

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Fabian Fisecker

Submission

Institute of Networks and

Security

Thesis Supervisor

Univ.-Prof. Priv.-Doz. DI Dr.

René Mayrhofer

Assistant Thesis Supervisor

DI Dr. MLBT Heinrich

Schmitzberger

July 2017

INFORMATION

SECURITY OF

INDUSTRIAL

AUTOMATION

PRODUCTS AND

MEASURES OF

IMPROVEMENT

Master’s Thesis

to confer the academic degree of

Master of Science

in the Master’s Program

066 921 Computer Science

July 21, 2017 Fabian Fisecker 2/112

Table of Contents

1. Introduction .. 6

1.1. Motivation ... 6

1.2. Introduction to Information Security .. 7

 Information Security Engineering ... 8 1.2.1.

1.3. Introduction to Embedded Systems .. 8

 Characteristics of Embedded Systems .. 9 1.3.1.

 Application Areas of Embedded Systems .. 9 1.3.2.

 Security Requirements .. 10 1.3.3.

 Challenges of Embedded Systems and Their Security 10 1.3.4.

 Different Levels of Embedded Systems Security 11 1.3.5.

1.4. Attacks and Countermeasures ... 12

 Physical Attacks .. 12 1.4.1.

 Logical Attacks .. 16 1.4.2.

1.5. Introduction to Industrial Control Systems .. 19

 ICS - Industrial Control Systems .. 19 1.5.1.

 SCADA .. 19 1.5.2.

 DCS... 20 1.5.3.

 PLC ... 21 1.5.4.

 ICS Components, Requirements and Architecture 21 1.5.5.

2. Improving System Security of Industrial Products .. 23

2.1. Attack Vector Taxonomy .. 23

2.2. Security Standards ... 23

 ISA/IEC 62443 ... 24 2.2.1.

 NIST Special Publications ... 26 2.2.2.

 ISO 27001 ... 27 2.2.3.

 BSI 100 „IT-Grundschutz“ .. 29 2.2.4.

2.3. Information Security in the Development Lifecycle 30

 Training Phase .. 32 2.3.1.

 Requirement Phase ... 35 2.3.2.

 Design Phase .. 38 2.3.3.

 Implementation Phase ... 48 2.3.4.

 Verification Phase .. 53 2.3.5.

July 21, 2017 Fabian Fisecker 3/112

 Release Phase .. 54 2.3.6.

 Response Phase ... 55 2.3.7.

 Agile Adaption ... 57 2.3.8.

2.4. Handling Information Security in Existing Software 59

 Risk Management .. 59 2.4.1.

2.5. Conclusion ... 63

3. Security Analysis of an Industrial Automation Product ... 64

3.1. Disclaimer .. 64

3.2. Approach .. 64

3.3. Experiment Setup ... 64

 Used B&R Hardware ... 64 3.3.1.

 Used B&R Software ... 65 3.3.2.

 Used Analysis Software ... 66 3.3.3.

 Topology ... 67 3.3.4.

3.4. Analysis .. 67

 Information Gathering .. 67 3.4.1.

 Web Server ... 71 3.4.2.

 VNC... 81 3.4.3.

 OPC-UA .. 86 3.4.4.

 Proprietary Protocols ... 89 3.4.5.

 SNMP .. 91 3.4.6.

3.5. Conclusion ... 95

4. Lessons Learned & Future Work ... 96

4.1. Topics Covered .. 96

4.2. Further Research Possibilities .. 96

 Process Optimization ... 96 4.2.1.

 Extension of the Security Analysis ... 96 4.2.2.

5. Bibliography ... 98

6. Table of Figures ... 107

7. Curriculum Vitae .. 111

8. Sworn Declaration ... 112

July 21, 2017 Fabian Fisecker 4/112

Abstract

Information Security is a trending topic in the world. The development of digitalization

with its latest developments (like the Internet of Things) has brought us computers in all

kinds of shapes into our everyday environment. However, no day passes without

troubling news of digital systems failing in terms of information security. These systems

suffer from problems like collection, disruption, denying or destroying of confidential

information system resources.

This thesis describes the current state of information security in the industrial

environment. In a theoretical approach, the issue of how to improve the information

security of industrial automation products is analysed. Thereby it is investigated how to

improve the process of developing new products with a focus on the information

security of the provided software. The second investigation settles on how to improve

the security of already existing products.

With a practical information security analysis, based on an industrial product of the

medium-sized Austrian automation business Bernecker + Rainer Industrie Elektronik

Ges.m.b.H., this approach is immediately tested to complete the thesis.

The aim of the thesis is to help the automation industry make headway into the big

issue of ensuring information security in products specifically produced for an industrial

environment.

July 21, 2017 Fabian Fisecker 5/112

Abstract

Informationssicherheit (Information Security) ist ein weltweit diskutiertes Thema, das

sich immer mehr in den Schlagzeilen der Presse wiederfindet. Der Fortschritt der

Digitalisierung und ihre letzten Ausprägungen wie das „Internet der Dinge“ bringen

Computer in jeglicher Form und Größe in unser tägliches Leben. Es vergeht jedoch

kaum ein Tag, an dem nicht über das Sammeln, Entwenden, Vorenthalten oder

Zerstören von vertraulichen digitalen Informationen im öffentlichen, geschäftlichen oder

privatem Raum berichtet und diskutiert wird.

Diese Masterarbeit beschreibt den aktuellen Stand der Technik der Informations-

sicherheit im industriellen Automatisierungsumfeld. Mittels eines theoretischen

Ansatzes wird anhand aktueller Forschungen und Standards gezeigt, wie man die

Informationssicherheit von industriellen Produkten nachhaltig verbessern kann.

Dabei wird im Speziellen analysiert, wie man den Prozess zur Erzeugung der Software

dieser Produkte so anpassen kann, dass Informationssicherheit schon per Design

inkludiert wird. Darauffolgend wird ein zweiter Ansatz diskutiert, wie man bei bereits

existierenden Produkten mit der Informationssicherheit umgeht.

Mittels einer praktischen Analyse der Informationssicherheit eines Industrieprodukts

des österreichischen Automatisierungsunternehmens Bernecker + Rainer Industrie

Elektronik Ges.m.b.H. wird die Arbeit abgerundet.

Das Ziel dieser Masterarbeit ist es eine Hilfestellung zu bieten, um nachhaltig die

Informationssicherheit von industriellen Automatisierungsprodukten zu verbessern.

July 21, 2017 Fabian Fisecker 6/112

1. Introduction

1.1. Motivation

Information Security is a widely-discussed topic known to almost every technology-

interested human on the planet. The media coverage of security problems is

overwhelming and not a day goes by without news about new security breaches and

their impact.

Moreover, the topic of embedded information security is gaining attention. Reports like

[1] show that networks of routers, webcams and other embedded devices are

frequently taken over by malicious attackers. These botnets are then used against

infrastructure and can affect even potent services with distributed denial-of-service

attacks.

Security experts like Bruce Schneier have been emphasizing this issue for years:

“We're at a crisis point now with regard to the security of embedded systems, where

computing is embedded into the hardware itself -- as with the Internet of Things. These

embedded computers are riddled with vulnerabilities, and there's no good way to patch

them.” [2]

In contradiction to this matter, the trend of the “Industrial Internet of Things” (IIoT)

demands that embedded devices controlling critical infrastructure should connect to the

internet and communicate with each other.

The question remains why this is even an issue in our modern and technologically-

advanced world? The IT industry and the internet community should have learned their

lesson. Security is known to be a needed asset. It has to be implemented by design

and starts with the first line of code of software and with the first layer of hardware.

Developers, administrators and users are aware of the problem and are trained to

ensure security in their respective fields. IT companies are aware that they cannot

solve security issues on their own. They are opening up to the security community and

support research like bug bounty programs with financial means. Even though these

measures are helping, security problems are still occurring on a daily basis.

However, in the world of embedded devices and in the automation industry, these

aspects do not apply immediately. Currently operatives like component vendors,

system integrators or machine operators lack information security know-how.

The embedded devices do not implement modern information security technology. A

rapid time-to-market is demanded and the pricing is very competitive. Additionally, the

period of usage is usually higher for embedded devices. Ten to 20 years are very

common for industrial appliances to be used. And most critically the maintenance

process in this field is not designed to deal with updates. Machines are often certified in

the commissioning process and no changes can occur, whether in hardware or

software, or a recertification has to be applied, which leads to high costs. [3]

July 21, 2017 Fabian Fisecker 7/112

There are indications that governments all over the world [4][5] are striving for

regulations and for the enforcement of information security in the future, and the

argument of liability is paramount. It is thus good advice for every company in this

industry to take measures in the field of information security to keep up with these

requirements coming in the near future.

This thesis focuses on the problem of securing embedded devices and attempts to give

advice on how to improve the given information security in a sustainable manner. As a

practical example, an industrial embedded device from the Austrian vendor Bernecker

+ Rainer Industrie Elektronik Ges.m.b.H. (henceforth abbreviated as B&R) will be

tested.

1.2. Introduction to Information Security

Information Security, sometimes shortened to InfoSec, seeks to ensure three

objectives, the so-called CIA Triangle.

The three pillars of this triangle are confidentiality, integrity and availability.

This definition applies worldwide and is also stated in legal definitions, for example in

the US Code, Title 44, Chapter 35, Subchapter 3, § 3542:

“The term “information security” means protecting information and information systems

from unauthorized access, use, disclosure, disruption, modification, or destruction in

order to provide

 integrity, which means guarding against improper information modification or

destruction, and includes ensuring information nonrepudiation and authenticity;

 confidentiality, which means preserving authorized restrictions on access and

disclosure, including means for protecting personal privacy and proprietary

information; and

 availability, which means ensuring timely and reliable access to and use of

information.” [6]

Any potential forms of action against these objectives are so called Information

Security Threats, or as the RFC4949 (Internet Security Glossary) [7] puts it:

“1a. (I) A potential for violation of security, which exists when there is an entity,

circumstance, capability, action, or event that could cause harm. [...]

1b. (N) Any circumstance or event with the potential to adversely affect a system

through unauthorized access, destruction, disclosure, or modification of data, or denial

of service.[...]”

Threats to a system are always linked to some kind of soft spots or chinks in a given

system. Without such vulnerabilities in the system the threats would be pointless as

an actual threat action (e.g. an attack) would cause no harm. The RFC4949 defines

vulnerabilities as “A flaw or weakness in a system's design, implementation, or

July 21, 2017 Fabian Fisecker 8/112

operation and management that could be exploited to violate the system's security

policy.”

Nearly every system has vulnerabilities and, therefore, potential threats which could

cause harm, and pose a risk. Therefore, we have to clarify the term risk, which is

defined in the RF4949 as:

“An expectation of loss expressed as the probability that a particular threat will exploit a

particular vulnerability with a particular harmful result.”

In modern approaches of handling information security, it is assumed that no system is

100% safe and, therefore, managing the risk of vulnerability exploitation is a key

chapter when thinking about information security.

The definition and type of attacks against the information security objectives will be

discussed in the ensuing chapter 1.4. “Attacks and Countermeasures”.

 Information Security Engineering 1.2.1.

The field of security engineering has existed as a thriving working area for several

centuries. For example, the history of cryptography reaches back to the ancient Greeks

and the first occurrences of locks were found in Mesopotamia.

Information security engineering focuses on designing and building information

technology systems and thereby ensuring the information security objectives. This is

somewhat counterintuitive to the approach of classic software engineering, as Schneier

argues in [8]:

“Programming a computer is straightforward: keep hammering away at the problem

until the computer does what it’s supposed to do. [...]

Writing a secure computer program is another matter entirely. Security involves making

sure things work, not in the presence of random faults, but in the face of an intelligent

and malicious adversary trying to ensure that things fail in the worst possible way at the

worst possible time… again and again.”

To conquer this matter, the process of engineering secure programs will be analyzed

thoroughly in chapter 2.3. “Information Security in the Development Lifecycle”.

1.3. Introduction to Embedded Systems

In the last years, the majority of newly built processors have been used for embedded

systems. [9] For example, as of 2015, more than 15 billion ARM-type microcontrollers

were sold, leading to an 85% market share in mobile application processors (e.g. in

smartphones). [10]

[11] states that there are estimates that over 50 billion microcontroller units will be sold

in 2019 “dwarfing PC-style microprocessor sales”.

So what exactly is an embedded system? A possible definition could be the following

one:

July 21, 2017 Fabian Fisecker 9/112

“A combination of computer hardware and software, and perhaps additional

mechanical or other parts, designed to perform a dedicated function.” [12]

Some sources add properties like special resources limitations (e.g. in computing

power, general size or power source) to this definition.

It is obvious that this definition fits many systems in our world today. The classification

in categories like general purpose computer, dedicated system or embedded system is

rather abstract and there may always be devices where these definitions intersect. As

an example, prior to the introduction of smartphones it was common to categorize a

mobile phone as an embedded device with a dedicated purpose. Newer generations of

smartphones are considered more and more a general purpose device with powerful

hard- and software and, therefore, are no longer bound to specific use cases.

Evidently it is necessary to focus on different aspects of embedded systems to get a

better understanding of their special properties and dedication.

 Characteristics of Embedded Systems 1.3.1.

The characteristics of embedded systems are small size and weight, low power

consumption and low costs per unit. Such systems should have a high reliability, high

performance and often operate as real-time systems. This leads to limited processing

resources and makes them more difficult to program and interact with. These

restrictions and the fact that embedded devices are increasingly connected to the

internet make it more difficult to protect embedded systems against attackers.

Beside ordinary microprocessors, embedded systems often use microcontrollers. In

both cases the processors which are used, can be general purpose microprocessors,

specialized in a certain class of computation or custom designed ones for this specific

application. An example for a common standard class of dedicated processors is the

digital signal processor. Since the embedded system is dedicated to specific tasks,

design engineers can optimize it to reduce the size and cost of the product and

increase the reliability and performance.

 Application Areas of Embedded Systems 1.3.2.

In the past, embedded systems were used for safety-critical industrial systems. For

example, they were used to control power plants, rockets and satellites. This is also

true today and will be discussed in chapter 1.5. “Introduction to Industrial Control

Systems.”

Nowadays, embedded devices can also be found in transportation systems like planes

or automobiles and in telecommunication systems like routers, network bridges or

telephone switches. They are used in medical equipment and as home control

systems. Even in things that we wear, embedded systems are increasing, for example

smart watches or other wearable devices.

This enumeration is not a complete list of their application fields. It is just a brief

overview of the areas where embedded systems are established and will become

increasingly important in the future.

July 21, 2017 Fabian Fisecker 10/112

 Security Requirements 1.3.3.

The security requirements of embedded devices can be very different depending on

the function of the device. For instance, a nuclear power plant control system needs a

higher level of security than a coffee machine. This means that there is no security

solution that fits all embedded devices.

In general, the increasing connectivity of such devices makes security of embedded

systems more important than ever.

Security requirements need to consider the cost of a potential security failure, the risk

of an attack, possible attack vectors and the cost of implementing a security solution.

An excerpt of common security requirements that need to be considered are stated by

[13]:

 User identification, authentication and authorization: is a mechanism that

ensures that only authorized users have access to the system and the different

resources of the system. It also can verify the identity of the user if needed.

Besides classical methods, embedded systems often use biometric

identification techniques for identification and verification.

 Secure storage: embedded systems need to store information of users who

have access to the system resources. This information can be sensitive like

PINs, credit card numbers, personal data and information for authorization. As a

result it is highly important to protect information of this kind.

 Secure network access: is a mechanism that provides access to the system

resources only if the device is authorized.

 Secure communications: data in a public network goes through a number of

untrusted intermediate points. Therefore, embedded systems should have

functions that ensure data confidentiality, data integrity and user authentication.

This can be achieved by using cryptographic methods.

 Secure content: enforces the usage restrictions of the digital content used in the

system.

 Availability: the embedded system functions are always obtainable for the

legitimate users and perform the intended functionality.

 Challenges of Embedded Systems and 1.3.4.
Their Security

Compared with general purpose computers there are some properties of embedded

systems that can lead to restrictions concerning information security. [14]

 Limited resources in terms of energy, communication and power: Many of the

embedded systems have lower computational power compared to classic

systems. Therefore, it is not always possible to use firewalls, Intrusion Detection

Systems or sophisticated cryptographic techniques. Many embedded systems

July 21, 2017 Fabian Fisecker 11/112

are restricted in consuming energy. Possible security solutions lead to

additional energy consumption, which contradicts this requirement.

 Physical accessibility: A further problem of embedded systems is that attackers

often have easy physical access to embedded devices (e.g. stealing

smartcards). This is a potential danger as an attacker could get the private key,

for example, through a side-channel-attack as described later.

 Restricted maintainability: In classical systems it is possible to update a system

in case of a known vulnerability. This is often not valid for embedded systems

because software patches cannot be installed that easily or some functions are

hardware-related and, therefore, not patchable. So, it is very important to think

of security aspects in the design phase of an embedded system.

 Special cost sensitivity: Embedded systems are often developed on a very low

cost per unit basis. The margin for profit per device is very low and the business

model relies on economy of scales. Therefore, to have a competitive

advantage, vendors tend to keep the hardware costs extremely low. For

example, an 8-bit microcontroller instead of a 16-bit will be used whenever

possible, even if this will imply that no state-of-the-art cryptographic key can be

handled by this system.

 Strict safety requirements: Embedded systems must meet the industry

standards in functional safety to address the issue of being protected from

harmful conditions.

 Long life circle: Embedded systems are typically used much longer than general

purpose computers. Building systems that will fulfill the security requirements

for many years is a challenging task.

 Deployment in large numbers and in a hostile environment: Once an embedded

device is developed, they are often produced in large numbers. If there is an

existent attack against such a device, the attack can be performed against all

others as well.

 Different Levels of Embedded Systems 1.3.5.
Security

Because of the properties that are mentioned above, embedded security needs to

include all abstraction layers. We can differ between five abstraction levels: [15]

 Protocol level: considers the design of protocols to achieve security objectives.

 Algorithm level: includes the design of cryptographic primitives that are used at

the protocol level.

 Architecture level: consists of embedded software techniques to prevent

software hacks.

 Microarchitecture level: deals with the hardware design of the building blocks.

 Circuit level: is concerned with the lowest level of hardware systems design to

prevent attacks at the physical layer.

An embedded system needs to be secure at each layer. Security issues may affect

only one single level which is called a single-level security issue. Furthermore, there

may be trans-level security issues where a bug-fix needs to consider more than one

level.

July 21, 2017 Fabian Fisecker 12/112

1.4. Attacks and Countermeasures

Figure 1 – Attacks on Embedded Systems
1

 Physical Attacks 1.4.1.

Physical attacks can be categorized in two dimensions:

 invasive or non-invasive

 active or passive

Figure 2 - Dimensions of Physical Attacks
2

1
 Taken from: Ravi S., Raghunathan A., Kocher P. and Hattangady S. - Security in Embedded Systems:

Design Challenges - http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf
2
 [selfmade diagram by author]

http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf

July 21, 2017 Fabian Fisecker 13/112

 Invasiveness 1.4.1.1.

Invasive physical attacks have to temper with the embedded device (in most cases with

the interfaces, chips or the processor itself). This often includes opening the cartridge

or packaging of the device and making direct contact with a conductive item, e.g. by

soldering or pinning. As a logical consequence of smaller packaging sizes and more

increasing complexity of devices such attacks are getting more demanding for potential

attackers.

Non-invasive attacks make no contact at all and just need physical presence of the

device. The attacker only observes externally available information and therefore the

analysis itself is undetectable for the device.

In between are so-called semi-invasive attacks, which often need some sort of package

opening, but no direct contact with conducting material.

 Activity 1.4.1.2.

Active physical attacks rely on signal tampering or other means of altering the device to

obtain a certain result.

Passive attacks just observe and infer from these observations. The resources of the

target system are not affected by the passive attack.

 (Semi-) Invasive Attacks 1.4.1.3.

Attacks that need direct access to internal components of an electronic device are

called invasive attacks. Typically these types of attacks are the most expensive, time-

consuming and require very knowledgeable attackers with sophisticated equipment like

microscopes, probes, positioning devices, laser cutters, soldering stations, focused ion

beam stations, etc.

In order to get to the internal components of a device it has to be opened (e.g. the

casing of a USB stick) or in harder cases the packaging of the controller has to be

removed. More sophisticated hardware has to be relieved of the passivation layer of

the chip in order to get to the internal lanes. [16]

In most cases this leaves tamper evidence of the attack or may even destroy the

device.

The major benefit of invasive attacks is the near unlimited possibility in extracting

information of the target system, if it is understood correctly. But smaller packaging

sizes, special countermeasures and increasing chip complexity are rendering invasive

attacks more demanding than ever.

A Semi-invasive attack is a new type of attack, situated between non-invasive and

invasive attacks. Similar to invasive attacks, the depackaging of the target device is

necessary to get access to the internals of the chip. The difference to invasive attacks

is that there is no need to achieve direct electrical contact to the lanes or chips. A

July 21, 2017 Fabian Fisecker 14/112

common example of a semi-invasive attack is the injection of UV-light into an EPROM

to disable the security fuse. [17]

A more comprehensive list of typical representatives of invasive and semi-invasive

attacks is:

 Decapsulation (this is often a prerequisite for further invasive methods)

 Laser cutting

 Focused Ion Beam analysis, deposition and ablation

 General reverse engineering

 Chip modification

 Fault-Injection (by UV-light, heat, optical, photon injection...)

 Laser and IR scanning

 Optical Imaging

 Microprobing

 Side-Channel Attacks 1.4.1.4.

Side-channel attacks are often symptomatic in being passive, non-invasive physical

attacks. These attacks are based on physical properties from a real implementation of

a cryptographic algorithm. An attacker measures physical properties while a

cryptographic operation is performed. These measurements can be used to gain some

additional information for cryptographic analysis. Traditionally, the quantification of the

security level is often based only on mathematical properties. Side-channel attacks can

give information about internal states. A side-channel analysis is much less general

than a traditional one because it is specific to a given implementation. It requires that

an attacker has access to the cryptographic device and can make physical

measurements. In some scenarios, this is not very realistic. On the other hand, they

can be considered very plausible if the device is a smart card that draws power from an

external, untrusted source. [18]

There are many physical properties that can be measured and used by a side-channel

attack. For example, an attacker can use the timing which is needed for cryptographic

operations or power consumption behavior. A few examples of side-channel attacks

are:

1.4.1.4.a Timing Attacks

Every cryptographic operation takes time and can differ based on the inputs. If such

operations include secret parameters, these timing variation can leak information. With

statistical methods it could be possible to reconstruct the secret parameters. The basic

assumptions of the timing analysis are:

The runtime of a cryptographic analysis depends on the key. A sufficient number of

encryption operations can be performed while the key stays the same. The time can be

measured with a known error. If the error is small, fewer samples are needed.

