

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at
DVR 0093696

Author
Tanja Fraundorfer, BSc

Submission
Institute of Networks and
Security

Thesis Supervisor
Assoc. Prof. Mag. Dipl.-Ing.
Dr. Michael Sonntag

03 2021

CLOUD
INTERCHANGEABILITY

Master¶s Thesis
to confer the academic degree of

Diplom-Ingenieurin
in the Master¶s Program

Computer Science

Abstract

Cloud computing becomes more and more relevant in everyday business of dif-
ferent kinds of companies. Therefore, migration of system and services to the cloud
is also an important topic. But not just the migration to the cloud, the transfer of
systems between clouds is also interesting. A reason for changing the cloud provider
could be that contracts or o�erings of the cloud providers changed. Thus, this the-
sis is about the step of migrating systems to, from and between clouds. For this,
three cloud platforms are examined: GCP (Google Cloud Platform), AWS (Amazon
Web Services) and Azure (Microsoft). Di�erent systems will be imported to those
platforms, exported from them, and moved between them. There are two options
for moving systems between cloud platforms: direct and indirect. Indirect means
exporting the system from the one cloud platform, saving it on the local system
and then importing it to the other cloud platform. The test systems consist of a
database, a virtual machine, a docker container and a storage system. As it turned
out, some systems are easier to move to a certain platform than to others, e.g. for
virtual machines all cloud providers set the strictest requirements. GCP o�ers the
most tools and various options how to import systems from a local system and from
other cloud platforms. Of course there are some di�erences in the o�ered tools and
services, nevertheless the principles are more or less the same in all cloud platforms.

ii

Kurzfassung

Cloud Computing wird immer relevanter für verschiedenste Firmen und deren
Alltag, deswegen ist die Migration von Systemen in die Cloud ein wichtiges The-
ma. Aber nicht nur die Migration in die Cloud, auch die Migration zwischen zwei
Cloud-Plattformen ist ein interessantes Thema. Ein Grund um den Cloud-Anbieter
zu wechseln sind z.B. Änderung der Angebote oder Vertragsbedingungen. Deswe-
gen beschÃ¤ftigt sich diese Masterarbeit mit der Migration von Systemen zu, von
und zwischen Cloud-Plattformen. Es werden dafür drei Cloud-Plattformen analy-
siert: GCP (Google Cloud Plattform), AWS (Amazon Web Services) und Azure
(Microsoft). In diese Cloud-Plattformen werden Systeme importiert, von ihnen ex-
portiert und zwischen ihnen migriert. Es gibt zwei Möglichkeiten Systeme zwischen
den Cloud-Plattformen zu migrieren: direkt und indirekt. Bei der indirekten Va-
riante wird das Testsystem zuerst von der einen Cloud-Plattform exportiert, lokal
gespeichert und dann in die andere Cloud-Plattform importiert. Das Testsystem be-
steht aus einer Datenbank, einer virtuellen Maschine, einem Docker Container und
einem Speichersystem. Es stellte sich heraus, dass manche Teile des Testsystems
leichter in manche Cloud-Plattformen importiert werden können als andere. Alle
Cloud-Anbieter stellen die strengsten Anforderungen für den Import von virtuellen
Maschinen. GCP stellt die meisten Tools zur Verfügung, um Systeme zu importie-
ren. Auch wenn einige Unterschiede in bereitgestellten Tools und Diensten bestehen,
sind sich die Cloud-Plattformen im Großen und Ganzen sehr ähnlich.

iii

Cloud interchangeability

Cloud interchangeability
1 Introduction 1

1.1 Motivation . 1
1.2 Scope . 3

2 Theoretical Background 4
2.1 Definition of Cloud Computing . 4
2.2 Characteristics of cloud computing . 5
2.3 Service Models . 7

2.3.1 Infrastructure as a Service (IaaS) 8
2.3.2 Platform as a Service (PaaS) . 9
2.3.3 Software as a Service (SaaS) . 9
2.3.4 Other service models . 10

2.4 Deployment Models . 10
2.4.1 Private cloud . 10
2.4.2 Public cloud . 11
2.4.3 Community cloud . 11
2.4.4 Hybrid cloud . 12

2.5 Cloud Migration . 12
2.5.1 Migration process . 13
2.5.2 Migration strategies . 14
2.5.3 Mobility of services in the cloud . 16
2.5.4 Automation of the migration process 16

2.6 The cloud platforms investigated . 18
2.6.1 Google Cloud Platform (GCP) . 18
2.6.2 Amazon Web Services (AWS) . 19
2.6.3 Microsoft Azure . 20

3 Approach 22
3.1 Tests to perform . 22

3.1.1 Migrating a local system to a cloud platform 22
3.1.2 Migrating a system from a cloud platform to a local system 23
3.1.3 Migration between cloud platforms 23

3.2 Test Systems . 24
3.2.1 Databases . 24
3.2.2 Virtual Machines . 25
3.2.3 Docker . 26
3.2.4 Storage . 26

3.3 Assessment criteria . 26
3.4 Migration approach . 27

iv

Cloud interchangeability

4 Migrating a local system to a cloud platform 28
4.1 Databases . 28

4.1.1 To GCP . 28
4.1.2 To AWS . 30
4.1.3 To Azure . 32

4.2 Virtual Machines . 33
4.2.1 To GCP . 33
4.2.2 To AWS . 34
4.2.3 To Azure . 36

4.3 Docker . 37
4.3.1 To GCP . 37
4.3.2 To AWS . 38
4.3.3 To Azure . 39

4.4 Storage . 40
4.4.1 To GCP . 40
4.4.2 To AWS . 40
4.4.3 To Azure . 41

5 Migrating a system from a cloud platform to a local system 42
5.1 Databases . 42

5.1.1 From GCP . 42
5.1.2 From AWS . 44
5.1.3 From Azure . 44

5.2 Virtual Machines . 45
5.2.1 From GCP . 45
5.2.2 From AWS . 46
5.2.3 From Azure . 47

5.3 Docker . 47
5.3.1 From GCP . 48
5.3.2 From AWS . 48
5.3.3 From Azure . 49

5.4 Storage . 49
5.4.1 From GCP . 49
5.4.2 From AWS . 49
5.4.3 From Azure . 49

6 Migration between cloud platforms 50
6.1 Direct – from cloud platform to cloud platform 50

6.1.1 Databases . 50
6.1.2 Virtual Machines . 51
6.1.3 Docker . 52
6.1.4 Storage . 54

6.2 Indirect – with the help of a local system 55
6.2.1 Databases . 55
6.2.2 Virtual Machines . 56
6.2.3 Docker . 57
6.2.4 Storage . 57

6.3 Comparison . 57
v

Cloud interchangeability

7 Summary and Conclusion 59
7.1 Results . 59
7.2 Implications and future directions . 61

References 62

List of Figures 65

List of Tables 66

vi

Cloud interchangeability

1 Introduction
Clouds - people who are not familiar with computer science usually think about the sky.
Maybe a blue one with some nice white clouds in it or a cloudy and cold day when
everyone prefers to sit inside instead of going out. Contrary to this, computer science
people think about a technology which offers a wide range of opportunities, services and
business models. The latter is what this thesis is about. The technology which changed
a lot in computer science, like clouds outside can change the weather quickly. People
or companies can now easily rent infrastructure or applications and don’t need to buy
the hardware themselves. Still instead of hardware, people or companies now need the
Internet to connect to the cloud and this is one of the few prerequisites for using cloud
computing. There is not much more technical equipment needed. The internet is also the
area where the cloud symbol has already been known for a long time. It is used to show a
network where not all the connections are known exactly. In [38] it is said that engineers
started to use this symbol for cloud computing for the same reasons as it was used in the
internet - the customers don’t know what is hidden behind the cloud. They just get the
service, which can be applications, infrastructure or computing power. Although it is not
known where exactly the physical hardware is located. It can be based in any computer
center the cloud provider owns.
Not having dedicated hardware has another advantage. Customers can share the infras-
tructure and thanks to virtualization, they do not know that they are working on the
same physical hardware. This, as everything, has advantages and disadvantages. The
infrastructure can usually be used more efficiently and therefore it is cheaper to maintain.
Yet also the customer has benefits: within certain limits the needed computing power is
granted to them as they need it. This is especially useful if they have peak times where
certain resources or computing power is used for a short time and not a constant utiliza-
tion. So it is a win-win situation for provider and customer. Moreover the infrastructure
is administered centrally by the provider and so energy could be saved with the right
management. Considering that unused parts of the infrastructure don’t need to be cooled
or supplied with electricity, this also helps the environment.

1.1 Motivation
Cloud computing is getting more and more important in recent years, and it does not just
open up new business opportunities but also ways to save money and use resources more
efficiently. A reason why this is the case, is that clouds are not limited to one business
sector. All sectors can use cloud computing and take advantage of it. This gives the
cloud a very broad set of possible areas where it can be used. Also it can still be further
developed and adapted to the needs of the users. That’s why it is critical to pay attention
to cloud systems, how they can be used and most important how a system can actually
be set up in the cloud.
Cloud computing offers a lot of advantages in comparison to traditional computing sys-
tems. It is more flexible when it comes to meeting the actual needs of the customer with
regards to the available resources and scalability. Because it is based on a pay-per-use
model the customer just pays for the services actually used. These are only some reasons
for transferring systems to the cloud. Of course then the question arises how easy this
transfer or migration is and what happens if it turns out that it wasn’t the best solution

1

Cloud interchangeability

for the company. Is it possible and with how much effort to revert to a local system?
Maybe also another cloud provider would have been a better choice. On the grounds that
the offered services are more suitable to the customers situation, there are better SLA
(Service level agreements) granted or simply because the other provider is cheaper. Nor-
mally people start comparing providers and their offerings when they first want to move
something to the cloud but also when the current contract should be renewed. All those
reasons given for using cloud computing or changing providers, the central questions are
the following: How much work is it? Is there something that can’t be implemented in the
cloud environment? Which resources and experts are needed for the migration? And of
course, how much will it cost?
While providers generally try to gain customers, they do not want to lose them. So they
would not be too interested in cooperating with others to make the movement between
the clouds easy. Importing and setting up new systems in their cloud should be their
daily business but exporting data often means losing business. The compatibility prob-
lem arises from the history. When cloud computing started, everyone implemented their
own system and started offering services. No one would use an standardized approach,
because there was none and so the different systems were created. Also because customers
have different needs and different providers have different target groups it is just logical
that the functionality in particular clouds varies. When the functionality is not the same,
certainly the underlying technology needs to adapt. Moreover some providers maybe want
to offer the best technology, while others aim for customers which desire simple and cheap
systems.
An interesting project is GAIA-X which is carried out by the European Union. On the one
hand, they aim to create a competitive offer to the American and Asian cloud platforms
and on the other hand, they want to have a data service, which is protected by European
data protection laws. Also, it is meant to be one big cloud ecosystem and therefore con-
nect various cloud platforms of different providers. In this way a common standard could
be established between European cloud providers.
While there are different service models in cloud computing, a big part of it is SaaS (Soft-
ware as a Service), where the customer just uses the application which is offered by the
cloud provider. This doesn’t only save hardware costs for the hardware on which the
application needs to run but also for a central data server and the development costs for
the software, if it would be created by the company. In cloud computing the company
doesn’t buy a program and then use it locally but rather kind of rents the program on a
pay-per-use base. In [37] salesforce.com is given as an example. When just the applica-
tion is used then the export of the data could be problematic, also finding or developing
another application which works with exactly the same data could be quite time and
resource intensive.
When migrating a system, no matter for what reasons, it is always a good time to think
about what one expects from the systems that he or she is working with. Which features
and functionalities are needed and should be kept, which should be changed and, are there
any new ones needed? Then one also has to think about the current source and how the
data can be extracted from it. Often there are other software versions needed considering
that cloud providers most of the time just support certain versions of a program. Then
one has to consider that other applications may need to be compatible with the newer
software too. Depending on the kind of the upgrade or change in software the employees
need to be trained to work with the newer version or the other software. Moreover if not

2

Cloud interchangeability

everything can be moved to the cloud at the same time, a plan needs to be made about
how the new and the old system can work together. Maybe it is even necessary to run
both systems for some time in parallel and then consistency between the systems has to
be ensured. An alternative would be, that the desired option is to have some sort of mix,
where not just for the migration but for the general use some data and applications are
hosted in the cloud and the more delicate data is stored on the local infrastructure.
Also, one has to have a good look at the used systems and maybe even improvements to
the work-flows can be made and thus work could be made more smooth and efficient. At
first this maybe seems like an exhausting and really big task, because one has to think a
lot about the migration process as well as who is the most suitable cloud provider. Still,
when all the work is done, when the new system is up and running and costs can be
saved it was hopefully totally worth the effort and one can enjoy the benefits of cloud
computing.

