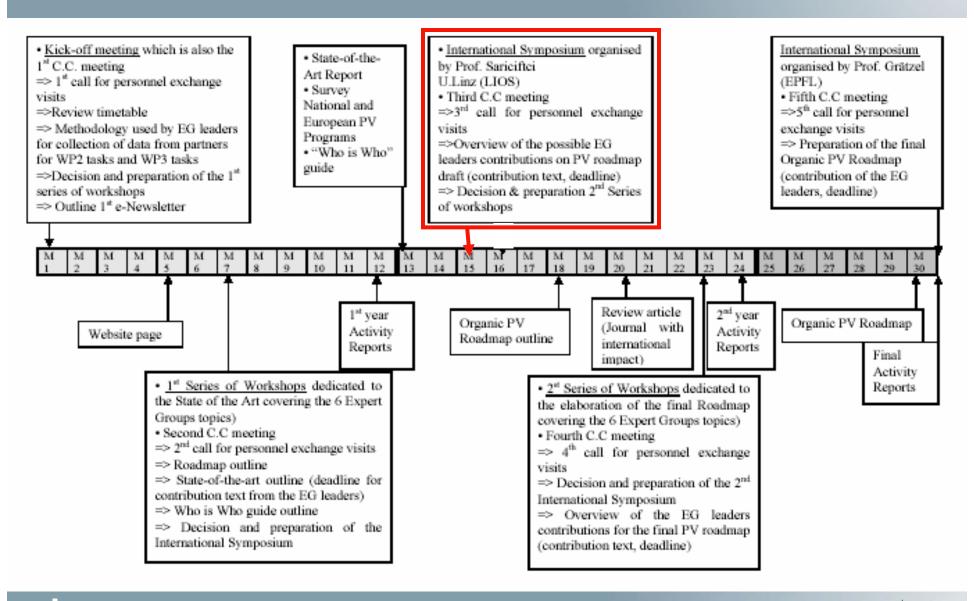




#### orgaPVnet



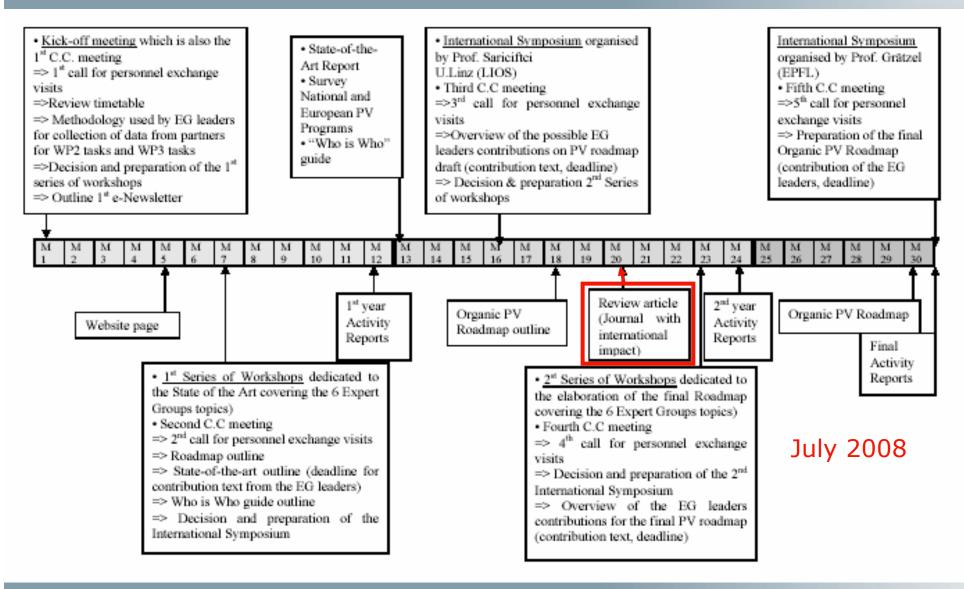

 OrgaPVnet is offering the opportunity for all actors in the sector to work together and discuss issues of crucial relevance, as well as to give a valuable input for the whole sector.


