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Chapter 1

Introduction

1.1 Motivation and Objectives

In this master’s thesis we want to explore the possibilities of automatically
detecting and replacing personal information (given name, surname, orga-
nization, dates, . . . ) from court rulings written in German language. It is
commonplace to remove the personal data of plaintiff and defendant as well
as witnesses from judgments. Since this is usually done manually it would
be useful to have a tool that can with a high probability predict which words
are personal data and which ones are not. If an entity is mentioned more
than once the tool should also be able to link these entities to make it easier
for the reader to grasp the meaning of the text with removed personal data.

The goal for this master’s thesis is to implement an efficient command line
tool that takes a text file as input and outputs a copy of that text file with
annotations on all the words and phrases it classified as personal data. Both
input and output will be plain text files. The proposed format for these
annotations would put the original text and the replacement in curly braces,
e.g. {Klaus Dworschak|PERSONAL_NAME}

What we want to do is a task that falls into the area of natural language
processing. This area is all about the interactions between computers and
human (natural) languages. The scientific name for the task we want to do
is “named-entity recognition” which is a subtask of information extraction.
All these terms will be discussed in greater detail in the next chapter.

1



CHAPTER 1. INTRODUCTION 2

The scientific name for identifying the names of entities in a sentence is
Named-entity recognition (NER), a subtask of the task of information ex-
traction. Information extraction in most cases concerns the processing of hu-
man language texts by means of natural language processing (NLP). Named
entities are atomic elements in natural language belonging to pre-defined
categories such as given names, dates, locations etc.

In simple terms NER, also called “sequence labeling” entails looking at a
piece of text and deciding for each word which type of word it is. By using
NER we can get an annotated version of the input text that highlights the
names of entities.

Here is an example: [Klaus]Person did not buy 100 bitcoins from [coinbase]Organization

in [2013]Time.

For the English language there exist several NER systems that claim to
be able to correctly identify entities in over 90 per cent of the cases for the
popular English language benchmark CoNLL-2003 shared task. In English
most of the time when a word is capitalized it indicates a proper noun, e.g.
a personal or place name. The German language is trickier, though, since all
nouns are always capitalized.

NER is a machine learning problem. Machine Learning tasks are typi-
cally classified in two major categories: Supervised learning and unsuper-
vised learning. In supervised learning the computer is given example inputs
with desired outputs and the goal is for it to derive general rules that map
inputs to outputs. In unsupervised learning no such test data is provided, the
computer must find patterns by itself. Additionally, there are some variants
of supervised learning like semi-supervised learning (training data is missing
many Inputs and desired outputs), Active learning (the computer can query
the user for training data it desires) and Reinforcement learning (rewards
and/or punishments are given as feedback to the program’s actions).

At least traditionally NER is a case of supervised learning: The computer
is provided with a big amount of labeled input files from which it derives a
strategy to handle every future input file. Then it saves this strategy in a so
called “model” file. To improve the outputs more input data for previously not
covered words and phrases is provided to gradually improve the algorithm’s
accuracy. This is the process of “training” the computer. Sufficiently training
a model for a new language can be a task that can take a linguist months,
depending on the desired accuracy. Gazetteers, essentially lists of words of
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a certain type (e.g. cities) are commonly used to reduce the work needed to
properly train a model. This, however, might result in a NER system that
is only effective on a reduced corpus (and much less effective with texts that
were not used during training).

Regardless of how the NER process is handled programmatically an impor-
tant part of this master’s thesis will be to provide a sufficient set of training
data. The accuracy of virtually all NER tools increases with the amount of
training data. Usually libraries of 100,000s of sentences are used for this.
The idea is to download hundreds of court rulings from RIS, EuGH, etc. and
use them for training.

1.2 Outline

The rest of this document is structured as foll. Chapter 2 provides back-
ground information that serves as the foundation of our approach. In Chap-
ter 3, the theory behind neural networks is presented, including algorithms
and design decisions. Following is Chapter 4 which outlines approach that
will be taken. In Chapter 5, implementation details are being discussed. Fur-
ther, Chapter 6 compares our approach to related work. Finally our work is
concluded by Chapter 7, which also provides an outlook for future work.



Chapter 2

Theoretical Background

This chapter tries to create a fundamental understanding of the background
knowledge this work builds upon. In the first section German language legal
texts, the texts that are analyzed in this work, are looked at in detail. Then
it gives an overview of the natural language processing techniques useful for
finishing the task at hand. How these techniques are related is discussed in
detail. In this work, the focus will be on named-entity recognition, a subtask
of information extraction.

2.1 Court judgments

Judgments delivered or published by the courts are usually anonymous and
neutralized. That is, essentially the names of the parties to the proceedings
as well as the other parties involved (e.g. witnesses and experts) have been
blurred. This includes personal names, addresses, company names, etc. The
names of judges, attorneys, persecutors and other people employed by the
court are given in clear. This is done for privacy reasons and to protect other
rights that are worthy of protection. [ACKE_2004]

The exception for this until quite recently was the European Court of
Justice (ECJ). Texts published on the EU’s dedicated site for publishing
legal texts, Curia, had the names of all the involved people in clear. With the
GDPR coming into effect this changed and as of July 2018 all the documents
published on their publication site are anonymized. These court rulings are

4



CHAPTER 2. THEORETICAL BACKGROUND 5

usually available in many languages. German, as one of the three most
spoken languages in the European Union is normally among them.

Some countries (e.g. Cyprus) have temporarily stopped publishing court
judgments in fears of violating the GDPR. This comes as a surprise since
everyone had five years to adapt for the GDPR to come into effect [40].

In Austria court rulings of all major courts are published in the internet
at the Rechtsinformationssystem (RIS). This includes rulings of the Supreme
Court (OGH), the Oberlandesgerichte (OLG), the Landesgerichte (LG), the
Bezirksgerichte (BG) and selected decisions of foreign courts. Only a portion
of all the court rulings are published, though. The reason given is that most
of those court judgments are not relevant for the public and that there is not
enough staff to get it done.[oeff]

The fact that human labor is a major restricting factor for the publication
of court judgments is a good argument for a software system that makes
anonymization easier.

2.1.1 Legal requirement of anonymization

The main focus of this work lies on the anonymization of German language
Austrian court judgments. This section gives an overview of the legal basis
of anonymization in local law.

In Austria § 15 (4) OGHG governs how anonymization of published court
judgments has to be done. The law states that names, addresses and, if
necessary, other names of localities and territories which allow conclusions to
be drawn about the case in question shall be anonymized by letters, numbers
or abbreviations in such a way that the traceability of the decision is not lost.

According to the OGH, the purpose of the provision is, on the one hand, to
ensure that in the interests of personal protection of the parties, witnesses and
"other participants" a corresponding anonymization of the decisions must be
made. On the other hand, it should also be prevented that the text document
is no longer understandable because of the anonymization [Felzmann/Dan-
zl/Hopf, Oberster Gerichtshof2, § 15 OGHG Anm 7].

The above-mentioned authors also consider that the provision should en-
sure sufficient redaction and, in the standard case, permit anonymization by
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reducing the surname to the first letter and omitting the job title and the
entire address of the person concerned. Under certain circumstances, it may
be necessary to anonymize the first name of a person, especially if it is rather
rare or otherwise conspicuous in the given context. In individual cases, how-
ever, even further steps to anonymization may be required if the identity of
the person would would otherwise be apparent. In practice, however, some
released texts are not as thoroughly anonymized.

In the European Union from 1 July 2018 the rule is "[...] to replace, in all
its public documents, the name of natural persons involved in the case by
initials. Similarly, any additional element likely to permit identification of
the persons concerned will be removed"

In Germany there is no central, unified site where all court judgments
are published as in Austria. A centralized on-line place for German court
judgments has not been created yet due to a variety of reasons, among them
Germany’s highly federalized state system with many independent courts.
There is no general rule for generalization. Some courts replace names by
"First letter" + "...". Some other courts just put "plaintiff" instead of the
plaintiff’s actual name whenever he/she is mentioned.

2.1.2 Real world examples

Below is the heading of a court judgment released on RIS. In lines two and
three the anonymized names of the parties to the proceedings can be seen,
e.g. M***** A*****.

Figure 2.1: RIS 5Ob15/18v

The next example below is meant to show that court judgments are harder
to work with then texts from, say, a book. Twelve lines of text and there are
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no clearly distinguishable sentences, just a numbered list with every point
ending with a semicolon. Everything essentially being one long sentence.
Also evidenced here is that the anonymization employed by RIS does not
seem to be totally consistent: Even though the names imply certain countries
of origin of the accused people they are not anonymized properly as in the
previous example.

Figure 2.2: RIS RS0119858

Below is the heading of a court judgment as published on the EU’s Curia
legal information system. As expected the names of parties to the proceedings
have been replaced by initials, e.g. "UD" and "XD". Whenever the name
of one of the anonymized people is mentioned further down in the text it is
replaced by the same initials. Also worth mentioning: Most of the text is
one long sentence, even the title "DER GERICHTSHOF (Erste Kammer)".

Figure 2.3: CURIA ECLI:EU:C:2018:835

Lastly, a court ruling from a German court, in this case the OLG Mu-
nich. As mentioned before since there are no nationwide rules a legal text
from a different German state would look very different. The parties to the
proceedings are anonymized, both by avoiding to mention the names and
by replacing them by initials. This time around the text consists of proper
sentences that the text can easily be split into programmatically.
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Figure 2.4: OLG München, Zwischenurteil v. 24.10.2018 – 13 U 1223/15

2.2 Information Extraction

In information extraction, structured information is to be extracted from
texts. Entities, events and relations between entities and events are extracted
from texts.

Typically, methods of Natural Language Processing (NLP) are used.

2.2.1 Classification

The problem of Information Extraction can be classified into the field of
Natural Language Processing (NLP). NLP is an area of computer science
that deals with the analysis of large amounts of natural language texts. The
goal is to name or extract text components.

The major evaluation and tasks of Natural language are categorized into
the following categories:

• Syntax (e.g. Part-of-speech tagging, Lemmatization, ...)
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• Semantics (e.g. Machine translation, Named entity recognition (NER),
Natural language generation, ...)

• Discourse (e.g. Automatic summarization, Discourse analysis, ...)

• Speech (e.g. Speech recognition, Text-to-speech, ...)

Each of these categories contains many more tasks than the ones given in
the examples.

In so-called part-of-speech tagging (POS tagging), assigned the part-of-
speech (POS). Examples of part-of-speech tags (POS tags) are nouns, verbs,
articles, adjectives, adverbs, prepositions, conjunctions, and so on. In nouns,
for example, a distinction can be made between normal nouns in singular and
plural as well as proper names. The same word may have a different part
of speech in different sentences, depending on the context in the sentence.
Therefore, simply looking up the word in a word list is not enough for POS
tagging. Rather, POS taggers are trained on syntactically annotated text
corpora and e.g. Hidden Markov Models or decision trees are used. The
trained POS tagger can then be applied to new sentences as common in
supervised learning.