1.2 Scope
In this thesis the three biggest cloud providers and their products are examined. Those are
Microsoft Azure, Google Cloud Platform and Amazon Web Services. The main question
is the migration between the clouds and a local system but also migrations between the
cloud providers. So for each cloud there are the following scenarios: migrating a local
system to the cloud, exporting a system from the cloud and setting it up locally again, and
migrating a system between the cloud platforms. The last scenario can happen directly
or indirectly depending on the options that cloud providers offer. Indirect means with
an extra step over a local setup, which may include making some changes to the system
to be able to import it again to another cloud. For these experiments a test system is
created. This test system consist of a database, virtual machines, docker containers and
a structure to test the Blob storage possibilities in the clouds. Specific applications, like
mail or messaging services, are not tested here.

3

Cloud interchangeability

2 Theoretical Background
Clouds are constantly changing and evolving, which is why the definition and theoretical
background also changes. This is not surprising because cloud systems are in use and
therefore try to suit the needs of the users as well as the different providers continue
developing this technology to keep ahead in business. This does not always happen with
a common standard, because every provider tries to have the best and most innovative
product. Nevertheless there are some definitions, models and characteristics which were
set in the past few years and which are going to be discussed in the first part of this
section.
The second part of this chapter is dedicated to the cloud providers and their platforms
in general. The three biggest ones on the market are Google with Google cloud platform
(GCP), Microsoft with Azure and Amazon with Amazon web services (AWS). Those are
the platforms on which the experiments will take place later. This section introduces
them and gives a first impression of their common aspects but also their differences. Next
a short discussion of the migration process and if or how it can be automated follows.
In this section some tools are introduced which are already used by the different cloud
providers.

2.1 Definition of Cloud Computing
A very simplified but appropriate definition of cloud computing was given in [32]: “Cloud
computing in simple terms means storing and accessing data and programs over the In-
ternet instead of our computer’s hard drive.” Of course cloud computing is not restricted
to storing data and using programs but can also include the usage of infrastructure. In
[33] the cloud is defined as “a service or group of services.” It is also said that the cloud
definitions changed over time and are still going to change, because services are always
adapted to the needs of the customer.
In [38] cloud computing is defined as a form of internet computing where the customer can
rent certain services from the cloud provider. Servers, storage, platforms and applications
are a few examples for these services. More than that, pay-per-use billing is part of the
definition here.
According to NIST [30] “Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing resources
[...] that can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction.” This means cloud computing needs to be easily scalable, also
the scaling needs to happen fast and as far as possible it should be automated. Thus no
or hardly any interaction with the administrator of the provider is necessary. Besides the
cloud should be reachable at all times. Moreover NIST [30] defines five essential character-
istics for clouds, three service models and four deployment models. These characteristics
and models are going to be discussed in the chapters 2.2, 2.3 and 2.4.
As can be seen theses definitions are not completely the same but still build upon a com-
mon ground. The clearest and thought-out definition comes from NIST and this is also
probably the one that one should go with when working in the cloud environment.

4

Cloud interchangeability

2.2 Characteristics of cloud computing
NIST [30] defines five essential characteristics for cloud computing. These five character-
istics are on-demand self-service, broad network access, resource pooling, rapid elasticity
and measured service. They describe how a cloud is supposed to behave and can be seen
in figure 1. Without these characteristics a solution is not a real cloud solution. But
because local solutions often don’t have those characteristics, the migrated systems have
to be adapted to run in the cloud. To enable resource pooling, for example, the systems
have to be virtualized.

Figure 1: The five essential characteristics of cloud computing [21].

On-Demand Self-service

One key point in cloud environments is the on-demand self-service. Here an automated
process is introduced, so that the customer can gain access to the application without
human interaction. This means no administrator or other person has to give their approval
or has to perform any system changes. Of course not all rights can be granted in that
way, because one has to consider compliance issues. This is the case when separation of
duty is needed and therefore a user needs a certain approval to perform a task. This is
often required if a law like the Sarbanes- Oxley Act (SOX) applies to the business field.
Nevertheless there is less administration needed than without self-service [33]. Moreover
the pay-per use model guarantees that the customer just pays for the resources, which have
been used. When using on-demand self-service, the user just needs access to the online
interface. The idea of this setup is shown in figure 2. One can see that the customer just
needs a device, like a PC, mobile device or laptop, to connect with the user interface.
Then the customer can connect to the provider’s resources over the internet.

5

Cloud interchangeability

Figure 2: “Self-service based access” [37].

Rapid Elasticity

In common systems, if more capacity is needed, usually new hardware needs to be added.
This can take some time and is expensive. In the cloud environment adding capacity
happens fast and mostly automated. This is possible because the infrastructure is nor-
mally already there and just has to be assigned. In [37] is pointed out that the main
goal of this characteristic is that the time gap between the changed demand and the
resource availability is as small as possible. This change can be a needed increase or
decrease of resources. The scalability is not just important to handle bursts (short times
when the customer needs more capacity) but also helps the provider saving costs, because
not needed resources don’t need to be cooled or consume power. The elasticity is often
implemented with triggers, which are set off if a certain threshold is met [33].

Broad Network Access

According to [33] there are three main points for this characteristic. The first point is
that the user should not be expected to have an extraordinary internet connection. Basic
internet access needs to be enough for using the cloud services. Therefore they should
need just a reasonable amount of bandwidth. The second point is that no client or just
a lightweight client should be required. This improves the usability, due to the user not
having to download anything first. Last but not least, the third point is that the cloud
should be accessible from as many different devices as possible. Nowadays people work
with all kinds of devices which meet their needs best and so it is just logical that the
cloud should be usable with all of them.

Measured service

Measuring the service is not just needed for handling scalability but also for correct
billing. This is necessary for all per-per-use or pay-as-you-go contracts and should happen
automatically. There are different metrics which can be used. In [33] various examples are
mentioned such as used time, bandwidth, storage and data. Of course the measuring and
billing should be transparent for the customer and there should just be the resources and
times charges which were actually consumed [37]. This has the advantage that if a service
isn’t used for a certain time nothing is charged and therefore this is an opportunity for
the customer to save money. But the services not only have to be measured because of
the billing but also for optimizing the usage and predicting, which resources may needed
in the future [21].

6

Cloud interchangeability

Resource Pooling

Resource pooling and multi-tenancy are mechanisms to save costs. Usually they are
realized with the help of virtualization and so the physical resources can be used in the
best possible way [33]. The assignment of the resources usually happens automatically
and depending on the current needs of the customer. These needs often change with time.
Moreover the resource assignment is location independent [21]. This means that the user
has no knowledge about where the resources, which are currently used, are located. This
is not always good, because for certain businesses it is needed, due to legal reasons, to
have their data stored within certain countries or continents, e.g. within the European
Union. The basic scheme of resource pooling can be seen in figure 3. There, three tenants
share the resource pool of the distributed infrastructure but they are separated due to
virtualization.

Figure 3: “Resource Pooling and multi-tenancy” [37].

2.3 Service Models
The three most common and also by NIST [30] defined service models are Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). As the
name says the three models differ in the offered service but usually they are all offered as
a pay-per-use model. While some customers maybe just need to run software others want
to manipulate the data on a deeper level. In SaaS the customer just uses the provided
software or applications but nothing else. IaaS on the contrary provides lower level access
and the customer can manipulate resources on the operating system level [22]. In this
chapter the service models are described, the relevance for the migration process can be
found in chapter 2.5.2. Figure 4 shows an overview of which levels can be manipulated or
need to be managed by whom (customer or service provider) in different service models.

7

Cloud interchangeability

Figure 4: Responsibilities in the three service models [22].

2.3.1 Infrastructure as a Service (IaaS)

The NIST [30] definition of IaaS should give a first idea of what IaaS is: “The capability
provided to the consumer is to provision processing, storage, networks, and other fun-
damental computing resources where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applications. The consumer does not
manage or control the underlying cloud infrastructure but has control over operating sys-
tems, storage, and deployed applications; and possibly limited control of select networking
components (e.g., host firewalls)”.
IaaS is the service model where the customer has the most control over the system. The
provider offers physical or virtual machines to the customer, where everything that is
needed can be installed. Physical infrastructure is the pricier option but the customer
has direct access and a dedicated infrastructure. Virtual machines can be cheaper, be-
cause the provider is able to make use of multi-tenancy [35]. Many times there can also be
additional services booked, such as load balancers, VLANs and firewalls [22]. Moreover
the infrastructure can be scaled depending on the needs of the customer. Hardware costs
are saved as well as costs for employees to maintain the hardware [9].
In [9] the shared virtualization vulnerability is mentioned. This vulnerability can occur
when some resources on a server, such as memory and CPU, are shared between the differ-
ent virtual machines. Then it can happen that a malicious virtual machine can somehow
gain access to other virtual machines over the shared resources. In this way an attacker
could get different data from the system. Another variant would be that an attacker
directly attacks the virtualization and gains access to the physical hardware. This is why
the provider should care about security a lot, because the customer doesn’t control these
parts of the rented infrastructure.

8

Cloud interchangeability

2.3.2 Platform as a Service (PaaS)

Again first the definition from NIST [30]: “The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications created
using programming languages, libraries, services, and tools supported by the provider.
The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over the deployed appli-
cations and possibly configuration settings for the application-hosting environment”.
In real life this means nothing else than renting an application development environment
on a pay-per-use basis. This development environment usually consists of an web server,
programming-language execution environment, a database and of course an operating sys-
tem. These resources don’t have a fixed capacity but scale automatically depending on
the needs of the customer [22]. Kubernetes fulfil these requirements, for this reason many
cloud providers offer Kubernetes-based services. This can be convenient, the customer
just needs to take care about everything above the operating system level, like needed
applications and their maintenance. So the customer can fully concentrate on the main
thing - implementing and testing the desired applications or services for which the cloud
is rented [35]. Applications can be installed and customized as the customer needs them
but the development platform itself may just offer different configuration options and it
has to be chosen from a limited set of offered platforms [35].
As in every cloud service model the providers have direct access to the data, since it is
stored on their infrastructure. Because of this and because the customer doesn’t control
the layers underneath the operating system the provider is responsible for the security
of the infrastructure. The customer just has to ensure the security of the applications
[9]. Another point that the customers should consider when developing something in
the cloud is, that they have to accept the update cycle of the provider regarding the
underlying software and that this can have impacts on the development [9].