#### Main result of the project

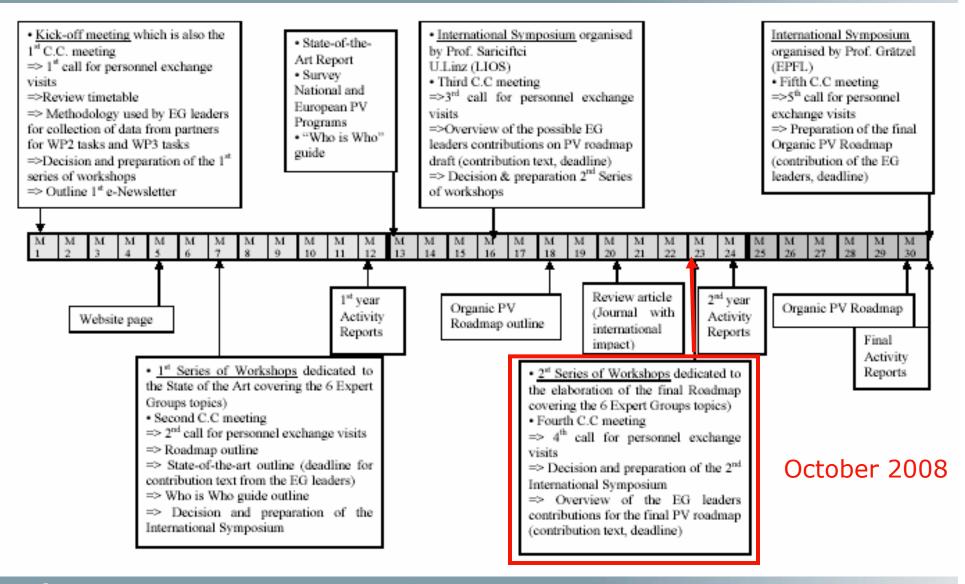
An integrated vision shared by the experts from the Organic Photovolataics community in the form of a "European Organic Photovoltaics Technology Roadmap"

