
Submitted by
Stefan Bachmair

Submitted at
Institute of Networks
and Security

Supervisor
Univ.-Prof. Priv.-Doz.
DI Dr. René Mayrhofer

Co-Supervisor
(External)
Stefan Proksch
Christian Praher

Month Year
11 2016

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

EXTERNAL SECURITY
ANALYSIS OF EXIST-
ING WINDOWS SOFT-
WARE BASED ON A
CASE STUDY

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

iii

JOHANNES KEPLER UNIVERSITY

Abstract
Faculty of Engineering and Natural Sciences

Institute of Networks and Security

Diplom-Ingenieur

EXTERNAL SECURITY ANALYSIS OF EXISTING WINDOWS
SOFTWARE BASED ON A CASE STUDY

by Stefan BACHMAIR

Large software packages are often the result of a development cycle,
which dated over several years back. This leads to that some vulnerabili-
ties can rise, which the developers were not aware of during their current
testing cycle.

This thesis answer the question if it is possible for an external person,
with only limited access to the classified internal information like the source
code, to help the company to try to find such additional vulnerabilities.

This was done with a greybox approach, where only the needed infor-
mation is given to the tester by the developers. It is possible for the com-
pany, to use this concept in addition to their currently used threat mitiga-
tion or as a basis for further investigations to find potential exploits in their
software.

To check, how this approach performs in a real life example, a case study
with an enterprise level Windows based software was done. The feedback
from the developers backed the usefulness of this method, as some new
insight in their software was gained, as it shows the security aspects from
another point of view compared to internal tests and documentation.

HTTP://WWW.JKU.AT
https://tn.jku.at
https://ins.jku.at

v

JOHANNES KEPLER UNIVERSITY

Abstract
Faculty of Engineering and Natural Sciences

Institute of Networks and Security

Diplom-Ingenieur

EXTERNAL SECURITY ANALYSIS OF EXISTING WINDOWS
SOFTWARE BASED ON A CASE STUDY

by Stefan BACHMAIR

Komplexe Softwarepakete sind oft das Resultat eines jahrelangen En-
twickungsprozesses. Dadurch konnen Angriffspunkte entstehen, über die
Entwickler während des Testens der Software noch nicht berücksichtigen
konnten.

Diese Arbeit beantwortet die Frage, ob es für eine externe Person möglich
ist, mit nur sehr eingeschränkten Zugriff auf firmeninterne Informationen
wie den Sourcecode, den Entwicklern zu helfen solche zusätzliche Angriff-
spunkte zu finden.

Die Umsetzung erfolgte mit einem Greybox Ansatz, wo nur die benötigte
Information von den Entwicklern zur Verfügung gestellt wurde. Das Soft-
wareunternehmen soll in der Lage sein, dieses Konzept zusätzlich zu der
bereits vorhandenen Behandlung von Softwareangriffen oder als Basis für
eine weitere Untersuchung auf Schwachstellen in der Software zu verwen-
den.

Um zu überprüfen, wie dieser Ansatz an einer aktuellen Softwarelö-
sung runktioniert, wurde eine Fallstudie mit einer Windows basierenden
Unternehmenssoftware durchgeführt. Anhand der Rückmeldung der En-
twickler konnte die Nützlichkeit dieser Arbeit bestötigt werden, da diese
eine zusätzliche Betrachtung der Software aus einem anderen Blickpunkt
ermöglichte.

HTTP://WWW.JKU.AT
https://tn.jku.at
https://ins.jku.at

vii

Acknowledgements
Firstly, I would like to express my sincere gratitude to my advisor Univ.-

Prof. Priv.-Doz. DI Dr. René Mayrhofer for the continuous support of my
Master study, for his patience, motivation, and knowledge.

My special thanks are extended to the staff of Sophos Linz for giving me
the opportunity to create my thesis in using their software product. I am
particularly grateful for the assistance given by Mr. Stefan Proksch and Mr.
Christian Praher. Without their dedicated involvement, this thesis would
have never been accomplished.

Last but not the least, I would like to thank my family and friends for
supporting me throughout writing this thesis and my life in general.

ix

Contents

Abstract iii

Abstract(German) v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Restrictions . 2
1.4 Approach . 3
1.5 Threat Model . 3
1.6 Case Study . 4
1.7 Background . 4

1.7.1 Black-, White- And Greybox Testing 4
1.7.2 Static And Dynamic Analysis 5

2 Related Work 7
2.1 Finding Vulnerabilities . 7

2.1.1 STRIDE . 7
2.1.2 Attack Trees . 9
2.1.3 Attack Libraries . 10
2.1.4 Threat Modeling Tools 11

2.2 Selecting Potential Exploit Targets 12
2.2.1 Binaries . 13
2.2.2 Digital Signatures . 14
2.2.3 Access Rights . 17
2.2.4 Memory . 17
2.2.5 Files . 18
2.2.6 Named Pipes . 18
2.2.7 WMI . 19

2.3 Other Improvements . 20
2.3.1 Fuzzing . 20
2.3.2 Static Code Analysis Tools 21

2.4 Summary . 22

3 Approach 23
3.1 Creating the Test Environment 24
3.2 Information Gathering . 24
3.3 Threat Modeling . 26
3.4 Exploiting Vulnerabilities . 26

3.4.1 Tampering with binaries 28
3.4.2 Windows Registry . 30
3.4.3 Services . 30

x

3.4.4 Drive Encryption / BitLocker 31
3.4.5 Memory . 32
3.4.6 Named Pipes . 33
3.4.7 RPC . 33
3.4.8 IOCTL . 34

3.5 How to add additional Content 34

4 Case Study Sophos SafeGuard Enterprise 7 Windows Client 35
4.1 Sophos SafeGuard . 35
4.2 Threat Ranking . 36
4.3 Creating the Test Environment 36

4.3.1 Client . 37
4.3.2 Server . 38

4.4 Information Gathering . 39
4.4.1 Installation Files . 40
4.4.2 Dependencies . 41
4.4.3 Directories . 41
4.4.4 Files . 42
4.4.5 Registry . 43
4.4.6 Services . 43
4.4.7 Security Flags . 50
4.4.8 Communication . 50

4.5 Threat Modeling . 53
4.5.1 Context . 56
4.5.2 Level 1 – Key Handling 58
4.5.3 Level 1 - WMIListener (BitLocker) 64
4.5.4 Level 2 - WMIListener BitLocker Change Thread . . . 69
4.5.5 Level 2 - WMIListener BLD Flag Thread 72
4.5.6 Level 2 - WMIListener Volume Change Thread 74
4.5.7 Level 2 - WMIListener Event Threads 76
4.5.8 Level 2 - MasterService 78
4.5.9 Summary . 79

4.6 Tested Vulnerabilities . 79
4.6.1 Binaries . 79
4.6.2 Registry . 81
4.6.3 Services . 83
4.6.4 BitLocker . 85
4.6.5 Cache . 86

4.7 Untested Vulnerabilities . 93
4.7.1 Memory . 93
4.7.2 Named Pipes . 93
4.7.3 RPC . 94
4.7.4 IOCTL . 94

4.8 Next Steps . 94

5 Case Study Feedback 95

6 Conclusion 97
6.1 What worked well/what didn’t? 97
6.2 Next Steps . 98

xi

Bibliography 101

CV 105

Declaration of Authorship 107

1

1 Introduction

Software development is a continuing process, so many large software pack-
ages, which are currently available on the market, started as small tools sev-
eral years ago and changed over the time into the large products, they are
now. So, it is not surprising, that over these years several factors come into
play, which increase the complexity of the software:

• Addition of features

• Support of other platforms

• Support or migration to a newer OS version

• Change of the development environment

• Change of team members

• And more. . .

These factors alone are quite challenging during further development,
but there is an additional and crucial aspect, which must be taken care of.
Because the exploitation of vulnerabilities in computer software is an actual
threat nowadays, it must be made sure that the developers do everything
possible to avoid such vulnerabilities.

This is where threat mitigation techniques are used, some of the most
established ones are Static Code Analysis, STRIDE, Attack Trees, and Threat
Modeling tools. These allow the developers to find potential vulnerabilities
in their software during the development cycle, where they can still be fixed
without causing damage in a productive environment.

1.1 Motivation

These well proven techniques mentioned above are normally applied dur-
ing the planning stage of the software and grow with the further develop-
ment. So, it is quite complex and time consuming to introduce these tools
on an already existing large scale software product. This leads to the prob-
lem that the different teams, which work on the software, do their own
vulnerability mitigation (for example Static Code Analysis), but only on
smaller scale, because it is not centrally organized and reviewed like it is
possible with Threat Modeling for example.

To solve this issue, it is helpful to have a recommended strategy to add
a well proven threat mitigation technique to an already existing software
product.

So, the motivation of this thesis is to introduce an organized threat find-
ing technique to an already existing large scale software product.

2 Chapter 1. Introduction

1.2 Goals

The goals of this thesis can be interpreted as a check list, which the different
sections of the thesis are based on:

• Gather information of the software in a blackbox approach

• Build a threat model of the software based on the found informa-
tion

• Identify potential vulnerabilities

• Select some of the found vulnerabilities and check if they can be
exploited

• Verify, if this approach was useful for the developers to further
improve the security of their software

• This thesis is adapted to match the requirements to analyze the
case study, but the methology has to be as general as possible to
allow the usage with other software packages.

1.3 Restrictions

To gain acceptance from the developers and managers, this technique must
be simple to use and the impact on the current work flow must be as small
as possible.

Also, it must be possible that an external contributor can do this task,
so only limited access to the proprietary source code must be necessary to
keep the confidentiality of the company property intact.

There are many different platforms to run software on, so only software
for Microsoft Windows will be part of this work. However, the principle
must be applicable to software for other platforms. Also, the network com-
munication is out of scope for this thesis as well.

Since the analyzation of every aspect from a large scale software is time
and resource consuming, this thesis only concentrates on the most crucial
parts of it, which had been given from the software company.

These considerations give the following list of restrictions of this thesis:

• Tools must be easy to use

• The tester must not require any source code, relevant information
must be provided by the developers

1.4. Approach 3

• Windows based

• Network communication was out of scope

• Focus on security critical aspects rather than full product

1.4 Approach

The main strategy to achieve this task consists of the following points:

• Evaluate the currently available threat finding techniques and
tools

• Enumerate the most common threats targets of the software

• Make an approach for finding applying a threat mitigation tactic

• Make a case study by applying the approach to an already exist-
ing software

• Evaluate what worked well and what not

The evaluation of currently available tools consists of finding out how
such a test can be classified, and what well known techniques are available
and what their advantages and disadvantages are. Not all of them are suit-
able for this thesis, and tradeoffs have to be made.

To make finding potential exploits easier, an enumeration of targets for
exploitation is done. To list all potential targets is too excessive, so only the
most promising ones are taken into consideration.

Using the knowledge from this already available works, which are needed
in the last 2 points, an approach on how to analyze a large scale software
is discussed. This approach can be applicable to a large variety of different
software, so it have to be as generic as possible.

Then, the approach is applied to an existing enterprise scale software.
In this case, the Windows based client was chosen, because this thesis was
done in cooperation with Sophos Linz.

Finally, a discussion is made on how the approach performed and what
steps must be taken to further improve the security of the software.

1.5 Threat Model

The attacker, which the threatmodeling is based on, is limited to the follow-
ing properties:

4 Chapter 1. Introduction

• Uses a standard user account

• Only has local access to the computer

• No physical modification of the computer hardware is possible

The analysis was done from the point of a normal user, because an ad-
ministrator has access to restricted components of the system.

Since the network part is out of scope for this thesis, only the local ac-
cess is taken into account.

Physical modifications of the hardware is out of scope, because the soft-
ware cannot prevent such attacks.

1.6 Case Study

The software used for the case study was the Windows client of Sophos
SafeGuard Enterprise. This is an enterprise level software for encryption
and a detailed description of it is made in section 4 in this thesis.

1.7 Background

When a software is tested, one of the first questions include what type of
software test is being done. This helps the involved persons to get a first
idea what principles and techniques are used in the test.

1.7.1 Black-, White- And Greybox Testing

The most common classification concepts for security testing of software
are [1]:

• Blackbox Testing – Examine fundamental aspects of the system with-
out having any knowledge of internal logic and structure of the code

• Whitebox Testing – Investigation of internal logic and structure of the
code. Full knowledge of the source code is necessary.

• Greybox Testing – Test the software with limited knowledge of the
internal working

So, the greybox testing technique fits the requirements for this thesis
be best, since the source code is only partially available (via the develop-
ers) and there is only limited information of the internal functionality of the
software product.

Compared to whitebox and blackbox testing, the advantages and dis-
advantages of grey box testing are described in ‘A Comparative Study of
White Box, Black Box and Grey Box Testing Techniques’ as follows[1]:

Advantages:

1.7. Background 5

• Grey box testing provides combined benefits of white box and
black box testing techniques.

• In grey box testing, the tester relies on interface definition and
functional specification rather than source code.

• In grey box testing, the tester can design excellent test scenarios.

• The test is done from the user’s point of view rather than de-
signer’s point of view.

• Create an intelligent test authoring.

• Unbiased testing.

Disadvantages:

• Test coverage is limited as the access to source code is not avail-
able.

• It is difficult to associate defect identification in distributed ap-
plications.

• Many program paths remain untested.

• If the software designer has already run a test case, the tests can
be redundant.

Some of the disadvantages, like the test of the source code or the untested
program paths, can be mitigated by using additional software testing tech-
niques, which are described later.

1.7.2 Static And Dynamic Analysis

Another well known classification, which is often mentioned when soft-
ware is tested, is the distinction between static and dynamic analysis.

The basic principle about these analysis techniques is that static ones are
done by analyzing the software without running it, while the dynamic one
is inspecting the software while it is executed.

In an online article by William Jackson, he lists the advantages and dis-
advantages of static and dynamic software tests, as they were listed by Maj.
Michael Kleffman of the Air Force’s Application Software Assurance Center
of Excellence [2]:

Static analysis advantages:

• It can find weaknesses in the code at the exact location.

• It can be conducted by trained software assurance developers who
fully understand the code.

• It allows a quicker turn around for fixes.

• It is relatively fast if automated tools are used.

• Automated tools can scan the entire code base.

• Automated tools can provide mitigation recommendations, re-
ducing the research time.

6 Chapter 1. Introduction

• It permits weaknesses to be found earlier in the development life
cycle, reducing the cost to fix.

Static analysis limitations:

• It is time consuming if conducted manually.

• Automated tools do not support all programming languages.

• Automated tools produce false positives and false negatives.

• There are not enough trained personnel to thoroughly conduct
static code analysis.

• Automated tools can provide a false sense of security that every-
thing is being addressed.

• Automated tools only as good as the rules they are using to scan
with.

• It does not find vulnerabilities introduced in the runtime envi-
ronment.

Dynamic analysis advantages:

• It identifies vulnerabilities in a runtime environment.

• Automated tools provide flexibility on what to scan for.

• It allows for analysis of applications in which you do not have
access to the actual code.

• It identifies vulnerabilities that might have been false negatives
in the static code analysis.

• It permits you to validate static code analysis findings.

• It can be conducted against any application.

Dynamic analysis limitations:

• Automated tools provide a false sense of security that everything
is being addressed.

• Automated tools produce false positives and false negatives.

• Automated tools are only as good as the rules they are using to
scan with.

• There are not enough trained personnel to thoroughly conduct
dynamic code analysis [as with static analysis].

• It is more difficult to trace the vulnerability back to the exact
location in the code, taking longer to fix the problem.

This comparison shows that is better to use an approach, where static
and dynamic analysis techniques are used in combination, and not just rely
on one method alone. This mitigates some of the limitations and gives a
larger insight into the software to test.

7

2 Related Work

There are several different works regarding the analysis of potential secu-
rity flaws of software products, so there must be a selection made regarding
what techniques and tools will be the most helpful ones during the inspec-
tion of the software product to test.

The first step is a comparison of common known techniques for find-
ing potential exploits. Not all of them are suitable for this work. Also, a
selection of the most promising points of attacks on Windows software are
discussed.

At last, other techniques to further improve the security of the software
are mentioned. These are out of scope of this thesis, but are recommended
to include in the development process.

2.1 Finding Vulnerabilities

While it is possible to find potential vulnerabilities for small software projects
by writing simple test cases and ‘playing around’, this is not practical for
larger projects at all. So a structured tactic to analyze the product for poten-
tial vulnerabilities is needed.

There exist several different approaches, each of them has its advan-
tages and disadvantages, depending on the product and the environment,
where it is used. Adam Shostack, who is the developer of Microsoft’s SDL
Threat Modeling Tool has listed the following major methods for finding
potential threats [3]:

• STRIDE

• Attack Trees

• Attack Libraries

To find out, which of these methods will suite the requirements of this
thesis the best, a comparison of the advantages and disadvantages is made.
However, there are other tools and strategies as well, but listing all of them
or even make a detailed comparison between them is out of scope.

2.1.1 STRIDE

STRIDE, which is an acronym that stands for Spoofing, Tampering, Repudi-
ation, Information Disclosure, Denial of Service, and Elevation of Privilege,
is a method of finding potential threats in technical systems and was in-
troduced by Loren Kohnfelder and Praerit Gark in 1999. Their article for
internal use at Microsoft is called ‘The Threats to Our Products’ but is made

8 Chapter 2. Related Work

available via a blog post by Adam Shostack [4].

The principle of STRIDE is to try to enumerate threats by their cate-
gories, so it’s basically trying to find out what can possibly go wrong in a
program.

The different threats and their corresponding violated security proper-
ties are as follows [3]:

TABLE 2.1: STRIDE

Threat Property Violated Threat Definition
Spoofing Authentication Pretending to be something

or someone other than your-
self

Tampering Integrity Modifying something on
disk, on a network, or in
memory

Repudiation Nonrepudiation Claiming that you didn’t do
something, or were not re-
sponsible. Repudiation can
be honest or false, and the
key question for system de-
signers is, what evidence do
you have?

Information
Disclosure

Confidentiality Providing information to
someone not authorized to
see it

Denial of Ser-
vice

Availability Absorbing resources needed
to provide service

Elevation of
Privilege

Authorization Allowing someone to do
something they’re not autho-
rized to do

It can be tiresome to try to find all potential threats, so there are variants
of STRIDE, which make it more comfortable to work with:

• STRIDE per Element - simplified version of STRIDE, only check threats
against the most likely affected elements (External Entity, Process,
Data Flow, Data Store)

• STRIDE per Interaction – another simplification of STRIDE, with im-
provements over STRIDE per Element. Uses threat enumeration over
tuples (origin, destination, interaction)

• DESIST - (Dispute, Elevation of privilege, Spoofing, Information dis-
closure, Service denial, and Tampering), a variant of STRIDE

STRIDE is a powerful and flexible system to find threats in all differ-
ent kind of technical systems. It is difficult for unexperienced persons to
find potential threats, but modern tools, which support STRIDE, are already
shipped with libraries of all different kind of threats. This makes the usage

2.1. Finding Vulnerabilities 9

accessible for non security experts.