POS tagging is usually based on statistical methods based on manually
created training data. Different languages use tagsets that reflect the charac-
teristics of the language. In German, the STTS (Stuttgart-Tübingen-Tagset)
is often used. It contains eleven main parts of speech, which are divided into
a total of 54 tags. Examples are NN for nouns, NE for proper names, ADJA
for adjectives or ADV for adverbs.

[Example]

Tagging individual words does not or only partially work in languages
where words define their meaning by suffixes (agglutinating languages). An-
other important part of natural language processing is the recognition of
sentences or sentence boundaries (sentence splitting) and their grammatical
structure (sentence parsing). In the next section the recognition of named
entities as part of natural language processing is discussed.
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2.3 Named-entity recognition

Named Entity Recognition (NER) refers to the detection of entities such as
individuals, companies, geographic locations such as cities, or numbers such
as monetary amounts. It is considered a sub task of Information Extraction
and Natural Language Processing.

The task of NER was first published on the Message Understanding Con-
ference 7 (MUC-7), which took place in 1997 [CR97]. Put simply, the task
usually consists of two parts:

1. Identification of the words in a text.

2. Determining the class for each word (personal name, location or other-
wise).

It is not just about recognizing the entities as such, but also assigning
them to the right category. Which is often not easy for proper names of
people, locations and organizations. Personal names are distinguished by
first and last names, with some names used both as a first and last name.
Unlike in the case of part-of-speech (POS) tagging, not every word should
be explicitly defined in named entity recognition, but only entities should be
tagged. Traditionally the recognition is based on defined or learned features
such as capitalization, occurrences in dictionaries, characteristic word parts,
etc. Furthermore, surrounding words or tags can be used as a feature. If a
given name is recognized it is likely that it will be followed by a surname.

One of the primary reasons why named-entity recognition is harder for
German than it is for English is that proper names and nouns can not be
distinguished on the basis of upper and lower case. Thus, a number of rules
for recognizing proper names that for English contribute to successful recog-
nition can not be applied in German. An example of this is the rule “First
name followed by uppercase word = Person name”. This rule works for En-
glish texts but in German contexts such as “schreibt Klaus Bücher?” or “Ist
Petra Lehrerin?” it would falsely identify nouns as proper names.

The resolution of the reference or the co-reference, i.e. the union of all
named entities (NEs) that relate to the same object, is not part of the task of
NER. If, for example, the personal name "Huber" or "Josef Huber" appears
several times in a text, the task of NER is limited to identifying all these



CHAPTER 2. THEORETICAL BACKGROUND 11

occurrences and identifying them as named entities of the type person. It is
not the task of NER to identify that person by using data such as the place
and date of birth or the social security number. It is also not the task of
the NER to decide whether found named entities refer to the same person
or several different persons with the same name. These tasks are assigned to
subsequent processing steps.

The approaches to named entity recognition can be subdivided into rule-
based methods and those that work with machine learning [10]. Solutions
that combine these two approaches are also common.

2.3.1 Rule-based NER

Early systems for named-entity recognition were primarily rule-based. Rule-
based entity recognition in texts is based on the definition of special sentence
structures as well as word lists. The entity is then recognized as such because
of its position in the sentence or its occurrence in the list. The advantage
of rule-based systems is the traceability of results and the independence of
training data. This allows them to adapt to new or changing requirements
without having to retrain the model [10].

Rules can occur in different forms. In [CKL + 10] a language is developed
in which rules for Named Entity Recognition can be defined. Often, regular
expressions are used ([PM08], [CCM + 99]).

Most, if not all state-of-the-art results for NER tasks have been achieved
with machine learning techniques rather than rule based ones [CHIT_2010].

2.3.2 Machine Learning based NER

In machine learning, the algorithm detects patterns in existing data and
applies them to the target data set. A distinction is made between differ-
ent learning methods such as supervised learning, unsupervised learning and
others (see section 2.4).

Supervised learning algorithms use training data to learn a probable struc-
ture of the data. Typically these are labels such as POS tags that are applied
to the real data based on the learned model. High accuracy can be achieved



CHAPTER 2. THEORETICAL BACKGROUND 12

like that. The training data set must be adjusted for each change in the la-
bels. Also when the rough structure of the input data changes the algorithm
has to be re-trained. However, learning algorithms on input sets structured
similarly to the training data will usually yield better results than rule-based
approaches (e.g. model trained to find geographic entities in message texts,
applied to publications).

Algorithms for unsupervised learning are not given a fixed categorization.
They subdivide the data according to patterns themselves. Since no spec-
ifications can be made, the found quantities / clusters can not be assigned
to a unique category such as "organization name" or unique POS tags. The
advantage of unsupervised learning is that the system does not have to be
adapted to new inputs. For that neural networks are often used.

In practice, the two approaches are combined into semi-supervised learn-
ing. The system uses a smaller training data set, from which, if necessary,
initially a larger set of training data is generated. If necessary, the result can
be checked and corrected in the intermediate step.

Traditionally in machine learning various different methods are being used.
Most frequent are Support Vector Machines, Hidden Markov Models [6], their
evolution Maximum Entropy Markov Models [7] and Conditional Random
Fields (CRFs) [30].

CRFs (see section 2.5) were for a long time state of the art in machine-
learning based named-entity recognition. Original CRFs utilize hand-crafted
features which increases the difficulty of performance tuning and domain
adaptation. In recent years neural networks with distributed word repre-
sentations (i.e., word embeddings, see section 3.7) have been introduced to
automatically calculate word values for CRFs [11, 26].

Recently, so to speak, a challenger has appeared: Solutions based on Artifi-
cial Neural Networks (ANN). Particularly recurrent neural networks (RNNs)
such as long short-term nemory (LSTM) systems. These kinds of approaches
are commonly called Deep Learning and looked at in detail in chapter 3.

2.3.3 German language

Named entity recognition for German only really started with the CoNLL-
2003 shared task. At the CoNLL-2003 the system that performed best had



CHAPTER 2. THEORETICAL BACKGROUND 13

a F1 score of 72.41% [14]. Seven years later Faruqui and Pado presented a
system that achieved a better score, at 78.2% [13]. The increased precision
was achiebed by making use of semantic and morphological similarity of
words. More recently, a GermEval NER shared task presented a series of
systems [5]. The best of the 11 participating system sytems was ExB which
had a F1 score of 79.08% [5].

These numbers are for named entity recognition of a standardized dataset.
A system that has to be able to handle a dataset like this as well as text from
a specific environment with more difficult sentence constructs (e.g. court
judgments) would naturally perform worse.

2.3.4 Data Format

As discussed before NER classifies words according to a set of entities. In
this thesis we will make use of training data distributed as proposed in the
NoSta-D dataset [5]. This is based on the format the famous CoNLL2003
task uses.

The basic entities are these:

• PER: person

• LOC: location

• ORG: organization

• OTH: called miscellaneous in the CoNLL2003 task; for all names that
are not already in the other categories. Examples are adjectives and
events [52].

• O: no entity

And the following optional suffixes:

• deriv: token is derived from a name, e.g. österreichisch

• part: part of the token is a name, e.g. österreichweit
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The named entities use the Inside–outside–beginning (IOB) tagging format
as proposed by Sang and Veenstra [46]. Since some entities have multiple
words sub-entities to distinguish between the beginning and the inside of
an entity are needed. This brings us to a total of 9 entity classes: B-PER,
I-PER, B-LOC, I-LOC, B-ORG, I-ORG, B-OTH, I-OTH and O.

In the annotated data each line is a word followed by the corresponding
named entity category. For instance, the tag B-PER indicates the beginning
of a person name, I-PER indicates inside a person name, and so forth.

2.4 Classification of learning algorithms

Machine learning algorithms can be roughly divided into the groups super-
vised learning, reinforcement learning and unsupervised learning [47]. The
basis for classification in this work is supervised learning.

2.4.1 Supervised Learning

Supervised Learning is based on training "labeled" records, that is, records
where the correct results are already assigned. Supervised learning tech-
niques are used in feedforward and multilayer perceptron models. Learning
in supervised models is also called an error backpropagation algorithm. The
network is trained by the algorithm based on the error signal, so the differ-
ence between calculated and desired output values, the synaptic weights of
the neurons adapts. The synaptic weight is proportional to the product of
the error signal and the input of the synaptic weight. Based on this principle,
each learning period consists of two steps, a forward step and a backward
pass [47].

1. In Forward Pass, the network receives an input in the form of a vector
which passes through the network neuron by neuron and appears as
an output signal in the output layer. The output signal has the form
y(n) = φ(v(n)) with v(n) as the local field of a neuron with v(n) =∑
w(n)y(n). The output value o(n) is compared with the actual value

d(n) and the error e(n) is calculated. The synaptic weights of the
network are not changed in this step.
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2. In Backward Pass, the error, i.e. the output value of the layer to be
corrected, is returned to the previous layer. This calculates the local
gradient for each neuron in each layer so that the synaptic weights of
the mesh are changed according to the delta rule:

∆w(n) = η · δ(n) · y(n) (2.1)

This recursive process is repeated until the network has converged.

2.4.2 Reinforcement Learning

Reinforcement Learning is a learning method applied to an agent in a dy-
namic environment that can perform various actions to achieve its goal.
Thus, unlike other algorithms, a problem definition and a series of actions
to be performed are not defined. Instead, the network must determine those
actions that promise the best results [50]. In order to make the success mea-
surable for the agent, he receives a reward for executed actions. On the one
hand, the reward is given when changing to another state. On the other hand
the expected total profit is calculated. The agent then tries to get a high
reward from every action and maximize the total profit. The advantages of
reinforcement learning in dynamic systems make it particularly interesting
for usage in games. A combination of supervised and reinforcement learning
is the basis for the well-known AlphaGo, an agent who mastered the board
game Go and was able to defeat international top players such as Lee Sedol
[48].

2.4.3 Unsupervised Learning

The success of machine learning systems often requires very large sets of
labeled data. Creating this large amount of data is a major expense. Unsu-
pervised learning is a learning method for inputs that contain patterns that
are not or largely unclassified, which makes the learning process very difficult
[21].

It is possible to access entirely unweighted records, e.g. large amounts of
data from the Internet. In Unsupervised Learning structures such as corners
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and edges or certain object classes (e.g. car tires or parts of a face) can be
helpful for object recognition when a small, labeled record is used [33].

2.5 Conditional random field

Conditional random fields (CRFs) are a type of undirected, probabilistic
model used in machine learning. They were introduced by John D. Lafferty
in 2001 and are the "traditional" model that had been the state of the art for
NER for nearly fifteen years [30]. CRFs can be seen as a sequential extension
of the older Maximum Entropy Model (MEM).