July 21, 2017 Fabian Fisecker 15/112

1.4.1.4.b Power Consumption Attacks

The power consumption of a cryptographic device is a further physical property that

can be used to gain information about operations and their parameters. This kind of

attack is only practicable to hardware implementations of cryptographic systems such

as smartcards.

Attacks that are based on power consumption are divided into two groups:

Simple Power Attacks:

Such an attack tries to guess what particular instruction is being performed at a certain

time from a power trace. It involves a direct interpretation of power consumption

measurements collected during cryptographic operations. The amount of power

consumed varies depending on the instruction that is carried out.

Differential Power Attacks:

This attack consists of data collection and data analysis which uses statistical methods

to gain information. Differential power attacks automatically detect correlated regions in

the power consumption of a device. These attacks can be automated and no

information about the target implementation is required.

1.4.1.4.c Electromagnetic Attacks

Electromagnetic attacks analyze the emitted electromagnetic radiation of an electronic

device using an induction coil. It is also sometimes referred to as Van Eck phreaking

after the researcher Wim van Eck, who demonstrated a possible attack on cathode ray

tube displays by detecting its electromagnetic emissions. Popular targets of research in

this field are smart cards, FPGAs, smartphones and general computers. Attacks are

often targeted against cryptographic functionality, for example against the very popular

symmetric encryption algorithm AES. In special conditions (e.g. with caching disabled,

as the attack focuses on the bus between CPU core and memory), [19] shows an

attack against 256bit AES encryption with equipment in the price-range of 200€.

As with power attacks, electromagnetic attack methods can be categorized in simple or

differential electromagnetic analysis.

1.4.1.4.d Acoustic Attacks

It is possible to analyze acoustic sounds that are emitted by computers, including their

peripherals. The devices vulnerable for these attacks are typically printers, keyboards

or other input/output devices. For example, the acoustic sound emissions from printers

with ultrasonic printing-heads can be used to reconstruct the printed information

without actually seeing it.

Newer research, like [20] uses special acoustic timing attacks against CPUs performing

cryptographic operations. The attack was fueled by analyzing ultrasonic sounds

emitted by the mainboard and power supply capacitors and inductors.

July 21, 2017 Fabian Fisecker 16/112

 Countermeasures 1.4.1.5.

In the case of physical attacks, the attack range looks overwhelming at the beginning.

But there are many possibilities to mitigate such attacks or at least make them

exponentially harder and costlier. In essence, the countermeasure to physical attacks

is tamper protections.

Some possibilities in this field are:

 protective casing (glued/em protection/..)

 chemical-mechanical-planarization

 multiple-layers, smaller size transistors

 higher frequency, less power

 memory access protection

 bus encryption

 crypto-processors

 secure ASIC/FPGA/custom IC

 top-layers with detecting sensors

 internal voltage and clock frequency sensors

 randomization of data

 masking, generation of noise

As tamper resistant devices have a long history, most of these countermeasures are

well-known and could be selectively applied to any newly developed device.

However, the industry has shown that most of these possibilities are rarely used,

because they are too costly to implement. These mechanisms are used only for special

devices (e.g. hardware security modules or smartcards).

In the mass industry of low-cost embedded devices the engineering that goes into the

device is kept to a bare minimum. Security concerns are rarely part of the requirement

phase of a new product and even if the engineers had the know-how to implement

such security features, they usually lack the time to do so.

This leads to the simple conclusion that in terms of physical attack countermeasures

there is often just security by obscurity (which does not work in reality).

 Logical Attacks 1.4.2.

Logical attacks often represent well-known attacks from the non-embedded IT-industry.

They are focused on the software-level and rely on weaknesses in software design,

e.g. in the application layer, network protocols or APIs.

Typical attacks today are centered on the Ethernet interface of a device, but also all

other logical interfaces that can be reached by an attacker are a potential threat vector.

Categorization of software attack types is done differently throughout the field of

research. Typically, malicious software is separated into types like Virus, Trojan horse,

Worm, Rootkit, Trapdoor, Logic Bomb, etc. depending on the behavior and

manifestation in the system.

[21] separates the attack types by the intended result of the attack:

July 21, 2017 Fabian Fisecker 17/112

 data collection (e.g. packet sniffing, keystroke monitoring or database

siphoning)

 stealth (e.g. hiding data, processes, users of a system,..)

 covert communication (allowing remote access without detection, transferring

sensitive data out of the system)

 command and control (allowing remote control of a software system, sabotage

or denying system control – DoS)

[13] tries to divide logical attacks in three categories, which will be investigated further:

 Classic Software Attacks

 Protocol Weaknesses

 Cryptographic Weaknesses

 Software Attacks 1.4.2.1.

Classic software attacks are focused on weaknesses in the implementation or design

of the targeted device. A common way to better understand software attacks is to

analyze and categorize the vulnerabilities that are exploitable by these attacks: [22]

 validation errors (e.g. input, origin or target validation)

 authentication errors (e.g. operations executable by unauthorized users)

 serialization/aliasing errors (e.g. same name of different objects)

 boundary checking errors (e.g. buffer overflows)

 domain errors (e.g. access to implementation details)

 weak or incorrect design errors (e.g. weak protocol or cryptographic algorithm –

will be discussed separately)

 other exploitable logic errors

It is vital that software engineers acknowledge the fact that code quality in software is a

key element to ensure the information security of a given system. When thinking of

security in programs, even skilled engineers tend to bring up solutions involving

cryptography or complex authorization systems. But the basic and more common risks

to a software system are simple programming errors and lack of software quality.

 Protocol Weaknesses 1.4.2.2.

Modern embedded devices are connected to other systems via interfaces, often times

via Ethernet, but there are, of course, others (e.g. CAN-Bus in the automotive industry).

Some of these protocols are very old and have design weaknesses.

Other possibilities are that the libraries handling these protocols are outdated.

One example scenario is that embedded devices with Ethernet interfaces are not using

modern TCP Stacks which can handle source-port randomization or other current

security features.

July 21, 2017 Fabian Fisecker 18/112

Another problem is that embedded devices often use proprietary protocols to connect

to devices from the same vendor. This may look fine at the beginning, as the public

does not know details of the design of these protocols. In many cases, these protocols

do not use any encryption or even integrity checking, which leads to security by

obscurity. When analyzed properly, attackers can often use these protocols to get

access to the device or at least trigger some sort of buffer overflow, etc. as these

protocols are typically not as well tested as standard protocols.

 Cryptographic Weaknesses 1.4.2.3.

Even if some sort of cryptographic API is used on the device, these are often times

outdated or weakly implemented. Typically embedded devices lack the chance to

update their libraries regularly, so attackers only have to find out which version of the

cryptographic library is used and search for vulnerabilities.

An example of this is that many embedded devices advertising some sort of encryption

are using older standards of SSL/TLS.

Because of the simple nature of modern attacks (e.g. DROWN, POODLE, BEAST,

etc.) the probability of such attacks will likely increase.

Another example is the usage of deprecated algorithms, like the Data Encryption

Standard (DES), which is considered insecure nowadays, as the key length of 56bit is

too short.

 Countermeasures 1.4.2.4.

To mitigate the risk of logical attacks in modern software applications, a clean software

design and architecture is needed. Most of the problems that are exploited by malicious

software are design flaws or simply bugs in the developed software. A detailed analysis

of logical attack countermeasures will be discussed in chapter 2.“Improving System

Security of Industrial Products”.

The biggest challenge for embedded devices though is the lack of updatability of the

software. At least this problem could be mitigated in the future, as more and more

embedded devices are connected to the internet, so automated updates could be

possible and are already done by some embedded systems (e.g. routers).

Counterintuitively such automated update systems are a key entry-point for logical

attacks. Vulnerabilities in an updater are very critical, as attackers could use the

updater to run malicious code and infiltrate the underlying system.

The companies developing embedded devices need to be aware and understand that

tackling these security issues is more important than ever.

July 21, 2017 Fabian Fisecker 19/112

1.5. Introduction to Industrial Control
Systems

 ICS - Industrial Control Systems 1.5.1.

The general term ICS is often used as an umbrella term for all kind of systems in the

industrial field that control some parts of industrial technology. The best analogy is to

compare the abbreviation with the term “IT” when it comes to computer technology in

general.

As the US National Institute of Standards and Technology puts it: “Industrial control

system (ICS) is a general term that encompasses several types of control systems,

including supervisory control and data acquisition (SCADA) systems, distributed control

systems (DCS), and other control system configurations such as skid-mounted

Programmable Logic Controllers (PLC) often found in the industrial sectors and critical

infrastructures.” [23]

The underlying terms SCADA, DCS and PLC can be seen as subset of ICS with

different characteristics, mainly in the size of the regarding system. In modern

environments, the terms are often used synonymously and the borders between the

different systems are indistinct.

 SCADA 1.5.2.

SCADA stands for Supervisory Control and Data Acquisition, which oftentimes stands

for big industrial systems with assets in various locations. These assets are controlled

and monitored centrally by graphical user interfaces. The control system acts on a

high-level for supervisory purposes. Most tasks are event-driven, when a subsystem

alerts a warning or error state.

A good analogy is a nuclear power plant with its different sensors and actuators in

various environments, e.g. connection to power grid, controlling of the nuclear fuel and

control-rods, cooling, steam turbine control, plumbing, etc. All of these parts are

controlled by different systems, potentially from different vendors. To be able to control

all of these distributed systems in a central monitoring room where the reactor

operators have to oversee the incoming data of all these parts to safely operate the

plant is one key requirement of a SCADA architecture.

July 21, 2017 Fabian Fisecker 20/112

Figure 3 - Example SCADA Architecture
3

 DCS 1.5.3.

The term Distributed Control System is often used when a local industrial environment

serves a distinct purpose. For example, if the special target of a factory is to produce all

the plastic injection molding parts, then the ICS equipment used to operate and monitor

these processes are often called DCS. Each element of this process is controlled by a

dedicated controller (e.g. a PC running dedicated control software) making the whole

process autonomous from others.

This is also the main difference between centralized control systems where all of these

processes would be controlled from one central control station. The decentralization

aspect means that many of these DCS can be located in different geographical

locations in a plant and work autonomously.

A DCS differs from a SCADA system because it is centered on fulfilling the process it

was designed for. SCADA systems are oriented towards data-gathering. Their major

goal is to acquire data and to log the actions and alarms of a system. [24]

3
Taken from: Pacific Northwest National Laboratory - http://placidtech.com/files/scada.jpg

http://placidtech.com/files/scada.jpg

July 21, 2017 Fabian Fisecker 21/112

 PLC 1.5.4.

Programmable Logic Controllers are components to control a specific application or

machine that performs single or multiple steps of a process. A PLC provides the control

loop to operate an ICS component but is used to monitor data or supervise only in a

few scenarios. It is often the source of data which is used in a centralized operator

station.

PLCs are the backbone of a complex automated environment, running the actual

software that controls the underlying machine actuators and sensors (such as acoustic,

optical, thermal or any other type of sensor).

Ruggedized components are used as its hardware and a real-time operation system

(RTOS) ensures the deterministic cycle of sensor and actuator interaction.

The specialized field of research regarding industrial control systems has led to a

common standard in programming for these devices: the IEC 61131. In Part 3 of the

standard 5 programming languages were defined:

 Ladder diagram (LD)

 Function block diagram (FBD)

 Structured text (ST)

 Instruction list (IL)

 Sequential function chart (SFC)

In modern environments with increasing requirements, PLCs take over SCADA or DCS

functionality. As the hardware and software in the PLCs gets more capable, it is more

common that the monitor and communication functionality is implemented in the PLC

software, in addition to the specific process functionality. [25]

 ICS Components, Requirements and 1.5.5.
Architecture

Historically, ICS components have had little resemblance to IT hardware or topology.

These components were mostly built with proprietary hardware and software and,

therefore, also have not been such an easy target to be exploited by attackers. The

reason for this is not that these systems had less programmatic flaws or better security

designs. The major reason was the lack of interest in creating specific attacks for these

proprietary systems. Of course this sense of false security is very dangerous, as skilled

attackers could easily exploit these vulnerable systems as well.

Nowadays, ICS components and infrastructure are similar or related to IT consumer

hardware with less proprietary parts:

“As ICS are adopting IT solutions to promote corporate business systems connectivity

and remote access capabilities, and are being designed and implemented using

industry standard computers, operating systems (OS) and network protocols, they are

starting to resemble IT systems.” [23]

Therefore, security concerns known from the IT environment are more and more

applicable in the industrial sector.

July 21, 2017 Fabian Fisecker 22/112

To differentiate classic IT systems to the IT systems used to control industrial

equipment the term “Operational Technology” (OT) was forged.

The key difference between OT and IT in respect of security is the different

prioritization of key security goals:

 IT: Confidentiality > Integrity > Availability

 OT: Availability > Integrity > Confidentiality

This means that in the IT industry confidentiality of information is the highest goal and

availability requirements can be afflicted if necessary (e.g. if the loss of critical

information is at hand).

In the OT industry availability is the highest goal and cannot be restricted by other

security needs or measures (e.g. even if an unauthorized access to the system is

detected, critical operation functions must still be available). This is especially the case

if the health, safety or environment (HSE) may be at harm.

In conclusion, to ensure the information security of such industrial control systems, the

automation industry will have to take measures in developing these systems in a more

secure way. An outlook on how to do that will be provided in the next chapter.

July 21, 2017 Fabian Fisecker 23/112

2. Improving System Security of
Industrial Products

2.1. Attack Vector Taxonomy

It is important to prioritize the effort to improve information security.

According to [26], the main attack vectors for embedded systems are in a descending

order:

 Internet facing devices

 Local or remote network access to the device

 Direct physical access to the device

 Physical proximity of the device

 Misc/Other (specific configurations, etc.)

This is in accordance with the Common Vulnerability Scoring System (CVSS), which

rates the severity of the attack vector in the following descending order:

 Network

 Adjacent (which refers to a attack vector limitation, either to a shared physical or

logical network, but not across the OSI layer 3 boundary, e.g. a router in the

internet)

 Local

 Physical

The consequence is to focus the first efforts on logical attacks and on improving the

security measures in the software parts of the underlying products (as they are mainly

affected by logical attacks).

More specifically the main threat vector is the interface connecting to the Ethernet

network or (if applicable) directly connecting to the internet.

To narrow the focus of this thesis we will look specifically at ensuring the information

security of the software products.

Ensuring physical security and security from side-channel attacks could be the focus of

further work in this field.

2.2. Security Standards

Worldwide security experts are working on standards, guidelines, regulations and best

practices to ensure the protection and security of technology products. Led by the IT

industry, these publications help information security staff find the correct approach to

solve problems in their respective fields.

In this overview, an introduction to the most popular and best suitable standards is

given.

July 21, 2017 Fabian Fisecker 24/112

 ISA/IEC 62443 2.2.1.

“ISA is an American National Standards Institute (ANSI) accredited organization. ISA

administers United States Technical Advisory Groups (USTAGs) and provides

secretariat support for International Electrotechnical Commission (IEC) and

International Organization for Standardization (ISO) committees that develop process

measurement and control standards.”[27]

ISA/IEC 62443 (former ISA99) is a series of technical reports seeking information

security in industrial automation and control systems. It is probably the best applicable

standard for the automation industry and for a vendor like B&R. Three different vendor

types are the target group of this collection:

 Asset owners / end users

 System integrators

 Product suppliers

The standard defines the different responsibilities of the three groups to ensure

successful information security throughout the automation process.

The ISA/IEC 62443 series contains 15 elements fitted into 4 different topic groups as

the following Figure shows:

July 21, 2017 Fabian Fisecker 25/112

Figure 4 - ISO/IEC 62443 Elements
4

With B&R as a product supplier, the focus is on ISA/IEC 62443-4-1 “Secure Product

Development Lifecycle Requirements” and ISA/IEC 62443-4-2 “Technical Security

Requirements for IACS Components”.

The first document gives recommendations about how to make products secure by

design and how to adapt the engineering process to implement security in every step.

In the next chapter 2.3. “Information Security in the Development Lifecycle”, a focus on

this matter and concepts of ISA/IEC 62443-4-1 will be discussed.

In the second document, tangible security requirements are defined for products that

are sold by product suppliers like industrial PCs and PLCs, embedded devices,

network components, as well as the application software.

From its perspective 7 key requirements must be met:

 Identification and authentication control

 Use control

 System integrity

 Data confidentiality

 Restricted data flow

 Timely response to events

 Resource availability

Another aspect covered in the ISO/IEC 62443 is the concept of defining security levels

for the target system. Asset owners can define the needed protection level of their

environment and choose products and processes according to these requirements.

The defined security levels are shown in the following figure:

Figure 5 – ISO/IEC 62443 Security Levels
5

4
 Taken from ISA: The 62443 series of standards: Industrial Automation and Control System Security,

2016, available at http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
5
 Taken from: Kobes P.: Security Levels in ISA-99 / IEC 62443, 2012, available at

http://isa99.isa.org/Documents/Committee_Meeting/(2012-05)%20Gaithersburg,%20MD/ISA-99-
Security_Levels_Proposal.pdf

http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
http://isa99.isa.org/Documents/Committee_Meeting/(2012-05)%20Gaithersburg,%20MD/ISA-99-Security_Levels_Proposal.pdf
http://isa99.isa.org/Documents/Committee_Meeting/(2012-05)%20Gaithersburg,%20MD/ISA-99-Security_Levels_Proposal.pdf

July 21, 2017 Fabian Fisecker 26/112

Security Level 1 defines a protection level that is suited against unintentional or casual

misuse of a given system. Examples for this level can range from inexperienced users

entering wrong or just unexpected data into user input interfaces to impatient or power

users who are stressing a system with too many requests.

Security Level 2 adds bad intent to the user’s actions with the system. The purpose of

the interaction with the system is to tamper with the confidentiality, integrity or

availability of the system and/or the processed data. At this level the attacker uses only

simple means. Simple in this case means that the attacker does not possess deep

knowledge of the system or how to attack such a system. The attacker maybe tries to

tamper with the system by sending many requests or by tampering with the systems

input data. It can be assumed that the attacker can use standard tools like text editors,

for example, to edit configuration parameters, but not specific tools in the field of

information security.

Security Level 3 gives potential attackers the possibility to use sophisticated methods

and special software or hardware to tamper with the given system, assuming that the

attacker has experience in analyzing and penetrating these types of systems. Specific

software in the field of vulnerability scanning, forensics, stress testing, reverse

engineering, cracking and exploitation can be used by the attacker.

Security Level 4 defines that an attacker not only is able to use sophisticated

measures as explained with SL3, but also has access to extended resources. These

extended resources can be monetary assets, access to vast amounts of computing

power or simply enough time to attack the given system. This level also specifically

targets the power of domestic intelligence agencies, like the NSA. Since Snowden’s

revelations in 2013, it is known that such organizations have a wide variety of

possibilities to attack any type of system. One example is the possibility to break weak

cryptographic ciphers, where even sophisticated attackers are limited due to lack of

computing time to break a certain type of hash. Other possibilities are side channel

attacks, which need special types of equipment, like probing devices or sophisticated

measuring equipment. It can be stated that it is very hard to protect a system against

this wide variety of logical, physical and side-channel attacks.

For the European market an ISO/IEC 62443 certification is available from the TÜV

SÜD for product suppliers and system integrators. As the standard is developing into a

best-practice approach for companies in the automation industry, the certification of

such products could lead to an advantage in the market.

 NIST Special Publications 2.2.2.

The National Institute of Standards and Technology (NIST) provides a vast variety of

technical research documents concerning information security.

July 21, 2017 Fabian Fisecker 27/112

The three lines of special publications that deal with this matter are:

 SP 800 Computer Security

 SP 1800 Cybersecurity Practice Guides

 SP 500 Computer Systems Technology

Especially in the SP 800 line of publications, some are very fitting to the automation

industry, for example NIST SP 800-82r2 Guide to Industrial Control Systems (ICS)

Security.

NIST SP 800-53r4 provides an overview of an information security control framework

made up of 285 controls in 19 control families. It is mandatory for US federal agencies

and their contractors but also applicable to almost every organization.

However, also basic approaches to information security like how to make an

awareness training program can be researched in detail (SP 800-50 Building an

Information Technology Security Awareness and Training Program). Notable is also

NIST SP800-30 Guide for Conducting Risk Assessment as this is still the standard

paper regarding information security risk management. This will be discussed in a later

topic regarding information security in existing products.

 ISO 27001 2.2.3.

ISO 27001:2013 is an international standard adopted by many organizations

worldwide.

It provides guidance on how to implement an Information Security Management

System and the necessary security controls.

The following figure shows an overview of the ISO 27000 family:

July 21, 2017 Fabian Fisecker 28/112

Figure 6 - The ISO 27000 Family
6

ISO/IEC 27002:2013 shows a code of practice for information security controls. This is

a reasonably comprehensive suite of information security controls and works well as a

best practice when searching for appropriate security controls. The overview is shown

in the following figure:

Figure 7 - ISO/IEC 27002:2013 Security Controls
7

6
 Taken from: Hinson G.: The ISO27k Standards, March 2014

7
 Taken from: ISO 27k Security, 2013, available at http://www.iso27001security.com/html/27002.html

http://www.iso27001security.com/html/27002.html

July 21, 2017 Fabian Fisecker 29/112

Although the ISO 27000 family is probably one of the most comprehensive resources

for an information security program, it must be used with caution. To focus on the

essential parts a definition of the objectives scope is one of the most important tasks

when applying security controls from this framework.

 BSI 100 „IT-Grundschutz“ 2.2.4.

Since 1994, the German federal office of information security (BSI) has released its

own technical manifest called the “IT-Grundschutz” or IT baseline protection. Like the

aforementioned frameworks, its goal is to achieve sufficient levels of information

security in information technology systems. It can be seen as a shortened, more

precise approach to the topic of information security management than the more

comprehensive ISO standards.

Nevertheless, the BSI offers a certification for ISO/IEC 27001 based on the IT baseline

protection. Therefore, a mapping table of the ISO/IEC 27001 standard to the IT

baseline protection is offered.