2.3.3 Software as a Service (SaaS)

“The capability provided to the consumer is to use the provider’s applications running
on a cloud infrastructure. The applications are accessible from various client devices [...]
The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific application configuration settings”.
This is the definition from NIST [30] for Software as a Service.
SaaS aims for customers who just need some applications and don’t want to install or
maintain them by themselves. The users have access to the application software and
the database but no underlying layers [22]. So the provider can create different views
or partitions but let the customers work on the same applications [35]. The biggest
advantage for customers are the saved costs for licensing, hardware and maintenance [9].
On the other hand the automated updates and upgrades can cause trouble, because the
users may need to be trained on the altered software. Also customization is only possible
within certain limits [35].
Security wise there are quite a few points to pay attention to. Not only is the data
saved in the data center of the provider but somehow it needs to be transferred there.
So these steps have to be secured as well as the data privacy has to be ensured. No
unauthorized user should have access to the data. This implies a strong authentication

9

Cloud interchangeability

and authorization method. Moreover the web application itself has to be secured, so that
no intruders can enter the network through it [9].

2.3.4 Other service models

Besides the three above mentioned and most common service models, there are some
others which will be mentioned shortly in this section. But of course there is a big
number of different services so this should just give an idea about some other options.
In [32] RaaS (Recovery as a Service) is mentioned. This service helps companies to better
manage their backups. Usually it also contains archiving and disaster recovery. In this
way data loss is prevented and due to the providers know-how the recovery probably
happens faster.
Another option is called DbaaS (Database as a Service). This model offers not just
storage but also the database platform. In PaaS the customer would also need to pay for
the development tools, which may not be needed" [35]. So this is a cheaper option, if just
the database is needed. One more service is mentioned in [35] and this is DaaS (Desktop
as a Service). As the name says this service provides a desktop for simple tasks. The
customer can choose between dedicated and pooled desktops.

2.4 Deployment Models
There are four deployment Models regarding to NIST: public, private, community and
hybrid clouds [30]. They are made to meet different organizational needs. With regards to
where the infrastructure is located, who has the power over it and who cares for updates
and maintenance for example [34]. Now this section is going to give a short overview of
these models and their advantages and disadvantages. Regarding the migration, the main
point is if the infrastructure is on-premises or not and if the hardware has to be bought
by the organization itself (e.g. private cloud).

2.4.1 Private cloud

NIST [30] defines private clouds as follows: “The cloud infrastructure is provisioned for
exclusive use by a single organization comprising multiple consumers (e.g., business units).
It may be owned, managed, and operated by the organization, a third party, or some
combination of them, and it may exist on or off premises”.
The main point here is that the cloud is just used by one organization. This means that the
whole cloud infrastructure is managed and controlled by one organisation. This includes
the infrastructure and maintenance of the client systems. Therefore the organisation
needs to invest money in the infrastructure which is needed and may be needed in the
future. These costs can be quite high, also costs for experts need to be calculated [34].
On the other hand the organisation has dedicated resources, thus no sharing of resources
with other organisations [21]. Also there are more options for customizing the cloud
environment, such as using different software versions and controlling the update cycle
[34].
When it comes to security a private cloud is a good choice. Since the cloud is controlled
by the organisation using it, no other party has access to the data and even the access
within the organisation can be controlled and restricted easily [34].
If the hardware is bought by the organization itself, the planning of the infrastructure

10

Cloud interchangeability

and setting it up could also be considered as part of the migration process. Migrating to
private clouds can happen over the local LAN, if the cloud infrastructure is on-premises.

2.4.2 Public cloud

Public clouds are defined by NIST [30] in the following way: “The cloud infrastructure is
provisioned for open use by the general public. It may be owned, managed, and operated
by a business, academic, or government organization, or some combination of them. It
exists on the premises of the cloud provider”.
This means that the organisation using it totally relies on a third party - the service
provider. This has two big advantages: cost savings for infrastructure and experts, and
the adaptation of computing powers to the currently needed resources. Moreover public
clouds are easy accessible from all places with internet access and have a good availability
[34]. Of course the availability depends on the set service-level-agreements. Another
main characteristic of public clouds is that customers just pay for the resources used in
the billing time, which is usually a month [21].
One disadvantage is that the data is stored on a third party’s infrastructure, which means
they would also have access to the data. Also the data ownership is not clearly defined.
General security is an issue of the service provider and the customer can’t control it [34].
Compared to private clouds, public clouds cannot be customized as easily and since the
cloud provider is responsible for the maintenance the customer has to put up with the
update cycles and times [34].
But then again in this deployment model the customer just has to care about the devices
and connections which are needed to access the cloud. The service provider has to ensure
that the service is implemented correctly and can be used by the customer [34].
The migration to public clouds always has to happen over the internet, since they are
usually far away from the companies premises. Nevertheless the good thing is that no
hardware has to be bought and therefore one can focus on the migration of the software.
Also public cloud providers often offer tools or experts, which help with the migration.
Those are described in chapter 2.5.4.

2.4.3 Community cloud

Community clouds are shared clouds between a certain group or organisations. NIST
defines them as follows [30]: “The cloud infrastructure is provisioned for exclusive use by
a specific community of consumers from organizations that have shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations). It may be owned,
managed, and operated by one or more of the organizations in the community, a third
party, or some combination of them, and it may exist on or off premises”.
According to [34] this is the most unpopular and unknown model. While shared infras-
tructure, experts and costs are an advantage of this model, a problem can be the exact
separation of who owns and who is responsible for which part of the system. Also data
security can be an issue, if all organisations who own the community cloud, have access
to all data [34].
For the migration, the same things apply as for public clouds.

11

Cloud interchangeability

2.4.4 Hybrid cloud

The fourth model is the hybrid cloud and is defined in the following way by NIST [30]:
“The cloud infrastructure is a composition of two or more distinct cloud infrastructures
(private, community, or public) that remain unique entities, but are bound together by
standardized or proprietary technology that enables data and application portability (e.g.,
cloud bursting for load balancing between clouds)”.
This describes nothing else than two different cloud deployment models which work to-
gether. Here the advantages of private and public clouds can be used. Nevertheless it
is complex to implement and therefore an expensive option. Moreover data needs to be
shifted between the clouds, so not only does the bandwidth has to be big enough but also
the connection has to be secured properly [34].
On the plus side having two (or more) clouds connected can create redundancy and so
ensure higher availability. Hybrid clouds can help to use the cloud infrastructure in an
optimal way [21]. Sensitive data, for example, can be stored in the private cloud and the
public cloud can be used for not so critical services to save costs. This concept can be
seen in figure 5.
Since the hybrid cloud is a composition of different deployment models, the migration
depends on the used deployment model. Moreover the interface between those different
clouds has to be set up during the migration process.

Figure 5: Scheme of a hybrid cloud [37].

2.5 Cloud Migration
Some ideas and motivations, to move systems to the cloud were already given in chapter
1. Basically they can be sorted into the following categories: business, technical, security
and privacy motivations [36]. So there are lot’s of different reasons for deciding to move a
system to the cloud but once the decision for migrating to a cloud has been made, what
has to be considered? What is special about moving a system to a cloud and not to a
new local infrastructure?
First one has to think about which parts of the system should be migrated. Should
everything be moved to the cloud or just parts of the current system? Figure 6 gives

12

Cloud interchangeability

an overview of the possibilities: either everything stays in a local system or the whole
application stack gets moved to the cloud. Also parts of the application stack can be
replaced with cloud software or a partial migration is done. For a partial migration only
some system components are moved to the cloud. In [23] “migrating only the auditing
functionality of a healthcare system to the cloud” is given as an example for a partial
migration. But of course there are also other combinations feasible. Depending on the
system which should be migrated, big changes can be necessary. Cloud platforms often
have their own solutions, so the existing applications have to be changed accordingly to
be used in the cloud. Also cloud platforms have other characteristics (see chapter 2.2)
than local systems, so it is no surprise that the requirements for systems are different.
Maybe also data security or other legal questions have to be considered. Moreover the
question can arise, if and how the cloud systems work together with the remaining legacy
system. Furthermore one has to know, which migration strategy suits which system and
of course, how the system can be migrated. Automation of the migration maybe saves
some time and working hours but also has higher costs than not using special migration
tools. Another decision that has to be made is, if a company is paid to do the migration
or if the “self-service” of the cloud platforms is used. Last but not least a suiting cloud
provider has to be chosen.

Figure 6: Parts of a system, which can be migrated to a cloud platform [23].

2.5.1 Migration process

As was described in chapter 2.3, there are different service models in the cloud. So the
migration process depends on what should be migrated and the resulting service model
to which it should be migrated. Nevertheless, there are the following five general steps
defined in [1]. Although this is written by Stephen Orban, who is Head of Enterprise
Strategy at AWS, these steps also apply to migrations to other cloud platforms and
provide a good guideline.

13

Cloud interchangeability

• Migration preparation and business planning
Here the goals for the migration should be specified, a time-line should be set and
the costs evaluated. Based on that the decision can be made, if the migration to
the cloud should happen or not.

• Portfolio discovery and planning
Now a migration plan needs to be made. Here it has to be considered how complex
an application is, what the business impact is and if one already has experience with
the migration. For a first try, small and uncritical applications would be a good
starting point.

• Designing applications
Next it is time to make a plan, how to migrate single applications. For each ap-
plication different changes have to be considered and therefore a suitable migration
strategy has to be found (see chapter 2.5.2).

• Migrating and validating applications
The actual migration happens. Also it has to be checked, that everything worked
as expected and can be used in the cloud.

• Modern operating model
The application is operating in the cloud and old systems can be shut down.

2.5.2 Migration strategies

As can be seen in figure 7, five different migration strategies were defined in [36]. Retain
and retire is what happens if a system is not moved to the cloud. Retain means simply
not moving but keeping the old system on the local infrastructure. Retire means, that
the old system is not needed anymore and will not be moved to the cloud nor kept on
the local infrastructure. The actual migration strategies are replace or purchase, rehost,
replatform, refactor and reeningeer. Each strategy has different use cases and depends
strongly on the kind of application or system, which should be migrated.

Figure 7: Migration strategies [36].
14

Cloud interchangeability

Replace or purchase systems is a good option, if the old system is retired. In this scenario
a new application is either bought or an existing application of the cloud provider is used.
And while this is probably the fastest way compared to the other options, the solution
can just be customized to a certain point. So maybe some business processes need to be
adapted [36].
When an application is rehosted, it is only moved from the local system to the cloud.
No changes are made to the platform or code of the application. Reshosting systems is
usually faster and less cost intensive than replatforming or reengineering them [36]. This
is what is examined in chapter 4. There are, if possible, no changes made to the test
system. But it should be usable in the cloud after the migration without the need of any
local system.
In the replatform or revise approach the platform is only changed slightly. The function
is not changed but slight alterations to the platform can improve the performance in the
cloud a lot, according to [36].
As the name says, refactor or rearchitect a system means changing it on the code or
architectural level. Here bigger changes are done to the system but the functionality still
stays the same and the system is optimized for cloud usage [36].
Finally, when reengineering a system to migrate it to the cloud, the system gets totally
changed and optimized for cloud usage. This is definitely the most complex migration
strategy and usually needs more budget and time than the other strategies. Nevertheless
at the end one has a system which can use the cloud resources in the best way [36].
However, all of these migration strategies strongly depend on which parts of a system
should be migrated to a cloud environment and to which service model it should be mi-
grated. Every service model has its own requirements and limitations, which are described
briefly in the following paragraphs.