The tool, which was selected in this thesis for the threat modeling (see
section ‘Threat Modeling Tools’) is based upon STRIDE.

2.1.2 Attack Trees

Attack trees are another approach to find threats in technical systems. It is
basically a tree based approach to describe and find potential vulnerabili-
ties in a system, based on varying attacks. The root node is usually the goal
of the attack, and the leaves the different ways to achieve it [5].

There are differences in variants for visual representation, but also there
are logical differences between different attack tree systems. For example,
there are OR Attack Trees, where only 1 node is necessary, while on AND
Attack Trees all of them must occur (there are mixed variants possible as
well).

An example attack tree looks like this:

FIGURE 2.1: Attack Tree per Bruce Schneier[5]

Attack trees require deeper understanding about the technical system to
analyze. There are sample attack trees available, but for this thesis they are
not applicable. Since it takes too much time from the developers to build
such specified attack trees for the product, attack trees are not used here.

10 Chapter 2. Related Work

2.1.3 Attack Libraries

Compared to STRIDE, attack libraries try to find potential threats on a more
low level approach. Such libraries can be built upon the security expert it-
self, or already available libraries can be used.

Examples for preexisting attack libraries are:

CAPEC (Common Attack Pattern Enumeration and Classification)

CAPEC is described as a comprehensive dictionary and classi-
fication taxonomy of known attacks that can be used by analysis,
developers, testers, and educators[6].

The total number of attack patters are 504 (August 2016), sorted in
different categories (mechanisms of attack or domains of attacks)

OWASP Top Ten Project

The latest version is from 2013, but they are currently (August 2016)
collecting data to update a new version most likely in 2017. The Top
Ten List 2013 is[7]:

• A1 Injection

• A2 Broken Authentication and Session Management

• A3 Cross Site Scripting (XSS)

• A4 Insecure Direct Object References

• A5 Security Misconfiguration

• A6 Sensitive Data Exposure

• A7 Missing Function Level Access Control

• A8 Cross Site Request Forgery (CSRF)

• A9 Using Components with Known Vulnerabilities

• A10 Unvalidated Redirects and Forwards

Attack libraries are better suited in an internal security test environ-
ment, because the developers have better insight in the different parts of
the software to test it against the predefined libraries or can built an indi-
vidual attack library themselves. However, for this thesis it is too much
overhead to go through all the attacks listed in these libraries, but they can
be useful to get ideas for additional vulnerabilities, which are not handled
by this thesis.

2.1. Finding Vulnerabilities 11

2.1.4 Threat Modeling Tools

Since the modeling of a threat model all by yourself is uncomfortable, there
are several tools available, which will make this process easy to handle. In
the Threat Modeling book, there are following tools listed[3]:

• TRIKE

• SeaMonster

• Elevation of Privilege

• ThreatModeler

• Corporate Threat Modeler (not available anymore)

• SecurITree

• Little-JIL

• Microsoft’s SDL Threat Modeling Tool

To select a suitable tool for this thesis, a comparison between these dif-
ferent tools is made:

Name TRIKE
Licence Open Source Free Yes
Description
Trike is an open source threat modeling methodology and tool and there are
3 different versions of it (1, 1.5 and 2). Depending on the version, the docu-
mentation is not yet fully complete, but threat modeling is still possible with
it.
To use Trike, either a standalone tool or an Excel spreadsheet can be down-
loaded from the homepage. However, the usability was not intuitive, espe-
cially when using the spread sheet.

Name SeaMonster
Licence Open Source Free Yes
Description
SeaMonster is a graphical tool for building threat models, which supports
attack trees and misuse case modeling. This makes it better suitable for the
developers itself than for an external tester.

Name Elevation of Privilege
Licence CC BY 3.0 US Free Yes
Description
Elevation of Privilege is basically a card game which helps clarify the details
of threat modeling and examines possible threats to software and computer
systems.
This can be a fun way for the developers to find potential vulnerabilities, but
it is not suited for this thesis.

12 Chapter 2. Related Work

Name ThreatModeler
Licence Proprietary Free No
Description
ThreatModeler is a commercial software for threat modeling, attack surface
analysis, and other useful help to find potential vulnerabilities. It supports a
centralized threat library, (automatically generated) attack trees, threat model
templates and the chaining of threat models.
The tool was not tested, because the access for a demo must be scheduled
and is only available for companies.

Name SecurITree
Licence Proprietary Free No
Description
SecurITree is, as the name suggests, an attack tree based threat analysis tool.
Similar to ThreatModeler, SecurITree was not tested because of the commer-
cial nature of the software.

Name Little-JIL
Licence Proprietary Free Yes
Description
Little-JIL is a graphical language for defining processes, but not specifically
build for threat modelling. So, threat finding features are not included like in
other tools. This makes Little-JIL not as suitable as them.

Name Microsoft’s SDL Threat Modeling Tool
Licence Proprietary Free Yes
Description
This is a graphical threat modeling tool, which is based on the STRIDE con-
cept. It is easy to use and understand, but larger and complexer models need
to be split into several different smaller ones or else it is too confusing.

The selected tool for this thesis is Microsoft’s SDL Threat Modeling Tool.
The reasons for this decision are:

• The software is Windows based, and therefore the tool can be used
out of the box

• It’s free

• Easy to understand, even for non developers

• Some of the developers already have used it for smaller parts of the
software

• It’s updated regularly, and because of that it includes newer threats

2.2 Selecting Potential Exploit Targets

As already mentioned during the explanation of Attack Libraries, there is
a wide range of potential vulnerabilities available. Testing all of them is a

2.2. Selecting Potential Exploit Targets 13

huge amount of work, and since the focus of this thesis is about to introduce
a way for a security analysis of a Windows based software to find potential
vulnerabilities and then try to exploit a selection of them as a proof of con-
cept, it is out of scope to test the software for all possible exploits.

The following potential exploit targets were selected because they repre-
sent a wide range of different points of attacks. They were the most promis-
ing ones to find vulnerabilities during the case study.

But it must be noted, that these exploit targets are only a recommen-
dation, and as already mentioned they are by far not all available targets.
Also, due to the limit of resources, only a small selection can be discussed
during the case study, so further work is still needed to test them in depth.

The major parts of the software, which were selected for finding poten-
tial security flaws are:

• Binaries

• Access Rights / Permissions

• Communication Paths

• Memory

Tampering with the binaries can be done using several different ways.
Some of them require the manipulation of the binaries itself, while other
abuse the absence of security enhancements. Also, when the permissions
to the files and services are set too weak, an attacker can use this to its ad-
vantage.

Another way to manipulate the software or to get classified information
is to tamper with the data, which is used by the software, itself. This can
be with the data files of the software or with the content of the memory it-
self. So, when there is unprotected data stored in there, these is a promising
target for attackers. Another place, where information can be stored, is the
Windows Registry.

The communication over the network to the server is not part of this
thesis, so there is only the IPC (Inter Process Communication) checked. The
relevant technologies used by the case study software are named pipes and
WMI (Windows Management Instrumentation)

2.2.1 Binaries

The attacks and therefore also the protection of binaries in Microsoft Win-
dows has evolved over several years. Some of these protections can be done
by Windows alone, while others will require the binaries to be rebuild with
an actual version of a compiler, which supports it.

The most important defenses against attacks are as follows[8][9]:

• /GS Stack buffer overrun detection.

14 Chapter 2. Related Work

• /SafeSEH exception handling protection.

• Structured Exception Handler Overwrite Protection (SEHOP).

• Data Execution Prevention (DEP) / No eXecute (NX).

• Address space layout randomization (ASLR).

• Pointer Encoding.

• Heap corruption detection.

• Migration of buffer overrun prone functions to safer versions.

Since some of these defenses are only available during compilation (for
example the Stack Buffer Overrun Detection), it can not be verified if the
final product was using them when only the binaries are available for in-
spection.

However, the binaries can be checked if they support the following de-
fenses by the inspection of the following flags in the binary headers[9]:

• DEP/NX
Data Execution Prevention (DEP) / No eXecute (NX) is used, which
prevents code from being executing in data segments. The CPU needs
to support this technology to work (Intel – DEP, AMD – NX)

• ASLR
ASLR moves executable images into random locations when a sys-
tem boots, making it harder for exploit code to operate predictably.
For a component to support ASLR, all components that it loads must
support ASLR.

• SafeSEH
An exception handler is a unit of code executed when an exceptional
condition, such as a divide by zero, occurs. The address of the handler
is held on the stack frame of the function and is therefore subject to
corruption and hijacking if a buffer overflow allows an attacker to
overwrite the stack. An advanced method is the use of SEHOP, as
this provides a better defense but it requires Windows Vista SP1 and
later.

2.2.2 Digital Signatures

When acquiring software from a potential unsafe source, it is problematic
to verify that the files were not tampered with (violation of integrity) or
where it came from (violation of authenticity). This can allow attackers to
change or add additional components to software packages with the intend
that unwary users will install it and therefore compromise their system us-
ing the tampered code. A possibility to avoid these problems is to provide
hashes for the software packages, so that the user can verify the integrity
of the data. However, users with non technical background can be over-
whelmed by this task.

2.2. Selecting Potential Exploit Targets 15

On modern Windows systems, there is a more user friendly mitiga-
tion of these problems using code signing, which ensures the integrity and
authenticity of software. A complete description about the Windows im-
plementation of code signing can be found on Microsoft’s ‘Introduction to
Code Signing’ at the MSDN[10].

The principle of code signing is built upon digital certificates and digital
signatures.

Digital certificates are a set of data, including the public encryption key,
that completely identifies an entity. These certificates are issued by a certi-
fication authority only after it the identity has been verified.

Digital signatures are created using hashing and a public key signature
algorithm. The basic principle of the process for digitally signing and veri-
fying a file is as follows 2.2:

1. A one way hash of the file is produced.

2. The hash is encrypted with the private key, thereby signing the file.

3. The file and the signed hash are transmitted.

4. The recipient produces a one way hash of the file.

5. Using the digital signature algorithm, the recipient decrypts the signed
hash with the sender’s public key.

6. If the signed hash matches the recipient’s hash, the signature is valid
and the file is intact.

However, like every technology, the signing of executables has vulnera-
bilities. These include[11]:

• Copying Certificate information from clean files

• Selfsigned certs with fake name

• MD5 forgery

• Get certified and be evil

• Get certificate with misleading name

• Find someone to sign your stuff for you

• Steal a certificate

• Infect developers’ system and get signed with software release

16 Chapter 2. Related Work

FIGURE 2.2: Digital Signatures per Stallings[12]

Most of these problems are out of scope for this thesis, because planting
malicious code and stealing the private key means that parts of the com-
pany security itself is compromised. Vulnerabilities of the algorithms is not
part of the software itself, so that cannot be checked either.

The part, which can be verified, is that the right company certificate is
used to sign the executables for this software.

2.2. Selecting Potential Exploit Targets 17

Another potential exploit, which can be checked, is if the software itself
cares about the correct digital signature at all. Because the usage of digital
signatures is meaningless if they are not checked in the first place.

2.2.3 Access Rights

As already mentioned in the introduction, the attacker is a normal user
without administrative access rights, who has local access to the computer.
Therefore, when too weak directory permissions are set for normal users, it
allows the attacker to tamper with the files in these directories, which result
in the corruption of the data or stops the software from working entirely.
So, when there is write access needed (cache files, user specific configura-
tion files), the software must include hardening features to automatically
handle corrupt data and configuration files.

There is another critical problem regarding the ‘hijacking’ of DLLs, which
occurs because due to the loading algorithm of DLLs by Windows[13]. The
search order for DLL in Windows are as follows:

1. The directory from which the application loaded

2. 32bit System directory (C:\Windows\System32)

3. 16bit System directory (C:\Windows\System)

4. Windows directory (C:\Windows)

5. The current working directory (CWD)

6. Directories in the PATH environment variable (system then user)

So, when unprivileged users have write access to the directories where
the executables reside, it is possible to place a forged DLL in there, which
acts as a wrapper for the original one, but executes malicious code as the
user which starts it. This is problematic for services which are started as the
‘SYSTEM’ user, because it allows the system to become compromised.

To avoid DLL hijacking, libraries must be loaded with an absolute path
and the permissions of the directories must be set restrictive, especially
when there are services started automatically.

2.2.4 Memory

The memory is a crucial part of the system, because it is the storage for
all different kinds of data, which is used by the operating system and the
software. Due to the complexity of the Windows operating system, it is a
quite complicated topic to deal with, as not only the RAM is used for this,
but also space on the disk (Swap file). The data, which is stored there can
be interesting for inspection, because many confidential information can be
available there in plain text.

There are technologies, which support the encryption of the memory,
for example AMD Memory Encryption[14]. This deals with the problem

18 Chapter 2. Related Work

when sensible data on the disk is encrypted, but it lacks encryption while it
is loaded into memory. This makes snooping this data possible, especially
on newer technologies, where nonvolatile memory is used, as these chips
can be removed while the data stored there is still intact.

2.2.5 Files

Files are still the primary way for storing information on a computer sys-
tem. Because of that, this information needs protection to prevent malicious
entities from accessing to it.

A special kind of file is the registry, which is an important part of the
Windows operating system. It is basically a database in which applications
and the operating system can store and retrieve data[15].

With improper access permissions set, an attacker can modify the data
of the software to corrupt its settings and its working behavior. Another
problem rises, when the data stored in the registry gives the attacker infor-
mation about potential security flaws.

2.2.6 Named Pipes

Larger modern software packages consist normally of more than one run-
ning process. To allow these processes to communicate to each other meth-
ods of Inter Process Communication (IPC) are needed.

One such method on Windows based systems are named pipes. They
operate in a server client model and support local and remote connections.
Basically, the handling of these names pipes is like files on a disk, with the
exception that they are deleted when there is no handle left to the pipe[15].

Named pipe unique names have the following notation:

\\<machine_address>\pipe\<pipe_name>

So, for example, a named pipe on a local machine named ‘TestPipe’ can
be opened with the unique pipe name ‘\\.\pipe\TestPipe’.

Portcullis describes security problems regarding named pipes and pos-
sible solutions to them[16]. These problems can occur because of racing
conditions when creating the server pipe and when clients have higher
privileges as the server pipe, and thus make an escalation of privilege pos-
sible.

For a safe implementation of named pipes following security consider-
ations on server and client side are advised:

Server side

• When creating the server instance, it must be made sure, that this is
the first instance

• Use pseudo random names, which are hard to guess for the pipe

2.2. Selecting Potential Exploit Targets 19

• When the number of client is known, limit the number of connections
to the pipe

Client side

• Use only the minimum level of privileges

• Use the right security flags to prevent impersonation by the server

• When impersonation is needed, use additional protection methods
(handshake, encryption, . . .)

2.2.7 WMI

Windows Management Instructions (WMI) allows to manage almost all the
Windows based computers resources, either on a local or on a remote com-
puter. It is the implementation of the Web Based Enterprise Management
(WBEM) standard. This allows the collection and management of data on
local and remote machines[15].

The four main parts of WMI, listed in there, are:

• Management applications - Windows applications that access and dis-
play or process data about managed objects.

• WMI infrastructure – This is where the core of WMI, the Common In-
formation Model (CIM) Object Manager (CIMOM) provides the con-
nection between the management applications and providers.

• Providers, which need to define and export the representation of the
objects that management applications are interested in.

• Managed objects might represent one component, such as a network
adapter device, or a collection of components, such as a computer.

FIGURE 2.3: WMI per System Internals[15]

20 Chapter 2. Related Work

The security of WMI is based on a namespace level implementation. An
administrator can control, which users can access specific namespaces, and
therefore allow a management application to connect to it. When the con-
nection succeeds, the application has full access to the object in this names-
pace.

To avoid problems regarding escalation of privilege, it must be made
sure, that the users only have access to the absolute minimum of needed
namespaces on a computer.

2.3 Other Improvements

Using the method mentioned before, it is possible to find a wide variety of
possible vulnerabilities in the software. Another way to find problematic
behavior of software is the use of fuzzers, which is basically a brute force
attempt to find problems, which will be caused by unexpected or faulty in-
put. A basic overview of different fuzzing methods, and if they are useful
in this thesis is discussed in its own section later.

There are other ways to further improve the security of an application,
but require full access to the source code to work properly:

• Code Analysis

• Code Proofing

Because one of the goals is to get as little information on the code as
possible, Code Analysis and Code Proofing are out of scope for this work,
however it is highly advised to think about the usage of these technologies.

2.3.1 Fuzzing

As mentioned before, fuzzing is a widely used technique used to find po-
tential problems in software, but there are limitations coming with it. In the
article “SAGE: Whitebox Fuzzing for Security Testing” the basic principle
of fuzzing is explained (which is called blackbox fuzzing) and how to miti-
gate problems coming with it[17].

Blackbox fuzzing is a blackbox testing technique where data is ran-
domly modified and provided as input to a program to see how it behaves.
To make the testing more efficient, rules can be used to generate the data.

This is an effective way to test interfaces, but since there is a random
component involved, not all possibilities are tested or at least require a large
amount of time (brute forcing all input).

The article gives the following example in C code to demonstrate this
limitation:
int foo(int x) { // x is an input
int y = x + 3;
if (y == 13) abort(); // error
return 0;

}

2.3. Other Improvements 21

So, for a 32bit integer as input, there is only a 1 in 23̂2 chance to trigger
the error. To mitigate this limitation, the fuzzer must know what is going
on in the program itself. This is basically what happens using whitebox
fuzzing.

While blackbox fuzzing basically relies on random generated input data,
whitebox testing analysis the program dynamically to find constrains on
inputs from conditional branches encountered during execution. This con-
strains are then used to generate new input data, so that these execution
paths are tested as well.

However, this has not to be confused with code verification, because
even if all possible input can be checked theoretically, this is too complex
and time consuming to do.

Whitebox fuzzing was not possible due to the limitations to the source
code of the software given in this thesis but blackbox fuzzing can be an
option. Unfortunately, the data on the communication interfaces was en-
crypted, so this was not done because this is too complex for this thesis to
crack this encryption.

2.3.2 Static Code Analysis Tools

While working on smaller software projects, the developers might still have
an overview of most of the components they use and what is going on there
on source code level. When the project grows larger, especially when there
are several teams working on different subprojects, it is not possible to keep
this overview. A deep inspection per hand is not possible, because it is too
time consuming and complex to do.