Often the term CRF refers to a special form with a linear structure, the
linear chain CRF. This is typically used to segment sequences. That is, the
CRF receives a sequence X as input and outputs an equal length sequence Y .
Unlike Hidden Markov models (HMMs, a directed sequential data model), a
CRF can access the complete information of the input sequence at any point,
whereas an HMM sees only the current input. As a result, complex feature
sets can be used.

Like all models of machine learning, CRFs must be trained, that is, their
parameters must be estimated from data. There are various learning methods
for this, such as gradient descent or the quasi-Newton method. The process
used is supervised learning: Some sequences are specified, of which both the
input and the desired output is known. The learning method then attempts
to adjust the parameters in the CRF so that the correct output sequence is
predicted for as many sequences in the training data as possible.

2.5.1 Features

In "classical" approaches to named entity recognition such as CRF the so
called "features" are most important. They can be described as something
similar to a human’s senses. When CRFs are used at the beginning of a
NER task the best possible features set has to be chosen from a wide range
of options. It is worth mentioning that in a non-hybrid neural network no
features are needed, since the network has to learn what aspects of the input
data are most relevant during the training phase.
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An example of features are so-called "word features", which state whether
a word is capitalized, contains special characters or consists exclusively of
uppercase letters.



Chapter 3

Artificial neural networks

The purpose of machine learning is to estimate the functional relationship
between input and output data [49]. Since our brain is the most efficient
machine of learning and cognition, it makes sense to replicate the structures
of the brain.

This chapter explains, based on the biological basis, how some selected
artificial neural networks are constructed and how they are trained.

3.1 Neurons

3.1.1 Biological inspiration

Artificial neural networks are modeled after the central nervous system and
in particular the brain of humans or animals [36, 43]. The nervous system
of living beings can be subdivided into three areas: 1) sensory information
systems distributed throughout the body, 2) the central nervous system for
information processing, and 3) motor systems for the control of movements.
The information processing takes place mainly by the neurons [29]. Azevedo
et al. [3] found that the human brain contains an estimated 86 billion neurons
which is more than the brains of other primates.

Due to the complexity of these biological nervous systems, the following
description is essentially limited to the aspects that are also depicted in

18
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artificial neural networks.

Figure 3.1 shows the simplified structure of such a neuron, which is the
basis for artificial neurons.

Figure 3.1: Simplified representation of a neuron

Neural networks consist of a large number of neurons. Neurons are cells
that can accumulate and transmit electrical activity. On the cell body (soma)
are the dendrites (left side of figure 3.1) and the axon with the axon terminals
(right side). The axon terminals lead to the dendrites of other neurons, but
do not touch them and form the 10nm to 50nm synaptic cleft. In this way,
a human neuron has about 1000 incoming and 1000 outgoing connections to
other neurons. These junctions are called synapses.

Due to the higher concentration of negatively charged ions on the inside of
the cell membrane and positively charged ions on the outside, at rest there is
a charge difference (action potential) between the neuron and its environment
of about -70mV. This difference can be increased (excitatory connection) or
reduced (inhibitory connection) by the discharge of neurotransmitters at the
adjacent axon terminals. The effects on a neuron (exciting and inhibiting)
add up. When the voltage in the cell exceeds a threshold, the neuron it-
self generates a pulse that is passed through the axon and synapses to all
connected neurons. The rate of propagation of this signal is influenced by
the myelin sheath. The stronger an axon is myelinated, the faster the sig-
nal spreads. The impulse also causes the action potential to be reset to
approximately -70mV [2, 29].

Information can be stored in neural networks in several places. Further-
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more, the action potentials of the neurons differ. Depending on how big the
fundamental voltage difference is, higher or lower pulses from other neurons
are necessary for the neuron itself to generate a pulse. In the form of this
threshold, information can be coded [2].

Another form of information storage is the conductivity of the synapses,
which increases as more voltage pulses are transmitted. The electrical con-
ductivity decreases over time when no pulses are transmitted [12].

Multiple interconnected neurons can learn and store information by chang-
ing these parameters. How this principle can also be used for computers is
described in the following section.

3.1.2 Theoretical model

As mentioned in the previous section the implementation of artificial neurons
is based on the basic principles of biological neurons. The structure and
operation of an artificial neuron will now be explained with reference to the
following figure and set in relation to the biological inspiration (see 3.1.1).

The biological model is transferred to a theoretical model by Warren S.
McCulloch and Walter H. Pitts with the following components [36, 8]:

• an input vector x = [x0x1x2 . . . xn], where x0 = 1 represents an ad-
ditional input for the on-neuron (bias), which can shift the activation
function and in some cases represent a threshold [56, 8].

• a vector of weights w = [w0w1w2 . . . wn]

• the weighted sum of the inputs z =
∑n

i=0wixi, called logit of the neuron
[8, p. 8].

• the activation function f(z) = y, where y is the output of the neuron.
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Figure 3.2: vossneural

The input is first mapped to a vector x of length n. xi is multiplied
by the corresponding weight wi, which represents a learned weight, where
0 ≤ i ≤ n. Here, x0 represents the constant value bias. The products
are added up and this sum is called z. Then an activation function f(z) is
applied, which in the simplest case is a linear activation (identity). In this
case f(z) = z =

∑n
i=0wixi applies. The output y can be used as an input to

several other neurons, in the recurrent case even as an input to itself.

With the theoretical neuron defined above and a corresponding activation
function, a linear perceptron according to Rosenblatt can be described. [8].
Thus, according to the universal approximation theorem, even neurons with
linear activation are capable of arbitrarily approximating continuous func-
tions in the compact space of Rn [25].

The neurons in the human visual cortex are arranged in layers that, with
increasing depth, are able to recognize increasingly complex features (in per-
ceived stimuli). Between an input layer and an output layer there are so-
called hidden layers in theoretical models, which are mainly responsible for
the neural network being able to recognize properties on its own - see 3.4.
When neurons always transmit their stimuli to next-layer neurons, they are
called feed-forward and, with enough depth, deep neural networks. However,
it is not absolutely necessary to link every neuron with all of the next layer
or that all layers have the same number of neurons [8].
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Figure 3.3: vossnetworks

3.1.3 Activation functions

As already mentioned, there are several activation functions. Depending on
the specific application, some functions are better suited than others. There
are also neural networks that use different functions. In order to be able to
select one or more activation functions for a neural network, the explanation
of some functions follows here.

The simplest form of the activation function is a Binary step function.
If the input value is below the defined threshold θ, the function returns zero,
otherwise one (see also equation 3.1). The threshold is the point at which the
activation function has the largest increase [28]. This comes very close to the
biological model with inhibitory and excitatory inputs. As an illustration,
Figure XXXXX uses a threshold of θ = 1.

f(x) =

{
0 for x < 0

1 for x ≥ 0
(3.1)

Nevertheless, this activation function may have unwanted effects in terms
of error correction. With binary output, small changes in weights can affect
outputs in ways that make the effects in subsequent neurons unpredictable.
In most cases, a learning process in a neural network can only function ad-
equately if small adjustments to the weights of a neuron cause even a small
change in the final result.

In the following, x as a function parameter is related to an activation
function for the scalar product between the weight and input vector and the
threshold value. The function parameter of the activation x’ should not be



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS 23

confused with the weights x.

n∑
i=1

wixi = w · x (3.2)

f(x′) = f(w · x+ b) (3.3)

A simple representative of these non-binary activation functions is the
identity function (also called linear activation function). Due to the con-
stant slope corresponding to the value of the input or a multiple thereof, this
function can be easily calculated.

f(x) = x (3.4)

Nevertheless, the use of such a feature is not always ideal. A network that
consists of linear layers only acts like a network with only one layer, even
if the network has multiple layers. This is because the composition of two
linear images is itself linear. With a purely linear function, however, it is
not possible to learn complex relationships and not represent linear function
mappings. For this reason, neural networks should always contain at least
one nonlinear layer. In addition, when optimizing the fault of a network, the
derivative is usually used (see chapter XXXXX). However, the derivative of
a linear function is always a constant. Thus, the correction does not depend
on the delta of the input but always on the same gradient (slope).

A modification of this function is the rectified linear unit (ReLU), which
has a modified slope from zero (usually a slope of zero). Thus, the ReLU is
a simple non-linear function.

A popular and commonly used non-linear function is the logistic function
(a.k.a. Sigmoid or Soft step function). This function is a kind of smoothed
threshold function and has some interesting features.

f(x) = σ(x) =
1

1 + e−x
(3.5)

Unlike many other activation functions, the function value of the sigmoid
function always moves between 0 and 1 instead of between negative infinity
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and positive infinity. The larger x becomes, the farther the e-function value
approaches zero, and thus the value of the sigmoid function approaches unity.
Conversely, the value of the e-function becomes larger and smaller as x be-
comes smaller, which causes the value of the sigmoid function to approach
zero. Thus, the sigmoid function is well suited as a classification function,
since there is a strong slope especially at the x values between -2 and 2.
However, the clearer the trend becomes, the further the slope decreases. For
very large or small values, a phenomenon called "Vanishing Gradient Prob-
lem" can occur for this reason. This can lead to the fact that the network
no longer learns or only very slowly. More about this problem can be found
in section 3.4.1.

The tangent hyperbolicus function (TanH), like the logistic function, is a
sigmoid function. However, the range of values is between −1 and 1 (W =
[−1; 1]). The function also approaches these limits asymptotically.

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.6)

The Softmax activation function is a generalization of the sigmoid
function and is always needed when no binary classification, but a selection
of one out of several classes must be made. The classification is achieved
via the output of probabilities. Unlike the previous activation functions, a
J-dimensional vector x is passed as input, since the outputs of the neurons
must be related by weighted mean to each other. Where j is the number of
categories and i is the currently considered neuron.

fi(~x) =
exi∑J
j=1 e

xj

(3.7)

If all the outputs of a Softmax layer are summed, the result is again a
probability of 1. Especially in the output layer, the Softmax function is
often used because the probability distribution makes classification easy.

Which of the activation functions presented here should be used depends
mainly on the use case and the data to be processed. Both LeCun and
Karpathy advise against the use of the logistics function and recommend
tanh or if possible the ReLU [32].
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3.2 Deep Learning

Deep Learning has become a very popular topic lately. It has been, however,
a challenge to define it for many because it has changed forms slowly over
the past decade. One useful definition specifies that deep learning deals
with a “neural network with more than two layers.” Neural networks had to
transcend architecturally from the earlier network styles (in conjunction with
a lot more processing power) before showing the spectacular results seen in
more recent years. [DeepL_Oreilly] It can be argued that "Deep Learning"
is just a fancy new term describing artificial neural networks. [SpracTec].

Following are some of the facets in this evolution of neural networks:

• More neurons than previous networks

• More complex ways of connecting layers/neurons in NNs

• Explosion in the amount of computing power available to train

• Automatic feature extraction

O’Reilly defines deep learning as "Neural networks with a large number of
parameters and layers in one of four fundamental network architectures":

• Unsupervised pre-trained networks

• Convolutional neural networks

• Recurrent neural networks

• Recursive neural networks

Variations of the aforementioned architectures exist as well.