Migration to IaaS: Using IaaS as service model is recommended when a whole virtual
machine should be moved and if there is no time or desire for reengineering the application.
Then rehosting is the migration strategy of choice. Nevertheless if special hardware is
needed or the data needs to be stored in a certain location, e.g. for legal reasons, then the
choice of the cloud provider is important. Because not every cloud provider can administer
special hardware [39].

Migration to PaaS: Usually when systems are moved to a PaaS infrastructure, refac-
toring is the used migration strategy. In PaaS not only the hardware restrictions have
to be considered but the system has to be adapted to the used platform. In this way a
cloud optimized application can be build. Nevertheless restrictions according the used
programming language, database and middleware have to be considered [39].

Migration to SaaS: Replacing a software is the easiest option one has, if an application
should be moved to a SaaS platform. Also revising or reengineering the application is
possible, but for this a long migration period has to be accepted and a lot of work has to
be done [39].

15

Cloud interchangeability

2.5.3 Mobility of services in the cloud

A special case of cloud migration is the migration between two cloud platforms. While
for the migration from a local system to a cloud platform the system usually needs to
be prepared or adapted to the needs of a cloud environment [36], the migration between
clouds is a lot about compatibility of the different services and platforms. This mobility
between clouds is also called portability and in [31] it “is expected to ensure that an
application, service or data works in the same manner regardless of the consumed Cloud
services”. Next to other economical, technical an legal reasons, portability should be
provided to prevent a vendor lock-in. Data, services or applications can be transferred
between cloud platforms. Of course, for some systems portability is easier to implement
than for others. So it is not likely to have the option to move an value added service
offered by a cloud provider to another cloud platform. Nevertheless, portability can be
accomplished by using open libraries and services and employing standards for example.
This are definitely tasks for the cloud providers and can’t be done by the customers.
Unfortunately standardization often contradicts with the marketing strategy of cloud
providers, which try to offer unique products and solutions [31].

2.5.4 Automation of the migration process

Moving systems from one infrastructure to another can be very complicated, no matter if
it is between clouds or between a local infrastructure and a cloud environment. Therefore
automating this process would help a lot. Unfortunately this is not always possible, be-
cause every company and organization has its own individual and complex infrastructure,
which is adjusted to their needs. Nevertheless, cloud providers sometimes offer tools,
which can handle the migration of small and uncomplicated systems. If this isn’t possible
and one doesn’t have the know-how to migrate one can still pay for a team of experts to
do the migration. Another attempt for data migration is used by AWS with their product
AWS Snowball. If huge amounts of data need to be transferred, sometimes uploading it
directly to the cloud is not the best option. That’s why AWS offers AWS Snowball. On
this device up to 50TB of data can be stored, which then it is sent to an AWS location
where the data gets migrated to the cloud [6].

Tools offered by cloud providers: All cloud provider offer certain tools for importing
systems, but not all have the same functionality. The tools for migrating virtual machines
from one cloud platform to another cloud platform are described in section 6.1.2. Once
these tools are set up, hight numbers of virtual machines can be migrated at once. They
all work on the same principle, in the documentation of Azure [17], it is called Agent
based migration. And the tool for Azure is called Azure Migrate: Server Migration.
For the migration a server has to be set up in the source cloud. This is a so called
replication appliance server, which coordinates the migration of the virtual machines to
the destination cloud (Azure in this case). The replication appliance server itself does
not get migrated. Moreover an agent has to be installed on the virtual machines, which
should be migrated. The architecture can be seen in figure 8.
The virtual machine migration tools from GCP and AWS have a similar architecture. In
GCP it is called Cloud Migrate for Compute Engine and in AWS SMS (server migration
service) connector. Interesting here is, that only virtual machines from Azure can be

16

Cloud interchangeability

migrated to AWS, while GCP offers import strategies for AWS and Azure and Azure
offers to import virtual machines from GCP and AWS.

Figure 8: Azure migration architecture [17].

Not only virtual machines can be migrated automatically. Also for the storage import
GCP offers a tool to directly import data from AWS and Azure. How it works is explained
in section 6.1.4. The Transfer Service can also be used for directly migrating data from a
local system to GCP.
With Azure Migrate not just virtual machines can be migrated. According to [16], also
a Web app migration assistant and Azure Data Box exist. With the Web app migration
assistant .NET and PHP web applications can be assessed and migrated to Azure. With
the Azure Data Box offline data can be migrated. Moreover there are tools to asses the
systems, which should be migrated and shows potential problems.

Tools offered by 3rd party vendors: Not only with offering cloud services money
can be earned but also with the migration. So it is no surprise, that there exists a number
of third party tools, which help with the migration process to a cloud platform. AWS
lists some tools from competency partners [3], which offer tools not just to assess the
migration but also for the migration itself. Among other things, these tools help with
migrating servers and data. Datadog, for example, helps comparing and in a second step
combining systems which run on-premises and in the cloud. Deloite offers a ATAmotion
Migration Module, which assists with the migration of big workloads for Windows and
Linux systems [3].

Partner assisted: Another option is to get help with the migration form another com-
pany. This partner assisted migration is definitely not a bad idea, if someone has a big
system to migrate but no experience in doing so. Contrary to using tools, which make
the migration easier, here the migration is fully guided or done by a third party. AWS
for example, not only lists tools but also competency partners [3]. Also Azure has a list
of trusted partners, which offer a managed migration.

17

Cloud interchangeability

2.6 The cloud platforms investigated
Organisations usually have a big selection of cloud platforms to choose from. There
are not just GCP, Azure and AWS but also vCloud Air from VMware, Oracle Cloud
from the Oracle Corporation, OTC (Open Telecom Cloud) from T-Systems International,
IBM cloud Computing from IBM and Cloud Foundry from the Cloud Foundry Founda-
tion (non-profit organization), to name a few. While Google, Amazon and Microsoft are
maybe the most popular providers, the others also have interesting offers and connect
their cloud solutions with their other products. One example is Oracle where the user can
choose whether a virtual box should be created locally within the VirtualBox application
or in the cloud. In figure 9 the actual market shares of GCP, AWS and Azure seen.

Figure 9: Market shares of GCP, AWS and Azure in 2020 [10].

Now the question is, which points should be considered before choosing one of these cloud
providers. In [24] some aspects are mentioned such as features, security and familiarity
with the brand. As will be seen in this section, the offered services and features are
not the same for all providers and so one has to chose the most suiting one. Moreover
different organizations have different needs, not just when it comes to the services but
also securitywise. Companies dealing with financial or health information maybe have
stricter security guidelines than others. Brand familiarity is important, because at the
end of the day, users are still human beings and it is known that people usually stick to
what the already know. Moreover the prices are of importance when choosing a cloud
platform but they are not always easy to compare, specially because the offered services
are not exactly the same.
The focus of this section will be on Google Cloud Platform, Microsoft Azure and Amazon
Web Services, which are used for the experiments in this thesis. Obviously there are some
common grounds but also differences in billing, availability and offered services. Every
cloud provider has strengths and key competences on which great emphasis is laid and
which keep them ahead of the competitors. Also the cloud provider offer different free
services for familiarising with their products. These offers where used for the experiments.

2.6.1 Google Cloud Platform (GCP)

Google Cloud Platform is a product of Google, LLC (former Google Inc.). Google, LLC
was founded in 1998 by Larry Page and Sergey Brin and is mainly known for the search
engine. Other products, which were developed by Google are Google Drive, Google Maps,
Chrome and Gmail for example. These products are not just really popular but they are

18

Cloud interchangeability

used by billions of people each day [27].
Google Cloud platform is the public part of the Google Cloud, this means it works on the
same infrastructure as other Google services [24]. The logo of the cloud can be seen in
figure 10, it is a cloud in the colors of Google. GCP offers lots of different services and
products. The services are listed in [26] and have a broad range, including computing
and hosting services, Big Data services, machine learning services (with an AI Platform),
networking services, database services and storage services. The computing and hosting
services cover PaaS, which is called App Engine in this case. It can be used to develop
apps in various programming languages. Also serverless computing, container and virtual
machines are part of the computing and hosting services. The main parts of the networking
services are routers, firewalls, load balancers and Cloud DNS. Moreover Google has a very
good offer of AI services, which is where they develop a lot and try to keep ahead of the
other providers.

Figure 10: Logo of GCP [29].

Users have different options how to work with GCP. There is the Google Cloud Console
– the graphical user interface – on the one hand and the command-line interface and the
client libraries on the other hand. The command-line is called gcloud and can be used
via a browser based shell (Cloud Shell), if one doesn’t want to install the Cloud SDK. So
users can choose the method they prefer working with.
As everywhere in business, tracking costs is also important in GCP. To do so GCP offers
a pricing calculator and every account has a billing page. This page shows the current
costs and gives an overview of how the costs evolve. The billing is based on projects,
which need to be created before one can work in the cloud. Each project is associated
with one billing account [29]. Google uses a pay-per-use model, so users just pay for the
resources virtually used. Moreover some free services are offered for beginners or people
who just want to have a look and try some things. Those are a 90-day free trial with
a free budget of 300$, with this all services can be tested within this period and the set
money limit. Afterwards the normal billing rules apply. Another option are the free tiers,
those are services which are offered for free in general within a certain limit [28].

2.6.2 Amazon Web Services (AWS)

Jeff Bezos founded Amazon.com, Inc in 1994 in Seattle and in 2006 Amazon Web Services,
Inc was founded as a subsidiary of Amazon [7]. So Amazon Web Services just offers cloud
services, nevertheless the logo of AWS (see figure 11) is similar to the one of Amazon.
Lots of services are offered by AWS in all kind of areas. Examples for such services
are development tools, machine learning services, container, media services, blockchain
applications and storage services. The database services naturally include SQL options
but also a graph database and a time-stream database, where billions of events per day
can be stored in an uncomplicated way. In the network and security category various
services are offered, such as Amazon VPC (virtual private cloud), identity management
for applications, secrets and firewall managers. Also a so-called Amazon Detective, which
can be used to find potential security issues in the system is offered [4].

19

Cloud interchangeability

To easily find and buy new software and services AWS introduced its marketplace. The
offered products are usually not software and services which are developed by AWS but
from third parties. So independent software vendors can sell their products there, if they
passed the curation process of AWS. A big advantage is that the billing happens via
the AWS account, so the customer doesn’t have to create new accounts for buying those
products. And as everything in cloud computing also the prices and license options are
very flexible here. Customers and sellers can agree on what seems right to them [8].

Figure 11: Logo of AWS [2].

To keep an eye on the costs AWS offers a cost explorer with budget, cost and usage
reports as well as a dashboard where the most important information about current costs
is given. Contrary to GCP and Azure there is no free test budget in AWS. Nevertheless
there are some services which are offered for free. They are divided in three groups: the
ones that are always for free, the ones which are just for free in the first twelve months
of AWS usage and then there are some free trials which change over time and which are
just available for short time spans [2].