A solution to this problem is the usage of static code analysis with tools,
specifically designed for this purpose. These tools can analyze the source
code for different problems that might occur.

Examples of such problems are:

• Usage of obsolete functions

• Usage of unsecure functions

• Possible Deadlocks

• Buffer overflows

• SQL injections

Modern compilers might find some of these problems, but it is highly
recommended to include such analysis tools in the development cycle. These
tools can be effective to find problems in normally hard to reach positions
in the program. As the static code analysis does not need a complete soft-
ware, it can test parts of it. This is useful during the early stages of the
development process.

22 Chapter 2. Related Work

Like whitebox fuzzing, Code Analysis is not be used in this thesis, be-
cause of the restrictions about the limited access to the source code. Since
the usage of such tools have to be obligatory, especially for security based
software companies, it must be checked if these tools are updated on regu-
lar basis.

2.4 Summary

While this thesis uses STRIDE with the use of Microsoft SDL Threat Mod-
eling Tool, the other approaches for finding vulnerabilities can be used in
addition to it or to get ideas about other attack vectors.
The listed potential exploit targets were chosen because these were the most
promising ones for the case study. They are by far not all attacks which are
possible for the thesis, but due to the limited resources a selection had to be
made.

23

3 Approach

As already defined by the goals in section 1, this thesis is about to find po-
tential vulnerabilities in a software and then tries to exploit them. Some
vulnerabilites can be found by the inspection of the installation of the soft-
ware, but a much better overview is given when a threat model is used in
addition. This allows the identification of other threats, which were not
taken into account when no such threat model was used.

With the available technologies and possible attacks discussed in sec-
tion 2, the question is now how to make use of this knowledge to make a
security analysis of the provided software package possible.

The following restrictions must be taken care of in this approach:

• A proprietary software package is provided by the developers

• The result must be reproducible for further investigation

• There are manual and guides from the homepage available, but in
general there is only little insight to the software.

• When additional information is needed, an appointment must be made
with the developers to get this information

• Only specific parts of the software can be tested

The first step to make security tests from the software is to get used to
the functionality of the software itself. This requires the creation of a repro-
ducible test environment.

The next measure, which must be done is to identify the different com-
ponents of the software. This can be done without the help of the develop-
ers. With this information, it is now possible to start the creation of a threat
model of the software. While it is possible to create a basic model in this
manner, it might be necessary to get input from developers on the more
nuanced aspects of the system.

When the threat models are created, potential threats have to be identi-
fied and then are tried to be exploited.

In summary, to create a threat analysis from scratch, the following steps
were taken:

• Creating the Test Environment

• Information Gathering

• Threat Modeling

24 Chapter 3. Approach

• Exploiting Vulnerabilities

A detailed explanation of these steps in done in the following sections.

3.1 Creating the Test Environment

As mentioned before, the crucial point for creating a useful test environ-
ment is the creation of reproducible results. On a simple standalone com-
puter, this is unpractical to do (disk cloning, etc. . .), so it is a much better
approach to use virtual machine for this task.

The usage of virtual machines allows the creation of snapshots, which
comes handy when the system is damaged between repair. It provides a
common starting point for the different exploits, which are tested.

Examples for software, which allows the creation of virtual machines
are:

• Oracle VM VirtualBox[18]

• Several different tools from VMware[19]

• Microsoft HyperV[20]

All the virtualizers mentioned above allow the creation of virtual net-
works, which are handy for complexer test environments.

For the selection on the installed software on the system, it is recom-
mended to ask the developers if there have any preferences. This and the
preselection on supported software and operating systems reduce the over-
head on the configurations to test. For example, it is useless to try to test
x64 software on a x86 system. Also, the inclusion of old software, whose
support will be dropped anyway is unnecessary extra work and only have
to be done if the developers especially wants it.

For the installed software, only the most recent version is used, except
the developers from the software to test have other preferences. But it must
be made sure, that no updates are installed during the tests, because these
changes in the system can influence the software to test.

3.2 Information Gathering

The information gathering is the first part of the analysis, where the pro-
vided software package is inspected. This is done with a blackbox approach
and the goal is to get as much useful information of the software as possible.

This starts with the inspection of the installation files. To ensure, that
other testers can reproduce the results, it had to be made sure that they use
the same version of the installation files. Therefore, a hash was created of
these files. In addition it is inspected if the files are protected.

3.2. Information Gathering 25

The next step is to document what changes in the system were made
during the installation. There are several tools available to compare dif-
ferent system states, so an appropriate one have to be chosen. The most
interesting changes include:

• Added directories/files

• Services

• Registry

To track these changes in the system, there are several tools available.
One of them is the ‘Windows System State Analyzer’, which is available
from Microsoft and allows to create and compare snapshots of different
machine states[21].

Another example for a tool to compare different system states is the
‘System Explorer’ by Mister Group[22]. This tool gives insight into the sys-
tem itself (modules, processes, . . .), which can become helpful during the
inspection.

It is good to know how the different binaries are dependent to another.
This means what binaries are listed in the import table of a PE binary. Al-
though, this is only a static dependency, it can be useful when there are
security flaws in a binary. This gives the attacker, who was described in
section 1.5, the opportunity to target otherwise secure binaries, which de-
pend on the faulty one.

Simple, but powerful attacks rely on the usage of weak access rights to
parts of the system (for example files/directories and services). This allows
attackers to exploit these permissions to make an escalation of privilege at-
tack or to manipulate the software in a harmful way.

Rather traditional, but still powerful attacks include security flaws in bi-
naries. There are techniques, which mitigate such problems, but they must
be used properly. So, it have to be checked if these techniques are imple-
mented.

While small software only consists of one running thread, larger soft-
ware has many different processes and threads, which need to communi-
cate with each other. This communication lines are a vulnerable point of
the system, if they are not protected properly. So, these IPC communica-
tions has to be identified as well.

In summary, the following parts of the software were chosen in this
thesis:

• Installation files

• Changes in the system

• Dependencies

• Access rights (directory, services)

26 Chapter 3. Approach

• Security enhancements of the binaries

• Communication between the components of the software

It must be noted, that it is by far not possible go find all possible infor-
mation about the software during this stage. However, it can be enough to
start basic threat modeling and perhaps identify first potential vulnerabili-
ties.

3.3 Threat Modeling

As mentioned in section 2, the most suitable tool for threat modeling is the
Microsoft SDL tool. While it is not possible to set all the properties in the
models, and therefore create an automatically generated threat list, it still
helps with the identification of potential threats. This is due to the restric-
tions of the thesis (only limited information available). But it is possible,
that the developers use the created threat model and complete the missing
information, so they can use the SDL tool as intended.

Since the properties of the different components are not included in the
graph, an explanation of the relevant ones is given is given after the graph
using tables.

To keep the naming of the components consistent, they must be enu-
meratated in a consistent way. This must be logically plausible, so that by
looking at the number, it must be easy to identify to which part of the soft-
ware the component belongs to.

Since the SDL tool does not support such an enumeration list, it must
be made by hand.

An example for such a list is:

(1) User
(2) Client Software

(2.1) Process 1
(2.1.1) Thread 1
(2.1.2) Thread 2

(2.2) Process 2
(3) Server Software

3.4 Exploiting Vulnerabilities

When talking about vulnerabilities, it must be kept in mind the special case,
when the attacker already has administrative access to the operating sys-
tem. Therefore, the system is already compromised, so this cannot be mit-
igated by the software itself. However, it is still useful to test for vulnera-
bilities as root, as it can be possible that the attacker uses another exploit to

3.4. Exploiting Vulnerabilities 27

gain specific permissions to parts of the system. An example is the write
access to binaries.

During the information gathering and the threat modeling, several pos-
sible vulnerabilities are found. In this section, it is now tested, if it is possi-
ble to exploit those vulnerabilities to harm or even compromise the system.
It must be mentioned during the write up if the potential exploit can be
used in conjunction with another attack to have further impact.

The approaches are divided into several categories, and for each ap-
proach, a detailed explanation is given on how to reproduce it.

To get a better overview about the exploits which are tried, a table is
used to give a description about it. This gives a summary about the attack,
so that it is not needed to read through the whole technical explanation of
it.

TABLE 3.1: Sample Exploit

Name Name of the exploit
Impact Classification of the impact
Attack succeeded Did the attack or parts of it succeed?
Prerequirements Are there prerequirements for this attack?
Description
A short summary of the attack.
Further use by other exploits
Can this attack be used in conjunction with another attack to amplify
the vulnerability?

To provide a good starting point for possible exploits, a selection of at-
tacks is discussed in the following points. These are by far not all attacks
which attackers are able to make, but it is impossible to check every exploit.

These selection was made because they seemed to be the most promis-
ing ones for an attack to succeed. To let them be as representative as possi-
ble, different aspects of the software was chosen (binaries, storage, commu-
nication). Unfortunately, is turned out that testing all of these selected was
not possible, this was either because of some additional protection, which
made the attack too complex to execute, or due to the available information
was not enough and to make an successful attack attempt more classified
information was needed.

Other potential exploits were also possible, but as already mentioned,
only the most promising ones in the eye of the tester were chosen.

If possible, a recommendation of tools and further information about
the attack is provided. But as already mentioned, these are by far not all
available attacks, so it is highly advised to research what specific attacks
can succeed on the software to test.

28 Chapter 3. Approach

3.4.1 Tampering with binaries

There are several ways to compromise binaries, especially when there are
security improvements missing (Digital Signature, ASLR, DEP). During the
Information Gathering, the tester creates a list of all binaries and if they are
proper protected.

But even if they are properly protected, it is still possible to manipu-
late them. So it is of interest, if the software recognizes if the binaries are
changed. Examples of tests include:

• Can the certificate be removed or changed? - violation of integrity

• Is it possible to add payload to the binary? - violation of integrity

These points are discussed now, and examples are given (if possible).

Certificates

The removing or changing of a digital certificate from binaries in a Win-
dows based software is a easy task to do. There are already tools available
to do this, so two specific ones were selected as an example.

The certificate can be removed with a small tool called ‘delcert’ by deepred,
which was posted on the xnadevelopers forum[23]. The syntax to remove
the digital signature of a binary is as follows:

delcert.exe MyFile.exe

which gives the output when succeeding:

Target file(s): MyFile.exe

Stripping file: [path]\MyFile.exe.
Succeeded.

To sign a binary with another certificate, the command line tool ‘Sign-
Tool.exe’, which is available as a part of the Windows SDK can be used [24].
The syntax used to replace the digital signature is as follows:

Signtool.exe sign /a MyFile.exe

If there is no suitable certificate file available, a new one can be created
by this command:

makecert.exe -r -pe -ss MY -sky exchange -n
CN=MyPrivateCert CodeSign.cer

When the binaries are correctly signed, the output look like this:

signtool.exe sign /a *
Done Adding Additional Store
Successfully signed: feshellx64.dll
Successfully signed: SGDrvHlp.exe
Successfully signed: sgmbasen.dll
Successfully signed: SGNCredProvn.dll
Successfully signed: WMIListener.exe

Number of files successfully Signed: 5
Number of errors: 0

3.4. Exploiting Vulnerabilities 29

Adding payload to binaries

It is possible to append data to a binary, but this is a trivial method and
it can be detected easily with digital signatures. But there is a way to still
add additional content to a binary, without the signature taking note of it.
This is described in the article ‘Changing a Signed Executable Without Al-
tering Windows Digital Signature’ by Aymeric Barthe[25].

This is possible, because data is excluded in the hash computation dur-
ing the signing process. This is because these sections cannot include them-
self during the generation. The sections are:

• the Checksum in the optional Windows specific header. 4 bytes.

• the Certificate Table entry in the optional Windows specific header. 8
bytes.

• the Digital Certificate section at the end of the file. Variable length.

This allows to add payload in the binary, which will not be detected dur-
ing the signature check. The attack, which still worked during the creation
of this thesis, is described in the article as follows:

1. Locate beginning of PE header (PE)

2. Skip COFF header (+=28 bytes)

3. Go to Certification Table Entry in the Windows specific optional PE
header (+=120 bytes after COFF; total +=148 bytes)

4. Change size of Certificate Table as defined in
IMAGE_DATA_DIRECTORY.Size to add the size of the payload.

5. Go to location defined IMAGE_DATA_DIRECTORY.VirtualAddress.
This is the absolute location of the Certificate Table within the file.

6. Change again the size of the header, inside the
PKCS1_MODULE_SIGN.dwLength

7. This should normally be the last section in the executable; so, go to
the end and add payload

8. Possibly calculate the new checksum of the file

There is the source code for a small command line tool available to
download. This tool currently only supports x86 binaries, so it is not possi-
ble to test x64 based software.

The usage of the tool to add a payload is:

AppendPayLoad.exe OriginalFile.exe Payload ModifiedFile.exe

30 Chapter 3. Approach

3.4.2 Windows Registry

For basic attacks of the registry, no special tools are needed, as the Registry
Editor is already included in Windows. There, it can be checked, what ac-
cess rights the different users have to the registry entries of the software.
Potential vulnerabilities here are too weak permissions or the violation of
confidentiality, when there is classified information stored there.

Other vulnerabilities include a wrong or faulty configuration, which al-
lows the attacker to find weak spots in there. An example are binaries with-
out the full path names, so that the attacker can spoof them.

3.4.3 Services

In Microsoft Windows, services are an integral part of the system. They of-
ten run with elevated user privileges (Local System), so when the services
are not configured properly, it allows the attacker to successfully attempt
an escalation of privilege exploit. So, it must be made sure, that a manip-
ulation or tampering with this services by an attacker is not possible, or at
least it is detected and the changes are reverted by the SafeGuard client.

There are several different vulnerabilities, which the attacker can use.
Some of them can be easily found with just one line of instruction in the
commandline, while others need deeper analysis of the binaries.

The following 3 possible vulnerabilities are discussed:

• Stopping, disabling, or modifying services

• Unquoted service paths

• DLL hijacking

Stopping, disabling, or modifying services due to weak permissions

This is a rather straightforward attack, so it must be checked, if the ac-
cess rights are properly set.

Unquoted service paths

A simple misconfiguration in the service properties can be used to start
other executables than the service. A blog post on commonexploits.com[26]
describes this misconfiguration as ‘Unquoted service paths’, because the bi-
nary path was entered without quotes. This is problematic when the path
contains whitespaces. An example about this problem is as follows:

This is the correct way to start the program:
"c:\program files\sub dir\program name"

And this is the problematic one:
c:\program files\sub dir\program name

While the problematic one still starts the service, Windows also tries to
start the following executables, if they are available:

3.4. Exploiting Vulnerabilities 31

c:\program
c:\program files\sub
c:\program files\sub dir\program

This allows an attacker to place malware at these locations, so it will be
started as a service with its access rights. A detailed explanation about this
vulnerability, can be found at the commonexploits website[26].

To find such misconfigured services, only a single command can be
used:
wmic service get name,displayname,pathname,startmode |findstr /i "

auto" |findstr /i /v "c:\windows\\" |findstr /i /v """

DLL hijacking

The basic principle of this attack is to intercept the DLL loading of the
service with a DLL, which is provided by the attacker. A full description
about this attack is in the article ‘Elevating privileges by exploiting weak
folder permissions’ on GreyHatHacker.NET[27].

To allow the exploit to be successful, the following conditions must be
met:

• One of the paths of the DLL search order has write access to the at-
tacker

• The service tries to load a DLL, which is either not available or is in a
lower ranking of the DLL search order, so that the attacker can put its
own DLL in a higher ranking one

The write access to a DLL search path is due to weak folder permissions.
This can be the result when program adds its own path to the search path
and still has write access for more users than necessary to it. This is out of
scope for the SafeGuard client, because the folder permissions are set prop-
erly and they are not added the search path.

To see which DLL are loaded and what their dependencies are is too
complex to do without the proper tools (see Information Gathering – De-
pendencies). It is better be done with static source code analysis from the
developers itself.

So, this potential exploit was not researched any further because it is
too time consuming for this thesis, but it is highly recommended to do this
in further research. In a proper configured system, the folder permissions
prevent an attacker to use this exploit, but it is better to make it as hard as
possible to use this exploit.

3.4.4 Drive Encryption / BitLocker

Actual versions of Microsoft Windows have a build in drive encryption
called BitLocker, which is used by SafeGuard.

When the user has administrative rights, it is trivial to get the recovery
key with the following command:

32 Chapter 3. Approach

manage-bde -protectors c: -get

The same result can be achieved when the WMI class
Win32_EncryptableVolume from the namespace
Root\cimv2\Security\MicrosoftVolumeEncryption is used.

Another attemptis to search the memory if the key is stored in there in
plain text (see next point). But if Windows itself is keeping the recovery key
in memory, it is out of scope for the SafeGuard client to manage.

3.4.5 Memory

To check if there is any valuable information in the memory available, the
attacker must get access to it. On Windows based systems, there are several
possible ways to get access to the memory, or at least to parts of it. Examples
are:

• Direct access

• Hibernation file

• Page file

• Crash dump

• Saved state of a virtual console

• And so on. . .

Some of these methods are only possible with elevated permissions (for
example, administrator), but it can be possible to access the memory con-
tent, which is saved on the disk like the page or hibernation file, when the
harddrive is connected to another computer.

Since the analysis of the memory is a complicated task, it is highly ad-
vised to use tools to make this much easier. One such tool is called Volatility
Framework, which is an open source tool made by the Volatility Founda-
tion[28]. Some of the developers of the Volatility Framework have pub-
lished the book ‘The Art of Memory Forensics’[29], which gives an detailed
explanation of how to get information out of the memory with the usage of
the Volatility Framework.

There are other special tools, which automatically search the memory
for encryption keys. One such tool is ‘Elcomsoft Forensic Disk Decryp-
tor’, which allows the forensic analysis of encrypted disks and volumes
protected with BitLocker, PGP and TrueCrypt. It can automatically mount
these volumes with the keys found during the analysis[30].

The search of encryption keys is by far not a trivial task, because it’s like
the search of a pin in a haystack. However, the attacker can use hints to
search for the keys. These hints include the structures where the keys are
stored in.

3.4. Exploiting Vulnerabilities 33

An example for such an attack is the BitLocker plugin for the Volatility
Framework. This plugin uses metadata stored on the disk to get the Full
Volume Encryption Key (FVEK) of a volume[31].

This tactic is nice to find keys, when it is known where to look for them.
Unfortunately, this is not so easily possible for proprietary software, espe-
cially when there is no access to the source code. An option is to inspect the
software with (kernel) debugger and see what data structures it uses. With
this information, it can be possible to craft a Volatility plugin to scan for the
encryption keys.

3.4.6 Named Pipes

Since named pipes can be accessed as files, it is quite simple to read the in-
formation, which is sent over them. But it is much more convenient to use
tools for this purpose.