July 21, 2017 Fabian Fisecker 30/112

Figure 8 - BSI IT Baseline Protection
8

The BSI additionally released BSI 100-4 Business Continuity Management which

focuses on specific actions to minimize damage and business interruption in an

organization, if critical situations like attacks happen.

To conquer the rising requirements of information security in the field due to new

technologies like cloud computing, Internet of Things and others the BSI is trying to

renew the IT baseline protection documentation. These new versions are already

available as community drafts and will be released in the near future.

2.3. Information Security in the Development
Lifecycle

To ensure that software, which is developed in the future, does not fall into the same

pattern of security issues as systems do worldwide today, the commitment to various

measures must be agreed upon. The process to produce new software with a better

focus on the information security issues will be called “Secure Software Development

Lifecycle”, in short SSDLC. This is in alignment with current literature and best

practices in leading development companies (e.g. Microsoft).

Modern software development can be categorized into different phases starting with

the basic product idea to a successfully deployed product. These phases can be

executed consecutively, in a waterfall approach or also in an iterative-incremental

process.

To look into the different approaches of increasing the security of newly developed

software, the sequential process will be used. Afterwards, the adaption of the

approaches to the more modern, iterative or agile way of developing software will be

discussed.

Many of the applied measures are a general way of ensuring better quality in software

products and are not directly linked to information security (though the later follows by

the correct measure implementation).

The basic goal is to minimize security-related problems in the design and

implementation of a new product as early as possible in its lifecycle.

This principle is already known from the field of software quality engineering. Already

back in 1981, Barry Boehm stated in his presentation "Case study: Finding defects

earlier yields enormous savings” [28] that the relative cost of fixing software errors

increases rapidly the later these errors are found. Subsequent studies [29][30]

compared the costs of issues found during an early phase to those of a later phase.

And even though these ratios may be exaggerated to some research and some

8
 Taken from: BSI-Standard 100 – Managementsystems for Information Security, 2008, available at

https://www.bsi.bund.de/EN/BSI/Publikationen/ITGrundschutzstandards/BSI-Standard_1001.pdf

https://www.bsi.bund.de/EN/BSI/Publikationen/ITGrundschutzstandards/BSI-Standard_1001.pdf

July 21, 2017 Fabian Fisecker 31/112

implications like “requirement errors are the hardest to fix” [31] are not reproducible, the

basic rule seems to uphold more than 35 years later.

Therefore, the credo of nearly every modern approach on improving software quality is

to find defects as early in the lifecycle of a product as possible.

As many security-related problems have their origin in software defects and many

security-related requirements yield in basic design principles, it is only conclusive that

the same rules apply to them.

A renowned practice approach is provided by Microsoft with their version of the SSDLC

which is simply called Security Development Lifecycle (SDL). [32] Since its first

occurrence in 2004 the SDL has evolved into a well-defined methodology. Although in

the definitions and practical examples of the SDL the focus lies on Microsoft-specific

technology and tools, it can be used as a guideline for other areas as well.

Figure 9 - The Microsoft Security Development Lifecycle - Simplified
9

Newer standards focusing on securing the developing processes, like the industrial

standard ISA/IEC 62443-4-1 “Secure Product Development Lifecycle Requirements”,

are mostly in accordance with these recommendations and are heavily influenced by its

advices.

There are more general approaches which focus on assessing and evolving secure

software initiatives in a given environment like BSIMM [33] (Building Security in

Maturity Model) or the OpenSAMM [34] (Open Software Assurance Maturity Model)

framework.

Other companies are also following Microsoft in publishing their independent version of

secure development lifecycles. One example is Cisco with their “Cisco Secure

Development Lifecycle”. [35]

Cisco focuses more on the different software assurance activities and does not

categorize them in lifecycle phases like Microsoft, but the activities are roughly

comparable.

In the following chapters these possible security measures will be discussed in each

phase of the development lifecycle of a product. It is obvious that this is not a

replacement for an approved software development process that is already in use, but

rather an enhancement to existing development steps.

9
 Taken from: Microsoft Corporation: Simplified Implementation of the Microsoft SDL, 2010, available at

https://www.microsoft.com/en-us/download/details.aspx?id=12379

https://www.microsoft.com/en-us/download/details.aspx?id=12379

July 21, 2017 Fabian Fisecker 32/112

Microsoft puts it this way: “This document describes both required and recommended

changes to software development tools and processes. These changes should be

integrated into existing software development processes to facilitate best practices and

achieve measurably improved security and privacy.” [36]

 Training Phase 2.3.1.

Basic training is the key to ensure that the necessary awareness of the problem areas,

concerning the products’ security, is spread among the key stakeholders. Furthermore,

the fundamental concepts for the various activities in the different process phases must

be obtained by the different team members.

According to NIST SP800-50, four critical steps are needed to enroll an Awareness and

Training Program in a company:[37]

 “Awareness and Training Program Design:

In this step, an agency wide needs assessment is conducted and a training

strategy is developed and approved. This strategic planning document identifies

implementation tasks to be performed in support of established agency security

training goals.

 Awareness and Training Material Development:

This step focuses on available training sources, scope, content and

development of training material, including solicitation of contractor assistance if

needed.

 Program Implementation:

This step addresses effective communication and roll-out of the awareness and

training program. It also addresses options for delivery of awareness and

training material (web-based, distance learning, video, on-site, etc.).

 Post-Implementation:

This step gives guidance on keeping the program current and monitoring its

effectiveness. Effective feedback methods are described (surveys, focus

groups, benchmarking, etc.).”

It is described that the learning process itself is a continuum and, therefore, must be

embraced in such a way. The continuum starts with the basic awareness, builds into a

training program and matures into education as the following figure points out:

July 21, 2017 Fabian Fisecker 33/112

Figure 10 - The IT Security Learning Continuum
10

Basic topics of a security focused initial training can be:

 Security Awareness / Motivation Training

Developers often lack the proper motivation or principal awareness in

security-related problems. Even in modern development processes like

10

 Taken from: Wilson M and Hash J.: NIST SP800-50 Building an Information Technology Security
Awareness and Training Program, October 2003, available at
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf

July 21, 2017 Fabian Fisecker 34/112

Scrum, the performance of developers is measured in how quick a certain

feature can be achieved. If security is not directly addressed as a goal in

these features it is evident that the developers won’t focus on such issues.

A cultural change in developing companies is often needed and can only be

started by addressing this with ensuring the awareness of all development

stakeholders.

 Secure Architecture and Design (e.g. Security Patterns)

Software engineers and architects need to apply secure design principles

when drafting the foundations of new products. This can include topics like

defense in depth, secure defaults, attack surface reduction, least privilege

principles, etc. and will be discussed in the “Design Phase” chapter.

 Threat Modelling

An explicit training should focus on the topic of threat modelling, which will

be introduced in the “Design Phase” chapter. The training itself should not

only be attended by the engineer(s) who will conduct the threat modelling

process, but also by programmers and testers, because it is also necessary

to know how to code or test to a threat model.

 Secure Coding

Developers should be introduced to the principle of writing secure code.

This can include topics like buffer overruns, heap overflows, arithmetic

number errors, SQL injection, pointer errors, etc. and will be discussed in

detail in the “Implementation Phase” chapter. There are also many well-

known books in this sector which can be recommended. [38][39]

 Basics of Cryptography

Cryptography is the key element to protect the confidentiality and integrity of

data in an untrusted environment. All engineers in the development process

should know the basic principles of secret-key, public-key and hash

functions and in which use cases to apply those different types of

cryptography.

 Security Testing

Various methodologies exist to test and verify a program and the underlying

code against security requirements. The responsible stakeholders must

understand the special characteristics of security testing and the difference

to functional testing. This also includes the ethnical factor as in particular

penetration testing often requires a “blackhat” approach, where the tester

seeks to apply destructive measures as a malicious adversary would do.

This will be discussed in the “Verification Phase” chapter.

 Risk Management

Risk management in general and risk assessment in detail are topics which

have to be considered when trying to achieve a certain security goal. As no

modern product with all kinds of interfaces (regardless of hardware or

software) can achieve “full” security, it is vital to know how to categorize and

manage possible security risks. As important as this subject is while

developing a new project, it gets even more crucial when looking at existing

July 21, 2017 Fabian Fisecker 35/112

products. Therefore, it will be discussed in detail how to manage this risk in

chapter 2.4. “Handling Information Security in Existing Software”.

 Privacy

Privacy should be a dedicated topic when looking at information security.

The concepts of different types of privacy data and practices on how to

handle it should be discussed.

 Usage of Tools for the Different Process Phases

There are many programs and tools (software and hardware) which can

help in the different phases to achieve the proposed security goal or

measure. Showing the different stakeholders that these tools can help them

in their work is a key element to help accepting security measures as a

necessary and crucial element in the development process. Examples of

these tools will be given in the different phases, especially in the

implementation phase.

Though the training phase is located at the start of the development lifecycle, it is clear

that new events, like e.g. changes in the security of cryptographic algorithms, can

always happen. It is recommended to provide up-to-date information on an ongoing

basis to all stakeholders and renew parts of the training program even during other

phases of the lifecycle if necessary.

 Requirement Phase 2.3.2.

When trying to implement security measures, the academic community has a different

understanding of the requirement phase. Literature for requirement engineers,

business analysts, product owners, product managers, etc. often states that the focus

of requirements engineering has to be the product itself or that the approach should be

solely feature-based and that no attention should be given to technicalities. When

confronted with information security requirements, the professionals responsible for the

requirements engineering process usually argue that security is a technical topic and,

therefore, has to be processed in a later phase.

However, the overwhelming majority of research topics add dedicated security

requirements in the requirements phase when introducing a secure software

development lifecycle.

 Establish Security Requirements 2.3.2.1.

Typically (but not necessarily), security requirements are non-functional requirements

(NFRs) and can be distinguished into two different classes: one-time and continuous.

While one-time requirements can be treated like other requirements, continuous

requirements are best implemented in a “Definition of Done” or a Quality-Gate to

ensure that no implemented feature lacks the continuous requirement. Security

requirements can also be focused on privacy issues of the end user.

July 21, 2017 Fabian Fisecker 36/112

There are many models in the field which can help defining security requirements.

These modelling approaches are already introducing elements from the design phase,

but help, of course, with finding the underlying security requirements.

A few examples are:

 Information Security and Safety Models by Firesmith [40]

 Attack Trees [41]

 Fault Trees [42]

 CORAS Risk Modelling Notation [43]

 Secure Tropos [44]

 The SQUARE Methodology

The last example (SQUARE) will be explained at the end of this chapter. More design

focused approaches will be discussed in the following chapter 2.3.3. “Design Phase”.

A comprehensive categorization list of Information Security Requirements was

published by Firesmith: [45]

 Identification Requirements

 Authentication Requirements

 Authorization Requirements

 Immunity Requirements

 Integrity Requirements

 Intrusion Detection Requirements

 Nonrepudiation Requirements

 Privacy Requirements

 Security Auditing Requirements

 Survivability Requirements

 Physical Protection Requirements

 System Maintenance Security Requirements

Security requirements are essential security in the development process. If the security

requirements are well-defined in this early stage of a product, the chances of achieving

the necessary security for the product are significantly higher.

 Establish Quality Gates / Bug Bars 2.3.2.2.

At the start of a project, a minimum level of quality must be defined for each release (of

components, features or the product itself). Typically this quality gate centers around

which type of bug must be closed (e.g. all above a certain level) and what conventions

(e.g. code criteria) must be fulfilled.

Potential examples are:

 Every requested requirement must be met and tested

 Architectural design is documented

 Unit Test Code Coverage above percentage value (e.g. branch coverage 90%)

July 21, 2017 Fabian Fisecker 37/112

 Static code analysis values are met (e.g. maximum cyclomatic code complexity

is not higher than 10)

 Build must be warning free

 User Documentation is updated

While it is vital that these quality-centered requirements are pursued, additional

security-related topics can be added. A few examples are:

 Threat model documented

 Debug interfaces closed (at least in the Release Build)

 Minimum levels of privacy and security requirements are met

 No known vulnerabilities

 Security / Privacy Risk Assessments 2.3.2.3.

In the requirement phase it is mandatory to find out which privacy and security risks are

to be expected when looking at the requirements of the product.

The security risk assessment is the primary foundation to find out where more

comprehensive threat modeling or security design analysis has to be done in the

design phase or which part needs specific fuzz testing requirements.

The privacy risk assessment shows what privacy impact rating is applicable. Microsoft

SDL provides a classification in three categories: [36]

 P1 High Privacy Risk. The feature, product, or service stores or transfers PII,

changes settings or file type associations, or installs software.

 P2 Moderate Privacy Risk. The sole behavior that affects privacy in the feature,

product, or service is a one-time, user-initiated, anonymous data transfer (for

example, the user clicks on a link and the software goes out to a Web site).

 P3 Low Privacy Risk. No behaviors exist within the feature, product, or service

that affect privacy. No anonymous or personal data is transferred, no PII is

stored on the machine, no settings are changed on the user's behalf, and no

software is installed.

 SQUARE 2.3.2.4.

A more structural approach to the process of security requirements engineering is

proposed by the Software Engineering Institute’s Networked Systems Survivability

(NSS) Program at Carnegie Mellon University.

There the Security Quality Requirements Engineering (SQUARE) methodology was

developed. It consists of nine steps to ensure a comprehensive method when focusing

on security requirements:

 Agree on Definitions

 Identify Security Goals

 Develop Artifacts

 Perform Risk Assessment

July 21, 2017 Fabian Fisecker 38/112

 Select Elicitation Technique

 Elicit Security Requirements

 Categorize Requirements

 Prioritize Requirements

 Requirements Inspections

Each step of the methodology has its defined input and output, the techniques to be

used and the participants who have to perform the step. This approach may sound

labor-intensive at the requirement phase, though it generally makes sense to invest

resources at the beginning of a project. Nevertheless, a lighter version called

SQUARE-Lite was also developed.

The US-Cert lists the SQUARE technique as their recommendation for requirements

engineering and also (in a special form) as a method for acquisition where identical

problems occur. [46]

 Design Phase 2.3.3.

The design phase is a very crucial step for the outcome of a systems security.

Important decisions have to be made about the architecture and best practices on

which design principles to apply. Analyzing a design with threat modeling and attack

surface analysis can show possible problems, like exposed modules which may need

special design treatments.

 Threat Modelling 2.3.3.1.

Threat modelling is one of the most common ways to improve the security of a system

before or while implementing it.

It is implicitly done in many engineering disciplines. For example, when an engineer is

planning to build a new house he has to think of the problems that may occur, like

natural events (rain, snow, flooding) or burglaries. Depending on the threats,

appropriate measures like a stronger roof, drainage equipment or special locks have to

be installed.

Threat modelling gives a development team a structured guide on how to discuss

possible security weaknesses of the modelled design.

Within this chapter a short introduction on how threat modelling works is given, largely

based on Adam Shostacks book “Threat Modelling: Designing for Security”. [47]

As the following figure shows, there are 4 consecutive tasks when trying to do threat

modelling with a software system:

July 21, 2017 Fabian Fisecker 39/112

Figure 11 - The Threat Modelling Process
11

In each of the process steps one fundamental question can be focused on:

 Model System: What are you building?

 Find Threats: What can go wrong?

 Address Threats: What should you do about those things that can go wrong?

 Validate: Did you do a decent job of analysis?

Model System:

Modelling the underlying system is the first step of the threat analysis. Engineers have

to find an abstract way of thinking about the system they are trying to design and

implement. The easiest way for humans to achieve this is drawing diagrams. There are

different types of diagrams suitable for this task. First off and most frequently used are

Data Flow Diagrams (DFDs). Vulnerabilities tend to open where data is flowing,

especially when it is data input by the user.

Also very common are UML diagrams, mainly structure diagrams, state diagrams,

interaction diagrams or behavior diagrams. UML is the de facto standard for modelling

in software projects, although the complexity behind it is fairly high. There are even

specific notations like UMLsec or SecureUML for noting information security advisories

within regular UML diagrams or for model-driven development of secure systems,

respectively.

The third common diagram type is the Swim Lane Diagram. SLDs also show data flow

between communicating parties.

11

 Taken from: Shostack A. – Threat Modelling: Designing for Security, 2014, John Wiley & Sons.

July 21, 2017 Fabian Fisecker 40/112

In the end, what matters is not which type of diagram is used, if all the contributing

people receive a better understanding of the models behind the project’s design.

As a general rule on what to include in a diagram, the following comprehensive list from

[38] can be followed as a guideline:

 Show the events that drive the system.

 Show the processes that are driven.

 Determine what responses each process will generate and send.

 Identify data sources for each request and response.

 Identify the recipient of each response.

 Ignore the inner workings, focus on scope.

 Ask if something will help you think about what goes wrong, or what will help

you find threats.

Finding Threats:

When the threat modelling participants have a clear understanding of the underlying

model, the actual search for threats can begin in the second part of the process. There

are four different methodologies on how to find threats, each with its own merits and

drawbacks:

 The STRIDE mnemonic

 Attack Trees

 Attack Libraries

 Privacy Tools

STRIDE is a mnemonic for modelling security threats. It divides the threats in six

categories:

 Spoofing of user identity

 Tampering

 Repudiation

 Information disclosure (privacy breach or data leak)

 Denial of service (D.o.S)

 Elevation of privilege

The framework helps in finding threats by thinking about how the system design is

susceptible to each of the threat types. When checking the model, each STRIDE

category is evaluated and if there is a threat possibility, it is written down. It is

imperative that the categorization itself is not important, since it is very easy to find

threats that are hard to classify into one specific STRIDE category. In essence, it is

important that threats are found, but not that they are classified.

Modelled tree diagrams, so called attack trees, are another possibility of detecting

threats. The root represents the goal (e.g. a malicious attack) and the branches

representing the way of attacking the system, or as Schneier puts it:

“Attack trees provide a formal, methodical way of describing the security of

systems, based on varying attacks. Basically, you represent attacks against a

July 21, 2017 Fabian Fisecker 41/112

system in a tree structure, with the goal as the root node and different ways of

achieving that goal as leaf nodes.” [41]

An example of an attack tree is shown in the following figure:

Figure 12 – Example Attack Tree
12

Attack libraries consist of detailed lists of practical attacks or tools for attack. Threats

are then derived from thinking of how these practical attacks could work on the given

system. Other threat libraries work the same as STRIDE, providing only a short list of

security risks for the application. A good example is the OWASP Top Ten List [48],

showing the ten most common security risks for web applications:

 A1-Injection

 A2-Broken Authentication and Session Management

 A3-Cross-Site Scripting (XSS)

 A4-Insecure Direct Object References

 A5-Security Misconfiguration

 A6-Sensitive Data Exposure

 A7-Missing Function Level Access Control

 A8-Cross-Site Request Forgery (CSRF)

 A9-Using Components with Known Vulnerabilities

 A10-Unvalidated Redirects and Forwards

Privacy tools focus explicitly on finding privacy risks in the underlying models. Like with

the STRIDE-mnemonic there is a mnemonic for privacy threat modelling:

LINDDUN, which stands for the following privacy issues:

 Linkability

 Identifiability

 Non-Repudiation

 Detectability

12

 Taken from: Schneier B. – Dr. Dobb’s Journal: Attack trees, December 1999, available at
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

July 21, 2017 Fabian Fisecker 42/112

 Disclosure of information

 Content unawareness

 Policy and consent noncompliance

Address Threats:

In the third part of the process, the found threats are analyzed and mitigation

possibilities are researched.

Most of the time, it will be technical implementation of a defensive pattern or features

like encryption, authentication, integrity checking, etc., to address a threat. It could also

be a simple configuration or usage of another protocol, or tunneling through a secure

protocol to make a threat entirely disappear or minimalize it to a certain level.

Keep in mind that often the best way to address threats is to use standardized, security

audited products, as self-made solutions naturally tend to be unstable in first iterations.

The business perspective of addressing threats is risk management and will be

discussed in a later topic.

Validate:

After addressing the threats with various new designs, better security technology and

special features, the most important thing is to validate the found solutions. It would not

be the first time that a minimal problem was fixed with a code-heavy feature leading to

other threats and vulnerabilities. In essence, like every other step in the development

process, some sort of quality assurance has to be applied to the changes made by

threat modelling.

July 21, 2017 Fabian Fisecker 43/112

There are many other security modelling notations out in the field which can help to find

suitable threats and vulnerabilities in systems. The following figure from Elahi shows a

comprehensive list of notation with the indication of whether a security concept is

considered or not: (Y indicates that the concept is considered, N that it is not)

Figure 13 - Comparison of Security Modeling Notations
13

“Existing modeling notations for security address different security concepts and take

different viewpoints to security. Each modeling approach is able to express certain

aspects and lacks conceptual modeling constructs to represent some other.” [49]

Therefore, when searching for a security modelling notation, one has to consider which

concepts are important to apply in the specific use case. [50]

 Security Design Requirements 2.3.3.2.

When designing the architecture of a new system, fundamental security design

principles have to be applied.

13

 Taken from: Elahi G.: Security Requirements Engineering: State of the Art and Practice and Challenges,
available at http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf

http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf

July 21, 2017 Fabian Fisecker 44/112

Many of the design patterns, which are explained in the following chapters, go back to

Saltzer and Schroeder’s original 1975 design principles. [51] Apparently, most of them

have stood the test of time and are either merely adapted or enhanced to fit the

modern world of software development.

An example list of these patterns could be: [52][53][54]

 Economy of mechanism

Maybe the most important lesson a security architect can teach is to keep things

simple. The more complex a system or software application gets, the harder it is to

keep it secure. Many other principles are based on this assumption or are aimed in

the same direction. An example would be KISS (Keep It Simple, Stupid) or YAGNI

(You Aren’t Gonna Need It). Another characteristic of economy of mechanism is

that the security functionality itself should also follow this rule of being as simple as

possible. Otherwise the security functionality itself could become a security

problem.

 Least privilege principle

A program, user or other entity should only be given the privileges it needs for

fulfilling the task it was created for. If privileges have to be raised for a special

purpose, this should only be temporary. Example resources where privileges could

be applied are user rights, file system permissions or hardware resources like CPU

power, memory usage or network bandwidth.

 Separation of privilege

The separation of privilege or also sometimes called separation of duty pattern

states that not only one condition should enable access to a resource. If multiple

conditions (which may even differ in the type of the condition) have to be granted it

is harder for an attacker to circumvent the access system. A modern example of

this is multi-factor authentication, where a user has to present at least two separate

types of evidence (knowledge, possession or inherence) to an authentication

system.