2.6.3 Microsoft Azure

In 1975 Microsoft was founded in Albuquerque by Bill Gates and Paul Allen. Its most
famous product is the operating system Windows. While Windows is already used since
1985 it took many more years until cloud computing became relevant. Finally Azure was
launched in October 2008 and in 2018 the services could already be used in 140 countries
[11]. Obviously the logo of Azure is held in corporate identity with other Microsoft prod-
ucts, as can be seen in figure 12.
Today Azure offers more than 200 applications and services “to solve today’s challenges
and create the future”, as it says on the homepage [14]. Of course database services are
offered, mainly for SQL but also some non SQL options. Moreover AI and machine learn-
ing services, container, virtual machines, development tools, storage services, blockchain
applications and many more. The networking and security services include gateways,
DDoS protection, Azure DNS, firewalls, load balancers, Azure defender (to safeguard hy-
brid clouds), virtual networks, a security center and many more [12].
A highlight is the Windows Virtual Desktop, there users can easily connect to a Windows
desktop with any device. No extra license is needed, if the customer has already a Mi-
crosoft 365 or Windows per user license. So Windows 10 can be remotely used, even with
multi-session access to reduce license costs [15].

20

Cloud interchangeability

Figure 12: Logo of Azure [13].

Microsoft not just offers a tool to calculate the costs for running applications but also a
tool to calculate the savings when migrating a system to Azure. Azure Cost Management
and Billing gives an overview about current costs, helps analysing the spendings and
manage budgets. In Austria and Germany the free trial offer of Azure is similar to the
one of GCP. Azure gives a free budget of 170€ in the first month and certain services are
free to use within the first 12 months. After this month or if the credit is used earlier, the
user needs to update the account and a pay-per-use billing system will be used further
[13].

21

Cloud interchangeability

3 Approach
Every experiment has to be defined before it is performed. So in this section the methods
for the performed experiments are described. The test system and test scenarios are
introduced, as well as an explanation given, why they were chosen and what criteria need
to be fulfilled, so that the experiments can be counted as successful. This is the foundation
for the evaluation of the experiment, weather something can be improved, if parts of the
experiment failed, or if everything worked out and all goals have been accomplished.
Three things need to be defined, before the experiments can be started. The first point
are the used cloud platforms, the second point is to define the test scenarios and the third
is to define the test system. The reason for using GCP, Azure and AWS is simple: they
are the biggest and most popular cloud platforms. As for the test scenarios in this thesis:
various tests and experiments are performed, which are connected to migrating systems
to clouds, between clouds and from a cloud to a local system. Also the preparation of
the systems is examined, if and what changes need to be done when they are moved.
Therefore it is essential to get to know the system requirements of the different cloud
platforms. Moreover it is the foundation for choosing which systems can and should be
run in a cloud environment and which are better kept on a local infrastructure. Also the
test system is an important part of this constellation. To have meaningful results the
test system needs to be up-to-date and relevant for businesses. So it was tried to find
technologies which are widely used and which are at least theoretically compatible with
all used cloud providers.

3.1 Tests to perform
There are three types of test scenarios. The first one is probably the most relevant one
for companies, because it is about migrating a local system to a cloud system. Every
company, which uses on premises solutions and thinks about moving to the cloud, has to
think about this scenario. The second one is the reverse process: moving a system from
a cloud environment back to a local system. This is relevant if a company is not satisfied
with the the cloud solutions or the privacy and data guidelines changed and no public
cloud can be used anymore. The third scenario is about moving systems between different
cloud providers. This can be necessary if another provider offers better prices or services.
All of the mentioned scenarios have to be performed for all parts of the test system.

3.1.1 Migrating a local system to a cloud platform

First, everything needs to be set up locally for this scenario. How this local setup looks
like is described in section 3.2. After this first step, the actual experiments can start.
Next the system requirements need to be checked and the local system has to be prepared
if necessary. GCP for example offers a pre-check tool for virtual machines, to check if
everything is ready for moving the virtual machine to the cloud. Then, the system has to
be exported in a certain format, which can be used for the import to the cloud. This is the
main step: Moving the system to the cloud. This happens for all three cloud platforms,
so the local system is moved to GCP, Azure and AWS. The point is to find out, if the
import of different systems is possible to all three cloud platforms and what effort has to
be made to transfer the test system. The result of this experiment should be a running
system in the cloud. This means the system should work as before. So user, settings and

22

Cloud interchangeability

data should be available. To test this, the system is started in the cloud. For virtual
machines and docker container this means that they should be running as in the local
environment. For databases certain SELECT and SHOW statements are tried and they
should give the same results as in the local environment.

3.1.2 Migrating a system from a cloud platform to a local system

Here the starting point is the cloud platform. So before the experiment can start, the
system has to be set up in the cloud from scratch. This time the data, user and other
relevant settings need to be exported from the cloud platform and set up locally. The
necessary environment is already installed on the local platform, but everything else needs
to be transferred. From the cloud platform the files and data are exported and then moved
to the local system, hopefully with no editing in-between. This local system then needs
to be started. The experiment is successful, if everything is up and running locally and
all data and users are still present.

3.1.3 Migration between cloud platforms

When migrating the test system between cloud platforms there are two options how this
can happen. One is the direct version: some cloud providers offer to directly import
something from another cloud platform. If this isn’t possible the second option is needed
– the indirect one. Indirect means, first exporting a system from the cloud environment,
then saving it locally, if necessary making some changes, and finally importing it to the
second cloud platform. For this option no direct interface between the cloud platforms is
needed.

Direct – from cloud to cloud. Not every system can be moved directly between
clouds. On the one hand it depends on the kind of system that should be transferred
and on the other hand on the used cloud platforms. So this experiment is limited to
the offered options of the cloud providers. And therefore only the following scenarios are
tested:

• Virtual machine: from GCP and AWS to Azure, AWS and Azure to GCP, Azure
to AWS (a direct transfer from GCP to AWS is not supported)

• Database: for all combinations of cloud platforms

• Docker container: from AWS to GCP and Azure and from GCP to AWS and Azure
(a direct transfer from Azure to another cloud platform is not supported)

• Storage: from AWS to GCP and Azure, from GCP to AWS and from Azure to GCP
(a direct transfer from Azure to AWS and from AWS to GCP is not supported)

As usual, when an experiment starts with an export, first the system needs to be set up
in the cloud environment. This already happened in the previous test scenario, which
is described in 3.1.2. Then a connection between the clouds has to be established, so
that the system can be moved and set up in the new cloud environment. Also here the
requirement is, that the system is running on the other cloud platform and all data and
users are migrated.

23

Cloud interchangeability

Indirect – with the help of a local system. This is the backup option, if a direct
move from one cloud platform to another is not possible. Basically the steps from 3.1.2
and 3.1.1 are combined here. In exactly that order: first exporting the system to a local
environment and then importing it to the other cloud platform. For this, first the system
has to be set up in the according cloud platform or taken from previous experiments.
Locally everything should be prepared for storing the exported data, which maybe needs
to be modified somehow, depending on the used cloud platforms. Eventually the system
can be moved to the other cloud platform. This will take place for all combinations of
test systems and cloud platforms.

3.2 Test Systems
To get a fair comparison of the cloud providers, a test system is set up. This system is
used – as far as possible – for all experiments in this thesis. It was tried to find popular
products and options which are often used so that they are compatible with every tested
cloud environment. Nowadays companies have lots of different systems and some of them
are covered with this test system. First there is a database with triggers, views, stored
functions and procedures and users. Moreover virtualization is a big topic, so another
part of the test system are virtual machines and docker containers. Last but not least,
companies usually have big amounts of data, so also a storage system is part of the test
system. Storage system means, in this case, a set of different objects.

3.2.1 Databases

Databases are a very important part of every IT infrastructure. For the experiments here
a MySQL database (version 5.7.31) was chosen and together with MySQL Workbench
(version 6.3.8) set up locally on Ubuntu 18.04 LTS (running in VirtualBox). As database
Sakila is used. This sample database is published as open source under the terms of the
BSD License. It models a system to rent DVDs in different stores. A scheme of the
database can be found in figure 13.
Sakila not just contains tables and test data but also triggers, views, stored functions
and procedures. The tables contain information about the film, film category, in which
language the film is available, the actors but also about the inventory and staff of the
store, the customers, their payments and rentals as well as their addresses.
Triggers automate processes in the database. These processes get started, if a certain
event happens. Inserting, deleting or updating something can be such an event to set
off a trigger. In Sakila there are six triggers. Three of them set the current dates, when
either a customer is created, a rental or a payment is done. The other three are about the
film and film_text tables. Those two tables share some columns and so there are three
triggers which copy the data into the other table, e.g. if a film is inserted into film then
the trigger inserts this also in film_text. The same happens with update and delete.
Moreover there are three stored procedures. One checks if a film is currently available (in
stock) in a certain store. Another one checks if any copies are not in the store at a given
time and the third lists the top customers of the previous month.
Also three stored functions are available in Sakila, those give the currently available bud-
get of a customer account, show if a certain film is currently rented by a customer, and
weather a specific item is currently available in a store.

24

Cloud interchangeability

Figure 13: Scheme of Sakila (sample database) [19].

Also seven views are available. Those provide special views on the data, for example the
nicer_but_slower_film_list, which gives the same information as the film table but
formats the data in a visually better way. Nevertheless this takes more time than creating
the ordinary view. Moreover there are views for the staff and film list, the made sales by
each store and the made sales depending on the film category.
Also some users are created with different access rights. Of course there is the root
user with the according rights. A user tanja also with root-rights simulates the database
administrator. The users test1 and test2 with less rights simulate users of the database.
Those just work with certain, limited data access and don’t have any rights to create new
users.

3.2.2 Virtual Machines

Another important part are virtual machines. To test this two virtual machines were
set up. Considering all the options which are supported by different cloud providers, the
size of the virtual machines and needed licenses, the final choice was Linux Ubuntu 16.04
LTS (64 bit) and Linux Ubuntu 18.04 LTS. The VirtualBox guest additions are installed
as well as a GUI and some files are copied into the virtual machine to see, if after the

25

Cloud interchangeability

migration the virtual machine is still fully usable and has all the data on it. Locally it is
running in VirtualBox (version 6.1.14) [20].

3.2.3 Docker

The next part of the test system is a docker container. A simple docker container, which
contains Ubuntu is used. It was taken from the official Ubuntu repository. To check if
data and installed programs are also migrated and work, some files were saved there and
the web server ngnix was set up in the container. Locally docker is running on Ubuntu
18.04 LTS (in a virtual machine).

3.2.4 Storage

Finally also (file) storage should be checked, so a simple structure with sub-folders, files,
images and videos is set up. This whole setup has a size of 1.83GB and includes 1 891
different objects. Access rights are considered in the experiments, but other metadata is
not. Three users have access to the data, one is the owner, one has read and write access
and the third can just read.