One such a tool is IO Ninja, which is supports different modules to read
and write to a wide array of IO communication standards. Beside the ‘Pipe
Monitor’ module, which allows the sniffing of a named pipe, and the ‘Pipe
Listener’, which listens to incoming connections to a named pipe server, it
supports several other communication protocols (for example: TCP, UDP,
Serial)[32]

Another approach is the usage of WireShark. There is no native sup-
port for sniffing named pipes, but it is possible to make a workaround to
support it. This is possible, because WireShark supports doesn’t care what
data is displayed, if it is delivered in a supported format. This is either
the Libpcap file format or the pcap-ng format. To send the prepared data to
WireShark, there are several ways, which are described in the CaptureSetup
documentation[33].

3.4.7 RPC

Remote Procedure Calls (RPC) are a common type of communication be-
tween Windows programs. As there is information sent over RPC, it is in-
teresting to sniff this communication and see if it is possible to get classified
data out of there.

During the research about how to get information out of the RPC com-
munication, these 2 tools were found to be the most promising:

• RPCSniffer, which allows WINDOWS RPC message sniffing in a given
RPC server process[34].

• RpcView for exploring and decompiling all RPC functionalities present
on a Microsoft system[35].

34 Chapter 3. Approach

3.4.8 IOCTL

Getting information of IOCTL communication is no trivial task, but there is
a discussion on StackOverflow on how to log DeviceIOControls on a Win-
dows based system[36]. There are several possibilities listed, for example
the usage of Tools like Dr. Memory, IRPTracker or API Monitor. While it
is interesting to sniff the communication of the target software with these
tools, they require administrative privileges, so this was out of scope for
this thesis, because of the attacker profile in section 1.5.

3.5 How to add additional Content

Since this thesis consists of different parts, adding content can be divided
into the following 2 main parts: ‘Improving the Threat Model’ and ‘Finding
further exploits’

Improving the Threat Model
Since there are only parts tested, the generated threat models are by far

not complete. But fortunately, they can be used as a basis to add additional
components and to compete the already included one.

The first rule is always to keep it simple and only add relevant informa-
tion. This prevents the threat model from being overloaded with informa-
tion.

The recommended development cycle is:

1. get info from the developers

2. add the info to the threat model

3. find potential exploits

4. report back to the developers

5. get information about the improved software (restart at point 1)

Finding further exploits
As already mentioned, the listed sample exploits are only a small part

of a wide range of attacks. To find further vulnerabilities, it is needed to
verify what technology the software uses at all. And by software, also the
3rd party code, which is used by the software, must be considered. For ex-
ample, it seems to be useless to check for RPC problems, when there is no
RPC communication in the software itself, but when 3rd party code relies
on RPC communication, it must be checked as well. So, skipping parts for
inspection can only be done if it is made sure that they are not included in
the software and its dependencies at all.

At the best case, potential targets are already found during the informa-
tion gathering or the threat modeling. But it is helpful to speak with the
developers if they have any hints or recommendations for exploiting.

35

4 Case Study Sophos
SafeGuard Enterprise 7
Windows Client

To verify how the approach is performing on a real life example, it is ap-
plied to the Sophos SafeGuard 7 Window client software. This thesis was
written in cooperation with Sophos Linz, and the needed software packages
for a working client and server environment was provided by them.

4.1 Sophos SafeGuard

SafeGuard Enterprise is a modular security suite that enforces security for
endpoints on a cross platform basis, using administrator defined policies.
The main protection functions of SafeGuard Enterprise on an endpoint are
data encryption and protection against unauthorized access through exter-
nal media. The System administration is carried out centrally in the Safe-
Guard Management Center[37].

There is a client support for the most common platforms (Windows,
Mac, iOS, Android, and cloud based file sharing), but this thesis only han-
dles the Windows based one.

The modules used by SafeGuard Enterprise are as follows:

• SafeGuard full disk encryption

– SafeGuard Power-on Authentication

– Volume based encryption

• BitLocker with pre boot authentication managed by SafeGuard Enter-
prise

• SafeGuard Data Exchange

• SafeGuard File Encryption

• SafeGuard Cloud Storage

Due to the complexity of the software, only small parts can be inspected
about vulnerabilities. These parts to analyze were specified by Sophos Linz
and are:

• Key handling

• BitLocker module

36 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.2 Threat Ranking

To get an overview what is considered as a threat, and their importance,
Sophos Linz provided a list of threats and their corresponding ranking. Due
to the classified information contained in this list, only the general descrip-
tion is provided in this thesis.

Ranking: Critical

• Access to credentials of other users or SGN

• Access to BitLocker PIN/Password

• Stealth modification of critical parts of the software

• Authentication bypass

• Privilege escalation

Ranking: High

• Access to credentials of current user

• Access to plain content of files encrypted with key not assigned
to current user

• Modification of policies applied to the system

Ranking: Medium

• Denial of Service - Blue Screen

Ranking: n/a

• Denial of Service – Corruption of SGN settings

4.3 Creating the Test Environment

The first step of the testing process is to build a suitable testing environ-
ment. This was done with 2 physical computers, one was used for the
server software, the second one was running a Windows system with Vir-
tualBox 5.0.20 r106931 for the virtualization of the client.

The SafeGuard binaries, which were provided by Sophos, are:
During the analysis of the client, several changes in the operating sys-

tem, the SafeGuard software and its configuration are needed, so it is rec-
ommended to use virtualization techniques. This enables the usage of dif-
ferent snapshots of the machine, which is comfortable when using different
setups (standalone, managed) or when attacks put the system in a non re-
coverable state.

4.3. Creating the Test Environment 37

TABLE 4.1: SafeGuard installation binaries

Filename Version Size
(Bytes)

SHA1

SGNServer.msi 7.00.0.109 19.423.232 54BB798C7CD371
E94AC3023E2169
382D1E9D8542

SGNManagement Cen-
ter.msi

7.00.0.109 40.755.200 AB6572F64DA592
6974790A32428F
16D12437007C

SGxClientPreinstall.msi 7.00.0.109 9.003.008 8E39CEAAC8070E
12F4944838B71C
FEB61049AF0B

SGNClient_x64.msi 7.00.0.109 125.177.856 C903E40EE911E0
5A99D7C3700EE3
309E77147B2E

There are 2 different basic configurations for the SafeGuard client (Man-
aged and Standalone), so a Virtual Machine for each on these configurations
was created.

FIGURE 4.1: Test Environment

4.3.1 Client

The client itself runs on a virtual machine using VirtualBox 5.0.20 r106931
using the following settings:

38 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

TABLE 4.2: ClientVM

CPU 2 Cores
RAM 4 GB
HDD 45 GB (dynamically allo-

cated)
Network Intel PRO/1000 MT Desk-

top Bridge to host network
interface (see below)

Enabled Hardware Fea-
tures

IO-APIC

PAE/NX
VT-x/AMD-V
Nested Paging

Operating System Windows 10 Pro 64bit
(1607 – 10.0.14393) (With-
out updates)

The host machine of VirtualBox has the following specifications:

TABLE 4.3: ClientHost

CPU Intel Core i7-5820K (6
Cores, 12 Logical Proces-
sors)

RAM 16 GB
Network Interface (to
Server)

Intel I218-V

Operating System Windows 10 Pro 64bit
(1607 – 10.0.14393)

To get the managed client of SafeGuard working, additional configura-
tions must be made to the virtual machines:

• The DNS must be configured to correctly resolve the server name.
This must be done, because the server runs in an isolated network
and therefore has no official entry.

• The SSL certificate for the IIS server running the SafeGuard Enterprise
server must be installed as a trusted root certification authority. This
must be done by hand, because it was a self signed certificate and was
not distributed with group policies.

4.3.2 Server

To use the managed client, a computer running Sophos SafeGuard Server
is needed.

The specifications of the Server are:

4.4. Information Gathering 39

TABLE 4.4: Server

CPU Intel Xeon E3-1220v3
RAM 16 GB
Network Interface Intel I210
Operating System Windows Server 2012 R2

Standard
Installed Software IIS Version 8.5.9600.16384

MS SQL Server 2014 (64-
bit)

The installation and configuration of the server was done using the
‘SafeGuard Enterprise - Installation Best Practice’ guide from Sophos[38].

4.4 Information Gathering

With the test environment set up, the next step is to get as many infor-
mation of the SafeGuard client as possible. This is done by inspecting the
installation files itself, and then by identifying what changes were made on
the system by the client installation.

To determine what changes did occur during the installation of the soft-
ware packages, the following basic procedure must be done:

1. Save System State

2. Install Software

3. Save new System State

4. Compare these 2 States

The question now is how to save the System State and what information
is relevant to for investigation.

The most obvious information are the changes in the filesystem. But
only these changes are not enough, because additional metadata is needed
to check changes about drivers and services. This can be done with a com-
parison of the current registry with the old one.

A software to achieve this is ‘Windows System State Analyzer’, but un-
fortunately it was unstable and crashed unpredictable. So, the software
‘System Explorer’[22] was used instead.

Since there are rather many changes done, only the relevant ones are
listed:

• Root of the added directories

• Changes in the registry

• Installed services

40 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

However, it can be problematic that the naming scheme is not always
consistent. Also, there are names still referring to ‘Utimaco’, which is con-
fusing, but is necessary due to compatibility with older versions.

4.4.1 Installation Files

The most common way to install new software on a Windows based com-
puter is with the use of executable or MSI (MicroSoft Installer) files. There
is already the possibility to use specialized programs to install only trusted
software (e.g. Windows Store), but unfortunately, this is not always possi-
ble or practical. So, the installation binaries, which are distributed by the
software company or 3rd party sources still must be trusted.

It is possible to view the content of MSI files with the use of archiving
software that support that format (e.g. 7zip). The problem here is now that
the content of these files is not self explaining and can contain additional
setup programs or archives itself. A solution is to check it with a malware
scanner, but the problem remains, it is still not known, if the installer has
been tampered with or not.

TABLE 4.5: Installer content

File Content
SGxClientPreinstall.msi Visual C Runtimes
SGNClient_x64.msi Client Software (details see

later)
Standalone Client (Stan-
dard).msi

Configuration Files

Managed Client (Standard).msi Configuration Files
Company Certificate

To verify that the software is the untampered one distributed by the
software company, it can be checked, if it is signed with the right signature.
This can be easily done in Windows by viewing the properties of the binary.

TABLE 4.6: Installer certificate

File Signed by Algorithm
SGxClientPreinstall.msi Sophos Limited sha1
SGNClient_x64.msi Sophos Limited sha1
Standalone Client (Stan-
dard).msi

n/a n/a

Managed Client (Stan-
dard).msi

n/a n/a

While the preinstall and the client itself are signed by Sophos Limited,
the customer generated configuration files are not. This is by design, as
those are dynamically generated on the client’s installation, and to be signed
by Sophos the product have to include the code signing certificate. This
causes a problem in bigger environments, because someone can tamper
with the installers on the distribution ways (for example include another

4.4. Information Gathering 41

quiet installation of a backdoor). However, an Administrator can sign the
configuration installers itself.

Also, the sha1 algorithm is proven to be problematic [39], so a change to
sha2 or sha3 is recommended.

4.4.2 Dependencies

Since there are a rather large number of binaries in this software, it is inter-
esting to see how they are connected to each other. A possibility to do this
is to check the static linker information of them and generate a graph from
this information.

This can be done by hand using a program like Dependency[40], which
displays the dependencies in a tree view, but it is too time consuming to
generate a graph with this information, because much work must be done
manually. So instead, a small self developed tool was used to do this task
to automatically generate a graph.

However, since there are over 200 binaries included in the software, the
generated graph is complex and it is not be possible to include it in this doc-
ument in readable form. But while it is too complicated to get an overview
of the program using the graph it is still handy when searching for potential
vulnerabilities using a graph viewer, because single connections between
binaries can be filtered.

4.4.3 Directories

After inspecting the changes in the system, the following installation and
working directories of the software were identified (see listing below). Ad-
ditionally, it is now needed to find out who has access to these directories.

To display the discretionary access control lists (DACLs) on files or di-
rectories, the builtin Windows tool icacls.exe can be used. The basic usage
for displaying these DACLs is:
icacls <FileName>

or
icacls <Directory>

To keep this list readable, the following users and groups, which are
predefined by Windows, are left out intentionally:
NT SERVICE\TrustedInstaller
NT AUTHORITY\SYSTEM
BUILTIN\Administrators
APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES
APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED APP PACKAGES

C:\Program Files\Sophos\SafeGuard Enterprise

Full
Control

Modify
Read &
Execute

List
folder
contents

Read Write

Users X X X

42 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

C:\Program Files (x86)\Sophos\SafeGuard Enterprise

Full
Control

Modify
Read &
Execute

List
folder
contents

Read Write

Users X X X

C:\Program Files (x86)\Sophos\SafeGuard Shared

Full
Control

Modify
Read &
Execute

List
folder
contents

Read Write

Users X X X

C:\ProgramData\Utimaco\SafeGuard Enterprise

Full
Control

Modify
Read &
Execute

List
folder
contents

Read Write

Users X X X X X X

C:\Users\All Users\Utimaco\SafeGuard Enterprise

Full
Control

Modify
Read &
Execute

List
folder
contents

Read Write

Users X X X X X X

The full access rights to everyone to the last 2 directories listed is prob-
lematic on a shared computer system, because every user (even non Safe-
Guard ones) can mess with the data in there. Since these directories contain
the cache, attackers can manipulate it to prevent SafeGuard from running.
Also, the backup of the local cache is in the same directory with the same
access rights.

A recommendation to prevent tampering with these files is the use of
restrictive access rights and the backup in a save location, so that only Safe-
Guard itself can access it.

4.4.4 Files

To list all the installed files is not useful, but as already mentioned in the
inspection of the installation files, the installers add the following files to
the system:

• Visual C runtimes

• Client software

• Configuration files

The Visual C runtimes are out of scope, because they are not a part of
the client itself. Also, the client software was installed in directories, which

4.4. Information Gathering 43

had sufficient access rights set, so they are properly protected.

The interesting files for finding potential vulnerabilities because of weak
permissions are the ones in the following directories:

C:\ProgramData\Utimaco\SafeGuard Enterprise
C:\Users\All Users\Utimaco\SafeGuard Enterprise

This is the LocalCache and its backup, which consists basically of the
configuration and the actual status of the client software.

4.4.5 Registry

The relevant changes in the registry are:

• Set BitLockerPendingActions

• (Managed client only) Set Remote Management System

• Addition of the Keys listed below

TABLE 4.7: Registry changes

Type Changes
Registry key added

HKLM\SOFTWARE\Policies\Utimaco

Registry key added
HKLM\SOFTWARE\Utimaco

Registry key added
HKLM\SOFTWARE\WOW6432Node\Policies\Utimaco

Registry key added
HKLM\SOFTWARE\WOW6432Node\Utimaco

Registry key added
HKLM\SYSTEM\ControlSet001\Control\Utimaco

The permissions to these keys are properly set, as only administrators
and the SYSTEM has write access to it.

4.4.6 Services

Windows services are a crucial part of the operating system, so it is neces-
sary to find out is who has access rights to the SafeGuard services and their
dependencies.

There are two ways how the services of the client are started. The first
one is when the service has its own executable, which is started. The second

44 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

way is by loading a DLL with the help of the SGN_MasterServicen.exe.
The services, which are loaded by SGN_MasterServicen.exe are listed at
the following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Utimaco\SafeGuard
Enterprise\MasterService\

The acquisition of the service dependencies is trivial, because it can be
viewed in the properties of the service.

To get the access rights of the service, additional must be done. To view
the access rights, the following command is used:

sc sdhow <service name>

This displays a service’s security descriptor, but this is not easy to read,
because it used a syntax called ‘Security Descriptor Definition Language
(SDDL)’. The detailed description of SDDL can be found online at the MSDN
network[41].

All of the services returned the following SDDL string:

D:(A;;CCLCSWRPWPDTLOCRRC;;;SY)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;BA)
(A;;CCLCSWLOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)

A full explanation about this string is not given here, because it is too
complex, but the important part of this string is that only the ‘Local system’
(SY) and the ‘Built-in administrators’ (BA) have the rights to start (RP), stop
(WP) or pause/continue (DT) the service.

A more convenient way to get a list of users and their permissions is to
use the accesschk.exe tool from the sysinternals suite. The usage to list the
permissions of a service is:

accesschk.exe -ucqv <service-name>

With this knowledge, the following information was found about the
services:

4.4. Information Gathering 45

Service SafeGuard(R) MasterApplication WatchDog
Description Service monitors the SafeGuard MasterApplication
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGMasterWatchDogN.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Service SafeGuard(R) Authentication Service
Description SafeGuard Enterprise Authentication Service
Executable C:\Program Files (x86)\Sophos\SafeGuard

Enterprise\Client\SGNAuthServicen.exe

Dependencies RPC
Permissions Medium Mandatory Level (Default) [No-Write-Up]

RW NT AUTHORITY\SYSTEM
SERVICE_ALL_ACCESS

RW BUILTIN\Administrators
SERVICE_ALL_ACCESS

R NT AUTHORITY\INTERACTIVE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

46 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Service Sophos Encryption For Cloud Storage
Description SGN Cloud Storage Encryption service
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGNCloudEncServicen.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Service SafeGuard(R) Filebased Encryption Machine Poli-
cies

Description Manage policies for filebased encryption that apply
to all users on the machine.

Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe
(C:\Windows\SysWOW64\SGN_FEService.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

4.4. Information Gathering 47

Service SGNSafeModeService
Description SafeGuard Enterprise SafeMode Authentication Ser-

vice
Executable C:\Program Files (x86)\Sophos\SafeGuard

Enterprise\Client\SGNSafeModeServicen.exe

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Service SafeGuard(R) Filebased Encryption Master
Description Main service supporting filebased encryption.
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGNFileEncServicen.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

48 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Service SafeGuard(R) Log Service
Description SafeGuard(R) Log Service is a logging and reporting

manager for various logging destinations
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGM_LogPlayern.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Service SafeGuard(R) System Event Manager
Description System Event Service
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGN_Semn.dll)

Permissions Medium Mandatory Level (Default) [No-Write-Up]
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\INTERACTIVE

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

4.4. Information Gathering 49

Service SafeGuard(R) Transport Service
Description SafeGuard(R) Transport Service for client server com-

munication
Executable C:\Windows\SysWOW64\SGN_MasterServicen.exe

(C:\Windows\SysWOW64\SGTransCtrln.dll)

Dependencies SafeGuard(R) System Event Manager
Permissions Medium Mandatory Level (Default) [No-Write-Up]

RW NT AUTHORITY\SYSTEM
SERVICE_ALL_ACCESS

RW BUILTIN\Administrators
SERVICE_ALL_ACCESS

R NT AUTHORITY\INTERACTIVE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Service SafeGuard(R) WMI Listener
Description Service monitor for BitLocker
Executable C:\Windows\SysWOW64\WMIListener.exe

Dependencies BitLocker Drive Encryption Service
Permissions Medium Mandatory Level (Default) [No-Write-Up]

RW NT AUTHORITY\SYSTEM
SERVICE_ALL_ACCESS

RW BUILTIN\Administrators
SERVICE_ALL_ACCESS

R NT AUTHORITY\INTERACTIVE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R NT AUTHORITY\SERVICE
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

This shows, that the security permissions are proper set and that they
cannot be exploited by the attacker, who does not have an administrator
level account.