 Fail-safe defaults

Every access to an important resource should be restricted by default. To open

access to a resource the authorization system has to identify explicit permissions

(rather the opposite way with exclusions). In more modern systems this is

sometimes referred to as “Deny by Default” and a modern configuration of fail-safe

defaults is often implemented as a white-list (in contrary to a blacklist).

 Complete mediation

This principle states that every access to a critical resource has to be validated by

the underlying system, e.g. by an authorization mechanism. These access controls

should not be weakened by caching, as access rights could be revoked. Of course,

this can have a direct impact on the performance of the system.

 Open design

The well-known term “security through obscurity” follows the basic idea that the

security of a system is ensured by keeping its functionality and architecture secret,

however in the modern world this is no longer a valid option. The open design

principle follows exactly the opposite goal by making the design publicly available.

July 21, 2017 Fabian Fisecker 45/112

Therefore, different kinds of engineers can peer-review this public data and help in

finding security problems. In the field of cryptography this concept goes back to the

19th century with Kerckhoffs’s principle. It states that “a cryptosystem should be

secure even if everything about the system, except the key, is public knowledge”.

[55]

 Least common mechanism

This security principle states that functions that enable sharing resources should be

minimized or even eliminated, if possible. This reduces deadlock scenarios and

also the risk that information paths are crossed between users.

 Psychological acceptability

A security mechanism is often a direct rival of usability. For example, users do not

want to be asked for a password every time they access a system. It would be

more convenient for them to never see a security-related prompt like a login-field.

Therefore, it is very hard to design a security mechanism in a way that users with

low awareness of security-necessities are going to use it properly. This is the goal

of the psychological acceptability secure design principle. Some modern

approaches restate this mechanism as “Least astonishment principle”, where the

user should not be astonished by the behavior of the system.

 Isolation

The basic idea of isolation is to divide critical data, programs or systems into small

pieces and separate them from each other. If one system is compromised then the

other pieces are still unaffected. In practice this design pattern is very hard to fulfill,

as modern systems tend to be interconnected more and more. A good example is

the virtualization technology, where thin layers of control programs called

hypervisors are used to isolate other components of the running environment.

 Encapsulation

Encapsulation, a reference to the object-oriented programming language

mechanism of restricting direct access to a member of an object is also used as a

secure design principle. In general data should be hidden and not be made directly

accessible, but only with functions or procedures returning the value.

 Modularity

This design pattern follows the “separation of concerns” approach and ensures that

a program or system is designed in a modular way. Therefore, also security

functions can be separated into protected modules and used by many other parts

of the system. A good example could be cryptographic libraries embedded into a

security module, so that all other components can use the cryptographic functions

of these libraries.

 Defense in Depth

Defense in depth is also often called layering. It uses overlapping security

principles which make it exponentially harder for attackers to penetrate a system,

as the attacker needs to accomplish multiple types of successful attacks.

NIST SP800-160 “Systems Security Engineering: Considerations for a Multidisciplinary

Approach in the Engineering of Trustworthy SFecure Systems“ [56] provides a more

conclusive approach, listing 32 design principles in the three categories “Security

July 21, 2017 Fabian Fisecker 46/112

Architecture and Design”, “Security Capability and Intrinsic Behaviors” and “Life Cycle

Security”. The following figure shows an overview:

Figure 14 - Security Design Principles
14

It is very hard to apply all these secure design principles to their full extent in a system

and not every system needs the usage of all design principles. Security design

requirements often directly oppose performance or usability requirements. System

architects have to balance these requirements to ensure an acceptable user

experience as well as a secure system.

 Attack Surface Analysis 2.3.3.3.

Attack surface analysis is closely related to threat modelling according to OWASP:

“There is a recursive relationship between Attack Surface Analysis and Application

Threat Modeling: changes to the Attack Surface should trigger threat modeling, and

threat modeling helps you to understand the Attack Surface of the application.” [57]

In the attack surface analysis the observed design model is examined to find

opportunities for potential attackers to exploit vulnerabilities.

The attack surface of an application is in short:

 “the sum of all paths for data/commands into and out of the application, and

14

 Taken from: Ross R. et al: NIST SP800-160: Systems Security Engineering: Considerations for a
Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, November 2016, available
at: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf

July 21, 2017 Fabian Fisecker 47/112

 the code that protects these paths (including resource connection and

authentication, authorization, activity logging, data validation and encoding),

and

 all valuable data used in the application, including secrets and keys, intellectual

property, critical business data, personal data and PII, and

 the code that protects these data (including encryption and checksums, access

auditing, and data integrity and operational security controls)” [58]

The goal is to reduce the attack surface by design. This is, for example, possible by

restricting access or shutting off specific (maybe unneeded) services. If a general

shutdown is not possible, turning certain features off in a default configuration could be

viable. In specific use cases these services can be activated again, but the attack

surface will be reduced for a majority of users. If the attack surface analysis finds

exposed parts, which cannot be changed by design, a defense-in-depth approach can

help in mitigating possible attacks.

There are theoretical models to measure the attack surfaces of programs, like the

RASQ approach, as indicated by Howard et al in [59].

More practical analysis is done by tools like Attack Surface Analyzer, but as these tools

measure the attack surface of finalized software rather than the potential attack surface

of a design, this topic will be discussed in the Verification Phase chapter.

 Usage of Cryptography 2.3.3.4.

Cryptography is the art of ensuring privacy while communicating via an untrusted

medium. Four primary goals can be achieved with cryptography:

 Confidentiality: it is ensured that only the intended receiver of a sent message

can read the message

 Integrity: a receiver can verify if a sent message has been altered in transit

 Authenticity: the identity of the receiver or sender can be proved

 Non-repudiation: the sender cannot deny sending the message

The tricky part is, that system designers have to decide in which use case which type

of cryptography should be applied. The three types of cryptography are: [60]

 Secret-key cryptography:

The same key is used for encryption and decryption of a message. Therefore,

the key has to be kept secret and transferred securely to the receiver. Also a

unique key is required for every message partner. This is often called

symmetric-key cryptography.

 Public-key cryptography:

Two different keys are used for encrypting and decrypting the message. For

example a public key can be used for encrypting a message. Only the holder of

the matching private key can decrypt the message. Therefore, the public key

can be published via insecure channels, only the private key has to be kept

secure. The key-pair can be used for infinite communication partners. This is

also called asymmetric-key cryptography.

July 21, 2017 Fabian Fisecker 48/112

 Hash functions

Hash functions are algorithms which map data of arbitrary size into a bit string

of fixed size. They are designed as a one-way function, which are infeasible to

revert. These algorithms are often used to ensure data integrity.

A multitude of good practices when designing and implementing cryptographic

functions can be found. For reasons of consistency, the implementation examples will

also be discussed in this chapter: [61]

 For symmetric-key cryptography the Advanced Encryption Standard (AES)

cipher should be used. This is due to the large effort of reviews this cipher has

endured since its status as a standard cipher without significantly weakening it.

Hardware acceleration is also available on many platforms when this cipher is

used and the library supports it.

 A minimum of 128bit of key length has to be used when applying a symmetric

cipher.

 RSA is recommended for asymmetric cryptography in a finite field. More

modern elliptic curve ciphers can be used, especially in low-performance

environments.

 A minimum of 2048bit of key length has to be used when applying an

asymmetric cipher in a finite field. For elliptic curve cryptography a minimum of

256bit of key length should be selected.

 When using elliptic curve cryptography appropriate curves have to be selected.

There are many standards which try to help in this matter. A good online

resource which summarizes the academic coverage in this field is:

https://safecurves.cr.yp.to/.

 For hashing purposes, the Secure Hashing Algorithm (SHA) version 2 or 3

should be used. (e.g. SHA-256)

 When implementing SSL/TLS a cryptographically secure version of the protocol

has to be used. Currently SSLv2 and SSLv3 have to be omitted, TLSv1.2 is

recommended. Ciphers supporting forward secrecy should be used (ECDHE or

DHE).

 When using X.509 certificates always check the validity period, verify the

hostname or IP address against the Subject Alternative Name or Common

Name field as a client, use certificate revocation mechanisms like Certificate

Revocation Lists (CRLs), the Online Certificate Status Protocol (OCSP) and

OCSP stapling.

 Never implement a cryptographic algorithm on your own, except for educational

purposes.

 Implementation Phase 2.3.4.

During the implementation phase the architecture and plan of the design phase have to

be developed into a working product. Best practices in secure coding and knowledge of

https://safecurves.cr.yp.to/

July 21, 2017 Fabian Fisecker 49/112

supporting tools are the key factor in guaranteeing a high software quality and lack of

issues that could lead to security or privacy concerns.

 Secure Coding Practices 2.3.4.1.

To minimize the chance of developing code with security issues, there are, in addition

to the more general design principles, several practical coding practices, which should

be followed by the software developers.

In the following a few examples are provided: [38][62]

 Managed code

In general it is advisable to use managed code whenever possible. The advantages

in e.g. handling memory management, thread management or garbage collection

are helping to reduce errors like pointer mess-ups. Type concepts like delegates

improve type safety by guaranteeing a reference to a method with a correct

signature and thus should be used instead of function pointers. [63]

 Exception handling

Exception handling is a powerful construct to handle run-time errors in a program.

Many security attacks have the direct goal to reach a failure-state in a program.

Exception handling gives the programmer the chance to separate the error

handling code from the productive code, which can also result in security problems

if the error-handling succumbs to “catch-all”-handling.

There is also the possibility to differ the type of error which occurred. This is very

important, as programmers should not use global exception handlers, as this could

mask attacks. Also programmers need to be careful when exceptions leave objects

in inconsistent states, as this could be exploitable by attackers.

It is also vital to handle exception or error messages in a way that an attacker

cannot gain advantage by reading them. Detailed information, like version

numbering, stack trace information or other diagnostic information can lead to new

attack vectors for a malicious attacker.

 Validate user input

User input is a key attack vector when analyzing attacks in the past years. Attacks

like SQL Injection or Cross-Site Scripting are very popular and could be mitigated

quite easily. A key prevention measure is to validate the input based on a white-list

(accept only known input) or other form of input sanitization (e.g. data range,

length, types, character-set, etc.). For standardized query languages like SQL more

abstract features like prepared statements or stored procedures can also mitigate

this type of attack. [64]

To test if the implemented mitigations work it is common to use fuzz testers

generating random, invalid or unexpected data for the user input. This will be

discussed in the following chapter “Verification Phase”.

 Use validated parsers

When using standard types of markup language (e.g. XML or JSON) to transfer or

store data it is vital to use security-validated parsers. Parsing complex file types like

XML is very error-prone and security issues are likely to occur. [65] This applies

also to other forms of parsers (e.g. other file-formats like images or regular

July 21, 2017 Fabian Fisecker 50/112

expressions). Self-implementation of any form of parser should be omitted. If this is

not possible, the parsing algorithm should be extensively tested, e.g. with a fuzz

tester.

 Use existing libraries and APIs

It is always better to use an existing library or functionality than to implement the

same feature again. Standard libraries are in most cases better tested and

reviewed than code which is only implemented for a specific product.

 Integer arithmetic

Overflows or Underflows in numeric variable types are very common mistakes (in

non-managed code) and often lead to security issues. A general mechanism to

check boundaries should be in place.

 Explicit initialization

Variables and other data storing types should always be initialized explicitly. In

most languages this can be done directly when declaring the variable, otherwise it

has to be done before the first use of the variable.

 Secure library loading

When loading dynamically linked libraries a program has to be sure to load the

correct file. If an attacker gets access to a particular folder where the library is

stored or manipulates the path to the library the program could load potentially

malicious code. [66]

These practices are often accompanied by special tools, which can check or verify,

whether the specific practice is followed correctly. A few examples will be given in the

following chapter “Tool Usage”.

A more comprehensive list of secure coding guidelines, with the focus on web

application development is provided by the OWASP Foundation. The list contains over

100 practical advices, divided into 14 categories: [67]

 Input Validation

 Output Encoding

 Authentication and Password Management

 Session Management

 Access Control

 Cryptographic Practices

 Error Handling and Logging

 Data Protection

 Communication Security

 System Configuration

 Database Security

 File Management

 Memory Management

 General Coding Practices

The advices often focus on secure design guidelines and the practical implementation

of the design pattern, e.g. how to implement the least privilege principle or fail-safe

July 21, 2017 Fabian Fisecker 51/112

defaults into a user access control mechanism. A detailed explanation of every advice

will be omitted, as this is not within the scope of this thesis.

 Tool Usage 2.3.4.2.

Developers should use a list of approved tools and special settings to ensure that their

code follows security regulations. This can be specialized programs which can find

buffer overflows in unmanaged code or simple compiler/linker flags to do security

checks. A style checker should be used, so no deprecated functions are used. These

tools also often help with analyzing the code which leads to the following topic of static

code analysis.

An example set could be:

 When using a compiler like GCC, turn on all warnings, enable buffer overflow

protection (fstack), Adress Space Layout Randomization (ASLR), overflow traps

and read-only relocation. Compiling for windows may be more suitable with

visual studio to enable windows-specific protections not available in GCC (for

example Structured Exception Handling Overwrite Protection – SEHOP).

 Linkers should also be configured to use features like ASLR or Data Execution

Prevention (NX-bit)

 For windows environments BinSkim is a binary scanner that scans windows

executables for correct security settings (e.g. if the above compiler and linker

settings were made)

 Tools concerning the analysis of source code will be discussed in the following

chapter.

 Static Code Analysis 2.3.4.3.

Static source code analysis is a standard approach in improving code quality, thus also

helping to reduce problems which cause security issues. It is performed (contrary to

dynamic code analysis) without executing the code and only based on analyzing the

text sources or compiler output.

Static code analyzers are able to detect severe coding errors like buffer overflows,

different kinds of memory corruption or null pointer dereferencing. Other possibilities

are to check if certain coding conventions were followed, if there are code duplicates, if

the code includes comments and documentation or if it is complex (which is

measureable by different attributes).

Therefore, static code analysis includes the calculation of code metrics like Lines of

Code, Code Complexity (Halstead, McCabe, Fat, Maintainability Index, etc.) and

object-oriented metrics (Depth of Inheritance, Coupling, Cohesion, etc.). These metrics

can be used to statistically analyze the product as it is being developed and as a

quality bar that has to be reached for production code.

The analysis should be automatically done by a toolset (depending on the specific

implementing technology) and the metrics enforced at the code check-in to the

repository. This is a very scalable solution to perform automated code reviews.

July 21, 2017 Fabian Fisecker 52/112

A more theoretical approach is the usage of mathematical methods to specify, verify

and proof the written code. This specialized field is called “formal methods” and can be

categorized in three levels: [68]

 Level 0: Formal specification

 Level 1: Formal development and verification

 Level 2: Theorem proofing

Each level differs in how extensive formal methods are used. While the specification

made in level 0 can help as a description for system designers or developers, a level 2

proof of a system guarantees its correctness in respect to the specification.

Of course proofing a program comes with a significant cost in effort. Finding the

necessary specification (e.g. pre-conditions, post-conditions and invariants) and

mathematically proofing a complex program is still very hard.

 Security Code Review 2.3.4.4.

When engineering a complex system human error is a common thing. According to

McConnell in [69] the industry average of errors per 1000 lines of code is about 15 to

50.

Reviewing the implemented code is a key element of finding issues. It is a white-box

assessment method, allowing the reviewer to see every detail of the implemented

functionality. In later phases this converts to more and more of a black-box approach,

where the insight of the product gets smaller, and issues are getting harder to find.

The greater benefit may be that the review partners can talk about their best practices

and share experiences with each other. This contributes to an educational

environment, as described earlier in 2.3.1. “Training Phase”.

A security code review focuses especially on finding vulnerabilities that lead to security

issues, as well as reviewing the implemented security controls. It is also the only viable

option to review specific implementations, where no automated tool or fuzzing

approach can help in finding bugs.

OWASP provides numerous guides [70] for review topics.

A few examples are:

 Reviewing Code for Data Validation

 Reviewing Code for Error Handling

 Reviewing Code for Logging Issues

 Reviewing Code for OS Injection

 Reviewing Code for Race Conditions

 Reviewing Code for Session Integrity issues

 Reviewing Code for SQL Injection

These guides help reviewers in finding specific vulnerabilities, especially in the field of

web application security (which is the focus of OWASP).

July 21, 2017 Fabian Fisecker 53/112

 Verification Phase 2.3.5.

When a product is implemented it has to be tested against the security requirements

formed earlier to guarantee that all the security goals were achieved in previous

phases. The testing methods can be performed in different phases by different team

members (e.g. by the implementation team) to verify if security requirements are met. It

is common that the implemented test schemes and test environments are reused (e.g.

when maintaining or updating the product) until the decommissioning of the product.

 Dynamic Code Analysis 2.3.5.1.

Dynamic code analysis is performed by executing programs and analyzing them during

runtime. This can range from simple unit testing to live memory checking. Measures

like code coverage should be used to know if the analysis was made with sufficient

paths and/or lines of the program executed.

This way, runtime errors like race conditions, resource leaks, user privilege issues,

code injection possibilities, null pointers, etc., can be found.

Many different tools for different platforms are available, for example resource leak

detectors like AddressSanitizer, Purify or dmalloc. For the special case of

multithreaded error analysis tools like Intel Thread Checker, ThreadSanitizer or the

mighty valgrind suite are capable to dynamically find e.g. race conditions.

 Fuzz Testing 2.3.5.2.

Fuzz Testing or „Fuzzing“ is a widely-used test strategy to find security vulnerabilities

(and also general program errors) in modern application software. This approach is to

“fuzz” random (or malicious) data to the application’s interfaces. This should simulate

the real-life usage of the software, where not only plausible data input will happen.

The basic problem with this approach is the need for millions or billions of iterations to

reach a sufficient coverage of all code paths of a more complex program. Modern

fuzzers take this into account and are using techniques like code instrumentation to

mitigate these problems.

Fuzzing is particularly helpful, the more nested and complex operations a program is

performing. A human code review is naturally limited in reliably verifying a program as it

gets more complex. This is widely seen in the open source community, where even in

heavily audited programs, fuzzing yields impressive results (e.g. with OpenVPN,

documented by [71]).

Additionally, once a fuzz test environment is established for a certain program, it can

be reused and included into a continuous-integration process. Contrary to code

reviews, which are looking into a particular state of a program, the fuzz test

environment can then help in finding issues continuously.

July 21, 2017 Fabian Fisecker 54/112

 Attack Surface Review 2.3.5.3.

A review of the attack surface given by the implemented program should be made after

code completion. The result can be compared to the attack surface analysis and the

threat modelling results made in the design phase.

The result should determine if the implementation phase contributed to an increase of

the attack surface or if the design or implementation has to be changed due to new

attack vectors.

A common testing method to determine the given attack surface is a black box

penetration test while running the program with a specialized toolset.

Examples of these tools are Attack Surface Analyzer or AppVerifier, which are

specialized in searching for attack surface issues in products related to the Microsoft

environment. In a Linux environment tools like ntop, nmap, watch, strace, etc. can also

be used to analyze attack surfaces depending on the type of created product.

For a common type of application, like a web application more specialized tools like

OWASP Zed Attack Proxy, Burp Suite, Skipfish or w3af are available to view potential

web vulnerabilities.

For a more general approach a vulnerability scanner like OpenVAS, Nessus or

Nexpose can be used. These scanners assess applications, whole computers or even

networks against an internal database with thousands of known exploits.

The practical usage of such tools will be shown in chapter 3. “Security Analysis of an

Industrial Automation Product”.

 Release Phase 2.3.6.

If the developed product is getting ready to be deployed to the public, the release

phase focuses on a final security and privacy review. Additionally the product can be

certified with a security related certification.

 Final Security and Privacy Review 2.3.6.1.

Before the release of the new product, an examination of all security-related activities

during the project should be performed. A best practice approach is to test the product

against the given security requirements, threat models and quality gate rules. It should

not be a last ditch-effort to patch found vulnerabilities.

Example activities in this final security review are: [32]

 The threat model and attack surface analysis should be reviewed and cross-

checked with the final product, if they are still up-to-date. Additionally, all found

threats should be examined if they were mitigated.

 All found security issues in the development process should be verified against

the final product. Security issues that were suspended or declined should also

be reviewed, if they apply for the final product.

 The output of all security related tools should be reviewed and in case of

inconsistencies the tool should be rerun.

July 21, 2017 Fabian Fisecker 55/112

 Certification 2.3.6.2.

Proper certification of products (and also the development process) ensures that the

intended level of security was reached. It also reassures the potential customers that

the product meets given standards in information security.

Certifications in the field can be organized in two groups - product certifications and

organizational certifications, but many focus only on information security in the IT

infrastructure.

Below is a sample list of applicable information security related product certifications:

 Common Criteria (ISO 15408), by ITSEC Joint interpretation library

 TÜV product certifications (“proved software”,”proved app”, “proved privacy”

etc.)

 CIS Certified Security Software Products (Center for Internet Security)

 ICSA Labs Certification

These certifications focus on the certification of a specific product. Often this comes

only in combination with a process-oriented company certification. Applicable examples

are as follows:

 ISO 27001 Information Security Management

 IEC 62443 Conformity Assessment Program

 ISO 21827 Systems Security Engineering Capability Maturity Model (SSE-

CMM) - ISSEA

 Archiving 2.3.6.3.

The archiving of all data, including source code, binaries, requirements,

documentation, licenses, etc., should be checked at the end of the project. This is

equally important for any third party software.

 Response Phase 2.3.7.

Creating and executing an incident response plan is the final act for a product in its

secure development lifecycle. Incident response deals with threats that occur while the

product is deployed in the field. Incidents can come from internal or external resources.

An emergency contact must be provided to handle the information properly.

Incident response also involves the handling of inherited code from third parties or

other development teams in the company. It is also vital to observe used third party

components in worldwide CVE repositories to find advisories about used versions of

these products.

It depends on the organization of the company whether the responsibilities of the

product stays with the same team or whether a dedicated engineering team is formed

and commissioned with the task of incident response.

To publicly announce the found vulnerabilities within such incidents is called a security

advisory. This will be discussed in the following chapter.

July 21, 2017 Fabian Fisecker 56/112

 Security Advisory 2.3.7.1.