3.3 Assessment criteria
It is important to define the conditions, which have to be fulfilled so that the experiments
count as successful. In this case it has to be decided when a migration is successful. No
matter, if the migration was to the cloud, to a local system or between two clouds, the
criteria and expectations are the same. The point is, that regardless to where the system
is migrated it has to work as before and offer all contained functions. It should not be
necessary that after the migration the user needs to copy any data or reinstall programs.
So the following checklist gives an overview about the assessment criteria:

• the system has to be up and running

• all features which were used before need to be available in the new system

• as far as possible all settings should be as they were in the old system

• no data should be lost

• everything (data, features, settings) can be transferred within the main migration
process, the users do not have to add anything manually after the migration process

To some parts of the test system, all of the above mentioned points apply. To others, like
the storage part, just one or two points apply. For the storage, for example, the fourth
criteria is the relevant one. There all sub folders and data should be moved from one
system to the other without data loss. For this it would be not realistic to think that
access rights can be transferred easily without manual work. Nevertheless most cloud
platforms offer ACLs (access control lists), so that different user have different accesses.
For databases on the contrary all points apply. The most interesting point is probably
the second one. It means that not only the data and table structure needs to be migrated
but also triggers, views, stored functions and procedures, as well as users and their rights.
If this migration is possible in one migration step or if manual adjustments are necessary,

26

Cloud interchangeability

the experiments in later sections will show. Whether all the data has been migrated can
be checked in MySQL-Workbench or with the following statements. They show the tables,
the count of the datasets in one table (this has to be executed for all tables), triggers,
stored functions and procedures, views and users.

SHOW TABLES;
SELECT count(*) FROM <table>;
SHOW TRIGGERS;
SELECT * FROM information_schema.routines;
SELECT table_schema, table_name FROM information_schema.views;
SELECT * FROM mysql.user;

For virtual machines the points above mean, that all the installed programs, the saved
data and system settings are transferred. Optimally also the GUI should be transferred.
A working virtual machine should be up and running at the end, maybe even multiple
machines which were created from the same image.
Docker container have similar criteria as virtual machines. The installed programs and
features should still be there and be able to run.

3.4 Migration approach
Usually there is more than one way to import a system to the cloud or export it from
there. So, after looking at the different ways of migrating systems, the one which requires
the least working hours and has little cost is chosen. To have an eye on the costs is
important, because for this thesis free tiers and free trial credits were used. These are
provided by the different cloud providers for a certain period of time. Also the system
which is migrated should not be changed if possible. If a certain migration attempt is
not working, another one will be tried, if one is available. Moreover it is tried to only use
third party tools for the migration if there is no other way. Otherwise the import, export
or transfer function of a cloud platform will be used.

27

Cloud interchangeability

4 Migrating a local system to a cloud platform
Before one can work with the tools offered by cloud providers, the local systems have to
be migrated to the cloud. So this chapter is about migrating the different test systems
to the three cloud platforms GCP, AWS and Azure. First the migration of the database,
then the virtual machine, docker and finally the storage will be examined.

4.1 Databases
To import the database to the different cloud platforms, it first hast to be exported from
the local system. Fortunately MySQL-Workbench offers an option for that and so the
export is quite uncomplicated. The database, which should be exported can be chosen, as
well as single tables and views can be excluded. Moreover the structure and data can be
exported at once. It can be chosen to also dump stored procedures, functions, events and
triggers. The export screen can be seen in 14. Users need to be exported later separately,
this will be described for each cloud platform in the according section.

Figure 14: Mask for exporting a database with MySQL-Workbench.

4.1.1 To GCP

To transfer the database into GCP, the created dump needs to be uploaded to the cloud
storage, from there it can be imported to GCP. Before this can be done, an instance has
to be created. It needs a unique instance ID. The region where it will be saved can be
chosen, also a password for the root user and the version of the database can be assigned.
Next the log_bin_trust_function_creators flag has to be set to one. This for some
reason can’t be done with gcloud (cloud shell) but has to happen in the GCP-Console.
There, first one has to click on the “Edit” -button, scroll down to “Flags” and chose the

28

Cloud interchangeability

log_bin_trust_function_creators flag. If this flag isn’t set the import of the triggers
will not work.
The actual import happens with the menu in the GCP-Console. This can be seen in figure
15. There are not many options: a source can be defined, which must be in a bucket of
the cloud storage, the imported file format must be given, here it is SQL and finally a
database can be chosen to which the data should be imported. In this case nothing was
chosen, because a new database is created. In this way, structure, data, views, triggers,
stored procedures and functions are imported. Everything is there as it should be, just
users can’t be imported in that way.

Figure 15: Database import screen of GCP.

To import users some more steps are necessary. First the data needs to be extracted
from the local system. This can be done with “SELECT * FROM mysql.user”. This query
gives the usernames and their grants. For creating other users directly in the database,
a user has to have root privileges (in GCP they are called super privileges), which is not
granted to any user in GCP. Nevertheless there are two options how to create users: in
the Cloud-Console or with the following gcloud command: “gcloud sql users create
[user_name] –host=[HOST] –instance=[INSTANCE_NAME] –password=[PASSWORD]”.
Then every created user has the role cloudsqlsuperuser with the following grants:
CREATEROLE, CREATEDB and LOGIN. So every created user has the same permissions, just
the name, password and instance can be chosen. These default settings then can be cus-
tomized – to change the permissions, the mysql commands REVOKE and GRANT can be used.
However there are limited options, because not even to the root user SUPER privileges
are granted.
One important point is how to connect to the cloud database. There are some options,
for example the cloud shell. This may be the easiest way, because it is just a shell which

29

Cloud interchangeability

appears in the web browser. Other options are computing engines or docker images.
Computing engine means nothing else than a virtual machine in which a MySQL client
can be installed. Then this can be connected via a private IP-address. For this option
the instance has to be configured to allow private IP-addresses, which can be done in the
section “connections”. Don’t forget that the SQL-instance and computing instance have
to be in the same region. Of course also the locally installed MySQL-Workbench can be
used to connect by using the IP of the database. The SQL-statement to connect is the
following: mysql -h <IP> -P 3306 -u root -p.

4.1.2 To AWS

In the mysqldump, which will be imported to AWS, triggers, stored functions and proce-
dures were excluded, because there is no way to import them. It is a big disadvantage of
AWS that these parts of the database have to be transferred manually.
But let’s start at the beginning, because before a dumpfile can be imported, a database
instance has to be created. In AWS this service is called RDS (Relational database ser-
vice). Because the free tiers are used for this experiment, the “easy create” option has
to be used. The advanced option is only available for paid services. Nevertheless some
settings can be changed while and after the instance is created. A region has to be chosen,
as well as a name for the instance and a master username and password.
As in GCP the flag log_bin_trust_function_creators has to be set to one. This flag
is needed, so that views can be imported and triggers, stored functions and procedures
can be created later. If it is not set to one the views will not be imported and triggers,
stored functions and procedures can not even be created manually. The flag can be set in
the AWS-Console but a new parameter group has to be created, because the given group
can’t be modified. A parameter group in AWS is nothing else than a set of configura-
tions, which is required if multiple instances are used. This are again some clicks and
some searching for the right options, but once this and a restart of the database instance
are done, the actual import can be started.
In the documentation of AWS a statement can be found to directly load the sqldump
to the database. This statement looks as follows and needs to contain the information
about the source database, a user with rights to all tables and the information about the
destination database, which is in AWS. Stored functions, procedures and triggers have to
be excluded otherwise the import will fail.

mysqldump -u <user>
--databases sakilaLocal
--single-transaction
--compress
--order-by-primary

--routines=0 --triggers=0 --events=0
-p | mysql -u admin

--port=3306
--host=sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com
-pPasswordAWS

After this is done the schema of Sakila, data and views are in the RDS-database. How-
ever, triggers, stored functions and procedures now need to be added with the CREATE

30

Cloud interchangeability

statement. These statements can be copied from a mysqldump, which includes triggers,
stored functions and procedures. Another option would be to do another mysql dump,
which includes only triggers, stored functions and procedures, remove the definers with a
“sed” (as it is done in 6.1.1) and directly pipe it into the new database. The point is, that
the triggers, stored functions and procedures have to be created in a second step and not
when the database is created.
Also the users have to be added similar as in GCP: getting the information about the
users from the local database and then adding them manually with the CREATE statement
for user.
To connect to the database either the public access has to be enabled or the inbound
connections in the security group have to be changed. For the inbound connections
the IP-address of the local computer can be added, of course also a range of IP ad-
dresses can be added. Informations needed to connect are the endpoint and port. To
find them one has too look in the detail information of the instance. A screenshot of
these informations can be seen in figure 16. The name is sakilaaws, the endpoint is
sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com and the port is the de-
fault port (3306). Knowing this, a connect from MySQL-Workbench or a SQL-client can
be established with the following statement, where admin is the masteruser which was cre-
ated before: “mysql -h sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com
-P 3306 -u admin -p”

Figure 16: Connection information of the created AWS RDS instance.

31

Cloud interchangeability

4.1.3 To Azure

To migrate a database to Azure, first a database instance has to be created. This happens
by clicking on “Azure DB for MySQL servers”. Then one can choose between a single
and a flexible server. Here the cheaper option, a single server, was chosen. In figure 17
possible settings can be seen. The subscription is for the billing, the resource group is
for organizing different resources: if they are in one resource group they have the same
permissions and life cycle. Next the servername, location and version can be chosen and if
it is create from a backup. Here no data source is chosen. Last an administrator account
is set. As additional settings data encryption and tags can be set, none of them was used
here. Finally it can be created.

Figure 17: Mask for creating the database instance.

After the creation, the firewall rules need to be modified so that a connection can be estab-
lished. The easiest way is to choose “add current client IP address” under “Connection se-
curity”, of course also IP ranges can be added. Also the flag “log_bin_trust_function_
creators” has to be set to one in the server parameters. Now a connection can be estab-
lished, e.g. via MySQL-Workbench. The necessary connection information can be found
in the server details as shown in figure 18. Alternatively there is also a section “Con-
nection strings”, which shows the connection strings for different applications. Also a
connection via the Azure-CLI can be established by using the following command, where
the host and a user have to be given:

mysql --host=azureserversakila.mysql.database.azure.com
--user=tanjaadmin@azureserversakila.mysql.database.azure.com -p

From this point the import is straightforward, it can be done with the import option of
MySQL-Workbench, which was connected to the created instance earlier. And because the

32

Cloud interchangeability

Figure 18: Server details of “azureserversakila’.’

log_bin_trust_function_creators flag already is enabled, also triggers, stored func-
tions and procedures can be imported.
Users can’t be created automatically in Azure. Either one uses MySQL-Workbench to
create them or the CREATE statement. For getting the users and their permissions from
the local database the SELECT * FROM mysql.user statement can be used.

4.2 Virtual Machines
Before a virtual machine can be uploaded to the cloud, it must be exported from the local
VirtualBox. Here virtual appliances (ova-files) are used to transfer the virtual machine
to GCP and AWS. The Open Virtualization Format 1.0 is used and within a short time
the ova-file is created by VirtualBox. Azure is a special case, it only accepts VHD as
import format. Also the virtual machines have to be prepared accordingly. This process
is discussed in section 4.2.3.