50 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.4.7 Security Flags

Another way to make an attack of a software easier is the lack of security
enhancements. As mentioned before, there are several technologies avail-
able, and it is possible to check them by inspecting the binary file.

The selected security enhancements are:

• ASLR (Address Space Layout Randomization

• DEP (Data Execution Prevention

• SafeSEH (Safe Exception Handlers)

• Authenticode – the binary was signed with a digital signature

To check for these enhancements, a small console application using the
dependency graph tool framework was written. This tool can verify the se-
curity enhancements for either a single binary or a list of binaries listed in a
text file as input.

The list of all the binaries is too long to include here, but there were
several of the security features missing from files.

TABLE 4.8: Security flags

ASLR DEP SafeSEH Authenticode
Missing 103 103 208 13

To help mitigate these problems it is recommended to use a software,
which helps to verify that these security enhancements are included during
the compilation of the software. One such tool is Microsoft BinScope 2014,
which is available online without of charge[42].

BinScope Binary Analyzer helps to ensure that the binaries are built in
compliance to the SDL requirements and recommendations. It identifies
coding and building practices which result in potential vulnerabilities of
the application.

4.4.8 Communication

Communication interfaces in software are a critical point, because a weak
implementation can allow an attacker to interfere with the communication
and it can be possible to read crucial information and even send manipu-
lated data to break the software.

Most of the IPC communication in SafeGuard uses Names Pipes. To get
a list of all the Names Pipes in Windows, a simple PowerShell command
can be used:

get-childitem \\.\pipe\

The following table shows the Named Pipes used by the managed Safe-
Guard client during runtime. The instances show how many clients are

4.4. Information Gathering 51

connected to the pipe currently, while the max. instances define if there is a
limit used (-1 stands for infinite).

Pipe Name Instances
Max. In-
stances

BRC_BAK_CHANGEDGdmKeyBackup 1 -1

BRC_BIN_CHANGEDBitLockerNativeWrapper 1 -1

BRC_BitLockerMAppEvtBitLockerNativeWrapper 2 -1

BRC_BitLockerMAppReqBitLockerMAppn 1 -1

BRC_CRL_CHANGEDSGNAuthService_CRL 1 -1

BRC_EVT_GDM_BLBitLockerNativeWrapper 1 -1

BRC_GdmKeyBackupBitLockerNativeWrapper 1 -1

BRC_GdmKeyBackupKeyBackupResultCollector 1 -1

BRC_INFOCOLLECTORUPDATETimestampCollector 1 -1

BRC_KMGLoaderClassSDXKMGLoader 1 -1

BRC_KMGLoaderClassSGNAuthService_KeyStore
Reload

1 -1

BRC_KMGLoaderClassSGNCloudEncController 1 -1

BRC_KMGLoaderClassSGNCloudEncService 1 -1

BRC_KMGLoaderClassSGNFileEncController 1 -1

BRC_KMGLoaderClassSGNFileEncService 1 -1

BRC_KMGLoaderClassSGNFileShareController 1 -1

BRC_LSH_CHANGEDSystray_Status 1 -1

BRC_POLCHANGEBitLockerNativeWrapper 1 -1

BRC_POLCHANGEFEDec 1 -1

BRC_POLCHANGESGM_LogCtrl 1 -1

BRC_POLCHANGESGNAuthService_PolChange 1 -1

BRC_POLCHANGESGNCloudEncController 1 -1

BRC_POLCHANGESGNCloudEncService 1 -1

BRC_POLCHANGESGNFileEncController 1 -1

BRC_POLCHANGESGNFileEncService 1 -1

BRC_POLCHANGESGNFileShareController 1 -1

52 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

BRC_POLCHANGETrans 1 -1

BRC_SEMSGNCloudEncController 1 -1

BRC_SEMSGNCloudEncService 3 -1

BRC_SEMSGNFileEncController 1 -1

BRC_SEMSGNFileEncService 1 -1

BRC_SEMSGNFileShareController 1 -1

BRC_SYSPOLCHANGETrans 1 -1

BRC_TRANSSNDPRIOTRSSRV 3 -1

BRC_TRANSSNDREQSGM_LogCtrl 1 -1

BRC_TRANSSTATUSFEDec 2 -1

BRC_TRANSSTATUSSGNCloudEncController 2 -1

BRC_TRANSSTATUSSGNCloudEncService 1 -1

BRC_TRANSSTATUSSGNFileEncController 2 -1

BRC_TRANSSTATUSSGNFileEncService 2 -1

BRC_TRANSSTATUSSGNFileShareController 2 -1

BRC_TRANSSTATUSTransStatusCollector 2 -1

BRC_UMA_CHANGEDBitLockerNativeWrapper 1 -1

BRC_UMA_CHANGEDSGNAuthService_LockDown 1 -1

BRC_USER_KEYSTORE_ESTABLISHEDBitLocker
NativeWrapper

2 -1

BRC_USER_KEYSTORE_ESTABLISHEDSDXAUTHSRV 1 -1

BRC_USER_KEYSTORE_ESTABLISHEDSGNCloudEnc
Controller

1 -1

BRC_USER_KEYSTORE_ESTABLISHEDSGNCloudEnc
Service

1 -1

BRC_USER_KEYSTORE_ESTABLISHEDSGNFileEnc
Controller

1 -1

BRC_USER_KEYSTORE_ESTABLISHEDSGNFileEnc
Service

1 -1

BRC_USER_KEYSTORE_ESTABLISHEDSGNFileShare
Controller

1 -1

SGM_LogMessages_NamedPipe 5 -1

TABLE 4.9: Named pipes

4.5. Threat Modeling 53

None of these pipes has a restriction to maximize the number of connec-
tions. It is not always be possible to set a hard limit of the connections, but
is advised to limit them to prevent unwanted connections.

Another problem is that the names of the pipes are predetermined. This
makes it easy for an attacker to connect to a specific named pipe. Since
the communication over the named pipes in encrypted, this attack scenario
was not performed.

The predetermined name allows attackers to use race conditions to spoof
these pipes. But as already mentioned, this was not tested, because of the
encrypted communication over the named pipes.

4.5 Threat Modeling

The modeling was done with a top down approach, beginning on a basic
schematic of the software (Context), then selecting parts of the diagram and
model them in detail. These detailed diagrams are called ‘Levels’, followed
by a number, describing the detail level of it.

The first Level is obviously the SafeGuard software itself and shows the
running processes and their communication parts to the other used compo-
nents of the system.

Since the software is too large to analyze every part of it, an agreement
with Sophos Linz was made to only include parts to focus on. The following
parts were chosen:

• BitLocker

• Key Handling

This means, that the diagrams are only modeled as far as information
was available. So, many parts of the software are not included here, or are
only mentioned as out of scope. To help to include these missing parts in
future works a tutorial is included in this thesis.

A challenge was encountered when modeling the different diagrams of
SafeGuard. These diagrams can grow quick in size, especially when there
are more than a handful of components includes. It can be possible to han-
dle them directly in the program on the computer, but it is difficult to ex-
plain them to other people or to show them at presentations. It is problem-
atic to include them in this document, because larger diagrams can span
over several pages.

To mitigate these problems, the following simplifications were made:

• Data flow connections are displayed as a single line using a generic
description, even if there are more connections between the compo-
nents. The detailed description of the different connections is made
in higher level diagrams (if possible).

54 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

• Larger diagrams are split into several smaller parts, where only the
relevant objects are included.

The basic layout of the diagram descriptions are as follows:

• Explanation, what the diagram is about

• The diagram itself

• Description of the relevant objects (processes, communication lines,
. . .) including potential vulnerabilities

The MS SDL Tool uses properties to describe the different objects. But
since it is not easily possible to include the properties of the different objects
in the diagram itself, the separate explanation had to be made.

It must be noted, that the properties of the threat models itself are by
far not complete. The reason of this shortcoming is that only the develop-
ers have enough insight in the software to complete the properties of the
different objects. This means, that the generation of the potential attacks in
the MS SDL Tool generates too much entries, so to use the tool properly,
the developers have to add the missing properties. For this thesis, it is not
useful to include all the possible attacks generated, so only a few possibili-
ties were chosen. These attacks are explained in the diagram descriptions,
and are chosen to be executable using the limited resources and informa-
tion, which are available for this thesis. So, attacks, which require deeper
understanding of the code (either with the actual source code or with the
usage of binary analysis) cannot be handled here.

To keep a better overview of the different components and to keep the
naming and numbering consistent, it is recommended to keep a list of them

(1) Human User
(2) Machine Trust Boundary
(3) SGN Client

(3.1) AuthApp
(3.2) Tray
(3.3) CredProv
(3.4) AuthService
(3.5) MasterService

(3.5.1) SafeGuard(R) Filebased Encryption Machine Policies
(3.5.2) SafeGuard(R) MasterApplication WatchDog
(3.5.3) SafeGuard(R) Transport Service
(3.5.4) Sophos Encryption For Cloud Storage
(3.5.5) SafeGuard(R) Filebased Encryption Master
(3.5.6) SafeGuard(R) Log Service
(3.5.7) SafeGuard(R) System Event Manager

(3.6) KeyStoreDrv
(3.7) FileFilterDrv
(3.8) File System
(3.9) Cache

4.5. Threat Modeling 55

(3.10) Current User
(3.11) SYSTEM
(3.12) SGNMaster (SGNMaster.exe)
(3.13) OS Process
(3.14) WMIListener

(3.14.1) BLDFlag Thread
(3.14.2) Bitlocker Change Thread
(3.14.3) Event Threads
(3.14.4) Bitlocker RPC Service

(3.15) Memory (Properties)
(3.16) Volume Change Thread
(3.17) Registry Hive

(4) Internet Boundary
(5) SGN Server

56 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.1 Context

FIGURE 4.2: Threat Model Context

The context diagram shows the basic communication flow of the software.
Since this thesis only handles the windows client, the server part is included
as just one block.

The user only has basic interaction with the software. This include the
input of credentials or the request of the generation of new keys. It can be
requested, that the client displays information about the software (last up-
date from server, and so on. . .)

The communication between the server and the client is encrypted and
will not be further analysed, because the network communication is out of

4.5. Threat Modeling 57

scope in this thesis.

Since this diagram is too high level, there are no actual problems to dis-
cuss.

58 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.2 Level 1 – Key Handling

FIGURE 4.3: Threat Model Key Handling

This diagram is a describes a crucial part of the client software. It is about
the keys, which are necessary to encrypt or decrypt the files or drives of the
system. A break of confidentiality of these keys is highly fatal to the whole
system (see the threat ranking, which was provided by Sophos). So, it must
be made sure that it is never possible for the actual user, and especially for
other users to get these keys.

4.5. Threat Modeling 59

Name Context
(1) User -
Communicates with Protocol used
(3.3) Credential Provider -
(3.1) Authentication App -
Description
The user must input its credentials, which are later used by the Authen-
tication Service (3.4). This is possible during the following 2 situations:

• During the logon screen of Windows, using the custom Creden-
tial Provider (3.3).

• With the Authentication App (3.1), this only happens, when the
entered user credential for the system does not match the creden-
tials of the user from SafeGuard.

Potential Vulnerabilities
The security problems concerning the user itself are not part of this
thesis, because the user is not part of the SafeGuard client.

Name Context
(3.1) AuthApp (SGNAu-
thAppn.exe)

Current User

Communicates with Protocol used
(3.4) AuthService RPC (SPT)
Description
The Authentication App (AuthApp) requests the user (1) to enter its
SafeGuard username and password, when the entered credentials dur-
ing the logon doesn’t match the one from SafeGuard.

Potential Vulnerabilities
The Authentication App (AuthApp) runs in the user context and re-
quests the SafeGuard credentials of the user. It can be possible for mal-
ware to intercept or hijack the communication between the AuthApp
and the AuthService (3.4). A Keylogger can be used to get the creden-
tials, but this is out of scope to include here, because this is not Safe-
Guard specific and it means that the system is already compromised.
Also, per the developers, the RPC connection is authenticated and en-
crypted. So, the sniffer have to decrypt the message.

60 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Context
(3.2) TrayApp Current User
Communicates with Protocol used
(3.6) KeyStoreDrv IOCTL
Description
It is possible for the user (1) to generate new encryption keys using this
application.

Potential Vulnerabilities
The tray application is not well suited for an attack, because it only
allows low risk operations such as the display of information, server
sync or the generation of new keys.

Name Context
(3.3) CredProv (SGNCred-
Provn.dll)

SYSTEM

Communicates with Protocol used
(3.4) AuthService RPC (SPT)
Description
This is a custom credential provider for the windows logon. This al-
lows the SafeGuard client to unlock the user certificate with the same
credentials as the windows user account if they match. Otherwise the
user is prompted to enter their SafeGuard username and password us-
ing the AuthApp (3.1).

Potential Vulnerabilities
The Credential Provider (CredProv) is only used during the logon
screen, so it can not be easily manipulated by the user itself. How-
ever, when the attacker gains the possibility to change the binary (or its
dependencies) the credentials can be logged.

4.5. Threat Modeling 61

Name Context
(3.4) AuthService (SGNAuthServi-
cen.exe)

SYSTEM

Communicates with Protocol used
(3.9) Cache File IO
(3.6) KeyStoreDrv IOCTL
Description
The Authentication Service (AuthService) retrieves the encrypted cer-
tificate of the user from the cache (3.9) and tries to decrypt it with the
provided credentials.
If the decryption succeeds, the AuthService send the AES Keys, which
are in the user certificate to the KeyStore driver (3.6) using IOCTL oper-
ations. When it fails, the provided credentials are invalid and the user
gets the corresponding feedback.

Potential Vulnerabilities
The AuthService handles classified data (keyring), so the control over
it can provide useful information. But since it runs in the SYSTEM
context, the access to it from a basic user account is not trivial. The
IOCTL calls to the KeyStore driver (3.6) send interesting data, but sniff-
ing them is out of scope, since it requires administrator rights. DLL
hijacking is an option, but with properly set access rights this is not
possible without administrator rights. The AuthServicen.exe depends
directly or indirectly on the following binaries (listed without the ones
from Microsoft):

C:\Program Files (x86)\Sophos\SafeGuard Enterprise\Client\
SGNAuthServicen.exe C:\Windows\system32\SGMCachesn.dll

C:\Windows\system32\SGMBASEN.dll
C:\Windows\system32\SGMXMLN.dll
C:\Windows\system32\SGMSBASEN.dll
C:\Windows\system32\SGLocalCacheEnginen.dll
C:\Windows\system32\SGMEntitiesn.dll
C:\Windows\system32\SGEvtMann.dll
C:\Windows\system32\SGMSecUtiN.dll
C:\Windows\system32\SGMCBIN.dll
C:\Windows\system32\sgmtdfN.dll
C:\Windows\system32\SGM_LogStatn.dll
C:\Windows\system32\SGMPipeConnectionn.dll
C:\Windows\system32\SgmGdmn.dll
C:\Windows\system32\SGTransCtrln.dll
C:\Windows\system32\SGMWebClientn.dll
C:\Windows\system32\SGM_ReportAPIn.dll
C:\Windows\system32\KMGLoadern.dll
C:\Program Files (x86)\Sophos\SafeGuard Enterprise\Client\

SPTBASEN.dll
C:\Windows\system32\sgmpwfn.dll

62 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Context
(3.5) MasterService
(SGN_MasterServicen.exe)

SYSTEM

Communicates with Protocol used
(3.7) FileFilterDrv IOCTL
(3.9) Cache FileIO
Description
The MasterService reads the encryption settings from the cache (3.9)
and sends them to the FileFilter driver (3.7) using IOCTL.

Potential Vulnerabilities
The Master Service includes many different modules, but the relevant
for the key handling is the handover of the settings to the FileFilter
driver (3.7). Like the AuthService (3.4), the MasterService runs in SYS-
TEM context and communicates with the driver using IOCTL. Also, the
cache is accessed the same way as in the AuthService (3.4), so the attack
possibilities are the same as listed above.

Name Context
(3.6) KeyStoreDrv Driver (Kernel)
Communicates with Protocol used
(3.7) FileFilterDrv IOCTL
Description
This is where the actual encryption keys are stored. The FileFilterDrv
(3.7) uses this driver to encrypt the files (3.8)

Potential Vulnerabilities
The encryption keys are the most confidential part of the SafeGuard
client. To get access to the keys, it can be tried to access the memory it-
self and try to find them. However, this is complicated because the lack
of access rights and the amount of data to analyze. It can be possible to
get access to the communication between the KeyStore driver and the
FileFilter driver (3.7)

4.5. Threat Modeling 63

Name Context
(3.7) FileFilterDrv Driver (Kernel)
Communicates with Protocol used
(3.6) FileFilterDrv IOCTL
(3.8) File System FileIO
Description
The FileFilter driver (3.7) uses the KeyStore (3.6) driver to encrypt the
files (3.8) based on the rules in the settings. There are no keys stored in
this driver itself.

Potential Vulnerabilities
A potential point of attack is the communication between this and the
KeyStore driver (3.6). Another possibility is the manipulation of the
setting, so that nothing gets encrypted at all.

Name Context
(3.8) File System -
Communicates with Protocol used
- -
Description
The file system of the computer

Potential Vulnerabilities
The file system itself is out of scope, because it is not a part of SafeGuard
itself.

Name Context
(3.9) Cache -
Communicates with Protocol used
- -
Description
The cache is where the current state of the SafeGuard client is stored. It
includes the settings, certificates, connection details, and so on.

Potential Vulnerabilities
The cache is one of the most interesting parts of the key handling, be-
cause of the information stored there. The access rights to the Cache
are set to full access for everyone, so even a non SafeGuard user can
manipulate it. A rather radical option is the corruption or deletion of
the Cache. This puts the SafeGuard client in a non operational state,
but since a LocalCache corruption is explicitly flagged as not critical in
the threat ranking (it is an intended behavior), this is out of scope. A
promising attack is to try to get as much information out of the cache
as possible and to manipulate the cache, so that no corruption occurs
(see section 4.6).