When vulnerabilities are found in a product that is publicly released, it is the obligation

of the selling company to disclose it as an advisory in public. A best-practice approach

for companies today is to disclose these security advisories on the homepage of the

company in a separate section for information security concerns.

A security advisory should implement the following sections:

Notice:

In the notice section, legal information like copyright claims, warranty notices,

responsibilities etc. should be clarified.

Affected Products:

All of the company’s products that are affected by the specific vulnerability should be

declared. Different hardware and software releases and versioning must be

considered. It should be stated if the company also includes advisories on end of life

products or if they are omitted.

Vulnerability Summary:

A thorough explanation of the vulnerability must be provided. Scenarios in which the

vulnerability can or could be exploited should be given. If exploits were witnessed or

implemented in the incident response process and mitigations are available, they can

be released for testing purposes.

Naming and Severity Rating:

The vulnerability should be given a Common Vulnerability and Exposure (CVE)

Identification for public referencing.

Additionally the vulnerability should be rated according to the Common Vulnerability

Scoring System (CVSS) which states:

“The Common Vulnerability Scoring System (CVSS) is an open framework for

communicating the characteristics and severity of software vulnerabilities. CVSS

consists of three metric groups: Base, Temporal, and Environmental. The Base group

represents the intrinsic qualities of a vulnerability, the Temporal group reflects the

characteristics of a vulnerability that change over time, and the Environmental group -

represents the characteristics of a vulnerability that are unique to a user's environment.

The Base metrics produce a score ranging from 0.0 to 10.0, which can then be

modified by scoring the Temporal and Environmental metrics.” [72]

For some companies it could be suitable to apply for a CVE Numbering Authority

(CAN). This authorizes an organization “to assign CVEs to vulnerabilities affecting

products within their distinct, agreed upon scope, for inclusion in first-time public

announcements of new vulnerabilities.” [73]

Mitigations:

In this section, corrective actions or resolutions of the vulnerability and how to

implement them should be presented. As an example the company could provide a

software update which closes the vulnerability and further documentation on how to

apply the update for the corresponding devices.

If no direct mitigation is available the advisory could also point out workarounds or

recommendation of usage until a corrective measure exists.

July 21, 2017 Fabian Fisecker 57/112

Support:

A section for contact information regarding the vulnerability should be provided. Also

references to additional information can be included here.

Credit:

Credits to the reporting party (if external) should be included, if the reporting party

wants to be publicly credited.

 Agile Adaption 2.3.8.

To use different methods of improving the product security also when they are

developed in an agile process, we have to align them to the agile methodology.

It is obvious that not all measures can be completed in one sprint with the duration of

two weeks.

Therefore, the activities have to be divided in three categories: [32]

 Every Sprint: measures to be done in every sprint

 One Time: measures to be done only one time (mostly at the beginning or at

the end of a project)

 Bucket: measures to be done over time but finished within a limit (e.g. six

months).

This can mean that the task at hand is sliced into 12 pieces and within every

sprint one chooses one of the pieces (but not necessarily).

The figure below shows a visual representation of the Microsoft SDL adapted for an

agile, sprint-based process.

July 21, 2017 Fabian Fisecker 58/112

Figure 15 – Agile Model for Microsft SSDLC
15

The figure shows the split of the security activities into the three categories. The one-

time activities are indicated by the dark blue color, which are most likely to be done at

the start or at the end of the lifecycle. A good example is the training phase, where a

good start would be to train the team members in topics like security requirements or

otherwise, it would be hard to start the requirements phase.

Bucket tasks are displayed in the figure as small buckets with slices in every sprint.

Good examples are security verification tasks, like fuzz tests for attack surface

analysis. They have to be performed, but not necessarily in every sprint.

And as the final category, the figure shows three sprints where certain activities have to

be performed in every sprint. Good examples are the tasks from the Implementation

phase, where every piece of written code has to undergo static code analysis to ensure

a certain software quality.

15

 Taken from: Microsoft Corporation: Simplified Implementation of the Microsoft SDL, 2010, available at
https://www.microsoft.com/en-us/download/details.aspx?id=12379

https://www.microsoft.com/en-us/download/details.aspx?id=12379

July 21, 2017 Fabian Fisecker 59/112

2.4. Handling Information Security in Existing
Software

As described in the chapter 2.3 “Information Security in the Development Lifecycle”, we

have found numerous ways to improve the security of newly developed software. The

apparent problem is what to do with already existing products with an older code base.

To apply the measures of the introduced SSDLC, a review (and potentially refactoring)

of every existing piece of software created and still in operation (whether in the

company or at customers), could be necessary.

Since this is not a realistic scenario, other measures to mitigate the security risk have

to be applied in existing software.

 Risk Management 2.4.1.

From a business perspective, applying the case of risk management is the only option

to approach information security in existing products. It is not possible to ensure

“complete” secureness in a product. A middle ground between the investment cost and

residual risk from security issues has to be found. A possible method for achieving this

is presented in this chapter.

 Risk Assessment 2.4.1.1.

To perform a risk assessment is the first step to analyze the risk given by a certain

product. The risks can then be estimated and prioritized, which enables the responsible

persons to consciously make the correct decisions on what to do with these risks.

The NIST Special Publication 800-30r1 “Guide for Conducting Risk Assessment” [74]

shows a comprehensive way to execute such an assessment:

July 21, 2017 Fabian Fisecker 60/112

Figure 16 - NIST SP80030r1 Risk assessment process
16

Assessment Preparation

In preparation for the risk assessment, the goal, purpose and scope of the assessment

itself have to be initially defined. Then the practical method of conducting the risk

assessment has to be chosen.

Identify Threat Sources, Threat Events, Vulnerabilities and Predisposed

Conditions

To find threats and vulnerabilities, various techniques can be applied. The NIST

SP800-30 framework explores the possible sources and events with a collection of

examples. These lists are analyzed and a threat, if applicable, is noted.

As we have seen in chapter 2.3. “Information Security in the Development Lifecycle”

more promising approaches for software threats can be applied here. For example,

threat modelling with its different finding techniques could lead to more specific threats.

Additionally, as we already have working software, a security audit of the product will

directly determine vulnerabilities or hints for bad design (and, therefore, the possibility

of future threats) of the software. An example of a practical security analysis will be

shown in the following chapter 3. “Security Analysis of an Industrial Automation

Product”.

16

 Taken from: Stoneburner, G. el al.: NIST SP800-30r1 Guide for Conducting Risk Assessments,
September 2012, available at http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
30r1.pdf

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

July 21, 2017 Fabian Fisecker 61/112

Determine Likelihood

As a next step, the threat’s likelihood of occurrence has to be defined. This is one of

the two crucial metrics which will allow calculating the risk of the threat. The properties

of the threats found from the previous task have to be taken into consideration.

NIST SP800-30 puts it this way:

“Determine the likelihood that threat events of concern result in adverse impacts,

considering: (i) the characteristics of the threat sources that could initiate the events; (ii)

the vulnerabilities/predisposing conditions identified; and (iii) the organizational

susceptibility reflecting the safeguards/countermeasures planned or implemented to

impede such events.”

Determine Impact

Assessing the impact of the given threat will define the second metric for calculating

the risk factor of an attack. Again the possible impact can be cross-referenced to tables

with experienced impacts. STRIDE can also give a hint as to which security categories

have been impacted by the given threat.

Calculate Risk

Calculating the risk of a given threat is now very easy given the impact and the

likelihood of the risk by simply multiplying those factors.

Other frameworks give different approaches which include other or more factors. An

example is the DREAD methodology, which gives a rating based on 5 factors: [75]

 Damage - How bad would an attack be?

 Reproducibility - How easy is it to reproduce the attack?

 Exploitability - How much work is it to launch the attack?

 Affected users - How many people will be impacted?

 Discoverability - How easy is it to discover the threat?

Given that the risks were discovered within a security analysis (which makes them

vulnerabilities) the rating system “Common Vulnerability Scoring System” (CVSS) can

be applied.

Communicate Results

The result of the risk assessment should be communicated to the effected business

areas. Depending on the severity of the results, this could lead to directly informing the

upper management to support risk responses.

Also, a disclosure of the found threats or vulnerabilities is possible. This has to be

defined in the incident response plan as we have seen in the previous chapter 2.3.7.

“Response Phase”.

The different ways of handling the risk will be discussed in the following chapter.

Ongoing Assessment

Risk management is not a one-time process, but has to be ongoing to keep the risk

knowledge of the underlying product up-to-date. The frequency of risk monitoring has

July 21, 2017 Fabian Fisecker 62/112

to be defined and when changes to the product occur, it should lead to a rerun of the

risk assessment process.

 Handling Risk 2.4.1.2.

Handling risk means investigating the prioritized list of risks from the risk assessment to

select appropriate controls in descending order. It is important to fully understand the

result of the risk assessment, as some risk treatments can address many different risks

from the list and should be pursued. [76]

Different approaches (which are not mutually exclusive) can be made:

Risk Avoidance

If possible, the first attempt to conquer a certain risk should be to avoid it completely.

Oftentimes this can be achieved by fixing a simple programming error, but in other

cases functionality must be turned off completely. Risk avoidance by adding new

functionality or by fixing existing problems must be considered carefully, as new issues

could be introduced by the new code.

Risk Mitigation

Risk Mitigation is a mechanism to reduce either the impact or the likelihood of a known

risk. This is often a viable strategy if risk avoidance cannot be achieved (i.e. turn off the

feature completely).

Risk Transfer

This means to transfer the risk to a party that is better able to manage it. Often this

includes third party companies like banks or insurance companies. Most of the time this

sounds simpler than it is because of the quantification problem of the assessed risk.

A special form of risk transfer is also to transfer the risk to the customer. As with

industrial products, it is common to sell them as an open platform, where the customers

(e.g. machine builders) deploy their own programs and, therefore, are also able to

customize the software configuration.

A special case of risk transfer is to share the risk with e.g. other organizations or

customers. This can be liabilities or responsibilities for other adequate risk responses

(like risk mitigation). Specialized companies use this as their business model, by

providing expertise or certain type of resources which enables them to address these

risks in a better way. [77]

Risk Acceptance

Risk Acceptance is the process of consciously accepting the known risk. Usually this

means the avoidance, mitigation or transfer of the risk is likely to cost more than the

cost if the corresponding incident occurs or the likelihood is minimal.

Residual Risk

July 21, 2017 Fabian Fisecker 63/112

Even if countermeasures are applied to every known risk, there is still the (very high)

possibility of other unknown risks. It is vital to keep a balance between additional

security assessments and the associated costs.

Though in this use case we investigated risk management in the context of handling

information security in existing products, risk management must also be taken into

account at the different stages of the (security) development lifecycle.

NIST SP 800-64 gives advice which support risk management activities can give in the

different phases. [78]

2.5. Conclusion

At the beginning of this chapter, we have seen that many organizations and institutions

are pursuing the goal to give proper advice on information security measures.

Standards have been formed to focus on the special needs of industries, such as

industrial automation.

Derived from these standards, the process of developing new products can be

improved to fulfill the growing need for information security. More and more

organizations in the IT industry have adopted security development lifecycles and their

security measures in the past.

As industrial products are evolving from proprietary hardware and software to standard

components and connecting to the IT world with known protocols and functionality, it is

overdue for industrial companies to pay more attention to security assurance

processes. The rising call for regulatory measures and increasing awareness of

industrial asset owners and operators are additional triggers to get the automation

industry to look into the matter of security.

It can be assumed that in the past industrial products were developed with not as many

security practices in mind as today. We have derived that it is not possible to refactor

security into these products, as when developing new products with adopting a security

lifecycle. The risk management process gives a business perspective on how to treat

such devices.

As a practice example and to underline the necessity of introducing security

improvement measures in an industrial environment, a black-box penetration test of an

industrial automation device will be executed in the following chapter.

July 21, 2017 Fabian Fisecker 64/112

3. Security Analysis of an Industrial
Automation Product

3.1. Disclaimer

The following analysis methods, test cases and findings are intended only to help

building better systems in the future. They are not intended as means to help breaking

into or disrupting the activity of a system or doing anything else illegal, immoral or

unethical.

3.2. Approach

This security analysis will be performed as a black box penetration test. This means

that it examines the functionality of the device without looking into the internals (e.g. the

source-code) or internal structure (e.g. debugging interfaces). It is performed as an

exploratory test to get to know the different angles of penetration testing. It must not be

misinterpreted as a fully-fledged security audit.

As we have derived from chapter 2.1. “Attack Vector Taxonomy”, the focus will be

logical attacks on the Ethernet interface of the device, as this usually is the primary

entry point of malicious attacks. A widened approach could investigate for logical attack

possibilities on other interfaces like the industrial fieldbus or the serial interface. To

complete the possible attack vectors also physical or side-channel attack possibilities

could be investigated in a further analysis.

The penetration test will be the first part of a Security Risk Assessment process of

existing B&R control products. The setup was chosen because of the high market

share in the field. This setup is seen as a best practice solution for small to medium-

sized machine control appliances.

The goal is to determine if the control system is vulnerable to attacks which are done

intentionally, but with simple means (according to ISA/IEC 62443 Security Level 2).

3.3. Experiment Setup

 Used B&R Hardware 3.3.1.

 B&R X20 CP1585 Industrial PLC 3.3.1.1.

A standard B&R Industrial PLC is used as the primary target for the penetration test.

The X20 series is the most common PLC from B&R and also the best-selling PLC

range of the company with over two million applications worldwide (as of 2016).

July 21, 2017 Fabian Fisecker 65/112

The CPx5xx range features Intel Atom based X86-CPUs with a basic entry model

clocked at 333 MHz and 128 MB RAM up to the top of the range model clocked at 1.6

GHz and 512MB RAM.

The provided CP1585 has a fan-free Intel Atom E640T clocked at 1.0 GHz with an

additional I/O processor supported by 256MB DDR2-SDRAM. Compact Flash is used

as a removable application memory, containing the operating system and the

application-specific cyclic programs and configuration.

The PLC shows six different types of interfaces to connect to peripherals and other

systems:

1) IF1: RS232, connection made using 12-pin X20TB12 terminal block with a max.

transfer rate of 115.2 kbit/s

2) IF2: RJ45, Standard Ethernet capable of 10 BASE-T/100BASE-TX/1000 BASE-

T.

3) IF3: RJ45, POWERLINK (V1/V2) managing or controlled mode, Type 4 with a

max. transfer rate of 100Mbit/s

4) IF4: a standard Type A USB 2.0 Port

5) IF5: a second USB 2.0 Port

6) IF6: X2X Fieldbus Master

 B&R PPC 2100 Industrial Terminal PC 3.3.1.2.

The B&R PPC 2100 terminal is an integrated industrial PC with a display attached. It

has an X86 architecture, featuring an Intel Atom (Baytrail) E3845 quad-core processor

with 4GB RAM. For this analysis Windows 7 embedded is used as an operating

system, though other systems (like Debian Linux) are available for this kind of terminal

PC. The terminal itself is not a part of the technical analysis, but it can be part of a

follow-up research project.

For the different purposes of client communication, programs like Google Chrome

(Web visualization client), a VNC-Viewer (VC4 visualization client), an OPC-UA client,

VC4 for Terminal mode and a proprietary INA/ANSL client are installed.

 Used B&R Software 3.3.2.

 B&R Automation Studio 4.2.5.238 3.3.2.1.

B&R Automation Studio is the integrated development environment (IDE) used to

develop automation projects including B&R hardware products. It has an “all-in-one”

approach and contains all tools necessary for the whole automation process, beginning

with the start of the project to deploying and maintaining it.

For this test, it was only used to deploy the standard B&R training project

“CoffeeMachine” to the PLC and for failure analysis. This project is generally selected

as a starting point for many automation projects in the field, as it delivers a minimalistic

cut-through approach to all features necessary in modern applications. Therefore, it is

July 21, 2017 Fabian Fisecker 66/112

assumed that the majority of the detected vulnerabilities and issues with this version

will be seen in running applications worldwide.

The general approach in the field is to add features to the application until the

requirements of the specific project are met and not to deactivate parts or even try to

harden the application.

 B&R Automation Runtime D4.2.5.2 3.3.2.2.

B&R Automation Runtime is the architectural runtime system based on Windriver

VxWorks operating on the PLCs. It contains the real-time application scheduler, B&R

system components and also the project-specific application. This will be the main

target for this penetration test, as the Automation Runtime handles all communication

on the Ethernet interface.

 Used Analysis Software 3.3.3.

 Kali Linux Rolling 2016.1 and 2016.2
 Wireshark 2.2.3
 NMAP 7.12
 Chrome + Chrome DevTools 49.0.2623.112 m
 w3af 1.6.54
 OWASP WebScarab
 OWASP ZED Attack Proxy 2.4.3
 Burp Suite Free Edition v1.7.03
 AFL 2.10b
 TLSSLed 1.3
 sslyze 0.15.0
 Metasploit 4.12.23
 hashcat 3.10
 Hping3.0.0a2
 JohnTheRipper 1.8
 netcat v1.10-41
 curl 7.51.0
 packETH 1.8.1
 Ostinato 0.8
 OpenVAS-8
 Nessus Home Edition 6.5.2
 T50 5.4.1-rc1
 WFuzz 2.0
 VNCcrack 2.1
 THC Hydra 8.4
 Medusa 2.2
 Ncrack 0.5
 patator v0.5
 Unified Automation UaExpert 1.4.
 snmp-check v1.8

July 21, 2017 Fabian Fisecker 67/112

 Topology 3.3.4.

Figure 17 - Security Analysis Topology
17

The topology used demonstrates the assumption that the PLC and the Terminal

communicate over Ethernet network. Also we assume that there could be other means

of communication over the Ethernet, such as remote maintenance (e.g. via VNC) or

remote data extrusion (e.g. via OPC-UA). The PLC is then connected to the controlled

machine via the fieldbus network.

3.4. Analysis

 Information Gathering 3.4.1.

At the start of a black box security analysis, the major goal is to collect as much

information about the assessment target as possible.

“Information gathering and research can be of great value in penetration testing,

particularly in the case of a penetration test in which we do not have inside knowledge

of the targets or the environment. A number of data sources, and quite a few different

tools, are available for us to use in the course of our efforts.” [79]

Generally speaking, the target search can be divided into non-intrusive and intrusive

searching. As in this case the means of non-intrusive searching, other than reading

public material (like user manuals) provided by the B&R homepage, is rather limited.

Therefore, the information gathering process starts with an intrusive target search,

where the following has to be considered:

17

 [selfmade diagram by author]

July 21, 2017 Fabian Fisecker 68/112

“This is when you probe and explore the target network; consequently, ensure that you

have the explicitly written permission to carry out this activity with you. Never perform

an intrusive target search without permission as this written authorization is the only

aspect which differentiates you from the malicious hacker.” [80]

 Port Scan 3.4.1.1.

As a start, the basic attack surface of the PLC on the Ethernet interface was analyzed.

The popular tool NMAP was used to get a list of open TCP and UDP network ports.

NMAP is a freely available network scanning tool licensed under GPLv2. It sends

specially crafted network packets to selected hosts in a network and analyzes the

responses.

With this approach, the following information can be obtained from the network or

respectively the hosts:

● Identifying hosts on a network (e.g. by ICMP discovery)

● Scanning network ports on hosts

● Version detection of protocols or operating systems of the host

A full NMAP port scan yielded the following results:

Port

number

Service Protocol Description

68 DHCPc UDP DHCP-Client

69 TFTP UDP TFTP-Server for System Image Uploads (only
for specific terminals (T-Series)

80 HTTP TCP Port of the legacy webserver (explained in
detail in the analysis section of the web server)

81 HTTP TCP Port of Webservers for the Web-Visualization.
Port 80 is explicitly omitted here, for
compatibility reasons to the existing older
webserver (and webservice).

161 SNMP UDP SNMP Communication

443 HTTPS TCP Webserver Port for encrypted (SSL/TLS)
communication

4840 OPC-UA TCP OPC-UA Server for machine data
communication

5900 RFB TCP VNC service for displaying the legacy
visualization VC4

11159 INA (prop) UDP Proprietary B&R protocol for communication
between PLCs and to Engineering Environment
(Automation Studio) - deprecated

11169 ANSL (prop) TCP Proprietary B&R protocol for communication
between PLCs and to Engineering Environment
(Automation Studio)

Based on these results, a closer look into a selection of these services to find out more

about what data is transferred via these ports is taken.

July 21, 2017 Fabian Fisecker 69/112

 Vulnerability Scanners 3.4.1.2.

To initially detect issues with the given system, vulnerability scanners were used.

Vulnerability scanners test a wide range of known vulnerabilities and are designed for

ease of usage. Only an IP address (or a range of IP addresses) and some type of

attack scenario has to be provided, and the scanner then analyzes the targeted system

and provides a report on the findings.

In this scenario, the test of the SSL/TLS communication on Port 443 was explicitly

excluded, as a deeper analysis of the encryption will be shown in section 3.4.2. “Web

Server”.

3.4.1.2.a Nessus

Nessus is a proprietary vulnerability scanner developed by Tenable Network Security.

It started as free software under GPL license and was available for the public. Since

2005 with version 3 of Nessus, the source was closed and commercially licensed. It is

the most popular commercial vulnerability scanner and Tenable claims to have over

20.000 business customers worldwide. The system implements a plugin infrastructure

which consists of over 80.000 plugins, covering over 35.000 CVEs.

Only the very limited Nessus Home version is available free of charge, but only after a

registration process. Advanced versions would also enable special SCADA plugins,

which could yield more interesting results.

After an advanced network scan with Nessus Home, the following report was

generated:

Figure 18 - Nessus Scan Report Screenshot

As can be seen, the scanner revealed basic reports about open ports of the target and

which services are running.

July 21, 2017 Fabian Fisecker 70/112

The only two vulnerabilities found were a potential Cross-Site-Scripting issue (this

matter will be discussed later in the topic “Web Server”) and an IP forwarding service.

3.4.1.2.b OpenVAS

The second vulnerability scanner used is OpenVAS (Open Vulnerability Assessment

System). OpenVAS is a fork of Nessus Version 2.2 (the last open source version) and

is licensed under General Public License (GPL). As its commercial rival, it features a

vast set of plugins (over 47.000) called Network Vulnerability Tests (NVTs).

The architecture of OpenVas is shown in the following figure:

Figure 19 - OpenVAS Architecture
18

The core module to do the actual security scanning is the OpenVAS Scanner. Thereby,

it is fed by the thousands of NVT plugins to run through during the scan. The scanner is

managed by the OpenVAS Manager which receives the user inputs from a CLI and a

web-interface called the Greenbone Security Assistant. It saves the configuration and

the results from the scanning in a separate archive.