4.2.1 To GCP

Google offers a precheck-tool to determine whether the virtual machine, which should be
migrated to GCP, actually can be imported. This is quite comfortable, since it is much
quicker to download and run the tool than trying an import, which might fail. The output
of the precheck-tool can be seen in figure 19. There are some points (SHA2 Driver Singing
Check and Powershell Check) which are skipped, because they just need to be checked on
Windows systems. Also the operating system version is checked and although it says in
the documentation that Ubuntu 18.04 LTS can be imported to GCP, the precheck-tool
throws the following error: “FATAL: version:18.04 not supported”. Nevertheless it was
tried to import Ubuntu 18.04 LTS but it didn’t work and the following error message
was shown: “Could not fetch resource: - Quota ’SSD_TOTAL_GB’ exceeded”. However,
checking the according quotas shows, that the peak-usage was actually less than 50% of
the limit. That’s why Ubuntu 16.04 is used for this experiment. Next the disk is checked,
it needs to have grub as boot loader. The SSH Check verifies, if SSH is running on port
22. If not this can cause trouble because the gcloud CLI connects to this port.
After the preckeck-tool ran successfully, the ova-file can be created and uploaded to the
cloud storage of GCP. Then the Cloud-SDK has to be installed on the local computer
and now there is just one command left to import the virtual machine:

gcloud compute instances import ubuntu16gcp
--os=ubuntu-1604

33

Cloud interchangeability

Figure 19: Output of the precheck-tool.

--source-uri=gs://vmupload/Ubuntu_16.04_local.ova

This statement creates an instances which is called ubuntu16gcp. The flag --os defines
the operating system version and --source gives the path to the cloud storage, where the
appliance is stored. This statement has to be executed for every instance which should
be imported. It takes about 25 minutes to create the instance and import the virtual
machine. After that, a connection can be established with the cloud shell.
A big disadvantage is, that the GUI cannot be displayed in the cloud. If one needs a GUI
there is a workaround necessary. GCP recommends Chrome Remote Desktop for Linux,
but there are also some alternatives. For Chrome Remote Desktop a script to automate
the installation is offered by GCP, which can be found in the documentation. Another
option is to use VNC and connect that with the computing engine. VNC is a graphical
desktop sharing system and can be configured so it provides a GUI for the GCP compute
engine. For that the VNC server has to be installed on the computing engine and VNC
viewer on the local computer.

4.2.2 To AWS

Different than GCP, AWS does not offer a precheck-tool. So the operating system version
and other prerequisites have to be checked manually. After this and after installing the
AWS-CLI, the ova-file can be uploaded to a S3 bucket. This can be done with the follow-
ing statement: “aws s3 cp ubuntu16local.ova s3://uploadvm1”. The upload takes
some time and only worked from Ubuntu; when trying to start the upload on MacOS
an error, connected to the multipart-upload was thrown. It also didn’t work without
the multipart-upload, so Ubuntu 18.04 LTS was used to perform the upload. Also the
drag-and-drop option of the AWS-Console didn’t work, although it should for objects of

34

Cloud interchangeability

this size.
Next a so called IAM (identity and access management) role has to be created. This is
necessary to have the rights for the import and can be done with the AWS-CLI. For that
two json-files are needed: trust-policy.json and role-policy.json. Their contents can be
seen in figure 20 and 21. A template for the files can be found in the AWS documentation
and just the customized information needs to be filled in. They define the used services
and resource locations. To create the role the following statements are used:

aws iam create-role --role-name vmimport
--assume-role-policy-document "file://trust-policy.json"

aws iam put-role-policy --role-name vmimport --policy-name vmimport
--policy-document "file://role-policy.json"

Figure 20: Contents of trust-policy.json.

Figure 21: Contents of role-policy.json.

For the actual import another json file is needed: containers.json (see figure 22). And with
the statement “aws ec2 import-image –description “Local Ubuntu 16.04 LTS”
–disk-containers "file://containers.json"”, the image is imported. Unfortunately
this does not show the progress of the image import. To see the progress another statement

35

Cloud interchangeability

has to be used: “aws ec2 describe-import-image-tasks –import-task-ids import-
ami-1234567890abcdef0”. This shows the current state, if one wants to know the state
a few minutes later the statement has to be executed again.

Figure 22: Contents of containers.json.

Finally the instance can be launched. This can be done in the AWS-Console under
“Create Instance”. There the uploaded image can be selected, some settings can be
edited but for this experiment the default settings are just fine. Then the instance can
be launched. The VirtualBox guest additions didn’t start but all data is still there.
One can connect over SSH with the following statement: ssh -i "ubuntuaws2.pem"
ubuntu@ec2-18-193-222-141.eu-central-1.compute.
amazonaws.com.
If a GUI is needed, AWS recommends to install MATE Desktop environment. For that
the MATE desktop environment and Tiger VNC have to be installed on the virtual
machine. Next a VNC client has to be installed on the local computer, then the two can
be connected.
The whole import process worked without problems for Ubuntu 16.04 but the import
for Ubuntu 18.04 quit with the following error message: “ ClientError: Unsupported
kernel version”. Locally Ubuntu 18.04 was running without problems in VirtualBox. It is
disappointing that AWS just lists the operating system versions, which can be imported
(there Ubuntu 18.04 is included) but no kernel versions and then throws such an error.

4.2.3 To Azure

While all cloud providers have strict requirements and restrictions for the virtual machines,
which can be imported to their cloud platforms, Azure plays in his own league. Before
a virtual machine can be imported it has to be prepared accordingly. That means the
image has to be configured to use Ubuntu’s Azure repository, update it to use the latest
Azure-tailored kernel and install Azure Linux tools, which include Hyper-V dependencies.
Also cloud-init hast to be installed and configured to use Azure as data source. This still
can be done in VirtualBox but would work better in Hyper-V Manager.
Next, the virtual machine image needs to be converted to VHD or exported as VHD,
because that’s the only format that is possible to import in Azure. A VHD-file can
be exported from VirtualBox, nevertheless the size of the VHD can’t be defined. This
brings up the next problem, when trying to upload the VHD-file: “BadRequestError:
(BadRequest) The upload size in bytes <size> - 512 bytes for the VHD footer (<size> in
this case) must be a multiple of MiB”. There are not many options to resize the VHD. One
would be Hyper-V, but it can just be installed on Windows. Another option, suggested in
the Azure documentation, is the Convert-VHD cmdlet but this also doesn’t work without
the Hyper-V Module for Windows. So the experiment was stopped at this point, because

36

Cloud interchangeability

the needed tools were not available for Linux or Mac OS.
As a conclusion, what can be said about the import of a virtual machine to Azure?
Definitely that it is not platform independent and that it can’t be done without Hyper-V
Manager or other Microsoft related products.

4.3 Docker
For the start of this experiment Docker is set up in the local environment, which is a
virtual machine with Ubuntu 18.04. The container used here also contains ubuntu. But
when comparing the uploaded images from docker and the virtual machine, one can see
that the docker image is way smaller (about 80MB) than the virtual machine image (2GB
or more). This is because docker does not virtualize a whole operating system.
As far as known there are no restrictions to which images can be uploaded to the registries.
Only in Azure the Ubuntu container didn’t run. After an image is created it usually needs
to be tagged accordingly, before it can be pushed to a repository. But this and all other
necessary steps to move a container to the cloud will be explained in this chapter for each
cloud provider.

4.3.1 To GCP

To use Docker in GCP, an image has to be uploaded and deployed there. Before the upload
can happen the image has to be tagged, this means adding the registry name. The state-
ment has the following scheme: docker tag [SOURCE_IMAGE] [HOSTNAME]/[PROJECT-ID]
/[IMAGE]. After this, the image can be pushed to the GCP registry. The registry doesn’t
have to be public, just the user who pushes the image there has to have the according
rights. The two used statements for this process can be seen in figure 23. After run-
ning those statements the image is in the Container-Registry. There are three options to
deploy the image: via Cloud Run, GKE (Google Kubernetes Engine) or GCE (Google
Computing Engine). Cloud Run is a server less solution, which doesn’t support all fea-
tures that GKE supports. Nevertheless Cloud Run offers the most flexible pricing, since
costs just arise when the service is used, not when the container is running. This means
one just pays for a web application when a HTTP request is coming in but not for “only
running it”. Here the third option “deploy to GCE” was chosen. For this an instance has
to be created, which can be done in the GCP-Console. Most settings are self-explaining,
like choosing a region, zone and machine type. But one has to know to check the boxes
for “Allocate a buffer for STDIN” and “Allocate a pseudo-TTY”. without these settings
the container will not start. The settings are the equivalent for the -it flag when using
docker. “Allocate a buffer for STDIN” is -i and adds a buffer for STDIN, without that
reading from STDIN will just give back EOF and no input to the terminal will be possible.
Together -i and -t create sort of a terminal, which can be used for interacting with the
container. Now the container can be used with CloudShell or with Cloud SDK.
gcloud beta compute ssh –zone "us-central1-a" "instancedocker1" –project
"planar-osprey-277208"
is the statement which is used to connect to the instance; it can be found in the console
when clicking on “View gcloud command”. And with docker start -i 1081b00d5405
the container can be started to work with it. 1081b00d5405 is the container-ID, the
running container can be seen in figure 24.

37

Cloud interchangeability

Figure 23: Tag a docker image and push it to the GCP repository.

Figure 24: Connecting to the container.

4.3.2 To AWS

Before moving a docker container to AWS, first a repository has to be created. In Amazon
this is called ECR (Elastic Container Registry). This repository can be created in the
AWS-Console under “Create Repository”. Here the name for the repository has to be
chosen and it is advisable to enable tag-immutability. This ensures that no image is
overwritten, if images with the same tags are pushed to the repository. Another option
is to scan for vulnerabilities automatically while an image is pushed to ECR but this can
also be left out or the scan can be started manually after the upload.
Now that the repository is created, the push commands recommended by AWS can be
viewed. This is shown in figure 25. First an authentication token is needed, then the
image needs to be tagged and finally it can be pushed to the repository.
To run the container the image needs to be deployed to an EC2 (Elastic Compute Cloud)
instance. For this, so called cluster and task definitions have to be created in the AWS-
Console. A cluster is a logical group of tasks or services. The task definition is needed to
run the container in AWS; it defines things like networking mode, logging configuration,
CPU usage and many more.
After the cluster and task definitions are created The instance can be found on the EC2-
Dashboard under the point “Instance”. It is running and one can connect and work with it
now. The connection can be established via SSH and a previously generated key pair. For
this SSH has to be added in the security group. Then the following statement can be used
to connect: ssh -i "awsdocker.pem" ec2-user@ec2-52-57-114-32.eu-central-1.
compute.amazonaws.com

38

Cloud interchangeability

Figure 25: Suggested commands from AWS, to push an image to ECR.

4.3.3 To Azure

The first thing to do in Azure is creating a resource group for this project so that the
billing can be done correctly. Next a container registry needs to be created. This can
be done in the cloud-console. Some information about the project, like resource group,
location and name of the registry have to be entered. After this, one can log in from
the Azure-CLI with the following command: “az acr login -n <registryname>”. The
image now needs to be tagged and then it can be pushed to the ACR (Azure Container
Registry), the commands for that can be seen in figure 26.

Figure 26: Tag the image and push it to ACR.

Once the image is pushed to ACR it can be deployed to an Azure Container Instance.
For this, the admin user has to be enabled in the registry and a container instance has
to be created. Now the instance can be started. With the ubuntu image used here, the
container shuts down immediately after the start, because there is no running process in

39

Cloud interchangeability

it. Also the -it flag doesn’t help. If an image with ngix running is used the container
keeps running and the web page can be visited with the provided IP-address.