# orgaPVnet: Global Project Structure

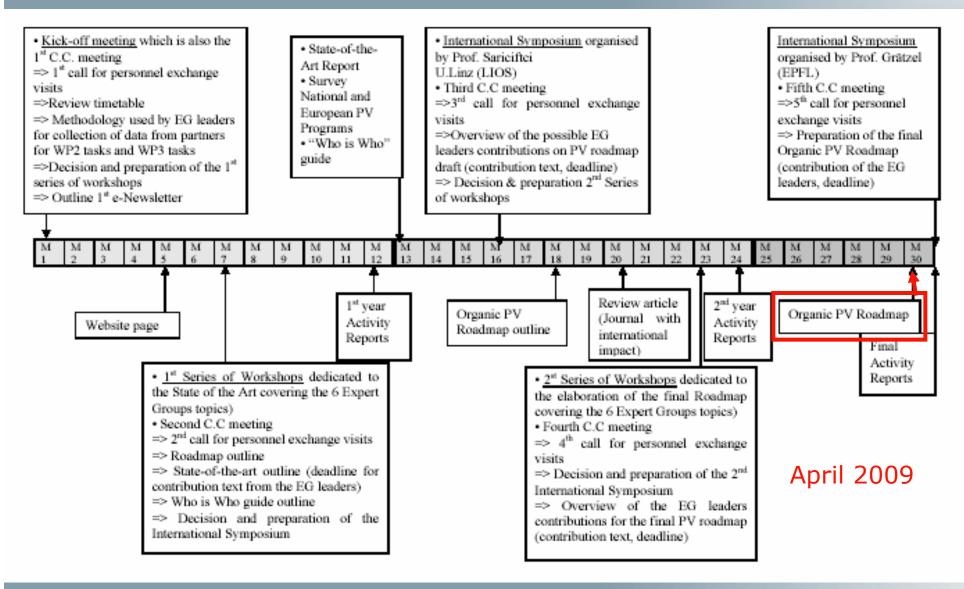



## orgaPVnet: where are we?

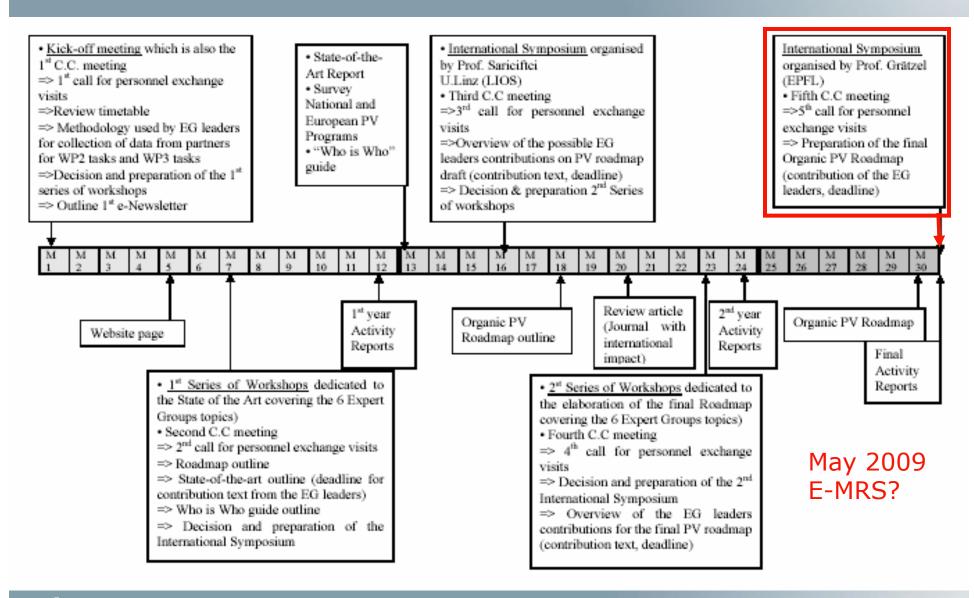



## orgaPVnet: main results so far

- Webpage
- « Who is who » guide
- Survey National & European Programs
- A first workshop in Prague, May 2007
- State-of-the Art Report
- All available soon on a project webpage:


www.orgaPVnet.eu


















#### More information

#### DELIVERY 6: State-of-the-art on Organic Solar cells

orgaPVnet



Coordination Action towards stable and low-cost organic solar cell technologies and their application

**Coordination Action** 



Contract number: SES6-CT-2006-038889

Project Co-ordinator: Dr. Laurence Lutsen

Project website: www.orgaPVnet.eu

Reporting period: from 01/11/2006 to 30/09/2007

Version: 15 December 2007

Project funded by the European Community under the PRIORITY 6.1.3.2.7 6.1.3.2.3 "Sustainable Energy Systems, Research Activities having an impact in the medium and longer term / New and advanced concepts in renewable energy technologies



Project Co-ordinator: laurence.lutsen@imec.be



#### **General Outline**

IMEC a short overview



 Strategic Research Agenda of the European Photovoltaic Plateform

 OrgaPVnet a coordination Action towards Organic based Solar Cells

Conclusions

hotoVoltaic

TECHNOLOGY PLATFORM

#### Conclusions

- Comprehensive PV-roadmap was developed by European PV Technology Platform
- This comprehensive roadmap starts from the basic idea that for the foreseeable time there will be a mix of PV-technologies, serving the market
- For all the PV-technologies there are material challenges
- Some aspects are common between organic solar cells and other PV-technologies
- A specific roadmap for organic based solar cells will be developed & available in April 2009 by orgaPVnet and will be presented in an international conference



I would like to acknowledge all the members of WG3 of the EU-PVTP, the orgaPVnet consortium & the members of the IMEC PV-teams

the members of the IMEC PV-teams MCP-Leuven and IMOMEC-Hasselt

!Thank you for your attention!