The results of the OpenVAS Scan can be seen in the report below. They are very

similar to the results of the Nessus Scan, showing the potential XSS vulnerabilities. As

previously stated, these will be discussed in the next chapter.

18

 Taken from Greenbone Networks GmbH, available at
http://www.openvas.org/software.html#feature_overview

http://www.openvas.org/software.html#feature_overview

July 21, 2017 Fabian Fisecker 71/112

 Web Server 3.4.2.

 Introduction 3.4.2.1.

B&R uses the internal web server for its new web-based industrial visualization, called

mapp View. An embedded web server is used to deliver the visualization pages to the

visualization terminal, which in essence means, that it supplies a client with a state of

the art web browser).

There is no usage of plugins or browser applications on the client side. The content

delivered consists of plain HTML, CSS and Javascript files and additional media assets

(e.g. pictures, PDFs, videos, etc.).

The communication of process variables to the displaying web widgets is done via a

websocket in a JSON format. This is more effective than a classic HTTP

request/response system to poll the variables.

Per default, the webserver listens to HTTP requests on port 81 and to HTTPS requests

on port 443. The default port for HTTP-based communication (80) is not used due to

compatibility reasons with a legacy webserver. This legacy web server is not activated

in the tested version of the coffee machine example application. The port is open but

no listening service is attached.

Figure 20 - OpenVAS Scan Report Screenshot

July 21, 2017 Fabian Fisecker 72/112

Some of the analysis steps shown in the following chapter would also be applicable for

the legacy web server, if the service had been enabled.

 Web Security Scanner 3.4.2.2.

As shown before, the vulnerability scanners have already found some issues with the

underlying web server of the visualization. There are specialized security scanners

explicitly used for scanning web services. In this analysis, OWASPs ZED Attack Proxy

(ZAP) was used. ZAP is a very popular open source, web-security tool with multiple

functionalities: [81]

 Intercepting Proxy

 Traditional and AJAX spiders

 Automated scanner

 Passive scanner

 Forced browsing

 Fuzzer

 Dynamic SSL certificates

 Smartcard and Client Digital Certificates support

 Web sockets support

 Support for a wide range of scripting languages

 Plug-n-Hack support

 Authentication and session support

 Powerful REST based API

 Automatic updating option

 Integrated and growing marketplace of add-ons

 HTTP Response Header Flags 3.4.2.3.

The quick analysis feature of ZAP showed similar issues which the vulnerability

scanners had already found. These are not set options in the HTTP response header:

 To deny Clickjacking-attacks, the web server must set the X-Frame-Option of

the HTTP response header to “DENY” if the page is not embeddable within a

frame. Otherwise the option “SAMEORIGIN” is possible, or if there are trusted

pages it can be set to “ALLOW-FROM” with the indicated pages as a

parameter. If this flag is set the browser can deny pages to embed the

visualization service. More information is available in RFC7034 or in the MSDN.

[82]

 To allow the browser to activate its anti-cross-site-scripting functionality the X-

XSS-Protection Flag of the HTTP response header must be set. [83]

 To deny MIME-type sniffing the X-Content-Type-Options flag in the HTTP

response header should be set to “nosniff” [84]

Within the typical use cases of the web visualization, these issues are not too relevant

(as no embedding of the sites are planned) but should be fixed nonetheless.

July 21, 2017 Fabian Fisecker 73/112

 Proxy Analysis 3.4.2.4.

With ZAP it is possible to use a man-in-the-middle proxy for deeper analysis. It includes

a browser extension for Firefox, which tunnels the web traffic through the ZAP scanner.

ZAP will create a sitemap in the background when the user visits different pages.

With the deep scan possibility, ZAP will investigate the sitemap even further with an

add-on called spider (a so-called web crawler). ZAP also retries every HTTP request it

has learned and also alters the payloads.

Parsing Error in POST - Function

While trying to call the requests ZAP found the POST functions “getUnitSymbols”:

The payload of the function when called by the user looks as following:

ZAP automatically calls this function many times and tries to modify its payload as in

the following example:

This results in a crash of the visualization server and, therefore, a denial-of-service of

the PLC (as it goes into service mode).

HTTP Get Path Traversal

While manually inspecting the requests, the HTTP Get request was forged to try to

break out of the webroot of the web server. [85] Since modern browsers are not

allowing this malicious input, ZAP was also used to demonstrate this:

Figure 21 - ZAP Sitemap and Vulnerable Function Screenshot

Figure 22 - Unmodified Request Payload Screenshot

Figure 23 - Modified Request Payload by ZAP Screenshot

July 21, 2017 Fabian Fisecker 74/112

As seen here, the web server does not validate the input parameters given in the get

request. A malicious attacker can go through the folders and read random files. This

could be used, for instance, to read private keys for the encryption of communication.

 Traffic Analysis 3.4.2.5.

In this case we assume that the attacker can sniff the network traffic between the web

server and the client communication. In the following figure an example topology is

shown:

Figure 24 - HTTP Get Traversal Exploitation ZAP Screenshot

July 21, 2017 Fabian Fisecker 75/112

Figure 25 – Sniffing Topology
19

This can be achieved with techniques like MAC/ARP spoofing or also with special

hardware devices. In managed switching environments, the switch itself could also be

attacked and then configured to mirror the communication between the client and the

server to the attacker. Furthermore, it is possible that in industrial environments hubs

instead of switches may still be used to transmit Ethernet communication between

devices. With hubs, the Ethernet traffic of any attached device is mirrored to every

other device, which makes sniffing very easy.

Authentication Sniffing

To get extended rights for the visualization environment B&R has prefabricated widgets

which enable logging into the B&R Automation Runtime Role Based Access Control

(RBAC). An example of the login widget can be seen in the following figure:

19

 [selfmade diagram by author]

July 21, 2017 Fabian Fisecker 76/112

By sniffing the corresponding request the attacker is able to see the password in

plaintext. No hashing with adding a nonce value is done on the client side as the

following figure indicates:

Client Registration

On closer examination of the different HTTP requests, the POST method

"registerclient" seemed particularly interesting.

Figure 26 – Mapp View Login Widget Screenshot

Figure 27 – Wireshark Capture of a Visualization Login Screenshot

July 21, 2017 Fabian Fisecker 77/112

The client requests and gets a cookie with a managerID. This ID is also sent in the

message body.

Sending the request more often, the cookies always gets renewed until the maximum

number of clients is reached. It has no impact which request (GET or POST) is used.

When reaching the maximum number of clients, the visualization is not loaded and a

message indicating “Max. number of clients reached!” appears. There was no timeout

specified either. The sessions of the malicious clients run indefinitely.

 Fuzzing 3.4.2.6.

ZAP includes an integrated fuzzer and already fuzzes GET and POST request

parameters in the deep scanning run with an integrated dictionary. We focus, therefore,

on fuzzing the websocket communication with JSON data:

ZAP does not provide a JSON-FileFuzzer per default. In addition to the vanilla ZAP

project, the community provides a ZAP extensions project where a JSON fuzzing

dictionary was available. [86]

These library test runs with fuzzing the whole JSON message and, with fuzzying only,

certain parameters were started. Unfortunately, no deterministic error was found, but

the PLC crashes after a few minutes of fuzzing requests (the following figure shows a

Figure 28 - Registerclient Request ZAP Screenshot

Figure 29 - JSON Websocket Communication of the Visualization Screenshot

July 21, 2017 Fabian Fisecker 78/112

stopped test run after 64980 requests, when the PLC crashed). It is assumed that there

is some buffer overflow in the JSON parser or websocket stack as there is no

dedicated logger entry for the failure.

 Encryption Analysis 3.4.2.7.

For the web visualization, the communication from the web server to the clients can be

encrypted. X509 certificates can be created via the Automation Studio engineering

environment and transferred to the PLC. SSL/TLS is then used to encrypt all the data

in transit.

Cipher Analysis

The Automation Studio configuration only allows SSL 3.0 or TLS 1.0. In our case TLS

1.0 was active and will be analyzed.

The following figure shows the output of a common SSL/TLS-analyzing tool (TLSSLed)

Figure 30 - Crash after JSON Fuzzing Requests Screenshot

July 21, 2017 Fabian Fisecker 79/112

There are multiple issues with the supported ciphers, in descending severity:

 Most problematic is the supported usage of the 56bit Data Encryption Standard

symmetric-key algorithm. It was developed in the early 1970s and is now, with a

key length of 56bit, not up to standard with current available computing power.

To run a brute-force method to exhaust the complete keyspace of the DES

algorithm online services like http://crack.sh are available. The 48 Xilinx Virtex 6

LX240T FPGAs run through the keyspace in approximately 26 hours, which

costs (for a low priority order) 20 US Dollar. Also the calculation on current high-

end Graphical Processing Units (GPUs) is possible. The GPU cracker “hashcat”

supports RAW DES (KPA) cracking. [87] In tests on a NVIDIA Geforce GTX

1080, the cracker delivers 20 Gk/s. Therefore, brute-force exhaustion of the

DES-keyspace also tends to get viable in the consumer sector.

 The RC4 streamcipher has been suspect of cryptanalysis for some years now.

Older attacks still would need years or ridiculous amount of sessions to make a

Figure 31 - TLSSLed Report Output Screenshot

http://crack.sh/

July 21, 2017 Fabian Fisecker 80/112

suitable attack. Newer approaches can lead to session-cookie decryption in

less than 75 hours. [88]

 Ciphers with a block size of 64 bit (here: DES and 3DES) are prone to birthday

attacks. [89] Although this kind of attack also needs a lot of data to be

transferred with a current threshold of 785 Gigabytes.

Certificate Analysis

Since the used default 1024bit RSA certificate is too weak, it should be exchanged for

a 2048bit or 4096bit certificate. Although no factorization of a 1024bit RSA certificate

has been shown in public yet, it is within reach of current cryptanalysis and just a

matter of time. [90]

With Automation Studio the generation of up to 4096bit RSA certificates is already

possible. Therefore, to switch the provided default certificate to a 4096bit variant should

be a simple solution for this issue.

Signature Algorithm Analysis

The usage of SHA-1 is deprecated and very skilled attackers are in able to force

collisions of the hash function. [91] Regarding newer research [92], the necessary

computing power to craft SHA-1 collisions is decreasing rapidly. The research team

reached a first fully practical SHA-1 collision with an effort of 110 GPU years of

calculation time. Thus, the usage of the SHA-1 successors SHA-2 or the newer SHA-3

is recommended.

TLS Fallback SCSV

The server does not support the TLS_FALLBACK_SCSV mode, which is leading to a

vulnerability that enables a downgrade attack [93] (e.g. from TLS 1.0 to SSL 3.0) on the

client. In this case, even though this cannot be exploited as on the server, only one

version of SSL/TLS is active and no downgrade is possible.

Heartbleed Attack

Because the library used for the implementation of SSL/TLS is OpenSSL, the

vulnerability of the well-known Heartbleed attack was tested.

Though different test-tools resulted in heterogeneous results (sslyze and TLSSLed: no

heartbleed vulnerability, Nmap with the script “ssl-heartbleed”: vulnerable to

heartbleed), the test with metasploit and the corresponding exploit “openssl-heartbleed”

resulted in no possibility to extract data from the server. The failed scan is shown in the

figure below:

Figure 32 - Metasploit with openssl_heartbleed Module Screenshot

July 21, 2017 Fabian Fisecker 81/112

Other Known SSL/TLS Attacks

Well-known SSL/TLS exploits like CRIME, BEAST, BREACH, FREAK or Poodle use

downgrade options or are only possible with certain SSL/TLS versions. As they were

not applicable further analysis was omitted.

 Recommendation 3.4.2.8.

Most of the shown security problems can be solved by fixing the underlying code issue.

The analysis suggests that no standard off-the-shelf web server is used. Therefore,

fuzzing tests on the interfaces are highly recommended to find security issues.

The SSL/TLS library should be updated to enable TLS 1.2 or the upcoming TLS 1.3. If

the upgrade is not immediately available, the weak ciphers should be deleted from the

available options to omit possible downgrade attacks. The usage of SHA1 as hash

function should be omitted, its successor (SHA-2 or the newer SHA-3) should be used.

RSA certificates with 1024bit key length should no longer be created, as 2048bit and

4096bit certificates are already available.

 VNC 3.4.3.

 Introduction to VNC 3.4.3.1.

Virtual Network Computing (VNC) is a mechanism to remotely control desktop

appliances over an IP network. It uses the Remote Frame Buffer (RFB) protocol to

display the graphical user interface of the server system at the client. As the name

suggests, it works on the framebuffer level and, therefore, is applicable to all modern

windowing systems on various platforms. The automation runtime also includes one of

this windowing systems (although an X20 PLC has no display at all) to display the B&R

visualization VC4.

RFB basic operations are very simple by using commands like "Put a rectangle of pixel

data at the specified X,Y position” [94] In its vanilla configuration this uses a lot of

network bandwidth leading to various specified encoding types to improve this

behavior:

 RAW (basic)

 Hextile

 Zlib

 Tight-1.0

 Tight-1.1

 Tight-1.1L

In this case VNC is used to extend the legacy visualization VC4 to industrial terminal

PCs (like in our topology to the PPC 2100 where a common Windows VNC client is

used).

July 21, 2017 Fabian Fisecker 82/112

Access to the visualization can lead to full control, especially on smaller machines

because no additional user access control mechanism of the visualization is used in

small-scale applications.

In some case this is very critical, as the VNC port is directly routed to the internet for

remote maintenance purposes.

 Online Authentication Brute-Force Attack 3.4.3.2.

VNC has some built-in issues that make it vulnerable to certain types of attacks.

First of all, the VNC system does not include the authorization via a combination of

username and password, but rather just with the password. Per default VNC

distinguishes between two types of user input: a view mode with no possibility to send

control information (like keyboard or mouse input) and a full-control mode where input

signals are processed. Therefore, two types of passwords are configured on the VNC

server and depending on which one is used to login, a user can either take control, or

view the visualization.

This design makes the system very vulnerable to brute-force attacks, as the attacker

does not have to guess a valid username before trying to find a corresponding

password.

Different types of command-line tools are available to brute-force VNC server

connection attempts with either dictionary attacks or string generators.

A sample collection of these command-line tools are:

 medusa

 thc-hydra

 patator

 ncrack

The best results were made with medusa, parallelizing authentication attempts and

minimalizing challenge-response delays with over 219 keys per second. Lower wait

times or more threads lead to PLC errors (which is also a valid Denial-of-Service

attack).

With a four character password (which is default in many example applications for

convenience reasons) containing upper and lowercase characters, this attempt would

brute-force the entire keyspace (with 7454980 possible combinations) in approximately

9.5 hours. Adding numeric values would add up to approximately 19 hours (with

15018570 possible combinations) of brute-force attempts until the keyspace is

exhausted. Please note: on average, half the time is needed as going through the

whole keyspace to find one password for brute-force attacks. It is assumed that we

want to find the password to control the visualization (to find one of the two passwords

used will take less time in average).

It has to be taken into account that this is an idealized experiment, as the brute forcing

device was directly attached to the same network as the PLC with full bandwidth and

July 21, 2017 Fabian Fisecker 83/112

the character-set was minimalized. However, with enough time, a weak password and

no countermeasures in place, this is a very potent attack to gain access to the VNC

visualization.

To aggravate this matter, the used VNC version only allows a maximum character set

of eight. Longer passwords are truncated. This is due to a limitation in the RFB protocol

and will not be changed for compatibility reasons.

Additionally, the automation studio configuration limits the possible inputs to

alphanumeric characters. This leads to a maximum keyspace of 221919451578090

passwords. For the online attack this should be sufficient, as it would take more than

32111 years, to exhaust it with the given rate of 219 keys per second. In an offline

attack scenario this is problematic, as the following issue explains.

 Authentication Sniffing and Offline Brute-Force 3.4.3.3.
Attack

The RFB protocol was not designed with any security aspects in mind. Although it does

not use plaintext-transportation for the authentication credentials the process works in

a very simple manner:

1) The server sends a random 16-byte challenge

2) The client encrypts the challenge with DES, using a password supplied by the user

as the key, and sends the resulting 16-byte response

July 21, 2017 Fabian Fisecker 84/112

Figure 33 - The VNC Authentication Challenge-Response
20

If a malicious attacker is able to sniff the handshake of a client logging into the VNC

server and gets a valid pair of the challenge and the encrypted response, an offline

attack can be made.

The challenge is only bit-flipped and encrypted with a single round of DES (Data

Encryption Standard). A brute-force tool can do the same calculation with passwords

from a dictionary or a password generator leading to much faster exhaustion of the

keyspace than in the seen online attack. Depending on the given hardware and

calculation on CPU or GPU (as modern crackers calculate passwords on GPU shader

units), it is possible to calculate millions of keys per second and drastically reduce the

time needed to exhaust the keyspace or to go through dictionaries.

In a tryout of the attack, it was shown that with a 4 character password and a system

capable of calculating 400000 keys per second, the brute-force attempt lasted only

seconds until the correct password was ascertained.

 Other VNC Weaknesses 3.4.3.4.

VNC Challenge Randomness:

As Tipton and Krause described, the real randomness of the provided challenges is

questionable:

“The random challenge is generated using the rand(3) function in the C programming

language to generate random numbers. The random number generator is initialized

using the system clock and the current system time. However, the 16-byte challenge is

created by successive calls to the random number generator, decreasing the level of

randomness on each call. (Each call returns 1 byte or 8 bits of data.) This makes the

challenge predictable and increases the chance an attacker could establish a session

by storing all captured responses and their associated challenges. Keeping track of

each challenge-response pair can be difficult and […] not necessary.”21

Man-in-the-Middle Attack:

Due to the lack of timeouts and integrity checking of the RFB protocol, there is an easy

approach to a man-in-the-middle attack if an attacker has the possibility to get between

client and server in the switched network (e.g. by mac-spoofing). If an attacker initiates

a connection to a VNC server, the 16-byte answer challenge is sent as seen in the

figure below.

20

 Taken from: Tipton F. and Krause M.: Information Security Management Handbook, Fifth Edition, 2004,
CRC Press
21

 Tipton F. and Krause M.: Information Security Management Handbook, Fifth Edition, 2004, CRC Press

July 21, 2017 Fabian Fisecker 85/112

Figure 34 - VNC Man-in-the-Middle Attack - Preparation
22

The attacker now has a session pending at the server and there is no timeout specified

in the protocol standard. The attacker now waits until another VNC client wants to

connect to the VNC server.

As seen in the figure below, the attacker can then intercept the server response with

the challenge and send the challenge it received earlier. The attacker then only has to

sniff the encrypted response by the legitimate client and resend it to the server.

The VNC server will only authenticate the attacker, because he/she sent the correct

response to the challenge provided. The legitimate client will not be granted access, as

the sent response does not fit to the challenge the server sent to this client earlier.

Figure 35 - VNC Man-in-the-Middle Attack - Execution
23

RFB Extensions:

Also further analysis showed that additional data is transported via the RFB protocol.

These RFB extensions are used to control hardware peripheral located on the terminal.

By using a man-in-the-middle attack and tampering with the values of, for example,

22

 Taken and adapted from: Tipton F. and Krause M.: Information Security Management Handbook, Fifth
Edition, 2004, CRC Press
23

 Taken and adapted from: Tipton F. and Krause M.: Information Security Management Handbook, Fifth
Edition, 2004, CRC Press

July 21, 2017 Fabian Fisecker 86/112

hardware buttons, a malicious user could gain direct access to machine controls. A

deeper analysis of this problem could be investigated in follow-up research.

 Recommendation 3.4.3.5.

As the design of VNC and the RFB protocol suffers from security weaknesses which

cannot be addressed without breaking compatibility, it is hard to give proper

recommendations for this topic.

There are specialized versions of VNC clients and servers which support advanced

authentication and encryption options without being compatible to other vendors. B&R

could implement the server extensions of these versions (e.g. UltraVNC or RealVNC)

and use the according clients.

Another approach would be to tunnel the insecure VNC connection through an extra

security layer, implementing stronger authentication and encryption. An example could

be an SSH tunnel or a VPN implementation like IPsec.

 OPC-UA 3.4.4.

 Introduction to OPC-UA 3.4.4.1.

OPC-UA is a new industrial interoperability standard for communication in automation

environments.

The organization behind the technology, the OPC Foundation defines it as following:

“The OPC Unified Architecture (UA), released in 2008, is a platform independent

service-oriented architecture that integrates all the functionality of the individual OPC

Classic specifications into one extensible framework.

This multi-layered approach accomplishes the original design specification goals of:

 Functional equivalence: all COM OPC Classic specifications are

mapped to UA

 Platform independence: from an embedded micro-controller to cloud-

based infrastructure

 Secure: encryption, authentication, and auditing

 Extensible: ability to add new features without affecting existing

applications

 Comprehensive information modeling: for defining complex information”

[95]

B&R uses this technology as an interface for the data of the PLC. The automation

runtime implements a standard OPC-UA Server and publishes information like the

state of the PLC, the process variables, etc.

A very popular use case is to connect PLCs of different vendors by OPC-UA, so there

is no need for one vendor to implement the proprietary protocols of another vendor.

July 21, 2017 Fabian Fisecker 87/112

Another use case here is that the new web visualization of B&R (mapp View) internally

communicates only with the OPC-UA server. So from an architectural point of view, it

would be easy to separate the visualization server from the rest of the PLC.

 OPC-UA Security Analysis 3.4.4.2.

The OPC Foundation summarizes the security aspects of OPC-UA as following:

“One of the most important considerations in choosing a technology is security. OPC

UA is firewall-friendly while addressing security concerns by providing a suite of

controls:

 Transport: numerous protocols are defined providing options such as the

ultra-fast OPC-binary transport or the more universally compatible

SOAP-HTTPS, for example

 Session Encryption: messages are transmitted securely at 128 or 256 bit

encryption levels

 Message Signing: messages are received exactly as they were sent

 Sequenced Packets: exposure to message replay attacks is eliminated

with sequencing

 Authentication: each UA client and server is identified through OpenSSL

certificates providing control over which applications and systems are

permitted to connect with each other

 User Control: applications can require users to authenticate (login

credentials, certificate, etc.) and can further restrict and enhance their

capabilities with access rights and address-space “views”

 Auditing: activities by user and/or system are logged providing an

access audit trail” [96]

This security review focuses on the binary based transport mode, because the B&R

Automation Runtime only implements this mode to transfer data.