3.3 Feedforward networks

Feedforward networks are characterized by the fact that a layer is only con-
nected to the following layer. Information always moves in one direction and
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never goes backwards. They consist of three parts: an input vector Rm, a
certain number of hidden layers, and an output vector Rn (see figure 3.4).

Figure 3.4: ffnetwork

Individual values of these components are called neurons (nodes). To cal-
culate the output, input neurons are linked to a hidden layer using trained
weights. Likewise, consecutive hidden layers are linked together, and the last
hidden layer is the output neurons. Edge values entering a node are summed
up and restricted with an activation function.

Let’s assume that we have a feedforward network with only one hidden
layer. Then the network can be written in matrix form:

h = φ(W · x) (3.8)
y = V · h (3.9)

Here is what the variables mean:

• x is the input vector Rm

• W is a weighting matrix of the form Rk×m

• φ is the activation function for the values of the hidden layer h.

• V is the second weighting matrix Rn×k to associate the hidden layer
with output y
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Three activation functions are most commonly used. First, the sigmoid
function that maps the inputs to a range of (0, 1). Next, the hyperbolic
function that has the value range of (-1, 1). And thirdly the Rectified Linear
Unit (ReLU).

1. σ(x) = 1
1+e−x

2. tanh(x)

3. ReLU(x) = max(0, x)

If there are no hidden layers a feedforward network is called single-layer
feedforward network. It consists of an input layer with n inputs andm outputs
only. The information flows in one direction - from the input to the output
layer.

Figure 3.5: Example of a single-layer feedforward network

3.3.1 Single-layer perceptron

The simplest form of a feedforward neural network is the single-layer percep-
tron. It consists of input neurons and a single layer of output neurons

At the beginning of the sixties, the model of the perceptron presented here
was developed by Frank Rosenblatt, which is characterized by the following
structure [56]:
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• a layer of input neurons permanently connected to input cells, which
are usually assumed to be binary inputs

• weighted connections w1,. , , , wn, which may take any real values, and
lead from the above input neurons to one or more output neurons

Each output neuron represents a classifier and fires exactly (i.e. outputs
1) if the sum s of the n different wi-weighted inputs xi exceed a certain
threshold θ. Otherwise, the output o is 0:

s =
n∑

i=1

x1 · wi (3.10)

o = f(s) = {

{
1 if s > θ,

0 otherwise
(3.11)

This binary classifier is commonly known as a threshold function. Various
other implementations of the threshold function f are conceivable.

Figure 3.6: Simple perceptron that realizes a logical OR.

However, because there is only one layer of trainable weights, the single-
layer perceptron can only represent linear functions, and thus it is applicable
to far fewer problems than a multilayered network. Only with a multilayer
perceptron it is possible to map non-linear functions.
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3.3.2 Multilayer perceptron

The limitation of the single-layer perceptron could later be solved with the
multilayer perceptron, in which there is at least one hidden layer in addition
to the output layer. All neurons in a layer are fully linked to the neurons of
the next layer.

Figure 3.7: Two-layer perceptron for calculating the XOR function

Other network topologies also exist:

• Fully connected: The neurons of one layer are connected to the neurons
of all following layers

• Shortcuts: Some neurons are not only connected to all neurons of the
next layer, but also to neurons of layers beyond that.

A multilayer perceptron can be trained, among other things, with the back-
propagation (see chapter 3.6.3). For that the weights of the connections are
adapted so that the network can classify the desired patterns with supervised
learning.

The extension of these network topologies by adding more hidden lay-
ers and introduction of other architectures (e.g. recurrent neural networks),
which are also usually trained by means of backpropagation, is today sum-
marized under the buzzword Deep Learning (see section 3.2).
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3.3.3 Convolutional neural networks

Convolutional Neural Networks (CNN) are powerful representatives of the
feed-forward networks. They emerged from the study of the brain’s visual
cortex and have been in use for tasks such as image recognition since the
1980s. The first practical application of a CNN was introduced in 1989 by
Bell Labs. Yann LeCun combined the older concepts of CNN and backprop-
agation and applied them to the classification of handwritten numbers. The
resulting network, nicknamed LeNet, was used by the United States Postal
Service in the 1990s to automate the reading of postal codes on envelopes
[31].

In principle, CNNs can be considered as a kind of neural network that uses
many identical copies of the same neuron 1. As a result, the network can
consist of many neurons and computationally large models can be expressed.
At the same time, however, the number of actual parameters to be learned -
the values which describe the behavior of the neurons - remains small.

The idea of using multiple copies of the same neuron is similar to the ab-
straction of functions in computer science and mathematics. In programming
a function is written once and used it in many places. Not writing the same
code many times in different places makes programming faster and results
in fewer bugs. Similarly, a CNN can learn a neuron once and use it in many
places, making it easier to learn the model and reduce errors.

A classical convolutional neural layer consists of one or many convolutional
layers, followed by a pooling layer :

A convolutional layer reduces the number of outputs relative to input using
convolution. For this purpose, a so called kernel (a filter), which is smaller
or equal to the input matrix, is moved over the input step by step. The
elements of the matrix are calculated with the weights of the mask, added
up and then give an element in the output matrix. The number of times the
mask was applied to the input is the number of output elements. You can
apply multiple masks in one layer. A mask is used for the entire input with
the same weights. This is also referred to as shared weights, since the weights
remain the same for all applications of the mask. In image processing, this
ensures that the same patterns are recognized throughout the image. Another
advantage is that fewer parameters need to be optimized, which speeds up

1Other neural networks exist that make use of copies of the same neuron such as
recurrent neural networks and recursive neural networks
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the processing.

In the pooling step, unnecessary information is discarded. There are dif-
ferent types of pooling. By far the most widespread is max-pooling, whereby
from each 2×2 square of neurons of the convolutional layer only the activity
of the most active neuron is retained for the subsequent calculation steps.
The activity of the remaining neurons is discarded.

In recent years, CNNs have achieved superhuman performance in some
complex visual tasks, due to increased computational power, the amount of
training data available, and the development of improved training algorithms.
They operate image search services, self-driving cars, automatic video classi-
fication systems and much more. In addition, CNNs are not limited to visual
perception: they are also successful in other tasks such as speech recognition
and natural language processing.

3.4 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a special architecture of neural net-
works, that can effectively incorporate temporal dependencies within the
input data. They are distinguished by connections of neurons of one layer
to neurons of the same or a previous layer. This is done to detect mostly
time-coded information in the data. The existence of such feedbacks is the
main differentiating factor from feedforward networks. Recurrent networks
also allow variable-length input to be processed by feeding back data from
the last calculation through feedback links. Recurrent networks are trained
using backpropagation through time (see section 3.6.4).

As with feedforward networks, recurrent networks use information from
the current time t. Additionally they use information from the previous time
t − 1. Thus, there are two inputs per label to be calculated: the standard
input xt and information from the previous hidden layer ht−1.

These values can provide a wide range of information of the sequence as
the respective information ht−1 is passed on for each input in the RNN. They
make it possible to find correlations between events that are far apart, these
correlations being called long-term dependencies.

Let’s assume - as with feedforward networks - that we have a recurrent
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neural network with only one hidden layer. Then the output can be calculated
as follows:

h = φ(W · xt + U · ht−1) (3.12)
yt = V · ht (3.13)

The only difference to the feedforward network is that U · ht−1 is added
to the new hidden layer. Only for the first value of an input sequence this
summand is omitted. ht−1 denotes values of the previous hidden layer with
respect to t. U is a new weighting matrix between hidden layers that has
to be trained exactly like W . It indicates how strong the influence of past
events is on a new input.

Recurrent networks can be subdivided into neural networks with:

1. direct feedback: Here, connections from the output to the input of
the same unit exist. This means that the activity level or the output
of the unit becomes an input of the same unit.

2. indirect feedback: In this case the activity is sent back to previous
layers of the neural network.

3. lateral feedback: Here the feedback of the information of a unit takes
place at neurons, which are in the same layer. An example of such
lateral feedbacks are the horizontal cells in the human eye.

4. complete connections: These networks have connections between all
neurons.

Figure 3.8: Representation of the different types of feedback

Recurrent neural networks are most commonly used in problems that re-
quire the processing of sequences. Examples include handwriting recogni-
tion, speech recognition and machine translation. Additionally, RNNs are a
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reasonable approach for tasks that need to model sequences with different
length, as the network can be dynamically unrolled according to the length
of the input sequence.

Unlike feedforward networks, recurrent networks can capture sequences
and use them to generate their output. This is useful, for example, in au-
tomatic text generation, where a subsequent letter always depends on the
previous one and can not be arbitrarily chosen. An RNN is able to inten-
tionally follow one specific letter with another to form meaningful words, a
feedforward network can not.

The predominant type of recurrent neural networks are LSTMs (see section
3.5), or similar variants based on direct feedback.

3.4.1 Vanishing gradient problem

The gradient represents the change in all weights in relation to the change
in error. The problems of vanishing and exploding gradients occur when the
errors are transmitted over many time steps. If the gradient is unknown,
one can not bring about a reduction of the error by changing the weights
and the network is unable to learn. It can come to unknown gradients,
as information flowing through a network is multiplied many times. If you
multiply an amount repeatedly with a value just above 1, the result can
become unmanageable and in this case, it is called an exploding gradient.
Conversely, if any number is repeatedly multiplied with a factor smaller than
1 the result will be a very small number. The value can become so small
that it can no longer be learned by a network. This is called a vanishing
gradient.

Which of the two phenomena occurs depends on whether the weight of
the recurrent transitions wjj > 0 or wjj < 1 and how the activation func-
tion is designed in the hidden node. With a sigmoidal activation function,
the vanishing gradient problem is stronger, but with a rectified linear unit
max(0;x) it is easier to reach the exploding gradient. Pascanu et al. gives a
thorough mathematical treatment of vanishing and exploding gradient prob-
lems that characterizes the exact conditions under which these problems can
occur [38]. Given these conditions, they propose an approach to training
via a regularization expression that forces the weights to values where the
gradient neither disappears nor explodes.
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The problem of exploding gradients can be overcome by a reasonable upper
limit. For the vanishing gradients finding a solution appears to be much more
difficult and this topic is still the subject of research.

3.4.2 Long-term dependencies problem

As mentioned earlier, recurrent neural networks are able to recognize se-
quences and work with dependencies. Unfortunately, this ability is limited.
If there is only a small time gap between interdependent data, an RNN will
be able to recognize this relationship and draw the right conclusions. How-
ever, if the time interval between the input of the data and the time at which
they are needed for a result becomes very large, an RNN can no longer es-
tablish this relationship. As an example, Olah gives a language model that
predicts the next word depending on the previous one. An RNN is able to
predict the last word in the sentence "The clouds are in the sky." Since the
distance between sky and clouds is very small. It is much more difficult to
predict the last word in the text "I grew up in Greece. I speak Greek.".
The previous words merely suggest that the name of a language must follow.
The context that it is most likely "Greek" is obtained only through the first
sentence. However, an RNN can not remember a whole text and thus does
not learn the connection between Greece and Greek.