64 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.3 Level 1 - WMIListener (BitLocker)

FIGURE 4.4: Threat Model WMIListener

The WMIListener consists of several different parts, so it is too complex to
draw them all into one diagram. So, in this part, only the basic functionality
is explained and a detailed description of the different objects is made later
in the discussion of the subparts of the WMIListener.

4.5. Threat Modeling 65

The name WMIListener is a little confusing, because this module is not
only listening to WMI events, but also for other different events. This in-
cludes:

• BitLocker changes

• BLD (BitLocker Dialog) Flag changes

• Volume changes

• Other events

The main component of the WMIListener is a thread, which listens to
those events. When such an event occurs, the WMIListener starts a sepa-
rate event thread to handle the necessary actions. The main thread itself is
waiting to the started event thread to finish, so this is a blocking action. This
can cause problems, because it is not guaranteed that other events, which
are arriving meanwhile, are handled properly.

BitLocker encrypts the whole volume, so the loss of the password is crit-
ical. To still have the possibility to access the drive when the password is
lost, a recovery password can be crated. Since SafeGuard manages the en-
cryption of the system, it handles the recovery password as well, so that
the user has no direct access to it and can therefore create a lack of confi-
dentiality. The BitLocker recovery password is either stored on the server
(managed client) or on the client itself (standalone client)

There is broadcast IPC communication used to signal changes in the
SafeGuard system (policy change, ...). This communication is using names
pipes and can have payload appended. The names of these named pipes
give a good hint about what they are used for (see the discussion under
‘Named Pipes’). The communication over them is encrypted, but it can still
be possible to get information from it.

Name Context
(1) User -
Communicates with Protocol used
- -
Description
When a BitLocker dialog is displayed, the user must provide the
needed feedback to it. This can be for example, the PIN or a passphrase.

Potential Vulnerabilities
The user is out of scope of the SafeGuard client itself, so this is not
discussed here.

66 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Context
(3.12) SGNMaster (SGNMaster.exe) Current user
Communicates with Protocol used
(1) User -
(3.14) WMIListener RPC
Description
Displays the BitLocker Dialog.

Potential Vulnerabilities
The response from the user can be sniffed, but this communication is
protected by encryption methods.

Name Context
(3.13) OS Process -
Communicates with Protocol used
- -
Description
The BitLocker handling is done by the operating system itself, and the
SafeGuard client uses WMI to communicate with it.

Potential Vulnerabilities
Since this is part of the operating system, it is out of scope of the Safe-
Guard client.

4.5. Threat Modeling 67

Name Context
(3.14) WMIListener SYSTEM
Communicates with Protocol used
(3) SafeGuard Client (several mod-
ules)

Named Pipe

(3.9) Cache FileIO
(3.13) OS Process WMI
(3.15) Registry -
Description
See description above.
The changes, which are signaled by the events and the general settings
itself are either stored in the cache (3.9) or in the registry (3.15).

Potential Vulnerabilities
As mentioned in the key handling, the cache (3.9) can be accessed by
every user on the client system. The registry (3.15) contains no classi-
fied information, but it can be still possible to manipulate it to generate
unintended behavior.
Since there are several modules which send broadcast messages using
named pipes, it is possible to get information out of it. The names of
these pipes are well known and their function is kind of self explained
because of it. So, the communication can be manipulated to stop the
SafeGuard client to function properly. But since the communication
was encrypted and have error handling, this was not possible.
The communication to the BitLocker system in the operating system is
done with WMI calls, so when there are improper access permissions
set the encryption of the system volumes can be prevented.

Name Context
(3.9) Cache -
Communicates with Protocol used
- -
Description
The cache has already been explained in the key handling discussion.

Potential Vulnerabilities
The same as discussed in the key handling.

68 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Context
(3.15) Registry Hive -
Communicates with Protocol used
- -
Description
Stores information about the BitLocker encryption used by the
WMIListener (3.14).

Potential Vulnerabilities
The BitLocker settings in the registry is part of the operating system
and not of the SafeGuard client, so this is out of scope for the client to
handle.

The following objects are not further included in the analysis of the sub
parts below to reduce redundancy. This affects the following objects:

• (3.9) Cache

• (3.13) OS Process

• (3.15) Registry

4.5. Threat Modeling 69

4.5.4 Level 2 - WMIListener BitLocker Change Thread

FIGURE 4.5: Threat Model WMIListener BitLocker Change
Thread

This thread is started when there where changes in the BitLocker system
are needed to be done.

The BitLocker components of the operating system are accessed with
the usage of WMI and the needed information about it and the actual poli-
cies are received from the registry and the cache respectively.

70 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

The SGNMaster (3.12) is used for the SafeGuard specific BitLocker com-
munication with the user. This is invoked with a named pipe, and when
the result is ready, it is sent back per RPC.

Name Context
(3.14.2) BitLocker Change Thread SYSTEM
Communicates with Protocol used
(3.9) Cache FileIO
(3.12) SGNMaster Named Pipe
(3.13) OS Process API Calls
(3.13) OS Process WMI
(3.14.5) Memory (Properties) -
(3.15) Registry API Calls
Description
This is the core of the subpart of the WMIListener as described above.

Potential Vulnerabilities
Potential attacks regarding the Cache (3.9), SGNMaster (3.12), OS Pro-
cess (3.13) and the Registry (3.15) are already discussed in the Level
1 diagram, so the only additional part here is the communication the
memory (3.14.5).
With proper access rights it is possible to access the memory to tamper
with the flags and stored information to provoke unintended behavior.
It can be tried to find the recovery password in there, but with proper
protection this is extremely difficult, if not impossible to fulfill.

Name Context
(3.14.4) BitLocker RPC Service SYSTEM
Communicates with Protocol used
(3.14.5) Memory (Properties) -
Description
This service receives the result of the user communication from the
SGNMaster (3.12). This is stored directly in the memory of the process.

Potential Vulnerabilities
As mentioned in the analysis of the BitLocker Change Thread (3.14.2),
it can be tried to get access to the memory to tamper with the data.

4.5. Threat Modeling 71

Name Context
(3.14.5) Memory (Properties) SYSTEM
Communicates with Protocol used
- -
Description
This is the actual memory of the process itself.

Potential Vulnerabilities
The process/binary can be lacking security enhancements, so that the
attacker can have the possibility to access the information stored in the
memory.

Name Context
(3.12) SGNMaster Current user
Communicates with Protocol used
(3.14.4) BitLocker RPC Service Named Pipe
Description
The SGNMaster sends the user response to the BitLocker RPC Service
(3.14.4) over a named pipe back to the WMIListener (3.14), where it gets
stored in memory.

Potential Vulnerabilities
Since the response is sent over a named pipe, it can be read when it is
not protected properly, for example with encryption.

72 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.5 Level 2 - WMIListener BLD Flag Thread

FIGURE 4.6: Threat Model WMIListener BLDFlag Thread

The BLDFlag Thread can receive configuration data for the BitLocker (XML
data) from the SafeGuard Transport Service (3.5.3) over a named pipe. These
settings are applied via WMI calls to the operating system.

It is possible that the recovery password is saved into the cache.

4.5. Threat Modeling 73

Name Context
(3.14.1) BLDFlag Thread SYSTEM
Communicates with Protocol used
(3.9) Cache FileIO
(3.13) OS Process WMI
Description
See description above.

Potential Vulnerabilities
Potential attacks regarding the Cache (3.9) and the OS Process (3.13) are
already discussed in the Level 1 diagram.

Name Context
(3.5.3) SafeGuard(R) Transport Ser-
vice

SYSTEM

Communicates with Protocol used
(3.14.1) BLDFlag Thread Named Pipe
Description
The Transport Service is responsible for the communication to the Safe-
Guard server. This communication is obviously only available on a
managed client, as the standalone one has none.

Potential Vulnerabilities
It can be possible to tamper with the communication to the BLDFlag
thread (3.14.1) to manipulate the new settings.

74 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.6 Level 2 - WMIListener Volume Change Thread

FIGURE 4.7: Threat Model WMIListener Volume Change
Thread

This event thread is started, when there was a change regarding the system
volumes. This can require the client to adjust the BitLocker settings and
therefore needs a response to the SafeGuard state in the cache (3.9).

4.5. Threat Modeling 75

Name Context
(3.14.6) Volume Change Thread SYSTEM
Communicates with Protocol used
(3.9) Cache FileIO
(3.13) OS Process API Calls
(3.13) OS Process WMI
(3.14.5) Memory (Properties) -
(3.15) Registry API Calls
Description
See description above.

Potential Vulnerabilities
Potential attacks regarding the Cache (3.9), OS Process (3.13) and the
Registry (3.15) are already discussed in the Level 1 diagram and the
attacks targeting the memory are mentioned in the Level 2 – WMILis-
tener BitLocker Change Thread diagram.

76 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.7 Level 2 - WMIListener Event Threads

FIGURE 4.8: Threat Model WMIListener Event Threads

This diagram is a collection about the event threads, which were not already
mentioned above. They can be modeled and discussed in detail separately
in a future work, but this overhead is out of scope for this thesis. This
diagram can be used as a template for these additions.

4.5. Threat Modeling 77

Name Context
(3.14.3) Event Threats SYSTEM
Communicates with Protocol used
(3.9) Cache FileIO
(3.13) OS Process API Calls
(3.13) OS Process WMI
(3.14.5) Memory (Properties) -
(3.15) Registry API Calls
Description
See description above.

Potential Vulnerabilities
Potential attacks regarding the Cache (3.9), OS Process (3.13) and the
Registry (3.15) are already discussed in the Level 1 diagram and the
attacks targeting the memory are mentioned in the Level 2 – WMILis-
tener BitLocker Change Thread diagram.

78 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

4.5.8 Level 2 - MasterService

FIGURE 4.9: Threat Model MasterService

The SGN_MasterServicen.exe binary contains the services, which are auto-
matically run at the client system startup. Since this thesis only analyzes
parts of the software, only the communication lines of these parts are in-
cluded in the diagram.

The other services are only added without communication lines, to build
a starting point when the corresponding parts get added in the future. This
requires the diagram to be split up like the WMIListener because of read-
ability.

Name Context
(3.5.3) SafeGuard(R) Transport Ser-
vice

SYSTEM

Communicates with Protocol used
(5) SGN Server SSL / proprietary
Description
The Transport Service is responsible for the communication between
the managed SafeGuard client (3) and the SafeGuard server (5). The
protocol used either a proprietary one, which was developed by
Sophos, or for actual version SSL. The SSL variant is preferred.

Potential Vulnerabilities
The communication between SafeGuard client (3) and the SafeGuard
server (5) is not part of this thesis, so this is out of scope.

4.6. Tested Vulnerabilities 79

4.5.9 Summary

During the analysis of the components from the different threat models,
additional vulnerabilities have been found, which were not evident dur-
ing the inspection of the information gathering. Especially the communica-
tion paths between the selected components are now clearer as without the
threat models. This is because the graphs are easy to understand. But the
modeling required the assistance of the developers, as information about
the internal workings of the software was needed.

A modeling, which goes deeper into detail was not useful, as it requires
such a high amount of information from the developers, that it is less re-
source consuming when they are modeling it themself.

4.6 Tested Vulnerabilities

As described in the approach, some of the found potential vulnerabilities
were tested if it is possible to exploit them. The types of impact were taken
from the threat ranking, which was provided by Sophos.

Since there was no access to the source code itself, attacks, which require
deeper knowledge of the software itself, were not possible in a reasonable
time efford. But there was a possibility to get hints from the developers for
trying a specific exploit. If such a hint was given, it is mentioned explicitly
in the description.

4.6.1 Binaries

The access rights to the binaries only allow administrators write access to
the binaries. Nevertheless, it is still useful to include testing scenarios to
ensure, that these binaries are protected properly.

Potential problems regarding ASLR and DEP are already discussed dur-
ing the information gathering, and since the exploiting of these missing se-
curity enhancements require a deep understanding of the binaries itself, it
is not included here.

Things, which are still interesting to test is to further reduce the used
security features by tampering with the signature of the binaries or the ad-
dition of payload to it and to observe, if and how the SafeGuard client reacts
to it.

The test where made using the standalone client, as its behavior is the
same as in the managed client version.

80 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Removing / Changing Code Signing Certificate
Impact None, if used alone. Can vary when used in

conjunction with another attack.
Attack succeeded Yes
Prerequirements Write access to the binaries
Description
A change in the digital signature of a binary can induce that its con-
tent was changed by malware or another type of attack. It is tested,
if the software recognizes if there was a change regarding:

• The removal of the signature

• Another signature was used

Further use by other exploits
It is easier to tamper with binaries, when there is no check made
if they are the valid ones from the vendor. When there are further
security enhancements missing like ASLR or DEP, they can be used
in addition to this to binary exploiting.

The SafeGuard binaries are installed at the following directories (and
their subdirectories):

C:\Program Files (x86)\Sophos\SafeGuard Enterprise
C:\Program Files (x86)\Sophos\SafeGuard Shared
C:\Program Files\Sophos\SafeGuard Enterprise
C:\Windows\System32
C:\Windows\SysWOW64

There is a total of 241 binaries added by the SafeGuard client installa-
tion, so only a few of them are tested. The selected files are:

C:\Windows\System32\sgmbasen.dll
C:\Windows\SysWOW64\WMIListener.exe
C:\Program Files\Sophos\SafeGuard Enterprise\FileEncryption\

feshellx64.dll
C:\Program Files (x86)\Sophos\SafeGuard Shared\SGDrvHlp.exe
C:\Program Files (x86)\Sophos\SafeGuard Enterprise\Client\x64\

SGNCredProvn.dll

To modify these binaries, Windows was booted in safe mode. This can
be done using the msconfig.exe tool (administrative permissions needed)
or, depending on the Windows version, during startup or via the settings.
During the removal of the digital signature, the modification date of the bi-
nary has changed.

As mentioned in the approach, the tool used to remove the certificates
from the binaries was ‘delcert’ by deepred[23] and the one to sign a binary
with another certificate was ‘SignTool.exe’, from of the Windows SDK[24].

The result of the system, when the binaries with the modifies binaries
are as follows:

4.6. Tested Vulnerabilities 81

FileName Removed certificate
detected

Another certificate
detected

sgmbasen.dll No No
WMIListener.exe No No
feshellx64.dll No No
SGDrvHlp.exe No No
SGNCredProvn.dll No No

This results show, that the modification of the digital certificates of the
binaries was not detected at all by the SafeGuard client. To prevent that an
attacker uses this vulnerability, it is highly recommended, that the files are
checked for the correct digital signatures during startup or that a watchdog
is verifying this during runtime.

Name Adding payload to binaries
Impact Can vary when used in conjunction with an-

other attack.
Attack succeeded Yes
Prerequirements Write access to the binaries
Description
Additional payload can be added in the binary, so without proper
protection it is possible for an attacker to hide additional data in the
binary.
Further use by other exploits
Like the ‘Removing / Changing Certificate’ attack, this can be used
in addition to other vulnerabilities to give the attacker additional
options to exploit the system.

To add payload to binaries, the tool mention in the article ‘Changing a
Signed Executable Without Altering Windows Digital Signature’ by Aymeric
Barthe[25] was used.

Since this tool currently only supports x86 binaries, the attack was only
tested on the following 2 binaries:

C:\Windows\SysWOW64\WMIListener.exe
C:\Program Files (x86)\Sophos\SafeGuard Shared\SGDrvHlp.exe

The usage of the tool to add a payload is:

AppendPayLoad.exe OriginalFile.exe Payload ModifiedFile.exe

As payload, a text file containing the string ‘TEST’ multiple times was
used.

Unfortunately, during the tests, where the original binaries were re-
placed by the ones with the payload, the SafeGuard system did not notice
these changes.

4.6.2 Registry

The permissions of the SafeGuard client registry entries are set as read only
for normal users, so the only thing, which can be tried is to get interesting
information out of it, which can help for further exploitation.

82 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Name Reveal vulnerabilities using the registry
Impact n/a
Attack succeeded -
Prerequirements -
Description
The information given by the registry entries can give an attacker
hints about weaknesses to exploit.
Further use by other exploits
The usage of filenames alone (for example: IgnoredApplication-
sSGN, AutoDirSizeProcesses) without the full path can allow attack-
ers to adjust the names of their malware to have it treated by the
SafeGuard client like these programs.
The log file can be deleted or manipulated by attackers to hide their
actions. This is easily done, because every user has full access rights
to the path, where it is stored in.

With the usage of the registry editor (or other tools) it is possible to view
the entries of the SafeGuard client.

As mentioned in the Information Gathering, the registry entries of the
SafeGuard client are at the following 5 locations:

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Utimaco\SGMTrace]
[HKEY_LOCAL_MACHINE\SOFTWARE\Utimaco]
[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Utimaco]
[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Utimaco]
[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Utimaco\SGLCENC]

The interesting information in these locations are:

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Utimaco\SGMTrace]
[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Policies\Utimaco\

SGMTrace]

Contains the location of the LogFile.

[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Utimaco]

The MachCert is stored here. Information about what DLLs the Safe-
Guard services are using. Information about the installed config

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Utimaco]

Contains the following information about the encryption driver:

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Utimaco\
SGLCENC]

"IgnoredApplicationsSGN"="SGPortable.exe;"

4.6. Tested Vulnerabilities 83

"AutoDirSizeProcesses"="wmplayer.exe"
"IgnoredApplicationsSGNCSE"="~"
"NoPersistentEncryptionApplications"="<SYSTEM>\\MSPAINT.EXE"
"IgnoredDevicesSGN"=""
"DefaultIgnoreRules"="C:*.*;C:*.*"
"DriverName"="LCENCM"
"ExcludedDevices"=""
"RulesFromSIDApplications"="C:\\Windows\\system32\\WUDFHost.exe

"
"RecyclePath"=":\\$RECYCLE"
"SystemRoot"="C:\\Windows"
"DirSizeCorrection"="PROFILES"

This is interesting, because there are exceptions for the encryption driver
listed.

This registry entries are from a standard installation, without further
additions by an administrator. It is notable, that binaries there are included
with their path, while others are only listed with their name alone. This
allows attackers to rename their malware to match the names of the excep-
tions, so that it can abuse the special privileges given to it.

4.6.3 Services

The following 3 possible vulnerabilities are discussed:

• Stopping, disabling, or modifying services

• Unquoted service paths

• DLL hijacking

Because there were only limited resources available for this thesis, not
all of them can be fully analyzed. But it will be mentioned how to further
research these vulnerabilities.

Name Stopping, disabling, or modifying services
Impact Critical (Configuring/Modifying (adding/re-

moving protectors etc) without administrative
credentials)

Attack succeeded No
Prerequirements -
Description
Stopping or preventing services from being started can break the
protection by SafeGuard. Additionally, a manipulation of the service
can allow the attacker to start another binary instead or in addition
to the original one.
Further use by other exploits
Since the services run under the ‘Local System’ context, an escalation
of privileges can be possible.