3.4.4.2.a Excerpt: Configuration

The B&R OPC-UA implementation supports three different modes:

 securityMode: None

 securityMode: Sign

 securityMode: SignAndEncrypt

With the first mode “None”, no additional security measures are taken and the protocol

delivers its information as plaintext. Minimal security measures are taken to prevent

simple exploitation like replay attacks (e.g. a sequence number).

The other modes include confirmation of the communication partner’s identity and

guarantee the integrity of the sent data. The difference between Sign and

SignAndEncrypt is the added confidentiality of the data. With SignAndEnrypt every

communication is additionally encrypted to add security against eavesdropping.

July 21, 2017 Fabian Fisecker 88/112

The B&R OPC-UA server supports the following modes:

The most secure mode “Basic256Sha256” defined in the OPC-UA standard is not

supported.

3.4.4.2.b Encryption

The Basic128Rsa15 setting uses AES 128 bit in CBC mode for symmetric encryption.

Though AES 256 would be better and a theoretical bicycle attack for AES 128 reduces

the brute-force complexity to 2126.0, the ability to brute-force AES 128 is still not possible

even for very powerful adversaries. [97]

The Basic256 setting uses AES in 256 bit with CBC mode for the symmetric encryption

of the communication.

As a signing function in both configuration settings, SHA1 is used, which is not

inherently bad, however SHA256 is recommended, as the cost to form a collision with

SHA1 is becoming affordable for very powerful attackers, as mentioned earlier in the

encryption analysis of the web server. [91][92]

 Recommendation 3.4.4.3.

To ensure a secure communication via the OPC-UA channel, it is vital to set the

securityMode to Sign or SignAndEncrypt mode. If there is a need for confidentiality,

then only the SignAndEncrypt mode is best, because it encrypts all the sent data.

Regarding the cryptographic algorithms the usage of SHA-1 should be omitted. The

security policy “Basic256Sha256” is the most secure algorithm used and should be

favored if technically possible.

Anonymous authentication should not be used as there is no option to identify an

attacker login with anonymous credentials. If anonymous access is needed, only

readable access rights should be given. Even if no securityMode option is possible,

authentication methods with credentials should always be used.

Figure 36 - B&R OPC-UA Server Modes Screenshot

July 21, 2017 Fabian Fisecker 89/112

 Proprietary Protocols 3.4.5.

 Introduction to INA/ANSL 3.4.5.1.

INA and ANSL are the two basic proprietary protocols used by B&R to communicate

machine data (e.g. process variables) and machine control information to a PLC.

The first scenario is the communication between PLCs to exchange information

regarding the automation process. This could be to operate different parts of a very

complex machine using more than one PLC to control it.

Another use case would be to use redundant PLCs in a high-safety demanding

environment.

In a special transport mode, this could also be used to tunnel communication not

directly targeted to the PLC, but to the next PLC which is directly connected. In

essence, this is used in environments where no additional cabling to the offset PLC is

available and the fieldbus (e.g. powerlink) has to be used.

Also a common use case of PLC to PLC communication is the usage of a terminal with

the legacy visualization VC4. This is still widely used because the web-based

visualization has just entered the market.

The second possibility is the communication between the engineering environment

(Automation Studio) and the PLC. Here the protocols are not primarily used to transfer

machine data (though possible for monitoring or debugging purposes), but to control

the PLC, e.g. to apply configuration settings, download images and load programs.

The third option is the communication of PLCs with third party devices. B&R provides

libraries for common frameworks like .NET to enable communications with a wide

variety of platforms. A popular use case is to connect a centralized monitoring station

of a SCADA environment to the PLC. The process variables can then be monitored

and stored in a database on the monitoring device for further data operations.

 Security Analysis 3.4.5.2.

By investigation of the packets sent on port 11159 and 11169 on the network in various

operating modes (PLC to PLC, PLC to Automation Studio), the complete lack of

authentication is visible.

Any malicious operator that can connect to the stated ports on the PLC is able to send

the various possible commands. The only immediate problem is the format of the

protocol, since the commands are not directly visible and also no browsing possibility is

available. This approach could be identified as security by obscurity.

With little knowledge of the protocol or by observation of the changed data in the

packets, it would be easily possible to inject malicious data into process variables

possibly even leading to damage of the controlled machine.

July 21, 2017 Fabian Fisecker 90/112

Two examples of problematic scenarios are illustrated below.

A captured package with plaintext information of the PLC:

Capture of a (with netcat) crafted package including a command to warm restart the

PLC:

Figure 37 - ANSL Plaintext Capture File Screenshot

July 21, 2017 Fabian Fisecker 91/112

Figure 38 - ANSL Crafted Package Capture File Screenshot

 Recommendation 3.4.5.3.

The first measure should be to implement any kind of authentication into the proprietary

protocols. A simple user and password authentication mechanism with usage of

hashing and a nonce value would be a basic approach to contradict the mentioned

attacks.

Additionally, the usage of Transport Layer Security (with SSL/TLS, or respectively

DTLS for UDP) would ensure privacy and integrity of the connecting parties.

 SNMP 3.4.6.

 Introduction to SNMP 3.4.6.1.

SNMP or Simple Network Management Protocol is a standardized communication

method of monitoring and configuring devices in an Ethernet network. The protocol

communication is handled via UDP ports 161 and 162 on the IP layer.

The basic architecture behind SNMP is very simple. A management station collects all

the necessary data of the network by polling (via port 161) so-called SNMP agents. In

special cases (like if a critical error occurs), the agents can also self-trigger so-called

SNMP traps (via port 162) to the management station without being polled.

A more comprehensive list of SNMP abilities to help managing a network is provided

by [98]:

 “Provide Read/Write abilities – for example you could use it to reset passwords

remotely, or re-configure IP addresses.

 Collect information on how much bandwidth is being used.

 Collect error reports into a log, useful for troubleshooting and identifying trends.

 Email an alert when your server is low on disk space.

 Monitor your servers’ CPU and Memory use, alert when thresholds are

exceeded.

 Page or send an SMS text-message when a device fails.

 Can perform active polling, i.e. Monitoring station asks devices for status every

few minutes.

 Passive SNMP – devices can send alerts to a monitoring station on error

conditions.”

SNMP uses a MIB tree to publish information in the network. Each entry in the tree can

be identified by an object identifier (OID) and are defined using a subset of the Abstract

Syntax Notation One (ASN.1).

July 21, 2017 Fabian Fisecker 92/112

Figure 39 - SNMP Topology
24

Different versions of SNMP are available:

 SNMP v1

 Secure SNMP

 SNMPv2p

 SNMPv2u

 SNMPv2c

 SNMP v3

Only three of these versions are common nowadays: v1, v2c (being the de facto v2)

and v3.

Regarding security, only version 3 is still viable, though rarely used because of the

complexity the security aspects demand (e.g. key-infrastructure).

 Security Analysis 3.4.6.2.

By starting the analysis of the SNMP agent of the PLC there was no communication

possible on either UDP port 161 or 162 (although port 161 was open and listening on

the PLC).

24

 Taken from: Leskiw A.: SNMP Basics: What is SNMP & How do I use it?, available at
http://www.networkmanagementsoftware.com/snmp-tutorial/

http://www.networkmanagementsoftware.com/snmp-tutorial/

July 21, 2017 Fabian Fisecker 93/112

A long-lasting traffic analysis demonstrated SNMP communication. However, this took

place on the Ethernet layer, not on the IP layer of the network. In RFC 4789 “SNMP

over IEEE 802” it is described how to send SNMP messages via the payload of the

IEEE 802.3 LAN MAC frames. The security considerations are the same as with SNMP

over IP. Although the Ethernet packets identify themselves as SNMPv3, observation

has shown that no form of authentication is required.

What is troubling here is the possibility to set certain values, especially the network

settings of the PLC.

As no form of authentication is required, a malicious attacker with access to the same

(non-routed) LAN network as the PLC could manipulate the network settings of the

PLC during runtime just by knowledge of the MAC-address. This would render all IP-

based communication to the PLC useless.

The following example shows how easy such an attack can be performed.

Before the attack the PLC is available at 10.43.49.90:

With “packETH”, a packet generation tool for Ethernet frames, we create a malicious

SNMP Ethernet packet to set the IP address to 10.43.49.98. All other network settings

stay the same.

Figure 40 - NMAP Fingerprint of the PLC before the Crafted SNMP Packet Attack Screenshot

Figure 41 - Wireshark Capture of Crafted SNMP Packet Screenshot

July 21, 2017 Fabian Fisecker 94/112

After this, the PLC is available with the new IP address, all communication targeted at

the old IP is terminated.

 Recommendation 3.4.6.3.

The simple recommendation is to use SNMPv3 with any sort of authentication as

described in RFC 4789:

“Security Considerations

This module does not define any management objects. Instead, it defines an OBJECT-

IDENTIFIER which may be used by other MIB modules to identify an SNMP transport

mapping. Meaningful security considerations can only be written in the MIB modules

that define management objects. The MIB module in this document has, therefore, no

impact on the security of the Internet.

SNMPv1 and SNMPv2c messages are not considered secure. It is recommended that

the implementors consider the use of SNMPv3 messages and the security features as

provided by the SNMPv3 framework. Specifically, the use of the User-based Security

Model STD 62, RFC

 3414 [RFC3414] and the View-based Access Control Model STD 62, RFC 3415

[RFC3415] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to

a MIB is properly configured to give access to the objects only to those principals

(users) that have legitimate rights to indeed GET or SET (change) them.” [99]

This would rule out the possibility of malicious attackers using simple replay attacks

(with small changes to the packet) to tamper with the configuration of the PLC.

As an additional possible security measure, the listener daemons of the SNMP server

operating at the IP layer could be deactivated, as there was no sign of traffic on the IP

layer. Deactivation of the SNMP daemons could deter attackers, if the network analysis

is only done via sniffing on the IP layer and the port scan does not reveal open SNMP

communication ports.

Figure 42 - NMAP Fingerprint of the PLC after the Crafted SNMP Packet Attack Screenshot

July 21, 2017 Fabian Fisecker 95/112

3.5. Conclusion

Through this exploratory security analysis, critical vulnerabilities were found and

reported to B&R. The approach showed that even with a minimum of resources spent,

security loopholes were found in a product that is widely used in the field.

It was shown that even attackers with simple means and no sophisticated toolset could

use wrong input data to create an error state, which would result in a shutdown of the

control system. According to ISA/IEC 62443 this would mean that the device would not

be suitable as a Security Layer 2 device.

Immediate actions would suggest that some of the methodologies applied should be

reinstated as a permanent testing solution and the testing scope should be widened to

real-world applications as there will be additional activated modules to be tested.

Testing methods like fuzzing should be introduced into the development process and

the test vector deepened.

Other mitigations, like network segregation (for example with VLANs or VPNs) can be

applied to reduce the attack vector for such devices. But actions like these should be

seen as a complementary measure and not as a permanent workaround.

The more challenging and sustainable action should be to enforce a more secure

software development process so that security issues are mitigated earlier in the

development lifecycle.

July 21, 2017 Fabian Fisecker 96/112

4. Lessons Learned & Future Work

4.1. Topics Covered

This thesis has shown known procedures and practices to ensure information security

improvements for industrial products. In the age of the industrial Internet of Things this

topic trends to be of utmost importance and will be a key selling point for future

products in this field.

The problem of improving the security of already introduced products and their

software was also addressed. The necessity for applying the business case of risk

management to focus on the important issues was cleared and a sample security

analysis to find potential threats was provided.

Furthermore, the task of securing future products was approached by introducing a

secure software development lifecycle and different measures in the different phases of

the process. This is already a best-practice scenario in the IT world and is being used

by big software development companies such as Microsoft or Google.

4.2. Further Research Possibilities

 Process Optimization 4.2.1.

The first part of the thesis focused on the organizational approach of how to introduce

security measures into existing software development lifecycles. The presented topics

showed an overview of measures in every phase of the development process. Of

course, there can be additional measures introduced in a specific phase as this is also

still subject to intensive research. Also since the shown measures themselves are still

in development, newly found best practices and case studies should be observed in

ongoing research fields.

 Extension of the Security Analysis 4.2.2.

In chapter 3 an explorative approach for the security analysis was used. This analysis

could be extended in scale and depth. For example, the possibility to do fuzz tests was

only done on the web server protocols. Fuzz testing could be applied to every analyzed

protocol and also directly to every interface which allows user input.

The basic strategy of the analysis was to do a black box test. This could be expanded

to grey box or even white box testing, (e.g. with reviewing the underlying source code

base). A more theoretical research possibility would be to try formal verification of the

used code in sub components where applicable.

Also the attack vector could be expanded. In this thesis, we only covered the possibility

of an attack on the Ethernet layer. Other possibilities could be the usage of the fieldbus

network to directly manipulate control or process data. This should be particularly

July 21, 2017 Fabian Fisecker 97/112

interesting, as new types of fieldbus protocols will probably use IP-based Ethernet

according to current research. New technologies like Ethernet Time-Sensitive

Networking (TSN) are emerging in this field and will allow real-time communication

within Ethernet networks.

In addition to logical attacks, physical and side-channel attacks on the PLC could be an

interesting research topic.

This would be especially interesting, because many newly found side-channel attacks

deliberately target encryption-based security features.

July 21, 2017 Fabian Fisecker 98/112

5. Bibliography

All hyperlinks last checked: 21.07.2017

[1] Williams, C.: Today the web was broken by countless hacked devices – your

60-second summary, The Register, 21.10.2016, available at

http://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained

[2] Schneier, B.: Security Risks of Embedded Systems, 09.01.2014, available at

https://www.schneier.com/blog/archives/2014/01/security_risks_9.html

[3] Schmidt, J.: Das Internet (der Dinge) darf kein rechtsfreier Raum bleiben,

available at https://www.heise.de/security/meldung/Kommentar-Das-Internet-

der-Dinge-darf-kein-rechtsfreier-Raum-bleiben-3529743.html

[4] European Commission: Cybersecurity, available at https://ec.europa.eu/digital-

single-market/en/cybersecurity

[5] Department of Homeland Security (DHS): Executive Order (EO) 13636

Improving Critical Infrastructure Cybersecurity and Presidential Policy

Directive (PPD)-21 Critical Infrastructure Security and Resilience, 29.12.2016,

available at: https://www.dhs.gov/sites/default/files/publications/EO-13636-

PPD-21-Fact-Sheet-508.pdf

[6] U.S. Title 44 Code § 3542 - Definitions, available at

https://www.law.cornell.edu/uscode/text/44/3542

[7] Shirey R – RFC4949: Internet Security Glossary, Version 2, available at

https://tools.ietf.org/html/rfc4949

[8] Anderson R.: Security Engineering: A Guide to Building Dependable

Distributed Systems, Second Edition, April 2008, Wiley Publishing Inc.

[9] Barr M.: Real men program in C, August 2009, available at

http://www.embedded.com/electronics-blogs/barr-code/4027479/2/Real-men-

program-in-C

[10] ARM Ltd.: Q2 2016 Roadshow Slides, 2016, available at:

https://www.arm.com/-/media/arm-

com/company/Investors/Quarterly%20Results%20-

%20PDFs/ARM_2016_Q2_Roadshow_Slides_Final.pdf?la=en

http://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.heise.de/security/meldung/Kommentar-Das-Internet-der-Dinge-darf-kein-rechtsfreier-Raum-bleiben-3529743.html
https://www.heise.de/security/meldung/Kommentar-Das-Internet-der-Dinge-darf-kein-rechtsfreier-Raum-bleiben-3529743.html
https://ec.europa.eu/digital-single-market/en/cybersecurity
https://ec.europa.eu/digital-single-market/en/cybersecurity
https://www.dhs.gov/sites/default/files/publications/EO-13636-PPD-21-Fact-Sheet-508.pdf
https://www.dhs.gov/sites/default/files/publications/EO-13636-PPD-21-Fact-Sheet-508.pdf
https://www.law.cornell.edu/uscode/text/44/3542
https://tools.ietf.org/html/rfc4949
http://www.embedded.com/electronics-blogs/barr-code/4027479/2/Real-men-program-in-C
http://www.embedded.com/electronics-blogs/barr-code/4027479/2/Real-men-program-in-C
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_2016_Q2_Roadshow_Slides_Final.pdf?la=en
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_2016_Q2_Roadshow_Slides_Final.pdf?la=en
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_2016_Q2_Roadshow_Slides_Final.pdf?la=en

July 21, 2017 Fabian Fisecker 99/112

[11] Ganssle J.: The shape of the MCU market, 08.03.2016, available at:

http://www.embedded.com/electronics-blogs/break-points/4441588/The-

shape-of-the-MCU-market

[12] Barr Group – Embedded Systems Glossary, available at

https://barrgroup.com/Embedded-Systems/Glossary-E

[13] Ravi S., et al.: Security in Embedded Systems: Design Challenges, August

2004, available at

http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf

[14] Andress J. and Winterfeld S.: Cyber Warfare: Techniques, Tactics and Tools

for Security Practitioners, Second Edition, Elsevier Inc. - Syngress

[15] Pathan A.: Securing Cyber-Physical Systems, 06.10.2014, CRC Press

[16] Sergei P. Skorobogatov: Semi-invasive attacks - A new approach to hardware

security analysis, April 2005, available at

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

[17] Tehranipoor M.: Physical Attacks and Tamper Resistance, 25.12.2012,

available at:

http://www.engr.uconn.edu/~tehrani/teaching/hst/11%20Physical%20Attacks%

20and%20Tamper%20Resistance.pdf

[18] Zhou Y. and Feng D.: Side-Channel Attacks: Ten Years After Its Publication

and the Impacts on Cryptographic Module Security Testing, 2005, available at:

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-

3/physec/papers/physecpaper19.pdf

[19] Ramsay C. and Lohuis J.: TEMPEST attacks against AES, Covertly stealing

keys for €200, 2017, available at: https://www.fox-it.com/nl/wp-

content/uploads/sites/12/Tempest_attacks_against_AES.pdf

[20] Shamir A et al: RSA Key Extraction via Low-Bandwidth Acoustic

Cryptanalysis, 18.12.2013, available at:

https://www.cs.tau.ac.il/~tromer/papers/acoustic-20131218.pdf

http://www.embedded.com/electronics-blogs/break-points/4441588/The-shape-of-the-MCU-market
http://www.embedded.com/electronics-blogs/break-points/4441588/The-shape-of-the-MCU-market
https://barrgroup.com/Embedded-Systems/Glossary-E
http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
http://www.engr.uconn.edu/~tehrani/teaching/hst/11%20Physical%20Attacks%20and%20Tamper%20Resistance.pdf
http://www.engr.uconn.edu/~tehrani/teaching/hst/11%20Physical%20Attacks%20and%20Tamper%20Resistance.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper19.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper19.pdf
https://www.fox-it.com/nl/wp-content/uploads/sites/12/Tempest_attacks_against_AES.pdf
https://www.fox-it.com/nl/wp-content/uploads/sites/12/Tempest_attacks_against_AES.pdf
https://www.cs.tau.ac.il/~tromer/papers/acoustic-20131218.pdf

July 21, 2017 Fabian Fisecker 100/112

[21] Hoglund G. and McGraw G.: Exploiting Software, How to Break Code,

17.02.2014, Addison-Wesley Professional

[22] Langweg H. and Snekkens E.: A Classification of Malicious Software Attacks,

April 2004, available at:

https://pdfs.semanticscholar.org/2f6b/0e1b2e6ee65d5cb896ae067a074d6f4a7

744.pdf

[23] Stouffer K.: NIST SP800-82r2 Guide to Industrial Control System (ICS)

Security, May 2015, available at http://dx.doi.org/10.6028/NIST.SP.800-82r2

[24] Electrical Technology – What is Distributed Controls System (DCS)?, August

2016, available at http://www.electricaltechnology.org/2016/08/distributed-

control-system-dcs.html#comments

[25] Galloway B. and Hacke G.: Introduction to Industrial Control Networks,

available at http://www.rfidblog.org.uk/Preprint-GallowayHancke-

IndustrialControlSurvey.pdf

[26] Papp D. et al.: Embedded Systems Security: Threats, Vulnerabilities, and

Attack Taxonomy, 2015, available at

http://www.cse.psu.edu/~pdm12/cse597g-f15/readings/cse597g-

embedded_systems.pdf

[27] ISA: The 62443 series of standards: Industrial Automation and Control System

Security, 2016, available at http://isa99.isa.org/Public/Information/The-62443-

Series-Overview.pdf

[28] Boehm B.: Case study: Finding defects earlier yields enormous savings,

Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ, 1981

[29] Boehm B. and Papaccio P.: Understanding and Controlling Software Costs,

v.14, October 1988, IEEE Transactions on Software Engineering

[30] Stecklein J. et al: Error cost escalation through the project life cycle, June

2004, available at:

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf

[31] Menzies T. et al: Are Delayed Issues Harder to Resolve? Revisiting Cost-to-

Fix, September 2016, available at: https://arxiv.org/pdf/1609.04886.pdf

https://pdfs.semanticscholar.org/2f6b/0e1b2e6ee65d5cb896ae067a074d6f4a7744.pdf
https://pdfs.semanticscholar.org/2f6b/0e1b2e6ee65d5cb896ae067a074d6f4a7744.pdf
http://dx.doi.org/10.6028/NIST.SP.800-82r2
http://www.electricaltechnology.org/2016/08/distributed-control-system-dcs.html#comments
http://www.electricaltechnology.org/2016/08/distributed-control-system-dcs.html#comments
http://www.rfidblog.org.uk/Preprint-GallowayHancke-IndustrialControlSurvey.pdf
http://www.rfidblog.org.uk/Preprint-GallowayHancke-IndustrialControlSurvey.pdf
http://www.cse.psu.edu/~pdm12/cse597g-f15/readings/cse597g-embedded_systems.pdf
http://www.cse.psu.edu/~pdm12/cse597g-f15/readings/cse597g-embedded_systems.pdf
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
https://arxiv.org/pdf/1609.04886.pdf

July 21, 2017 Fabian Fisecker 101/112

[32] Howard M. and Lipner S.: The Security Development Lifecycle: SDL: A

Process for Developing Demonstrably More Secure Software, 2006, Microsoft

Press

[33] McGraw G. et al: BSIMM7 Framework, 2017, available at:
https://www.bsimm.com/framework/

[34] OWASP Foundation: Open Software Assurance Maturity Model (OpenSAMM)

1.5, April 2017, available at:

https://www.owasp.org/images/8/8d/OWASP_SAMM_v1.5.zip

[35] Cisco Systems: Building Trustworthy Systems with Cisco Secure

Development Lifecycle, January 2016, available at:

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-

center/docs/building-trustworthy-systems-with-CSDL.pdf

[36] Microsoft: Microsoft Security Development Lifecycle (SDL) Process Guidance
- Version 5.2, 2016, available at: https://www.microsoft.com/en-
us/download/details.aspx?id=29884

[37] Wilson M and Hash J.: NIST SP800-50 Building an Information Technology

Security Awareness and Training Program, 10.2003, available at

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf

[38] Howard M and LeBlanc D: Writing Secure Code: Practical Strategies and

Proven Techniques for Building Secure Applications in a Networked World

(Developer Best Practices), Second Edition, 2009, Microsoft Press

[39] Seacord R.: Secure Coding in C and C++, Second Edition, 2013, Addison-

Wesley Professional

[40] Firesmith D. - Engineering Safety- and Security-Related Requirements for

Software-Intensive Systems, May 2010, available at

https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23269.

pdf

[41] Schneier B.: Attack Trees, December 1999, available at

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

https://www.bsimm.com/framework/
https://www.owasp.org/images/8/8d/OWASP_SAMM_v1.5.zip
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/building-trustworthy-systems-with-CSDL.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/building-trustworthy-systems-with-CSDL.pdf
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://www.microsoft.com/en-us/download/details.aspx?id=29884
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23269.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23269.pdf
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

July 21, 2017 Fabian Fisecker 102/112

[42] Vesely W. E. et al – Fault Tree Handbook, 1981, available at

https://www.nrc.gov/docs/ML1007/ML100780465.pdf

[43] Braber F. eta al - Model-based security analysis in seven steps — a guided

tour to the CORAS method, January 2007, available at

https://heim.ifi.uio.no/massl/publications/BTTJ.pdf

[44] Mouratidis H. and Giorgini P. – Secure Tropos: A security-oriented extension

of the tropos methodology, 2007, available at

http://disi.unitn.it/~pgiorgio/papers/IJSEKE06-1.pdf

[45] Firesmith D. – Engineering Security Requirements, 2003, available at

http://www.jot.fm/issues/issue_2003_01/column6/

[46] Carnegie Mellon University: SQUARE, 2010, available at

https://www.cert.org/cybersecurity-engineering/products-services/square.cfm

[47] Shostack A. – Threat Modelling: Designing for Security, 2014, John Wiley &

Sons.