In theory RNNs should be able to handle these "long-term dependencies".
Sadly, in practice this is not the case. Hochreiter and Bengio explored this
problem in their papers and found some fundamental reasons for that [22, 4].

To solve the problem of long-term dependencies, Long Short-Term Memory
networks are used.

3.5 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a special type of recurrent
network that can work with long-term dependencies. They were first intro-
duced by Hochreiter and Schmidhuber [24] and further refined by many other
researchers (e.g. Felix Gers [15]). LSTMs work tremendously well on a large
variety of problems and are central to the boom in machine learning that is
happening in the last years.
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LSTMs have been designed to specifically solve the problem of long-term
dependencies. Storing information over a long period of time is their default
behavior and not something that has to be learned with difficulty.

They consist of memory cells into which information can be written and
read from again. With the help of so-called gates, which are opened or
closed, a cell decides what is stored and when a read, write and delete is
allowed. These gates are analogous and implemented by a sigmoid function,
resulting in a range of 0 to 1. Analogous has the advantage over digital that
it is differentiable and therefore suitable for backpropagation. Just like the
inputs in the feedforward and recurrent networks, the gates have weights.
These weights are also adjusted during the learning process so that the cell
learns when to insert, read or delete data.

Figure 3.9: The repeating module in a standard RNN contains a single layer.

Figure 3.10: The repeating module in an LSTM contains four interacting
layers.

Figures 3.9 and 3.10 show a simple recurrent network at the top and an
LSTM network at the bottom. Both are represented over three time steps,
whereby the second step reflects their inner life. While in the RNN a simple
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structure with only one function (yellow box in the figure) is responsible for
the result, an LSTM uses four functions. How these functions interact with
each other and get to a result is explained step by step in the next section.

3.5.1 Structure of a memory cell

Cell state

The cell state is the actual location or memory of the LSTM. Figure 3.11
shows the progression through a memory cell. On the left, the cell state is
taken from the previous time step and passed on to the next. In the middle
are two operations that can change the state during this time step. What
task they have follows in the section cell state update.

Figure 3.11: LSTM cell state

Forget gate

The Forget Gate uses the sigmoid function to decide which information to
delete. It looks at the old output ht−1 and the new input xt and gives a
value between 0 and 1 for each information in the cell state Ct−1. A 1 means
"completely keep this" and a 0 “completely get rid of this”. This is done since
sometimes it can be useful to forget things, e.g. the memory cell can be reset
if it is known that the following data is unrelated to the previous.
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Figure 3.12: XXXXX

ft = σ(Wf · [ht−1, xt] + bf ) (3.14)

Input

The decision as to which data should be stored consists of two parts. First
the sigmoid layer it called "input gate layer" gives a result between 0 and 1.
By that it decides which cell state we will update. In addition, a tanh layer
creates a vector of candidate values, C̃t, that could be stored in the state.

Figure 3.13: XXXXX

it = σ(Wi · [ht−1, xt] + bi) (3.15)

C̃t = tanh(WC · [ht−1, Xt] + bC) (3.16)
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Update of cell state

After the forget gate and the input gate have decided what to do with the
data, the old cell state Ct−1 is updated and becomes Ct. For this Ct−1 is
multiplied by the result ft of the forget gate, thus erasing everything that
should be forgotten. Subsequently, the data scaled by the input gate and
prepared by the tanh function are added to the cell state.

Figure 3.14: XXXXX

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.17)

Output

The output is made using an output gate, which is also a sigmoid function.
The cell state is passed through a tanh function and then multiplied by the
result of the sigmoid function. The tanh function converts the values to
a range of −1 to 1, which is the desired range of artificial neural network
outputs. With the multiplication we make sure to only output the parts we
decided to.
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Figure 3.15: XXXXX

Ot = σ(Wo [ht−1, xt] + bo) (3.18)

ht = ot ∗ tanh(Ct) (3.19)

Summary

A memory location consists of a cell state that acts as a memory and three
gates that protect and control the cell state. Each gate uses a sigmoid func-
tion that outputs a range of values between 0 and 1, which determines the
intensity of the action. The forget gate is responsible for deleting unwanted
information. The input gate takes over the re-memorizing action by storing
new information in the cell state. The output gate determines the informa-
tion that is output.

3.5.2 Bidirectional LSTM

While simple LSTMs may cover a wide context space, they are not entirely
perfect. An important point is that context is only learned on the left side.
Timing can only look at their past, but not at the future. To get around
this problem Bidirectional LSTMs (BiLSTMs) have been proposed [18, 9,
51]. This procedure requires two LSTMs: LSTM1 and LSTM2. LSTM1

is trained normally on the training data. For LSTM2 the entire training
body is reversed, that is, viewed from the back to the front. Thus LSTM2
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learns the right-sided context and LSTM1 the left-sided. If you give these
LSTMs a sentence of length n as input, this is put into LSTM1 and reversed
into LSTM2. The results of an input are concatenated and serve as output:
ht = h1t ⊕ h2n−t.

Typically, BiLSTMs perform slightly better on NLP problems than LSTMs.
After all, in language it is never clear whether relevant context is before or
after a word [11].

3.6 Training Neural Networks

The characteristic feature of neural networks is the ability to systematically
learn from patterns in the input data. Once a network has learned the
connections between input and output by generalizing a solution for arbitrary
input values should also be produced or approximated. This chapter - like
the whole thesis - focuses on supervised learning for neural networks.

Learning happens by changing the weights and thresholds of the neurons
during training. The most commonly used method is the adaptation of the
connection weights, because in addition the construction and dismantling
of connections can be modeled. If all neurons are initially connected to
each other, unnecessary connections can be weighted with zero during a
learning process and thus removed. Depending on the network type and
application, different learning methods are available, which are explained in
this subchapter.

For supervised learning techniques of neural networks, there are various
processes related to the timing at which the weights are adjusted. The first
option is to calculate the output of the network and the error for each indi-
vidual input vector and to change the connection weights. This approach is
referred to as online learning [29, p. 23]. However, P. Werbos additionally
distinguishes between real-time learning, where the training data is trained
only once, and pattern learning, in which there are several passes through
the record [55].

Batch / offline learning differs from the online methods, because a
weight change is performed only after the processing of the entire training
data set [29, p. 24].
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Another online method is stochastic learning, which randomly selects an
example from the data set at each iteration.

3.6.1 Hebb’s rule

The Hebb Rule is one of the simplest learning rules. It models the aspect
of the natural neural networks that the synapses become stronger the more
voltage pulses they transmit (see section 3.1.1).

In his book The Organization of Behavior Donald Olding Hebb published
the following assumption [20]:

Let us assume that the persistence or repetition of a reverbera-
tory activity (or "trace") tends to induce lasting cellular changes
that add to its stability. [...] When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.

The Hebb Rule is often simplified by the saying "What fires together,
wires together" [42]. This means that weights between two neurons are only
changed if both neurons are active at the same time. The weights are in-
creased depending on the learning parameter. Since for the classical Hebb
rule the neurons can only have zero or a positive value, this learning rule has
a few disadvantages: Weights can only ever be increased, but never lowered.
Additionally, due to the limited value range, there is only a small range of
possible states. However, these issues can be addressed by various adjust-
ments, such as lowering the weights for neurons that are not active at the
same time. The Hebb Rule can be used for supervised, unsupervised and
reinforcement learning.

3.6.2 Delta rule

The Delta rule, also known as Least Mean Square (LMS) method, is a gra-
dient descent learn rule for supervised learning [42]. This method is only
suitable for the training of two-layered non-recurrent networks.
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The procedure is that the existing output signal of a neuron is compared
with the desired output signal and changes are made according to the devi-
ation. This process is reminiscent of the basic principle of backpropagation
and is believed to be its predecessor.

3.6.3 Backpropagation

Error backpropagation is a gradient-based learning method for neural net-
works [32]. It was introduced in 1974 by Paul Werbos, but became known
mainly through a publication by Rumelhart, Hinton and Williams [54, 45].

The procedure is explained in this section using a multilayer perceptron
with a supervised learning process. The aim of this learning method is to
adjust the connection weights between the neurons so that the output of the
neural network coincides with the desired output with sufficient accuracy. In
addition to the input values, the training data therefore also contains the
desired output values. The backpropagation method includes the following
steps.

1. Calculate 1st output of the network

At the beginning it is necessary to calculate for the input x the output
o of the neural network. For the example network in Figure FFFFF, the
calculation is the same as for the multilayer perceptron. The activation
function is the logistics function σ (see section 3.1.3) and the connection
weights were initialized at random. As can be seen in the figure, the network
outputs the value x = {1, 1} at o = {1}.

2. Calculating errors

In order to demonstrate the error feedback, the network in Figure XXXXX
is to be trained by example data so that it maps the XOR function. If
0 = false and 1 = true, the setpoint is defined as:[JORM]

y1 = (x1 ∨ ¬x2) ∨ (¬x1 ∧ x2) (3.20)

The choice of error function depends on the problem / task. It indicates the
deviation of the setpoint from the actual output and in the simplest case is
the difference between these two values. For several output values, however,
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the errors could be canceled, which is why in these cases e.g. the mean square
error (Equation XXXXX) is more appropriate. The factor before the sum
serves to simplify the derivation.

E =
1

2

N∑
i=1

(yi − oi)2 (3.21)

Where yi is the setpoint and oi is the actual output of a neuron. For the
example in Figure XXXXX the error given by this formula is E = 1

2
(y1 −

01)
2 = 0.5. For the network to approximate the desired function, this error

must be minimized.

3. Form partial derivatives and calculate changes

To minimize the error, the connection weights of the network should be
adapted. For this, the partial derivative of the error is calculated according
to the edge weights. This gives the amount and direction of the change. A
prerequisite for the use of backpropagation is therefore the use of differen-
tiable activation functions. Since only the error at the output neurons is
known at first, error recovery is also started in this layer. The adjustment of
the weights between hidden layer j and output layer k is calculated according
to the following formula:

4wjk = −α δE

δwjk

(3.22)

The learning rate alpha determines the influence of the change on the
edge weight and the negative sign causes the weight to be adjusted opposite
to the curve increase (towards minimum). Since the error depends on the
output value o and this is determined by the input values and weights w, the
following formula applies:[JORM]

δE

δwjk

=
δE

δok
· δok
δwjk

=
δ

δok

1

2

∑
k

(yk − ok)2 .
δ

δwjk

σ (
∑
j

wjk · oj) (3.23)
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Deriving the error and the output yields for the last layer:[JORM]

δE

δwjk

= δk · oj = (yk − ok) · ok(1− ok) · oj (3.24)

From the penultimate layer, first of all the existing error must be calcu-
lated. For this purpose, the error calculated above (Equation XXXXX) of
all outgoing connections of a neuron is added up and then divided into the
incoming connections:[JORM]

δE

δwij

= δj · oi =
∑
k

(δk · wjk) · oj(1− oj) · oi (3.25)

The intermediate steps and a complete derivation can be taken, for exam-
ple, from the book Artificial Intelligence by Lämmel and Cleve. [JORM]

By applying the learning rate according to Equation 3.22 to the last two
equations (3.24 and 3.25), the sought weight change (∆wjk or ∆wij) can be
calculated.