There are different possibilities to prevent services from starting:

84 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

• Disable the service

• Remove/Rename the executable

• Remove access rights to the account, which the service runs

• Disable/Remove another service, which it depends on

So basically, each of these possible attacks requires sufficient access rights
to the service.

During the information gathering, it is shown, that only the relevant
accounts have the corresponding rights to modify the services. This means,
that the services are properly secured and it was therefore not possible to
stop them from working.

Name Unquoted service paths
Impact Critical (Privilege escalation (e.g. via SYSTEM

daemons))
Attack succeeded No
Prerequirements -
Description
A misconfiguration in the binary path of the service allows other
binaries to execute as the service.
Further use by other exploits
Since the services run under the ‘Local System’ context, an escalation
of privileges can be possible.

The following command, as mentioned in the approach, was used:

wmic service get name,displayname,pathname,startmode |findstr /i "
auto" |findstr /i /v "c:\windows\\" |findstr /i /v """

The SafeGuard services were not vulnerable to this attack.

Name DLL hijacking
Impact Critical (Privilege escalation (e.g. via SYSTEM

daemons))
Attack succeeded n/a
Prerequirements -
Description
The attacker can abuse the DLL search order of the system to load
its own malicious DLL.
Further use by other exploits
Since the services run under the ‘Local System’ context, an escalation
of privileges can be possible.

As mentioned in the approach, the following conditions must be met to
allow the exploit to be successful:

• One of the paths of the DLL search order has write access to the at-
tacker

4.6. Tested Vulnerabilities 85

• The service tries to load a DLL, which is either not available or is in a
lower ranking of the DLL search order, so that the attacker can put its
own DLL in a higher ranking one

The write access to a DLL search path is due to weak folder permissions.
This is out of scope for the SafeGuard client, because the folder permissions
are set properly and they are not added the search path.

To see which DLL are loaded and what their dependencies are is be too
complex to do without the proper tools (see Information Gathering - De-
pendencies). This can better be done with static source code analysis from
the developers itself.

So, this potential exploit was not researched any further, but it is highly
recommended to do this in further research. In a proper configured system,
the folder permissions prevent an attacker to use this exploit, but it is better
to make it as hard as possible to use this exploit.

4.6.4 BitLocker

Microsoft BitLocker is the technology, which is used in the SafeGuard client
for the full disk encryption. So, the access to the recovery key is a critical
break of security, because it can be used to decrypt the volumes and allow
attackers to access it.

Name Getting the BitLocker recovery key
Impact Critical (Access to BitLocker PIN/Password)
Attack succeeded n/a
Prerequirements -
Description
Using the recovery keys, anyone can decrypt the BitLocker volumes
in the system.
Further use by other exploits
-

As already mentioned, when the user has sufficient access rights to the
WMI class Win32_EncryptableVolume from the namespace
Root\cimv2\Security\MicrosoftVolumeEncryption, it is possible to get the
recovery key with a simple command:

manage-bde -protectors c: -get

The access rights to this namespace are as follows:

86 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

Group or user name Permissions
LOCAL SERVICE Execute Methods

Provider Write
Enable Account

NETWORK SERVICE Execute Methods
Provider Write
Enable Account

Administrators Execute Methods
Full Write
Partial Write
Provider Write
Enable Account
Remote Enable
Read Security
Edit Security

So, it is not possible to get the credentials using the WMI functions.

Another attempt is the scanning of the memory to find the BitLocker
key. Unfortunately, due to the lack of resources, the software was not ac-
quired, but it can be an option for the developers to do this, because it is
possible to recovery other keys as well.

4.6.5 Cache

The cache contains the current state and settings of the SafeGuard client. So,
this is an interesting point for attackers to look for potential vulnerabilities.
Additionally, it is shown during the information gathering, that all users on
the system have full access to the cache, which makes it easy to modify the
files.

However, this is not an easy task, because there are most certainly counter
measures to deal with. Corrupting the cache will result in a reboot loop,
which is an intended behavior as mentioned in the threat ranking. So, a
simple deletion or corruption of the cache is not counted as an attack itself.

Most of the files in the cache have the extension .XML, but they are not
in the standard text format, so modifying them is not trivial. Although it
might be possible to copy the files from different configurations to keep
the format intact. It seems, that these XML files have a binary format, but
when it was tried to open them with tools like Stylus Studio, which sup-
ports many different XML formats, including BXML (Binary XML), it did
not work. There are text chunks readable, so basic information is obtain-
able. But to further investigate the files, the specification is needed.

To find potential vulnerabilities regarding the cache, the following at-
tacks were performed:

• Getting classified information out of the cache

• Modify file/directory permissions to prevent parts of the SafeGuard
client from working

4.6. Tested Vulnerabilities 87

• Modify the cache itself to change the SafeGuard settings

Name Getting classified information out of the cache
Impact n/a
Attack succeeded n/a
Prerequirements -
Description
The configuration files contain information, which are readable with
a simple text editor.
Further use by other exploits
It can be possible to find new potential targets and information
about the system for further attacks.

As mentioned before, the configuration files are not in plain text. But
with the right tools and modifications, it is possible to view most of the
containing XML information. To view the content of the files, the following
steps were taken:

• The advanced text editor Notepad++ was used[43].

• The additional Notepad++ plugin ’XML Tools’ are installed

• Open the XML file

• Replace ‘\0’ with an empty string

• Reformat the XML information with Menu -> Plugins -> XML Tools
-> Pretty Print (XML only – with line breaks)

With this, it was possible to find information regarding the users and
machines, which are stored in the configuration. This and the configura-
tion itself can be useful when it is tried to manipulate the cache (which is
possible for every user, due to weak permissions)

Name Modify file/directory permissions to prevent
parts of the SafeGuard client from working

Impact High (Modification of policies applied to the
system)

Attack succeeded Yes
Prerequirements -
Description
By modifying the directory permissions of the local cache, the Bit-
Locker client can not further access them and therefore stop work-
ing.
Further use by other exploits
Since there was no reboot loop started, it can be possible for attackers
to get access to the system.

During the information gathering it was shown, that the permissions to
the local cache are set that everyone has full access. So, it is possible to mod-
ify these permissions to lock the SafeGuard client from accessing these files.

The following steps were taken to produce this behavior:

88 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

1. Disconnect the client from the network, so that the server can not send
an update during the attack

2. Set all permissions for the Cache and CacheBackup to ‘Deny’ for the
SYSTEM account. This is possible, because of the weak folder permis-
sions in these directories.

3. Reconnect the network connection to the server

4. Now, the client will shut down automatically, this is because of the
problems when accessing the cache

5. Start the client again

6. At the startup, now the following error message is shown 2 times:
“Sophos SafeGuard R© Authentication Service is not running, no fur-
ther action possible!”

7. This windows can just be closed when OK is clicked.

8. Now there should be a reboot loop, but this did not happen, instead
there was a local logon possible.

9. During the next reboot, the system stays at logon screen in a dead lock

The normal behavior puts the system into a reboot loop or a deadlock,
but this was not happening during the first reboot. Another error message
and a deadlock or lockdown of the computer is better suited here.

Name Use a full copy of the cache itself to change the
SafeGuard settings

Impact High (Modification of policies applied to the
system)

Attack succeeded Yes
Prerequirements -
Description
Using an older configuration of SafeGuard, the client can have
weaker security settings, so that confidential information is not pro-
tected properly. An attacker can use this security flaw to get this
information.
Further use by other exploits
The attacker can put harmful software in those protected folders and
change the configuration back to the actual status. So, this malware
got into the protected area.

As mentioned, the actual configuration of the SafeGuard client is stored
in the local Cache. So when there was a copy made of the cache, it can be
possible to use this copy after the configuration changes to revert it to the
previous one.

If this attack succeeds, it can allow the user to revert to an older config-
uration, where less restrictive permissions are set and therefore can allow
an attacker to disable security features.

4.6. Tested Vulnerabilities 89

This attack is possible, because of the weak access rights to the Cache.
This allows every user full access to the directories. Also, the backup of
the Cache has the same permissions set, so a validation between these two
states is not useful.

To reproduce this attack, the following steps must be done:

1. A configuration was applied, where the BitLocker disc encryption
was disabled.

2. The client synchronized with the server to get this configuration.

3. A copy of the local Cache and its backup on the client was made.

4. Now the server changes the configuration to enable BitLocker.

5. The client synchronizes again, to get this new configuration. Now the
volume got encrypted with BitLocker.

6. When it was now tried to disable BitLocker on the client, it was en-
abled again immediately.

7. Now the client got disconnected from the network to prevent syn-
chronizing.

8. The actual version of the local Cache was replaced with the previous
one.

9. A reboot was done on the client

10. Now the previous configuration was used again, which allows to dis-
able BitLocker on the client.

11. Obviously, when the client was reconnected to the network, a sync
with the server was again possible and the actual configuration was
applied again.

To prevent this from happening, the directory/file permissions have to
be adjusted to prevent the full access from the user. If this is not possible,
at least the backup of the Cache must be better protected, so that it can be
used for validating if the most current version was used.

Name Use a copy of the cache itself to change Safe-
Guard settings

Impact High (Modification of policies applied to the
system)

Attack succeeded No
Prerequirements -
Description
Like the attack, which uses an older version of the configuration, but
this attack uses not all but only a selection of the configuration files.
Further use by other exploits
Since the configuration can be modified by the attacker, it can used
to modify classified information or even put malware in the pro-
tected areas. When the configuration was changed back, it is highly
possible, that this attacks is undetected by the user.

90 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

This attack is like the previous one, to the steps are:

1. A configuration was applied, where the BitLocker disc encryption
was disabled.

2. The client synchronized with the server to get this configuration.

3. A copy of the local Cache and its backup on the client was made.

4. Now the server changes the configuration to enable BitLocker.

5. The client synchronizes again, to get this new configuration. Now the
volume got encrypted with BitLocker.

6. When it was now tried to disable BitLocker on the client, it was en-
abled again immediately.

7. A comparison of the LocalCache with the copy was done to find the
changes regarding BitLocker (see notes)

8. Now, another change of the configuration was made on the server
and synchronized with the client. This had to be done to make this
attack different to the previous one.

9. Now the client got disconnected from the network to prevent syn-
chronizing.

10. The config files regarding BitLocker of the actual Cache were replaced
with the previous ones (see notes)

11. Reboot the client

12. The client was now in an undefined state and was locking the com-
puter

Note: To find the relevant configuration files, which are necessary for
enabling BitLocker, the 2 configuration directories have been compared.
The files, which changed were the following:

Filename Folder
Comparison
result

lcdir.bak .\
Binary files are
different

lcdir.dir .\
Binary files are
different

ida_drive_id.xml
.\auditing\

inventory

Binary files are
different

ima_last_policy_received.xml
.\auditing\

inventory

Binary files are
different

ima_poa_type.xml
.\auditing\

inventory

Binary files are
different

ima_unencrypted_drives.xml
.\auditing\

inventory

Binary files are
different

4.6. Tested Vulnerabilities 91

0x99b634b1923a4d478e7a8
b7c459cf9bd.xml

.\auth_u\alo
Binary files are
different

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\kfiles\user
Binary files are
different

0x424a297c41e0400aa10ec1
fd1f55218b.xml

.\polassign\
machine

Binary files are
different

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\polassign\user
Binary files are
different

0x424a297c41e0400aa10ec1
fd1f55218b.xml

.\policy_m\enc

Only with
BitLocker
enabled

0x424a297c41e0400aa10ec1
fd1f55218b.xml

.\policy_m\enc\.
lock

Only with
BitLocker
enabled

0x424a297c41e0400aa10ec1
fd1f55218b.xml

.\policy_m\ref

Only with
BitLocker
enabled

0x424a297c41e0400aa10ec1
fd1f55218b.xml

.\policy_m\ref\.
lock

Only with
BitLocker
enabled

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\policy_u\enc

Only with
BitLocker
enabled

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\policy_u\enc\.
lock

Only with
BitLocker
enabled

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\policy_u\ref

Only with
BitLocker
enabled

0x99b634b1923a4d478e7a8b
7c459cf9bd.xml

.\policy_u\ref\.
lock

Only with
BitLocker
enabled

global.xml .\systray\cache
Binary files are
different

57e229a71areport.xml .\transout

Only with no
BitLocker En-
abled

57e229a71breport.xml .\transout

Only with no
BitLocker En-
abled

57e22a811creport.xml .\transout

Only with no
BitLocker En-
abled

57e22a811dreport.xml .\transout

Only with no
BitLocker En-
abled

92 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

57e22a811ereport.xml .\transout

Only with no
BitLocker En-
abled

57e229a71areport.xml .\transout\.lock

Only with no
BitLocker En-
abled

57e229a71breport.xml .\transout\.lock

Only with no
BitLocker En-
abled

57e22a811creport.xml .\transout\.lock

Only with no
BitLocker En-
abled

57e22a811dreport.xml .\transout\.lock

Only with no
BitLocker En-
abled

57e22a811ereport.xml .\transout\.lock

Only with no
BitLocker En-
abled

57e229a71areport.xml .\transout\ref

Only with no
BitLocker En-
abled

57e229a71breport.xml .\transout\ref

Only with no
BitLocker En-
abled

57e22a811creport.xml .\transout\ref

Only with no
BitLocker En-
abled

57e22a811dreport.xml .\transout\ref

Only with no
BitLocker En-
abled

57e22a811ereport.xml .\transout\ref

Only with no
BitLocker En-
abled

57e229a71areport.xml
.\transout\ref\.

lock

Only with no
BitLocker En-
abled

57e229a71breport.xml
.\transout\ref\.

lock

Only with no
BitLocker En-
abled

57e22a811creport.xml
.\transout\ref\.

lock

Only with no
BitLocker En-
abled

57e22a811dreport.xml
.\transout\ref\.

lock

Only with no
BitLocker En-
abled

57e22a811ereport.xml
.\transout\ref\.

lock

Only with no
BitLocker En-
abled

4.7. Untested Vulnerabilities 93

4.7 Untested Vulnerabilities

There were already untested vulnerabilities already mentioned before, but
there are still other interesting areas for potential attacks, which are worth
to further investigate. These are mainly the communication parts of the
SafeGuard client, so by compromising them, it is likely to at least stop the
client from working or at worst case, a critical break of confidentiality can
happen.

In the following subsections, these communication types and their us-
age in the client are short explained and recommended types of possible
attacks are listed.

4.7.1 Memory

Due to the limited access to the source, and the deep inspection on how
the SafeGuard clients works internally (especially the data structures where
the keys are stored in) it was not possible to achieve the inspection of the
memory in a reasonable amount of time. But when the internal information
about the key storage in provided, it can be possible to write a plugin for
Volatility to scan for nonencrypted keys in the memory. This can then be
automated and included in the testing process, for example when the ma-
chine gets into hibernation or it crashes and creates a memory dump. Also,
the page file can be used as source for the scan.

4.7.2 Named Pipes

The Windows SafeGuard client is doing much of the IPC communication
over named pipes. During the information gathering, it was found out,
that these pipes have fixed names and no maximum limit of connections.

With the help of the header files and a conversation with a developer,
the naming scheme of the named pipes was interpreted as follows:

[Type][EVT-Class][Instance]
Type BRC_ ... Broadcast
EVT-Class Name of the EVT (event) class
Instance Class Name

Examples:

BRC_BIN_CHANGEDBitLockerNativeWrapper

Broadcast-event ‘BIN_CHANGED’ from BitLockerNativeWrapper

BRC_BitLockerMAppEvtBitLockerNativeWrapper

Broadcast-event ‘BitLockerMAppEvt’ from BitLockerNativeWrap-
per

94 Chapter 4. Case Study Sophos SafeGuard Enterprise 7 Windows Client

It was mentioned by the developers, that the information and data sent
over the named pipe is encrypted, which makes sniffing these IPC com-
munication harder. Although, it might be possible to find patterns in the
communications.

Possible attacks, which involve named pipes are:

• Get information by sniffing named pipes.

• Flood specific named pipes, to prevent modules of the SafeGuard to
work properly.

• Using race conditions to spoof named pipes

It is needed to develop a custom built tool for this, as there was no suit-
able one found online. This tool must be able to simultaneously handle
multiple pipes, as there are over 50 different ones used by the SafeGuard
client.

4.7.3 RPC

Beside named pipes, Remote Procedure Calls (RPC) are the common used
type of communication by the SafeGuard client.

4.7.4 IOCTL

The communication to and between the FileEncryption Driver and the Key-
Store Driver is done with IOCTL. So, this is an interesting point to place a
sniffer and try to get classified information from.

4.8 Next Steps

The software package provided consisted of the SafeGuard 7 client (and
server), however the current version is 8, while the new version is start-
ing to be developed soon. Since there are obviously many changes made
during the different version, there are several regarding the components,
which are discussed in this thesis. So, these changes had to be included in
the already made threat models.

As it was shown during this thesis, the test of the complete client is
not realistically achievable by a single person. But with sufficient access
to the relevant source code or documentation can allow a detailed test of
components, which had to be skipped in this thesis. This include:

• The parts under ‘Untested Vulnerabilities’: Named Pipes, RPC, IOCTL

• Exploits, which require binary analysis (Buffer overflow, ...)

• Tampering with the Cache

95

5 Case Study Feedback

To see, how well the security analysis was received, the developers at Sophos
were asked for a feedback about it. Their response was the following:

Feedback on case-study in “Thorough Analysis of the Security Architec-
ture of a Windows-based Enterprise Encryption”

The approach presented in this paper was evaluated in a case study on a
rather complex software product. Contrary to our internal threat modelling
process, this approach represents an “outside-in” method that could be used to
retro-actively create initial threat models for existing software.

During the initial stage (“Information Gathering”) there was very little
guidance required, as the proposed methodology and tooling proved to be a
suitable mechanism for getting an overview of the modifications to the system
caused by installation and usage of the software. However, due to the complex-
ity of the product and the number of components and their relations, it quickly
became apparent that the scope of this analysis had to be reduced from the full
system to a set of features deemed “security relevant” in order to be conducted
within a reasonable time.

Based upon this reduction of scope and a number of abstractions, it was
possible to create data-flow diagrams that served as the starting-point for
threat-modelling. As the data-flows were rooted in an analysis of an implemen-
tation rather than that of a specification, it provided the benefit of verifying the
information present in existing threat-models.

The approach presented in this paper managed to capture the core entities of
the software was able to highlight inaccuracies in existing models. Due to the
nature of this “outside-in” method it was however not able to show data-flows
that cannot occur in the specific test environment (e.g. different data-flows on
other Windows versions).

