Pushing Archaea to the limit: Pathway to sustainable biomethanation.

JOHANNES KEPLER UNIVERSITY LINZ

Marco Orthofer, Christian Paulik

Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Austria

Conclusion

With our newly developed bioreactor system we demonstrate:

- **Successful Cultivation:** Effective closed-batch cultivation of *M. marburgensis* on sulfate-based growth media for biomethanation.
- **SBRS-II Performance:** Successful performance test of the newly developed bioreactor system.

Introduction

The goal to limit global warming, as outlined in the Paris Agreement, necessitates a substantial reduction in greenhouse gas emissions. Given the complex nature of this challenge, it is evident that a singular technological approach will be inadequate to meet these ambitious targets. Instead, a holistic strategy is required, that uses a combination of existing, developing, and emerging technologies. Among these technologies, biological methanation is proving to be a promising route to sustainable solutions [1-3].

- **High Methane Evolution Rate:** Specific methane evolution rate exceeding 100 mmol g⁻¹ h⁻¹.
- Stable Growth Under Pressure: Demonstrated stable growth of *M. marburgensis* up to 10 bar.
- Improved Media Safety: Successfully replaced toxic and steel-corrosive chlorides with non-toxic
- Scalability: Sulfate-based media enabled easier operation for larger-scale applications.

120 ^o

Our research is focused on the industrial application of a high-pressure biological methanation process using *M. marbugensis* as a model organism. Optimizing efficacy demands attention to factors such as long-term performance, process stability, and easy operation.

Results

- Experimental series to compare chloride-based standard media with sulfate-based media.
- Both media resulted in high volumetric methane evolution rates (MER) at 3 bar and 10 bar conditions.
- Achieved stable biomass growth with both media under 3 bar and 10 bar conditions.
- Recorded a maximum specific methane evolution rate (q_{max}) of 160 mmol g⁻¹ h⁻¹ and a maximum turnover rate (μ_{max}) of 0.625 h⁻¹ using sulfate-based media.

Q In-depth physiological studies of methanogenic archaea at high

• The SBRS-II system delivered approximately 10-fold higher MER rates compared to previous benchmarks [4].

Simultaneous BioReactor System – Gen. 2 (SBRS-II)

- 4 identical stainless-steel reactors with PTFE liner.
- Each reactor operates independently via a predefined pressure control program.
- Live temperature and pH monitoring.
- Pressure data saved on SD card for post-processing.
- Capable of gas and liquid sampling.
- Operating range (with pH probe): 0 17 bar(a) and 135 °C

Johannes Kepler Un

pressures

○ Model building

Marco Orthofer

PhD-Student Institute for Chemical Technology of Organic Materials

@ marco.orthofer@jku.at

More about FlaeXMethane

Get in

Touch

Acknowledgement

Special thanks on supporting our research with fruitful discussions go to Simon K.-M. R. Rittmann and Walter Hofmann at University of Vienna.

References

- P. Schönheit, J. Moll, R. K. Thauer, Arch Microbiol 1980, 127, 59–65.
- A. Abdel Azim, et al., Bioresour Technol 2017, 241, 775–786. [2]
- R.-S. Taubner, et al., Nat Commun 2018, 9, 748. [3]
 - P. Pappenreiter, et al. Eng Life Sci 2019, 19, 537-544