As with forward propagation, the use of matrices and vectors makes it
possible to calculate the weight changes for all weights of a compound layer
with one expression. For the example above, the following weight changes
result:[JORM]

∆wjk = α · (0− 0.64) · 0.64 · (1− 0.64) ·
(

0

0.57

)
= α · −0.15 ·

(
0

0.57

)
= α ·

(
0

−0.08

) (3.26)

4. Adjusting the connection weights

The weights are then adjusted for each layer by adding the calculated
change:[JORM]

wjk = wjk + ∆wjk (3.27)
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This process with the four steps presented is repeated until the weights
converge or the error is sufficiently small. As mentioned in the delta rule,
the weights can also be adjusted at different times (online / batch). Which
of these learning methods is suitable depends on the task.

Backpropagation is a very popular learning method for multilayer percep-
trons, but cannot easily be used for networks such as e.g. recurrent networks.
However, the Backpropagation Through Time Algorithm described below is
capable of doing so.

3.6.4 Backpropagation through time

Vanishing Training recurrent networks has long been considered difficult. Es-
pecially because of the difficulty of learning from far-reaching dependencies,
as described by Bengio et al. [4] and expanded by Hochreiter et al. [23]. The
difficulty stems from the problems described in the previous sections (see
subsection 3.4.1).

Since with recurrent networks the result and thus the error does not only
depend on the current time step, backpropagation has to be extended in order
to work meaningfully. Backpropagation through time (BPTT), introduced in
1990 by Paul Werbos, extends the normal backpropagation by a factor of time
[55]. This makes it possible that the influence on the error can be determined
of the weights of previous steps. BPTT is needed to train recurrent neural
networks.

The basic idea is that a recurrent network can be interpreted as a set of
multilayer perceptrons that are interconnected. Each time step is represented
as a multilayer perceptron. Consequently, this chaining of networks can be
considered as a large, multilayered network where training with backpropa-
gation is possible. It should be noted, however, that all weights occur several
times, but at different times.

Ways to merge these are, among others, the average and the weighted
average, where changes are less and less influential the longer ago they took
place.

The training data for BPTT is an ordered sequence of k input / output
pairs. Next, the RNN must be unfolded (figure 3.16). The unfolded network
then contains k inputs and k outputs. This happens by expanding the net-
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work over time. Each input signal, hidden neuron and each output signal
is duplicated and timestamped. Thus, the network is completely duplicated
for each required time step. If you have a network with four hidden nodes
and two time steps you get a network with eight hidden nodes. In the exam-
ple in Figure 3.16, a network with a hidden node (left side) is expanded an
arbitrary number of times (right side). The resulting network behaves like a
feedforward network and can use the normal backpropagation algorithm.

Figure 3.16: Backpropagation Through Time: Unfolding of an RNN over
time.

Of course, this method requires more memory since all previous states and
data must be stored for a certain number of time steps.

Since BPTT becomes very complex for long training sequences, there are
various possibilities of approximation. One of these is Truncated backpropa-
gation through time (TBPTT). It is proposed as a solution to the exploding
gradient problem for continuously moving networks [Williams and Zipser,
1989]. TBPTT specifies a maximum number of time steps along which er-
rors can be transmitted. While TBPTT with a small cutoff can be used to
alleviate the exploding gradient problem, sacrificing the ability to learn long-
range dependencies requires it. The LSTM architecture described below uses
carefully constructed nodes with recurring fixed-weight edges as a solution
to the vanishing gradient problem.

3.7 Word Embeddings

A word embedding is a vector representation of a word. This vector is a
unique numerical representation of that word and has any number of dimen-
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sions. The goal of word embedding is that words with a similar meaning
have a small distance in the vector space. This way, the computer system
can later easily find similar words based on the word embedding with trivial
vector arithmetic. The better these word embeddings are, the better the
computer can work with this representation.[HUON]

In the past several methods to train word embeddings from unlabelled data
have been proposed. Mikolov pretty much revolutionized the field of word
embeddings when he proposed his algorithm word2vec [37]. One of the best
algorithms that emerged in the wake of this breakthrough is Stanford Univer-
sity’s Global Vectors for Word Representation (GloVe) [39]. Word2vec and
GloVe have been shown to be the most successful in intrinsic tasks (Schnabel
et. al) and are most commonly used.[MAI]

Which methods makes the most sense, of course, depends on the task.
Here are some common methods that have been proven to work with neural
networks.[JAAI]

3.7.1 Bag-Of-Words (BOW)

The simplest approach to word embeddings is the bag-of-words (BOW) model.
The first reference to this model is from the 1954 article Distributional Struc-
ture by Zellig Harris [19].

Bag-of-word models work like this: After an initial cleanup of the entire
text corpus of special characters, a dictionary of all occurring words is cre-
ated. Usually this dictionary is sorted in descending order by the number of
occurrences and each word is assigned a number. The number zero is not
used because it is later used for words that are not in the dictionary (Out-Of-
Vocabulary, OOV). That is, the number 1 in the BOW approach represents
the word that is most common, the number 2 the second most common, and
so on. With this dictionary every existing word in the text corpus is assigned
a number.

This may already be sufficient for certain simple tasks. However, the bag-
of-words approach has the following disadvantage: The size of the number
is unrelated to the meaning of the word. As input for a neural network,
therefore, only one one-hot encoded vector can be used per word, whose
length corresponds to the number of words in the dictionary. This quickly
creates vectors with a length of over 100,000, each containing only one "1"
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and otherwise only zeros. These so-called sparse vectors make learning very
difficult for neural networks and cause a high complexity.

3.7.2 Unsupervised Word Vectors – Word2Vec, GloVe

Ideally, the mathematical representation of a word should also represent the
meaning of that word in the context of other words.

A much-used approach to achieving this is to have an algorithm arrange
all the words in the text corpus in a multidimensional space based on their
occurrence and surrounding words so that words that often appear in sim-
ilar contexts also have a similar vector. Such algorithms use unsupervised
learning (see section 2.4.3), i.e. they independently seek the representation
model without external constraints, minimizing the differences between re-
lated words.

The result is a vector representation for each word contained in the text
corpus. Depending on the model, this vector has between 100 and 300 di-
mensions and is significantly less complex than e.g. a one-hot-encoded BOW
vector with 100,000 dimensions. Most importantly, each word vector also
represents, at least to some extent, the semantic meaning of the word in
context.[JAAI]

In the embedding space those words are close to each other that often oc-
cur in similar contexts. This frequently leads to words with similar meanings
being neighbors. Figure 3.17 zooms in onto certain areas of a learned word
embedding space to show how semantically similar words map to represen-
tations that are close together [17].
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Figure 3.17: Two-dimensional visualizations of word embeddings

One of the benefits of Word2Vec and GloVe is that they can be pre-trained
on a huge corpus of documents. Using models that have been pre-trained
on all Wikipedia articles of a certain language has become common in NLP
tasks. Just like with other machine learning tasks the rule of thumb is that
word embeddings become more precise the bigger the corpus is that they were
produced from. Such a pre-trained model can be stored and plugged into say
a named entity recognition model. Also it is possible to do arithmetic with
words using pre-trained Word2Vec or GloVe models:

The vector for the word KING minus the vector for the word MAN plus
the vector for the word WOMAN results in the vector for QUEEN. Of course
this is not exact, but the vector for QUEEN is the closest vector to the result
and can therefore be uniquely determined as a result.

KING - MAN + WOMAN = QUEEN

The models actually contain a relatively useful representation of the mean-
ing of words. Of course, this meaning is not comprehensive and refers only to
individual words and not to word rolls or even entire passages. However, the
practical vector format can be well handled by neural networks of all types,
and Word2Vec, GloVe and other pre-trained models are therefore the basis
for many current applications.

The disadvantage of Unsupervised Word Vectors is that you need a very
very large and as "clean" text corpus as possible to generate a meaningful
vector representation. In addition, the algorithms are very computationally
intensive. For individual projects, this is usually not feasible because it
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simply lacks the data volume required for meaningful training.

When using pre-trained models like Word2Vec and GloVe, there is the
problem that even these models only know words from their corpus - all
words that were not present during training receive a null vector. This can be
particularly difficult for special areas with their own jargon. In this thesis we
are looking at the German-speaking legal environment. If a pre-trained model
is used that does not know legal words such as "Gebarung" and "Gutachten"
it will assign zero vectors and then even the best neural network architecture
will not be able to properly learn.

Another disadvantage is the storage capacity in RAM required by pre-
trained models: In order to have quick access to the word vectors, the com-
plete dictionary including the associated vectors must be present in memory.
This quickly consumes 1-2 GB of RAM just for keeping the model. Some
models, such as spaCy have therefore begun to let the Word Vectors learn
from a CNN downstream - then only the CNN model needs to be loaded
and this then creates the desired vector for each word upon request. An
alternative to Word2Vec and Co are Supervised Word Vectors.
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Approach

In this chapter, the theoretical constituents of our approach are discussed.
Although it refrains from including implementational details, some of them
are mentioned if they impose constraints that influenced more significant
design decisions.

4.1 Procurement of training data

We need to teach our system to handle German language legal texts. As a
first step towards that goal it makes sense to teach it to handle "normal"
German. For that purpose the annotated data provided by the GermEval
shared task is very useful.

However we need to also provide test data to train the system to handle
legal text. For that purpose the only way to go is to build it from scratch.
For this purpose the court rulings provided by the Rechtsinformationssystem
des Bundes (RIS) and the European Court of Justice (CURIA) can be used.
These are provided in the HTML format (as well as .doc and .pdf). The
judgments provided by RIS come with sensual data (plaintiff and defender,
not judges and lawyers) already removed, i.e. the job we want to do already
performed. New CURIA files are also come with sensual data removed but
older files where no anonymization has been performed can still be accessed.

To make these court judgments usable we have to . . .

51
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1. Turn them into plain text

2. Group the text by sentence

3. Turn them into the CoNLL file type (one word per line)

4. Undo the anonymization (in the case of RIS)

5. Tag all words with the correct named entity tags

As a point of reference here is part of court judgment as found on RIS:

Figure 4.1: Part of court judgment 12Os108/18a

4.1.1 Turn them into plain text

Since the RIS court judgments come in the form of html these files need to be
turned into plain text. There are tools for converting a large number of html
files to txt while somewhat keeping the old formatting intact. One obstacle
here is that the text has line breaks added at arbitrary positions. These line
breaks need to be looked at and removed if they appear in the middle of a
sentence.