Retro-actively developing a threat-model for existing complex software us-
ing the proposed “outside-in” methodology has shown to quickly provide in-
teresting results in the realm of implementation bugs and to identify inconsis-
tencies between specification and implementation upon review. It does suffer
from the apparent danger of missing architectural flaws or critical aspects that
were not observed in the information gathering phase.

We suggest to employ this approach complementary to threat-modelling
based on design specifications, as it provides verification of the implementation
as-well as promoting a mindset that is closer to that of an attacker rather than
that of a developer. On complex software it might be necessary to limit the
scope of the analysis, considering only certain entities or features of a software.

This shows, that the case study was helpful for them to further improve
their process in increasing the security of their software.

97

6 Conclusion

In general, it must be said, that although it was quite challenging for an
external person to get an insight to such a complex software, it was inter-
esting to see how much stuff is going on in the background. For the users
point of view, the software consists only of a few dialogs, but in the back-
ground, there are many different components, which had to work together
smoothly for the system to work.

Also, it was an interesting task to select and introduce a threat miti-
gation technique to such a software. Some developers had already been
using the Microsoft SDL tool during the development, but it was only used
for small parts and not as a top down approach. Hopefully, this concept
can be further used by the developers, because when the threat models are
maintained regularly, it will make the detection of potential exploits more
comfortable and manageable.

6.1 What worked well/what didn’t?

First, as already mentioned in the feedback from the developers, it was pos-
sible to make a security analysis of the Windows SafeGuard client as an ex-
ternal tester. Naturally, it was not possible to create the same level of detail
as an internal security analysis can produce, but it can create another point
of view to find potential problems, which were not thought of before.

The setup of the testing environment and getting used to the usage of
the software (client and server) is quite trivial and can be done without
much afford.

Also, the selection of the Microsoft SDL Tools was a good choice, be-
cause it allowed the building of a threat model using a top down approach.
It was comfortable to show the status during the meetings, because the
models are quite self explaining. However, the SDL tools have limitations,
which are be needed to deal with (see the section ‘Next Steps’).

The information gathering was easy manageable, because of the wide
variety of tools and techniques, which are available for blackbox testing.

However, not everything worked out as planned. During the early
stages of the information gathering, it was shown that the software was
complexer than expected at the start. So, handling all the components with
the limited resources available was not realistically possible. So, there was
an agreement made to only inspect parts of the software.

98 Chapter 6. Conclusion

As the threat models got more detailed, additional information from the
developers was needed. So, while it was possible to build a threat model
with the information got at a meeting, this model can not include all pos-
sible information. For example, during the meetings a threat model was
made with a named pipe as communication path. But it was not possi-
ble to find out all the different properties of these named pipe, because it
required the assisting developer to research or talk to other developers to
find out this information. So, it is much more effective if the completion of
the models is done by an internal employee.

Also, the testing of complex vulnerabilities, which include encryption
or proprietary technologies is hard manageable without the full specifica-
tion of the software. It can be possible with the usage of the source code,
but since it was a restriction of this thesis to not use any source code at all
this was out of scope.

Worked well:

• Information gathering using black box testing

• High level threat modeling

• Finding potential exploits

Worked not as intended:

• Make a detailed threat model of the parts to test

• Find more detailed exploits

Was not possible:

• Get a full overview of the program

• Make a complete threat model

6.2 Next Steps

This thesis can be viewed as a starting point to introduce threat modeling
into the development process, so there are recommendations on how to
continue and improve this work.

One such improvement is to see how much work it requires to adapt
this thesis, so that it can be applied to software, which runs on Linux, An-
droid, Mac, or other platforms. The vulnerabilities have to be adjusted to
the specific platform, but the general approach is still be the same (Informa-
tion Gathering, Threat Modeling, Exploiting).

The Microsoft SDL Tool worked quite well for this approach, but when
more developers want to use this tool, especially when they want to work at
the same time on the models, it is better to find an alternative to it. This is re-
quired when other environments than Microsoft Windows have to be sup-
ported, as the generated threat list only considers Windows specific threats.
It is possible to add additional content to the SDL Tool, but this will require

6.2. Next Steps 99

extra work and deep insight to the vulnerabilities to the system.

Other improvements regarding this thesis are to expand the list of the
potential vulnerabilities. To find proper ones, it is a good starting point to
look at Windows exploitation courses to get ideas how attackers work. A
popular course is Advanced Windows Exploitation, which offered by Of-
fensive Security [44]. The syllabus of the course is available online, and
several rather interesting topics are handled there (DEP/ASLR/EMET By-
pass, Kernel Drivers Exploitation, and so on. . .).

Additional improvements can include the automatization of the testing
process. This is not be possible for every part (for example Threat Model-
ing), but the Information gathering and parts of the potential attacks can be
scripted to reduce the time it takes to fulfill this tasks.

101

Bibliography

[1] M. E.K. F. Khan, “A comparative study of white box, black box and
grey box testing techniques”, International Journal of Advanced Com-
puter Science and Applications, Vol. 3, No.6, pp. 12–15, 2012.

[2] W. Jackson, Static vs. dynamic code analysis: Advantages and disadvan-
tages, https://gcn.com/articles/2009/02/09/static-vs-
dynamic-code-analysis.aspx, Accessed: 2016-11-20, 2009.

[3] A. Shostack, Threat modeling. John Wiley & Sons, Inc., 2014.

[4] A. Shostack, The threats to our products, https://blogs.microso
ft.com/microsoftsecure/2009/08/27/the-threats-to-
our-products/, Accessed: 2016-11-20, 2009.

[5] B. Schneier, “Attack trees”, Dr. Dobb’s journal, pp. 21–29, 1999.

[6] MITRE, Common attack pattern enumeration and classification, https:
//capec.mitre.org, Accessed: 2016-11-20, 2016.

[7] OWASP, Owasp top ten project, https://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project, Accessed: 2016-11-20,
2016.

[8] M. H.M.M.J.L. M. Thomlinson, Windows isv software security defenses,
https://msdn.microsoft.com/en-us/library/bb430720.
aspx, Accessed: 2016-11-20, 2010.

[9] M. Miller, “A brief history of exploitation techniques & mitigations
on windows.”, Tech. Rep., 2007.

[10] Microsoft, Introduction to code signing, https://msdn.microsoft.
com/en-us/library/ms537361(v=vs.85).aspx, Accessed:
2016-11-20, 2016.

[11] J. Niemelä, “It’s signed, therefore it’s clean, right.”, in CARO 2010,
2010.

[12] W. Stallings, Cryptography and network security (fourth edition). Prentice
Hall, 2005.

[13] U. H.V. L. Naidu, “A survey on windows component loading vulner-
abilities.”, International Journal of Advanced Research in Computer Engi-
neering & Technology (IJARCET) 2.5, pp. 1780–1783,

[14] D. K.J.P. T. Woller, Amd memory encryption, http://amd-dev.wpe
ngine.netdna-cdn.com/wordpress/media/2013/12/AMD_
Memory_Encryption_Whitepaper_v7-Public.pdf, Accessed:
2016-11-20, 2016.

[15] M. R.D.A.S. A. Ionescu, Windows R© internals part 1 - sixth edition. Mi-
crosoft Press, 2012.

https://gcn.com/articles/2009/02/09/static-vs-dynamic-code-analysis.aspx
https://gcn.com/articles/2009/02/09/static-vs-dynamic-code-analysis.aspx
https://blogs.microsoft.com/microsoftsecure/2009/08/27/the-threats-to-our-products/
https://blogs.microsoft.com/microsoftsecure/2009/08/27/the-threats-to-our-products/
https://blogs.microsoft.com/microsoftsecure/2009/08/27/the-threats-to-our-products/
https://capec.mitre.org
https://capec.mitre.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

102 BIBLIOGRAPHY

[16] Portcullis Labs Research and Development, Windows named pipes: There
and back again, https : / / labs . portcullis . co . uk / blog /
windows-named-pipes-there-and-back-again/, Accessed:
2016-11-20, 2016.

[17] P. G.M.Y.L. D. Molnar, “Sage: Whitebox fuzzing for security testing”,
ACM Queue - Networks, Volume 10 Issue 1, p. 20, 2010.

[18] Oracle, Oracle vm virtualbox, https://www.virtualbox.org/,
Accessed: 2016-11-20.

[19] VMware Inc., Vmware, http : / / www . vmware . com/, Accessed:
2016-11-20, 2016.

[20] Microsoft, Hyper-v overview, https://technet.microsoft.com/
en-us/library/hh831531.aspx, Accessed: 2016-11-20, 2016.

[21] T. Newton, An introduction to the windows system state analyzer, http
s://blogs.technet.microsoft.com/askperf/2010/01/
11/an-introduction-to-the-windows-system-state-
analyzer/, Accessed: 2016-11-20, 2010.

[22] Mister Group, System explorer, http://systemexplorer.net/,
Accessed: 2016-11-20, 2016.

[23] deepred, Delcert - sign strip tool, http://forum.xda-developer
s.com/showthread.php?p=2508061#post2508061, Accessed:
2016-11-20, 2008.

[24] Microsoft, Signtool.exe (sign tool), https://msdn.microsoft.c
om/en-us/library/8s9b9yaz(v=vs.110).aspx, Accessed:
2016-11-20.

[25] A. Barthe, Changing a signed executable without altering windows digital
signature, https://blog.barthe.ph/2009/02/22/change-
signed-executable/, Accessed: 2016-11-20, 2009.

[26] Common Exploits, Unquoted service paths, http://www.commonexp
loits.com/unquoted-service-paths/, Accessed: 2016-11-20,
2012.

[27] Parvez, Elevating privileges by exploiting weak folder permissions, http:
//www.greyhathacker.net/?p=738, Accessed: 2016-11-20, 2013.

[28] The Volatility Foundation, Volatility foundation, http://www.vola
tilityfoundation.org/, Accessed: 2016-11-20, 2014.

[29] M. L.A.C.J.L. A. Walters, The art of memory forensics. Wiley, 2014.

[30] V. Katalov, Breaking bitlocker encryption: Brute forcing the backdoor (part
i), http://blog.elcomsoft.com/2016/06/breaking-bitl
ocker-encryption-brute-forcing-the-backdoor-part-
i/, Accessed: 2016-11-20, 2016.

[31] Tribal Chicken, Extracting bitlocker keys with volatility (poc), https:
//tribalchicken.io/extracting-bitlocker-keys-with-
volatility-part-1-poc/, Accessed: 2016-11-20, 2015.

[32] Tibbo, Introducing io ninja, http://tibbo.com/ninja.html,
Accessed: 2016-11-20.

[33] GuyHarris, How to set up a capture, https://wiki.wireshark.
org/CaptureSetup, Accessed: 2016-11-20, 2013.

https://labs.portcullis.co.uk/blog/windows-named-pipes-there-and-back-again/
https://labs.portcullis.co.uk/blog/windows-named-pipes-there-and-back-again/
https://www.virtualbox.org/
http://www.vmware.com/
https://technet.microsoft.com/en-us/library/hh831531.aspx
https://technet.microsoft.com/en-us/library/hh831531.aspx
https://blogs.technet.microsoft.com/askperf/2010/01/11/an-introduction-to-the-windows-system-state-analyzer/
https://blogs.technet.microsoft.com/askperf/2010/01/11/an-introduction-to-the-windows-system-state-analyzer/
https://blogs.technet.microsoft.com/askperf/2010/01/11/an-introduction-to-the-windows-system-state-analyzer/
https://blogs.technet.microsoft.com/askperf/2010/01/11/an-introduction-to-the-windows-system-state-analyzer/
http://systemexplorer.net/
http://forum.xda-developers.com/showthread.php?p=2508061#post2508061
http://forum.xda-developers.com/showthread.php?p=2508061#post2508061
https://msdn.microsoft.com/en-us/library/8s9b9yaz(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8s9b9yaz(v=vs.110).aspx
https://blog.barthe.ph/2009/02/22/change-signed-executable/
https://blog.barthe.ph/2009/02/22/change-signed-executable/
http://www.commonexploits.com/unquoted-service-paths/
http://www.commonexploits.com/unquoted-service-paths/
http://www.greyhathacker.net/?p=738
http://www.greyhathacker.net/?p=738
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
http://blog.elcomsoft.com/2016/06/breaking-bitlocker-encryption-brute-forcing-the-backdoor-part-i/
http://blog.elcomsoft.com/2016/06/breaking-bitlocker-encryption-brute-forcing-the-backdoor-part-i/
http://blog.elcomsoft.com/2016/06/breaking-bitlocker-encryption-brute-forcing-the-backdoor-part-i/
https://tribalchicken.io/extracting-bitlocker-keys-with-volatility-part-1-poc/
https://tribalchicken.io/extracting-bitlocker-keys-with-volatility-part-1-poc/
https://tribalchicken.io/extracting-bitlocker-keys-with-volatility-part-1-poc/
http://tibbo.com/ninja.html
https://wiki.wireshark.org/CaptureSetup
https://wiki.wireshark.org/CaptureSetup

BIBLIOGRAPHY 103

[34] AdiKo, Rpcsniffer, https://adiko.github.io/RPCSniffer/,
Accessed: 2016-11-20.

[35] J.-M.B.J.B.J.B. Y. Girardin, Rpcview, http://rpcview.org/, Ac-
cessed: 2016-11-20.

[36] user460153, How to log the deviceiocontrol calls of a program on windows,
http://stackoverflow.com/questions/9947933/how-to-
log- the- deviceiocontrol- calls- of- a- program- on-
windows, Accessed: 2016-11-20, 2012.

[37] Sophos, Safeguard enterprise user help, https://www.sophos.com/
en-us/medialibrary/PDFs/documentation/sgn_7_h_eng_
user_help.pdf?la=en, Accessed: 2016-11-20, 2014.

[38] Sophos, Safeguard enterprise installation best practice, https://www.s
ophos.com/en-us/medialibrary/PDFs/documentation/sg
n_7_bpg_eng_installation_best_practice.pdf, Accessed:
2016-11-20, 2014.

[39] M. S.P.K. T. Peyrin, “Freestart collision for full sha-1”, in IACR - EU-
ROCRYPT, 2016.

[40] dependencywalker.com, Dependency walker 2.2, http://www.depe
ndencywalker.com/, Accessed: 2016-11-20.

[41] Microsoft, Security descriptor definition language, https://msdn.mi
crosoft.com/library/aa379567.aspx, Accessed: 2016-11-20.

[42] Microsoft, Binscope 2014, https://www.microsoft.com/en-
us/download/details.aspx?id=44995, Accessed: 2016-11-20,
2015.

[43] D. Ho, Notepad++, https://notepad- plus- plus.org/, Ac-
cessed: 2016-11-20, 2016.

[44] Offensive Security, Advanced windows exploitation, https://www.
offensive-security.com/information-security-traini
ng/advanced-windows-exploitation/, Accessed: 2016-11-20.

https://adiko.github.io/RPCSniffer/
http://rpcview.org/
http://stackoverflow.com/questions/9947933/how-to-log-the-deviceiocontrol-calls-of-a-program-on-windows
http://stackoverflow.com/questions/9947933/how-to-log-the-deviceiocontrol-calls-of-a-program-on-windows
http://stackoverflow.com/questions/9947933/how-to-log-the-deviceiocontrol-calls-of-a-program-on-windows
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_h_eng_user_help.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_h_eng_user_help.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_h_eng_user_help.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_bpg_eng_installation_best_practice.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_bpg_eng_installation_best_practice.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sgn_7_bpg_eng_installation_best_practice.pdf
http://www.dependencywalker.com/
http://www.dependencywalker.com/
https://msdn.microsoft.com/library/aa379567.aspx
https://msdn.microsoft.com/library/aa379567.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=44995
https://www.microsoft.com/en-us/download/details.aspx?id=44995
https://notepad-plus-plus.org/
https://www.offensive-security.com/information-security-training/advanced-windows-exploitation/
https://www.offensive-security.com/information-security-training/advanced-windows-exploitation/
https://www.offensive-security.com/information-security-training/advanced-windows-exploitation/

105

CV

Stefan Bachmair
Curriculum Vitae

PERSONAL DETAILS

Birth May 13, 1981
Birthplace Voecklabruck, Austria
Mail stefan.bachmair@gmx.net

EDUCATION

BSc. Computer Science 2012-2015
Johannes Kepler University Linz

WORK EXPERIENCE

System Administrator 2006-present
LM Investment GmbH, Hightech Fabrics GmbH, Part Time

Maintaining Windows-based Clients and Linux + Windows Servers

Software developer 2001-2005
TAB Austria, Full Time

Developing touchscreen games in Visual C++

SKILLS

Languages German (mother tongue)
English (fluent)

stefan.bachmair@gmx.net

107

Declaration of Authorship
I hereby declare that the thesis submitted is my own unaided work, that I
have not used other than the sources indicated, and that all direct and indi-
rect sources are acknowledged as references.
This printed thesis is identical with the electronic version submitted.

Place, Date

Signature

	Abstract
	Abstract(German)
	Acknowledgements
	Introduction
	Motivation
	Goals
	Restrictions
	Approach
	Threat Model
	Case Study
	Background
	Black-, White- And Greybox Testing
	Static And Dynamic Analysis

	Related Work
	Finding Vulnerabilities
	STRIDE
	Attack Trees
	Attack Libraries
	Threat Modeling Tools

	Selecting Potential Exploit Targets
	Binaries
	Digital Signatures
	Access Rights
	Memory
	Files
	Named Pipes
	WMI

	Other Improvements
	Fuzzing
	Static Code Analysis Tools

	Summary

	Approach
	Creating the Test Environment
	Information Gathering
	Threat Modeling
	Exploiting Vulnerabilities
	Tampering with binaries
	Windows Registry
	Services
	Drive Encryption / BitLocker
	Memory
	Named Pipes
	RPC
	IOCTL

	How to add additional Content

	Case Study Sophos SafeGuard Enterprise 7 Windows Client
	Sophos SafeGuard
	Threat Ranking
	Creating the Test Environment
	Client
	Server

	Information Gathering
	Installation Files
	Dependencies
	Directories
	Files
	Registry
	Services
	Security Flags
	Communication

	Threat Modeling
	Context
	Level 1 – Key Handling
	Level 1 - WMIListener (BitLocker)
	Level 2 - WMIListener BitLocker Change Thread
	Level 2 - WMIListener BLD Flag Thread
	Level 2 - WMIListener Volume Change Thread
	Level 2 - WMIListener Event Threads
	Level 2 - MasterService
	Summary

	Tested Vulnerabilities
	Binaries
	Registry
	Services
	BitLocker
	Cache

	Untested Vulnerabilities
	Memory
	Named Pipes
	RPC
	IOCTL

	Next Steps

	Case Study Feedback
	Conclusion
	What worked well/what didn't?
	Next Steps

	Bibliography
	CV
	Declaration of Authorship