[48] OWASP Foundation: Top 10 Web Vulnerabilities, 2013, available at

https://www.owasp.org/index.php/Top_10_2013-Top_10

[49] Elahi G.: Security Requirements Engineering: State of the Art and Practice

and Challenges, available at

http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf

[50] Hadavi M. et al.: Security Requirements Engineering; State of the Art and

Research Challenges, 2008, available at

http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp985-990.pdf

[51] Saltzer J. and Schroeder M.: The Protection of Information in Computer

Systems, September 1975, Proc IEEE 63(9)

[52] Huang Y.: Security Principles, 2015, available at:

http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec2-principles.pdf

[53] OWASP Foundation: Security by Design Principles, August 2016, available at:

https://www.owasp.org/index.php/Security_by_Design_Principles

https://www.nrc.gov/docs/ML1007/ML100780465.pdf
https://heim.ifi.uio.no/massl/publications/BTTJ.pdf
http://disi.unitn.it/~pgiorgio/papers/IJSEKE06-1.pdf
http://www.jot.fm/issues/issue_2003_01/column6/
https://www.cert.org/cybersecurity-engineering/products-services/square.cfm
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf
http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp985-990.pdf
http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec2-principles.pdf
https://www.owasp.org/index.php/Security_by_Design_Principles

July 21, 2017 Fabian Fisecker 103/112

[54] Smith R.: Security Design Principles, October 2013, available at:

https://cryptosmith.com/2013/10/19/security-design-principles/

[55] Kahn, D.: The Codebreakers: the story of secret writing, 1996, Scribners

Publishing

[56] Ross R. et al: NIST SP800-160: Systems Security Engineering:

Considerations for a Multidisciplinary Approach in the Engineering of

Trustworthy Secure Systems, November 2016, available at:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf

[57] OWASP Foundation: Attack Surface Analysis Cheat Sheet, July 2015,

available at:

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

[58] Majeed M. and Quadri S.: Analysis and Evaluation of “Reducing the Attack

Surfaces” to improve the security of the software at Design Level, 2016,

International Journal of Computer Science and Information Technologies,

available at:

http://ijcsit.com/docs/Volume%207/vol7issue3/ijcsit2016070392.pdf

[59] Howard M. et al: Measuring Relative Attack Surfaces, 2003, available at:

https://www.cs.cmu.edu/afs/cs/project/svc/projects/security/wadis1.pdf

[60] Schneier B.: Applied Cryptography: Protocols, Algorithms and Source Code in

C, 20th anniversary edition, May 2015, John Wiley & Sons

[61] Kessler G.: An Overview of Cryptography, April 2017, available at:

http://www.garykessler.net/library/crypto.html

[62] Graff M. and Wyk K.: Secure Coding: Principles and Practices, 2003, O’Reilly

Media

[63] Bolton D.: Why Managed Code Is Safer, January 2014, available at:

http://insights.dice.com/2014/01/29/managed-vs-unmanaged-code/

[64] Wichers D.: OWASP: Input Validation Cheat Sheet, June 2016, available at:

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

[65] OWASP Foundation: XML Security Cheat Sheet, Mai 2017, available at:

https://www.owasp.org/index.php/XML_Security_Cheat_Sheet

https://cryptosmith.com/2013/10/19/security-design-principles/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
http://ijcsit.com/docs/Volume%207/vol7issue3/ijcsit2016070392.pdf
https://www.cs.cmu.edu/afs/cs/project/svc/projects/security/wadis1.pdf
http://www.garykessler.net/library/crypto.html
http://insights.dice.com/2014/01/29/managed-vs-unmanaged-code/
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/XML_Security_Cheat_Sheet

July 21, 2017 Fabian Fisecker 104/112

[66] Microsoft: Dynamic-Link Library Security, available at:

https://msdn.microsoft.com/en-

us/library/windows/desktop/ff919712(v=vs.85).aspx

[67] OWASP Foundation: Secure Coding Practices Quick Reference Guide,

November 2010, available at:

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_

v2.pdf

[68] J.B. Almeida et al., Rigorous Software Development, 2011, Springer-Verlag,

available at:

https://www.springer.com/cda/content/document/cda_downloaddocument/978

0857290175c2.pdf?SGWID=0-0-45-1053837-p174029011

[69] McConnell S.: Code Complete: A Practical Handbook of Software

Construction, Second Edition, 2004, Microsoft Press

[70] OWASP Foundation: OWASP Code Review Project, June 2017, available at:

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

[71] Vranken G.: The OpenVPN post-audit bug bonanza, 21.06.2017, available at:

https://guidovranken.wordpress.com/2017/06/21/the-openvpn-post-audit-bug-

bonanza/

[72] FIRST.Org, Inc.: About CVSS, June 2015, available at

https://www.first.org/cvss

[73] The Mitre Corporation: Common Vulnerabilities and Exposures (CVE)

Numbering Authority (CNA) Rules, September 2016, available at

https://cve.mitre.org/cve/cna/CNA_Rules_v1.1.pdf

[74] Stoneburner, G. et al: NIST SP800-30r1 Guide for Conducting Risk

Assessments, September 2012, available at

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

[75] OWASP Foundation: Threat Risk Modelling, 2016, available at

https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD

https://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.springer.com/cda/content/document/cda_downloaddocument/9780857290175c2.pdf?SGWID=0-0-45-1053837-p174029011
https://www.springer.com/cda/content/document/cda_downloaddocument/9780857290175c2.pdf?SGWID=0-0-45-1053837-p174029011
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://guidovranken.wordpress.com/2017/06/21/the-openvpn-post-audit-bug-bonanza/
https://guidovranken.wordpress.com/2017/06/21/the-openvpn-post-audit-bug-bonanza/
https://www.first.org/cvss
https://cve.mitre.org/cve/cna/CNA_Rules_v1.1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD

July 21, 2017 Fabian Fisecker 105/112

[76] ISO/IEC 27005:2011: Information technology - Information security risk

management, Second edition, June 2011

[77] Ross R. et al: NIST SP800-39 Managing Information Security Risk, March

2011, available at:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf

[78] Kissel R. et al: NIST SP800-64r2 Security Considerations in the System

Development Life Cycle, October 2008, available at:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf

[79] Andress J. and Linn R.: Coding for Penetration Testers: Building Better Tools,

Second Edition, September 2016, Elsevier Inc. – Syngress

[80] Cardwell K.: Building Virtual Pentesting Labs for Advanced Penetration

Testing, June 2014, Packt Publishing

[81] OWASP Foundation: ZED Attack Proxy Project, 2016, available at

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[82] Law, E.: Combating ClickJacking With X-Frame-Options, 30.03.2010,

available at

https://blogs.msdn.microsoft.com/ieinternals/2010/03/30/combating-

clickjacking-with-x-frame-options/

[83] Dawson, I.: Guidelines for Setting Security Headers, 12.03.2014, available at

https://blog.veracode.com/2014/03/guidelines-for-setting-security-headers/

[84] Microsoft Corp.: Reducing MIME type security risks, 2014, available at

https://msdn.microsoft.com/en-us/library/gg622941(v=vs.85).aspx

[85] Zalewski M.: The Tangled Web: A Guide to Securing Modern Web

Applications, 2012, No Starch Press, Inc.

[86] ZAP Extension project, 2016, available at https://github.com/zaproxy/zap-

extensions/tree/master/src/org/zaproxy/zap/extension/fuzzdb/files/fuzzers/fuzz

db/attack/json

[87] The hashcat project forum, 03.09.2016, available at

https://hashcat.net/forum/thread-5832.html

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://blogs.msdn.microsoft.com/ieinternals/2010/03/30/combating-clickjacking-with-x-frame-options/
https://blogs.msdn.microsoft.com/ieinternals/2010/03/30/combating-clickjacking-with-x-frame-options/
https://blog.veracode.com/2014/03/guidelines-for-setting-security-headers/
https://msdn.microsoft.com/en-us/library/gg622941(v=vs.85).aspx
https://github.com/zaproxy/zap-extensions/tree/master/src/org/zaproxy/zap/extension/fuzzdb/files/fuzzers/fuzzdb/attack/json
https://github.com/zaproxy/zap-extensions/tree/master/src/org/zaproxy/zap/extension/fuzzdb/files/fuzzers/fuzzdb/attack/json
https://github.com/zaproxy/zap-extensions/tree/master/src/org/zaproxy/zap/extension/fuzzdb/files/fuzzers/fuzzdb/attack/json
https://hashcat.net/forum/thread-5832.html

July 21, 2017 Fabian Fisecker 106/112

[88] Vanhoef M. and Piessens F.: All Your Biases Belong To Us: Breaking RC4 in

WPA-TKIP and TLS, 2015, available at https://www.rc4nomore.com/vanhoef-

usenix2015.pdf

[89] Bhargavan K. and Leurent G.: On the Practical (In-)Security of 64-bit Block

Ciphers, 2016, available at https://sweet32.info/SWEET32_CCS16.pdf

[90] Pellegrini A. et al.: Fault-Based Attack of RSA Authentication, 2010, available

at http://www.eecs.umich.edu/~valeria/research/publications/DATE10RSA.pdf

[91] Schneier B.: When Will We See Collisions for SHA-1?, October 2012,

available at

https://www.schneier.com/blog/archives/2012/10/when_will_we_se.html

[92] Stevens M. et al.: The first collision for full SHA-1, 2017, available at

https://shattered.it/static/shattered.pdf

[93] Moeller B. and Langley A.: IETF RFC7507: TLS Fallback Signaling Cipher

Suite Value (SCSV) for Preventing Protocol Downgrade Attacks, April 2015,

available at https://tools.ietf.org/html/rfc7507#section-3

[94] The RFB Protocol, 2016, available at

https://github.com/rfbproto/rfbproto/blob/master/rfbproto.rst

[95] Tipton F. and Krause M.: Information Security Management Handbook, Fifth

Edition, 2004, CRC Press

[96] The OPC Foundation: Unified Architecture, 2016, available at

https://opcfoundation.org/about/opc-technologies-/opc-ua/

[97] Tao B. and Wu H.: Improving the Biclique Cryptanalysis of AES, 2015,

available at https://link.springer.com/chapter/10.1007/978-3-319-19962-7_3

[98] Leskiw A.: SNMP Basics: What is SNMP & How do I use it?, available at

http://www.networkmanagementsoftware.com/snmp-tutorial/

[99] Schoenwaelder J. et al.: RFC4789: Simple Network Management Protocol

(SNMP) over IEEE 802 Network, November 2016, available at

https://tools.ietf.org/html/rfc4789

https://www.rc4nomore.com/vanhoef-usenix2015.pdf
https://www.rc4nomore.com/vanhoef-usenix2015.pdf
https://sweet32.info/SWEET32_CCS16.pdf
http://www.eecs.umich.edu/~valeria/research/publications/DATE10RSA.pdf
https://www.schneier.com/blog/archives/2012/10/when_will_we_se.html
https://shattered.it/static/shattered.pdf
https://tools.ietf.org/html/rfc7507#section-3
https://github.com/rfbproto/rfbproto/blob/master/rfbproto.rst
https://opcfoundation.org/about/opc-technologies-/opc-ua/
https://link.springer.com/chapter/10.1007/978-3-319-19962-7_3
http://www.networkmanagementsoftware.com/snmp-tutorial/
https://tools.ietf.org/html/rfc4789

July 21, 2017 Fabian Fisecker 107/112

6. Table of Figures

All hyperlinks last checked: 21.07.2017

Figure 1 - Attacks on Embedded Systems .. 12

Taken from: Ravi S. et al: Security in Embedded Systems: Design Challenges,

available at http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf

Figure 2 - Dimensions of Physical Attacks .. 12

[selfmade diagram by author]

Figure 3 - Example SCADA Architecture ... 20

Taken from: Pacific Northwest National Laboratory, available at

http://placidtech.com/files/scada.jpg

Figure 4 - ISO/IEC 62443 Elements .. 24

Taken from ISA: The 62443 series of standards: Industrial Automation and Control

System Security, 2016, available at http://isa99.isa.org/Public/Information/The-62443-

Series-Overview.pdf

Figure 5 - ISO/IEC 62443 Security Levels ... 25

Taken from: Kobes P.: Security Levels in ISA-99 / IEC 62443, 2012, available at

http://isa99.isa.org/Documents/Committee_Meeting/(2012-

05)%20Gaithersburg,%20MD/ISA-99-Security_Levels_Proposal.pdf

Figure 6 - The ISO 27000 Family .. 28

Taken from: Hinson G.: The ISO27k Standards, March 2014

Figure 7 - ISO/IEC 27002:2013 Security Controls ... 28

Taken from: ISO 27k Security, 2013, available at

http://www.iso27001security.com/html/27002.html

Figure 8 - BSI IT Baseline Protection .. 30

Taken from: BSI-Standard 100 – Managementsystems for Information Security, 2008,

available at

https://www.bsi.bund.de/EN/BSI/Publikationen/ITGrundschutzstandards/BSI-

Standard_1001.pdf

Figure 9 - The Microsoft Security Development Lifecycle - Simplified 31

Taken from: Microsoft Corporation: Simplified Implementation of the Microsoft SDL,

2010, available at https://www.microsoft.com/en-us/download/details.aspx?id=12379

Figure 10 - The IT Security Learning Continuum ... 33

http://users.ece.gatech.edu/~dblough/8823/embedded_security.pdf
http://placidtech.com/files/scada.jpg
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
http://isa99.isa.org/Documents/Committee_Meeting/(2012-05)%20Gaithersburg,%20MD/ISA-99-Security_Levels_Proposal.pdf
http://isa99.isa.org/Documents/Committee_Meeting/(2012-05)%20Gaithersburg,%20MD/ISA-99-Security_Levels_Proposal.pdf
http://www.iso27001security.com/html/27002.html
https://www.bsi.bund.de/EN/BSI/Publikationen/ITGrundschutzstandards/BSI-Standard_1001.pdf
https://www.bsi.bund.de/EN/BSI/Publikationen/ITGrundschutzstandards/BSI-Standard_1001.pdf
https://www.microsoft.com/en-us/download/details.aspx?id=12379

July 21, 2017 Fabian Fisecker 108/112

Taken from: Wilson M and Hash J.: NIST SP800-50 Building an Information

Technology Security Awareness and Training Program, 10.2003, available at

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf

Figure 11 - The Threat Modelling Process .. 39

Taken from: Shostack A. – Threat Modelling: Designing for Security, 2014, John Wiley

& Sons.

Figure 12 - Example Attack Tree .. 41

Taken from: Schneier B. – Dr. Dobb’s Journal: Attack trees, 1999, available at

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 13 - Comparison of Security Modeling Notations ... 43

Taken from: Elahi G.: Security Requirements Engineering: State of the Art and Practice

and Challenges, available at http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf

Figure 14 - Security Design Principles .. 46

Taken from: Ross R. et al: NIST SP800-160: Systems Security Engineering:

Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy

Secure Systems, November 2016, available at:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf

Figure 15 - Agile Model for Microsft SSDLC .. 58

Taken from: Microsoft Corporation: Simplified Implementation of the Microsoft SDL,

2010, available at https://www.microsoft.com/en-us/download/details.aspx?id=12379

Figure 16 - NIST SP80030r1 Risk assessment process .. 60

Taken from: Stoneburner, G. el al.: NIST SP800-30r1 Guide for Conducting Risk

Assessments, September 2012, available at

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

Figure 17 - Security Analysis Topology ... 67

[selfmade diagram by author]

Figure 18 - Nessus Scan Report Screenshot .. 69

[selfmade screenshot by author]

Figure 19 - OpenVAS Architecture .. 69

Taken from: Greenbone Networks GmbH, available at

http://www.openvas.org/software.html#feature_overview

Figure 20 - OpenVAS Scan Report Screenshot .. 71

[selfmade screenshot by author]

Figure 21 - ZAP Sitemap and Vulnerable Function Screenshot 73

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-50.pdf
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://www.cs.toronto.edu/~gelahi/DepthPaper.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
https://www.microsoft.com/en-us/download/details.aspx?id=12379
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
http://www.openvas.org/software.html#feature_overview

July 21, 2017 Fabian Fisecker 109/112

[selfmade screenshot by author]

Figure 22 - Unmodified Request Payload Screenshot ... 73

[selfmade screenshot by author]

Figure 23 - Modified Request Payload by ZAP Screenshot ... 73

[selfmade screenshot by author]

Figure 24 - HTTP Get Traversal Exploitation ZAP Screenshot 74

[selfmade screenshot by author]

Figure 25 - Sniffing Topology .. 75

[selfmade diagram by author]

Figure 26 - Mapp View Login Widget Screenshot ... 76

[selfmade screenshot by author]

Figure 27 - Wireshark Capture of a Visualization Login Screenshot 76

[selfmade screenshot by author]

Figure 28 - Registerclient Request ZAP Screenshot ... 77

[selfmade screenshot by author]

Figure 29 - JSON Websocket Communication of the Visualization Screenshot........... 77

[selfmade screenshot by author]

Figure 30 - Crash after JSON Fuzzing Requests Screenshot 78

[selfmade screenshot by author]

Figure 31 - TLSSLed Report Output Screenshot ... 79

[selfmade screenshot by author]

Figure 32 - Metasploit with openssl_heartbleed Module Screenshot 80

[selfmade screenshot by author]

Figure 33 - The VNC Authentication Challenge-Response ... 83

Taken from: Tipton F. and Krause M.: Information Security Management Handbook,

Fifth Edition, 2004, CRC Press

Figure 34 - VNC Man-in-the-Middle Attack - Preparation .. 85

Taken and adapted from: Tipton F. and Krause M.: Information Security Management

Handbook, Fifth Edition, 2004, CRC Press

Figure 35 - VNC Man-in-the-Middle Attack - Execution ... 85

July 21, 2017 Fabian Fisecker 110/112

Taken and adapted from: Tipton F. and Krause M.: Information Security Management

Handbook, Fifth Edition, 2004, CRC Press

Figure 36 - B&R OPC-UA Server Modes Screenshot .. 88

[selfmade screenshot by author]

Figure 37 - ANSL Plaintext Capture File Screenshot... 90

[selfmade screenshot by author]

Figure 38 - ANSL Crafted Package Capture File Screenshot 90

[selfmade screenshot by author]

Figure 39 - SNMP Topology .. 92

Taken from: Leskiw A.: SNMP Basics: What is SNMP & How do I use it?, available at

http://www.networkmanagementsoftware.com/snmp-tutorial/

Figure 40 - NMAP Fingerprint of the PLC before the Crafted SNMP Packet Attack

Screenshot ... 93

[selfmade screenshot by author]

Figure 41 - Wireshark Capture of Crafted SNMP Packet Screenshot 93

[selfmade screenshot by author]

Figure 42 - NMAP Fingerprint of the PLC after the Crafted SNMP Packet Attack

Screenshot ... 94

[selfmade screenshot by author]

http://www.networkmanagementsoftware.com/snmp-tutorial/

July 21, 2017 Fabian Fisecker 111/112

7. Curriculum Vitae

Personal Data

Name: Fabian Fisecker

Address: Rödt 5, 4922 Geiersberg

Date of Birth: 09.05.1988

Education

2015-present Master of Science in Computer Science

Johannes Kepler University, Linz, Austria

2008-2010 Bachelor of Science in Software Engineering

University of Applied Science, Hagenberg, Austria

2002-2007 Matura, HTL Grieskirchen in Information Technology and Organization

Secondary technical school, Grieskirchen, Austria

Work Experience

2008-present Bernecker + Rainer Industrie Elektronik Ges.m.b.H.

Software & Security Engineer

2007-2008 Civilian Service, Red Cross Austria

Paramedic

2006-2007 Doma Elektroengineering GmbH

System Administrator

July 21, 2017 Fabian Fisecker 112/112

8. Sworn Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not used

other than the sources indicated, and that all direct and indirect sources are

acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich

gemacht habe.

Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten Textdokument

identisch.