Furthermore certain letters, e.g. the hyphen, come encoded for the web.
These also have to be taken care of (’&#45 ’ −→ -́́).
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4.1.2 Group the text by sentence

The text of court judgments at RIS and CURIA is grouped in paragraphs that
on first glance seem to correspond to sentences. The difficulty comes when
these blocks need to be checked to be broken up in two or more sentences.
This is necessary since a large portion of these "sentences" are actually more
than one sentence.

Few people realize how hard it can be to split text into sentences. This
problem in natural language processing is known as Sentence boundary dis-
ambiguation (SBD). It is not enough to split the text at every point (’.’)
since it is possible that points appear at arbitrary position, having a dif-
ferent purpose. In German semicolons and colons can denote the end of a
sentence; it causes a stronger separation than the comma, but weaker than
the point. New sentences that start with a semicolon are usually not fully
grammatically correct when looked at without the preceding sentence, which
might affect named entity recognition results.

German texts, and the texts of court judgments, are littered with points
were they do not mark the end of a sentences. Various titles (e.g. Mag., Dr.,
Ing.) are used, law text is quoted (e.g. "8 Ob 122/65 = MietSlg 17.500; 3 Ob
141/57 = RZ 1957, 168") and technical terms are used (e.g. "Plan Beilage
./E").

All these things make it increasingly hard to properly detect sentence
boundaries in German language texts. Just like named entity recognition
sentence segmentation is a topic that would be best handled by using ma-
chine learning.

Apart from sentence splitting a few other things have to be taken care
of: The reasoning in a court judgment is oftentimes written in the form of
a (numbered) list. It is not uncommon that 20 lines of text are a single
sentence only separated by semicolons. If the list is numbered it makes most
sense to remove the numbers to restore a coherent sentence. In figure 4.1
that would be ’I./’, ’B./’, ’C./’, ’D./’ and ’II./’
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4.1.3 Turn them into the CoNLL file type

The purpose of machine learning model for named entity recognition is to
determine the type for each word in a sentence. The sentence that is to
be checked can not, however, be transmitted in an arbitrary format. The
simplest and most common form is to have one token per line and a blank
line to denote the end of sentence. Most formats that work like this are
derived from the famous format of the CoNLL-2003 shared task.

The columns (i.e. elements of a line separated by tab stops) in a text file
of the CoNLL task have four columns:

• first column: a word

• second column: a part-of-speech (POS) tag

• third column: a syntactic chunk tag

• fourth column: the named entity tag, see 2.3.4

Most relevant is of course the first column that holds the word and the
fourth column that holds the named entity tag. In this thesis the data
format of the GermEval 2014 NER Shared Task is used which is based on
the CoNLL-2003. It is similar to the CoNLL format and adds the token
index within a sentence in the first column (effectively shifting everything to
the right by one). Additionally a second named entity tag column is added
to allow to mark words that are part of more than one named entity.

If arbitrarily formatted text is supposed to be analyzed preliminary code
is needed that brings the text into the desired format for NER.

4.1.4 Undo the anonymization

The RIS court judgments come pre-anonymized. What has to be done is to
put (faux) sensual data in place of words with *-placeholders.

The process is straight-forward when done by hand:

1. Search for occurrences of ’*****’
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2. For each occurrence figure out what type of sensual data was removed
(name, place, organization, etc.)

3. Replace the ’*****’ with working replacement data for that particular
case: If it is a name, replace with a name, etc. Do that for all oc-
currences of that particular anonymized phrase (e.g. ’St*****’) that
appear in the dataset (so that one piece of sensual data is consistent
over the dataset). For an illustration of this process see figures 4.2 and
4.3 below.

Figure 4.2: Before de-anonymization

Figure 4.3: After de-anonymization

Computerized this is harder: We would actually need the finalized NER
tagger to identify the type of anonymized data. Yet we only have it after the
test data is procured and run through a model.

4.1.5 Tag all words with the correct named entity tags

To train a model a lot of annotated data is needed. What we have until here
is data. For the RIS data we vaguely know the minimum of words that need
to be tagged as named entities: The ones that were anonymized and replaced
with stars. We do not, however, know what named entity type a word has.
No information like that exists for CURIA.
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The process for making the test data is effectively the same as for the whole
thesis project: Looking at sentences from left to right and noting down for
each word what type of word it is.

Big, existing corpora normally heavily rely on manual tagging by linguists,
supported by tools. In the end it comes down to a lot of time consuming
manual tagging and correcting of files.

4.1.6 Splitting into train, dev and test sets

Lastly we have to merge everything and the split it into three sets of test
data:

• Training set: data used for training the model [train]

• Validation set: data used for tuning the model’s parameters [dev]

• Test set: data used to assess the performance of the final model [test]

There are a few guidelines for doing this split:

• The split train / dev / test should always be the same across experi-
ments

– otherwise models are evaluated on different conditions

– a reproducible script should exist to perform that split (making it
possible to re-create the sets from a corpus of test data)

• It needs to be tested whether or not the dev and test sets shome from
the same distribution

4.2 Neural Network Architecture

In this section, we describe the components (layers) of our neural network
architecture. We introduce the neural layers in our neural network one-by-
one from bottom to top.[XUEZ]
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4.2.1 CNN for Character-level Representation

Previous studies (Santos and Zadrozny, 2014; Chiu and Nichols, 2015) have
shown that CNN is an effective approach to extract morphological informa-
tion (like the prefix or suffix of a word) from characters of words and encode
it into neural representations. Figure 4.4 shows the CNN we use to extract
character-level representation of a given word. The CNN is similar to the one
in Chiu and Nichols (2015), except that we use only character embeddings
as the inputs to CNN, without character type features. A dropout layer
(Srivastava et al., 2014) is applied before character embeddings are input to
CNN.[XUEZ]

Figure 4.4: The convolution neural network for extracting character-level
representations of words. Dashed arrows indicate a dropout layer applied
before character embeddings are input to CNN.[XUEZ]

4.2.2 Bi-directional LSTM

LSTM Unit

Since for named entity recognition context is very important we have to use a
recurrent network (see section 3.4). A feedforward network simply would not
do: Information about previous (and subsequent) words is very important
for a task like this. RNNs are plagued by the vanishing/exploding problems
problems, though.

Using an LSTM as the major building block of our system is the logical step
(see section 3.5). LSTMs are designed to cope with the vanishing/exploding



CHAPTER 4. APPROACH 58

problems problems and have been shown to perform well in natural language
processing tasks [57, 16].

BLSTM

For a sequence labelling task such as named entity recognition it is useful to
both have the past (left) and future (right) contexts of a word that is looked
at. A bidirectional LSTM, as described in section 3.5.2 is perfect for that.
Two separate hidden states are used. Each sequence is fed forwards to the
first hidden state and also backwards to the second hidden state. Finally the
two hidden states are concatenated to create the final output. BLSTMs have
been successfully used for natural language processing tasks in general and
named entity recognition in particular [34, 16, 26, 11, 35].

4.2.3 CRF

Another measure that can be considered to improve the accuracy of the
named entity recognition model is the correlation between labels near each
other. For example, it is not possible that a word labelled with I-ORG
comes directly after a word that is labelled with B-PER. Therefore we use
a conditional random field layer (see section 2.5) to jointly decode the best
chain of labels rather than decoding each label independently.

For CRF training, we use the maximum conditional likelihood estimation.
For a sequence CRF model (only interactions between two successive labels
are considered), training and decoding can be solved efficiently by adopting
the Viterbi algorithm.[XUEZ]

4.2.4 BLSTM-CNNs-CRF

Finally, we construct our neural network model by feeding the output vectors
of BLSTM into a CRF layer. For each word, the character-level representa-
tion is computed by the CNN with character embeddings as inputs. Then
the character-level representation vector is concatenated with the word em-
bedding vector to feed into the BLSTM network. Finally, the output vectors
of BLSTM are fed to the CRF layer to jointly decode the best label se-
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quence. Dropout layers are applied on both the input and output vectors of
BLSTM. Experimental results show that using dropout significantly improve
the performance of our model.[XUEZ]
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Implementation

5.1 Used software and libraries

5.1.1 Python

For machine learning Python is the most popular pro-
gramming language. It is reportedly used by 57% of
programmers that work with machine learning [53].
The reason for this is that there are very well made libraries for machine
learning in Python. Ones that were ported only to other languages or exist
exclusively for Python. All the tools used in this thesis are built on top of
Python.

5.1.2 TensorFlow

Tensorflow is a library for dataflow programming.
Google’s AI team developed TensorFlow and later de-
cided to make it open source. They released TensorFlow 1.0 in 2015, and as
of the time of this writing, the current version is 1.12.0. It’s provided under
the Apache 2.0 open source license, which means you’re free to use it, modify
it, and distribute your modifications.

Google is investing a lot into TensorFlow since it wants TensorFlow to be

60
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the lingua franca of machine learning researchers and developers [1]. It is
used for a wide variety of tasks in Google products such as Google Maps and
Gmail.

Tensorflow supports being executed on GPUs as well as CPUs. Addi-
tionally Tensorflow applications can be run on the Google Cloud Platform
(GCP). GPU and cloud are the preferred variants since CPU-only is very
slow in comparison.

5.1.3 Keras

Keras is an open source neural network library that is
natively written in Python. It is a wrapper that allows
you to use the TensorFlow, the Theano or the Microsoft
Cognitive Toolkit back-end. Keras offers a higher-level set of abstractions
for the computational back-end that is used. Keras offers a big degree of
simplicity thanks to its small API and intuitive set of functions. François
Chollet implemented Keras with the idea to enable faster experimentation.
Because of that many TensorFlow developers prefer to code their neural
networks using Keras. Chollet released Keras under the MIT License. Google
later incorporated its interface into the API of TensorFlow.

5.2 Procurement of training data

In the previous chapter a theoretical overview of what has to be done to create
training data out of court judgments available online at RIS and CURIA has
been given (see 4.1). As mentioned before they are offered for download as
html, pdf and word, of which html is the most convenient.

In this section the process is explained in detail and some code is shown.
All in all 300 court judgments from RIS and CURIA were annotated and
turned into test data. Some statistical information about the first batch of
100 court judgments is given for each step and after that an overview of the
full 300 judgments.
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5.2.1 Turn them into plain text & Group the text by
sentence

For the first two steps we read all downloaded HTML files and make use
of Python’s HTMLParser to extract the sentences. The parts where stars
are used to anonymize names are transferred as-is and not yet taken care of.
Text chunks are merged when they are part of the same sentence. If text
chunks are merged numbering at the start of a text chunk are dropped by
means of a number of regexes:

text = re.sub(r"^[a-z]\)\s+", "", text)
text = re.sub(r"^\d\.(\d\.)?\s?", "", text)
text = re.sub(r"^[A-Z]\./\s?", "", text)
text = re.sub(r"^[IVX]{1,3}\./\s?", "", text)
text = re.sub(r"^[a-z]\./\s?", "", text)
text = re.sub(r"^\d\./\s?", "", text)

This removes different types of numbering that can occur alone or in com-
bination. Since it is not clear which if any actually are applicable for a given
line of text trailing whitespace is always removed (with the \s?).

Merging sentences is easy enough. Splitting them is harder as detailed in
subsection 4.1.2.

Natural Language Toolkit (NLTK) is a widely used standard library for
all things natural language processing. One approach is to use their bundled
sentence tokenizer that comes with a pre-trained model for handling German
text that is based on the PunktSentenceTokenizer.

This does, however, yield, rather bad results for my example paragraph:

Figure 5.1: Mediocre results of sentence splitting

What was used, finally, was a simple custom implementation that checks
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the context of a point and only splits when a set of conditions are fulfilled.
The results are much better than the ones shown in figure 5.1 but could be
improved by training a model just for sentence splitting. For the purpose of
creating test data the custom implementation is, however, sufficient.

To get an overview on how effective this process is, here is some information
about the first 100 court judgments from RIS that were worked at:

• Number of files: 100

• total number of the redaction string ’******’: 1134

• Average redactions: 11.34 per file

• Total number of sentences: 1744

• Average sentences: 17.44 per file

• Maximum number of sentences: 48

5.2.2 Turn them into the right format

When the sentences are extracted the next step is easy enough. For each
sentence:

1. Split it into words by whitespace

2. For each each word:

(a) Check if there are both word characters and special characters

(b) If so: split in further parts (e.g. ’kitchen:’ becomes ’kitchen’ and
’:’)

3. For each each word: Write it to the output file

4. Prefix with an index that counts up within a sentence

5. Put ’O’ and ’O’ after each word as the named entity tags

As for statistics:
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• Total number of sentences: 1744

• Total number of tokens: 141,898

• Average number of tokens per file: 1419

• Average number of tokens per sentence: 81

5.2.3 Undo the anonymization

This step is only needed for the RIS court judgments since only these come
pre-anonymized. For this step a nifty little Python library, Faker, was used.
It is simply a library that creates fake data of many sorts for the user. In Pro
Python Best Practices: Debugging, Testing and Maintenance it is mentioned
as best practice for creating random data for testing [44]. Faker has functions
to create what we need, mostly names for people, locations and organizations.
It comes localized to most major languages, among them German. Similar
libraries for other programming languages exist, such as PHP Faker, Perl
Faker and Ruby Faker.

Exchanging an anonymized name with a proper, unique German surname
is as easy as follows:

fakeLastName = Faker('de_DE').last_name()
line = line.replace(lastName, fakeLastName)

Every time the function is called a new name is generated. Since it po-
tentially has to be used more than once generated names are saved in a
dictionary.

Faker offers methods for all the relevant tasks:

• person →first_name_male, first_name_female, last_name, etc.

• location →city_name (also city), street_address, etc.

• organization →company

• other →nothing for this but that was to be expected
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A problem that arises here is that we do not know what kind of data (i.e.
person, location, organization, other) we have to substitute. This is closely
related to the next step. Here we do not care about all words in our test
data, just the ones that have ’*****’ in them.

Luckily enough we are building a model for named entity recognition. A
viable option is to use this model in its current state (where it is only trained
on general-purpose German text) and analyze the data with that. What has
to be kept in mind is that more names will be found that were redacted
initially. Names of court staff (e.g. judges) and other non-redacted people
will be identified as personal names additionally.

As for statistics:

• Initial number of redaction strings ’******’: 1134

• Total Number of named entity tags assigned: 5792

• Redaction strings without a named entity tag: 350 (i.e. false negatives)

• Detailed numbers of named entity tags assigned in the table below

normal deriv part
B-PER 1394
I-PER 1117
B-LOC 562 70
I-LOC 57 4
B-ORG 611
I-ORG 869
B-OTH 431 36 1
I-OTH 634

5792 106 5

68 per cent of the redaction strings were recognized. This is an okay
number since for many of these even for a human it is hard to figure out
what kind of information has been redacted.

The next step is to use faker to go through the files and look at all words
with ’*****’ and a named entity tag assigned and replace it with fake data.
Then check the result, fix the input files and run the faker script again.
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BEFORE AFTER
65 Mag O O Mag O O O
66 . O O 66 . O O
67 Ing O O 67 Ing O O
68 . O O 68 . O O
69 Walter B-PER O 69 Walter B-PER O
70 S***** I-PER O 70 Hein I-PER O
71 , O O 71 , O O
72 vertreten O O 72 vertreten O O
73 durch O O 73 durch O O
74 Dr O O 74 Dr O O
75 . O O 75 . O O
76 Herbert B-PER O 76 Herbert B-PER O
77 Gartner I-PER O 77 Gartner I-PER O

After a few re-runs of this there are 191 occurrences of ’*****’ left in the
text. This is lower than the 357 false positives reported above since within
a file all occurrences of the same redaction string were replaced even if they
did not have a named entity tag assigned (e.g. all tokens that are ’M*****’
were replaced by ’Mayer’). These last 182 ’*****’ will not be resolved until
the last step.

5.2.4 Tag all words with the correct named entity tags
and merge the files

In the third step we wrote the testdata in the correct format and replaced
most of the redacted words. What remains is the most time consuming task:
Looking through all the files and manually making sure that everything is
correct. Since this data is going to be used to train the model is has to be
absolutely correct and this step cannot be skipped or fully automated.

A common error that the model at this current state produces is that it
recognizes titles (e.g. Dr., Mag.) as part of a person’s name, which it should
not. Another common thing was that the second retraction in ’der klagenden
Partei F***** GmbH, *****, vertreten durch’ would not be recognized as a
place name. Which makes sense since there is no real indication there that
this is a place. The model has to learn this detail from correctly annotated
training data.
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After this has been done the 100 files can be merged and split into the
three sets that are needed for training: train, dev and test.

5.2.5 Conclusion

For this thesis a total of 300 court judgment were annotated. Table XXX
shows the final corpora statistics. Worth noting is that the average CURIA
court judgment is much larger than the average Austrian. Despite 67% of
the court judgments being Austrian ones the CURIA judgments have twice
as many total tokens.

5.3 Neural Network Architecture

5.3.1 Structure of the project

All of the source code used is bundled together in a project called LegalTexts.
On the top level there is the file Train_NER.py that is compiling a model
according to a set of parameters. ProcessSingleFile.py is meant to be used
from the command line. It takes a file, parses it and creates a second, NER
labelled file as its output.

preparecustomdataset contains the utility scripts to generate the test
data. It is split up in five steps and there are both parsers for RIS and for
Curia.

data contains the test data that is used for creating models. That is the
custom created test data from the previous section as well as the GermEval
data for creating the very first iteration of the model.

wordembeddings contains the used word embeddings package from Reimers
et. al.

The file can be publicly downloaded from: https://public.ukp.informatik.
tu-darmstadt.de/reimers/2014_german_embeddings/2014_tudarmstadt_
german_50mincount.vocab.gz

pkl contains pickle files. When Train_NER.py is run the word embed-

https://public.ukp.informatik.tu-darmstadt.de/reimers/2014_german_embeddings/2014_tudarmstadt_german_50mincount.vocab.gz
https://public.ukp.informatik.tu-darmstadt.de/reimers/2014_german_embeddings/2014_tudarmstadt_german_50mincount.vocab.gz
https://public.ukp.informatik.tu-darmstadt.de/reimers/2014_german_embeddings/2014_tudarmstadt_german_50mincount.vocab.gz
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dings are parsed and adapted for the format of the test data. By saving the
result of this process in a pickle file time is saved when re-running the model
generation.

models contains the models generated by running Train_NER.py. During
the model generation process several models are potentially written. For
each epoch it is checked whether the model has been improved and if so it
is exported to the folder. After a given number (5) of epochs without an
improvement the process is stopped.

util contains various utility functions, among them parsers for RIS and
CURIA court judgments and tools for evaluating the F1 score of a model.

neuralnets contains the most vital parts of the system: Firstly the imple-
mentation of the bi-directional LSTM, the core building block of our neural
network. Secondly Philipp Gross’ implementation of ChainCRF, that is used
for the final layer of our neural network. CRFs are a very well researched area
of machine learning and Gross’ implementation is widely used and tested.

5.4 Network Training

In this section, we provide details about training the neural network. We im-
plement the neural network using Keras and Tensorflow. The computations
for a single model are run on a NVIDIA GeForce GTX 1060 GPU with 6
GB of RAM. Using the settings discussed in this section it takes about five
hours to train the model.

5.4.1 Parameter Initialization

Word Embeddings. We use the publicly available embeddings by Reimers
et al [41], trained on 116 Million German sentences. It is advised to used
word embeddings trained on a huge corpus that is unrelated to the test data
and Reimers fits this descriptions perfectly.

Character Embeddings. Character embeddings are initialized with uni-
form samples.

Weight Matrices and Bias Vectors. Matrix parameters are randomly
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initialized with uniform samples.

5.4.2 Optimization Algorithm

For optimization the Adam algorithim by Kingma and Ba was used [27].

Early Stopping. We use early stopping based on the improvement of the
model. If the model is not improved in 5 epochs the process will stop. The
model usually reached its final states between epochs 15 and 25.

5.4.3 Tuning Hyper-Parameters

Table 1 summarizes the chosen hyper-parameters.
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Evaluation

6.1 Evaluation Metrics

The performance of named entity recognition systems is usually determined
by Precision, Recall and F1 score. Since NER is a multiclass classification,
these performance criteria are calculated for each class individually and then
averaged to obtain an overall rating of the program.

These measures can be calculated by making use of the numbers of true
positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN). Hereby the number of properly detected named entities is referred to
as TP. The annotations on entities that actually are not entities are called
FP. Not detected named entities are being referred to as FN. Lastly TNs are
tokens that have been correctly classified as non-entities.

Actual
Positive Negative

Positive True Positive False PositivePredicted Negative False Negative True Negative

Table 6.1: False positives and false negatives

Precision (P) is the proportion of properly mapped entities divided by the
number of found entities in a class:

P =
True Positives

True Positives+ False Positives
(6.1)

70
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Recall (R) is the proportion of properly mapped (and classified) entities
divided by the number of all entities in a class:

R =
True Positives

True Positives+ False Negatives
(6.2)

F1 score is the harmonic average of the precision and recall:

F1 =
2 ∗ P ∗R
P +R

(6.3)

6.2 Test results

100 RIS judgments –> Dev-Score: 0.8532 Test-Score 0.7794 Test-Data: Prec:
0.804, Rec: 0.755, F1: 0.7788

200 RIS judgments –> Dev-Score: 0.8981 Test-Score 0.9080 Test-Data:
Prec: 0.922, Rec: 0.905, F1: 0.9131
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