4.4 Storage
File storage in the cloud is not just relevant for companies but also a lot of private users
work with it. Dropbox and Google Drive are two examples of cloud storage for private
users and small storage units are usually for free. Companies on the other hand have more
data than private users and therefore need bigger storage units for which they have to
pay. As will be seen, the upload functions of GCP, AWS and Azure differ from Dropbox,
which uses drag-and-drop. This is the case because larger amounts of data have to be
uploaded and also access control is needed. So, each cloud platform offers a kind of access
control, but it is not possible to set access rights during the import, they have to be set
afterwards manually.

4.4.1 To GCP

The Google Cloud Storage is structured very clearly. Different buckets can be created in
which data can be saved. This data can be uploaded via drag-and-drop or a “upload”-
button. In this way single files can be uploaded, as well as a whole structure of folders.
Also gsutil can be used for the upload. The statement looks as follows: “gsutil cp
<filename> gs://upload”. So migrating data to GCP is easy but takes some time for
big amounts of data. So called “Holds” can be set for every object, this means that
this object can’t be deleted until a certain date passed or until a certain event, like
another document was deleted or updated, happened. Of course also access control can
be managed, this happens with the help of access control lists. The access rights can be
set for buckets, folders or single objects. These settings need to be made after the upload
and can’t be imported.

4.4.2 To AWS

The upload to AWS happens similar to GCP, first a bucket has to be created and then files
and folders can be uploaded either via drag-and-drop or the “upload”-button. For objects
which are lager than 160GB the AWS-CLI (AWS Command line interface) or AWS-SDK
has to be used. Nevertheless the upload of the virtual machine image also needed to be
done with the AWS-CLI. The command is “aws s3 cp <filename> s3://vmupload1”.
So apparently the AWS-Console does not work well with large objects. In AWS there
is a upload-page, which displays the data that is going to be uploaded. Moreover the
settings which can be made are shown. This includes access control, storage class (there
are different classes depending on how often the data is used), encryption, versioning and
tags. After checking all these setting the “upload”-button can be pushed. Then a status
page appears and finally one is led back to the bucket and the uploaded data. There
the data can be viewed and the access rights to buckets, folders or single objects can be
changed with the help of an access control list.

40

Cloud interchangeability

4.4.3 To Azure

To use the Azure Blob Storage, first a Storage Account has to be created. This can be
done in the cloud-console under “Storage Accounts”. For this account the subscription
and resource group, the account name, a location and the kind of storage, which will be
used has to be chosen. Here the V2 Storage for general purpose was chosen. There blob
containers, file shares, queues and tables can be used. If the cloud-console is used, only
single files can be uploaded, that’s why the Storage Explorer has to be downloaded and
a connect statement to the password manager has to be executed. In Ubuntu this can be
done with the following statements:

sudo apt install snapd
sudo snap install storage-explorer
snap connect storage-explorer:password-manager-service
:password-manager-service

After this, the storage explorer can be opened. First it has to be connected with the Azure
account. The window for signing in appears automatically when opening the storage
explorer. Now files and folders can be uploaded easily by clicking the “upload”-button.
For access control there are the following options: Full public read access (everything can
be read via anonymous requests), no public read access (just the container owner can
read) and public read access for blobs only (blob data can be read by everyone, other
container data not).

41

Cloud interchangeability

5 Migrating a system from a cloud platform to a local
system

This chapter aims to clarify how the export from a cloud platform works and if a fully
functional system can be exported and set up locally again. For this, first a new system is
set up in the cloud. Later this system can be exported and set up in the local environment.
As before, this is done for all parts of the test system. This can be seen as export, but
also as the first step for a indirect migration between cloud platforms.

5.1 Databases
As in chapter 4, the first part of the test system to be examined is the database. For this
the test database Sakila is created on every examined cloud platform. Besides the data,
table structure, triggers, stored functions and procedures are exported from the different
cloud platforms and set up in the local system. The local setup is performed by importing
the mysqldump with the help of MySQL-Workbench to the local system.

5.1.1 From GCP

Exporting the structure and data of the database is not difficult. GCP offers an export
option and with just a few clicks the database can be exported as a CSV- or SQL-file.
The CSV-file just contains the information of a SELECT query. The export mask can
be seen in figure 27. First a file format has to be chosen, in this case it is SQL, so also
the statements for creating tables and views will be exported. Then one has to select
the database which should be exported, here it is Sakila. Finally the destination for the
export has to be chosen. It can not be directly downloaded but has to be stored on
the cloud storage in a bucket first. With these settings an SQL-file will be saved in the
according bucket.
Unfortunately with the help of this export mask triggers, stored procedures and functions
can’t be exported. If they should be exported too, mysqldump needs to be used. To do
so a MySQL-client is needed on a local computer or in an computing engine. Also the
connection over public IP-addresses has to be configured for the instance in GCP. This
can be done in the connection-settings of the instance. There the IP-address of the client
has to be added to the authorised networks. Now a connection can be established from
this client to the GCP instance. For the dump the following statement has been used:

mysqldump --databases sakila -h <mysql-server-ip> -u root
-p --hex-blob --single-transaction --set-gtid-purged=OFF
--default-character-set=utf8mb4
--routines > sqldumpfile_sakila_fromGCP.sql

There <mysql-server-ip> is the public IP-address of the instance, to which the user wants
to connect to export Sakila. --routines has to be used, otherwise the stored procedures
and functions won’t be exported. --triggers doesn’t need to be included, because trig-
gers are exported automatically. --hex-blob makes sure the binary strings are dumped in
hexadecimal format. --set-gtid-purged=OFF does exclude information about executed
transactions. After the statement was executed the dump can be found in a file named
“sqldumpfile_sakila_fromGCP.sql”. This file is saved locally in the directory from which
the MySQL client was started. 42

Cloud interchangeability

Figure 27: Mask for exporting a database from GCP.

Having MySQL Workbench installed, the import to the local system is no problem. Under
“Server”, the option “Data import” can be found and then the file has to be selected and
it will be imported.
It gets more tricky when the users should be transferred back to the local system. For
this another export has to be done. This time the database “mysql” is exported. In the
dump the following section can be found:

LOCK TABLES ‘user‘ WRITE;
/*!40000 ALTER TABLE ‘user‘ DISABLE KEYS */;
INSERT INTO ‘user‘ VALUES
(’%’,’root’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’N’,’Y’,’Y’,’Y’,’Y’,’Y’,’N’,
’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’’,’’,’’,’’,0,0,0,0,
’mysql_native_password’,’*81F5E21E35407D884A6CD4A731AEBFB6AF209E1B’,
’N’,’2020-10-22 12:48:50’,NULL,’N’),,
(’%’,’tanja,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’N’,’Y’,’Y’,’Y’,’Y’,’Y’,’N’,

43

Cloud interchangeability

’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’’,’’,’’,’’0,0,0,0,
’mysql_native_password’,’*315DDE480B28825F9F6C5358CF490F881E239858’,
’N’,’2020-10-23 11:49:29’,NULL,’N’);
/*!40000 ALTER TABLE ‘user‘ ENABLE KEYS */;
UNLOCK TABLES;

This section contains the users, their grants and even the authentication string. This code
can be copied into MySQL-Workbench. Running it adds the user to the local database.

5.1.2 From AWS

For the export, Sakila was set up in AWS with triggers, stored functions and procedures,
and extra users, so that the export of these features can be tested. While this was done,
the connection to the database was lost a few times, so it doesn’t seem to be extremely
stable. A possible reason could be, that a free tier was used and so of course, just the
cheapest instance was available.
To create a mysqldump MySQL-Workbench’s export option can be used, if it is connected
to the cloud database. Another option is using the following statement:

mysqldump -h <mysql-server-ip>
-u admin -ppasswordAWS --port=3306
--single-transaction --routines --triggers
--databases <database-name> > rds-dumpSakila.sql

The source database with a user is given, for AWS the <mysql-server-ip> looks as follows:
sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com. --routines and --triggers mark
that triggers, stored functions and procedures are dumped too. The output of the dump
is written into “rds-dumpSakila.sql”.
The main problem of the export is the compatibility: in a first try MySQL version 8.0.20
was used in AWS, while on the local system MySQL version 5.7 is installed. So in the
dumpfile the string “utf8mb4_0900_ai_ci” has to be replaced with “utf8mb4_general_ci”.
After this the file can be imported via MySQL-Workbench to the local system. Other
attempts to change the string didn’t work. It can’t be changed by adding --default-
character-set=utf8mb nor by adding --default-collation=utf8mb4_general_ci.
Also altering the collation directly in the database, with “ALTER DATABASE sakila
CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;” didn’t work. So either one
replaces the string manually or downgrades the used database in AWS to V 5.7. The
second option was chosen and now the export works fine, everything except users can be
exported at once.
For the users the same process as described in 5.1.1 needs to be performed. For the
user export there is no other option than exporting the database “mysql” with an mysql-
dump. Then one needs to find the section with the user table, which can be copied to
MySQL-Workbench and imported to the local system.

5.1.3 From Azure

The export of the database structure, the data, views, triggers, stored functions and
procedures can be done via MySQL-Workbench. After a connection is established, under
“Server” the point “Data export” can be chosen. The only thing to take care of is, that the

44

Cloud interchangeability

definers are not exported. Definers give the user who created the trigger, stored function
or procedure. But in the new database this user doesn’t exist, so there would be an error
when importing the definers. Also importing the user first would not work, because the
definers have the following format: <username>@<databasename> and here are different
names for the databases used. Finally the exported SQL-file can be imported to the local
system with the help of MySQL-Workbench.
In Azure the “mysql” database can’t be exported, even the adminuser doesn’t have access
to it. So to get the user data, the statement “SELECT * FROM mysql.user” is used. In
this way the user data (name and permissions) can be exported, then the users have to
be created manually in the local database.

5.2 Virtual Machines
When importing and exporting virtual machines one has to distinguish, whether an in-
stance or an image should be moved. The instance is a dynamic system, a running virtual
machine, which is usually started from an image. Here images and virtual appliances are
exported from the different cloud platforms, depending on what is possible.

5.2.1 From GCP

The starting point here is the running instance. An image can be created based on a
snapshot, another image, a virtual disk or a cloud storage file. This can be done in the
cloud-console in the “Image”-section with the “Create Image”-button. After this hap-
pened the created image is listed with other image templates from GCP in the “Image”-
section. There another button for the export can be found. The export needed almost
14 minutes, as can be seen in figure 28. Export means, saving the image as .vmdk to the
cloud storage. From there it can be downloaded and then imported to the local virtual
box again.

Figure 28: Export information screen.

Interesting is, that the VirtualBox guest additions didn’t show when the virtual machine
was running in GCP. Nevertheless they weren’t deleted, because now, when the machine is
running in a local environment again, the guest additions are there as well as the original
GUI, which was also not able to run in the cloud environment.
A new user was created by GCP, this user was also exported. The username is t_fraundorfer,
which is the login for GCP. To use this user in the local system, a password had to be
set in the cloud instance before the export (sudo passwd t_fraundorfer). After setting

45

Cloud interchangeability

the local machine up, this user was used to change the password of the original ubuntu
user, because the password of it didn’t work anymore. After the password change both
users could be used in the local virtual machine.
Also at the first login a “System program problem detected” error message appeared. It
disappeared after updating the system, deleting the crash report file and restarting the
machine. So the export for Ubuntu 16.04 LTS worked but has not been really smooth;
there were some unexpected and inexplicable errors.
The export of Ubuntu 18.04 LTS, on the other hand, worked without problems. It was
the same procedure, a user had to be created in the running cloud instance and the image
was exported. After setting everything up locally, the user could be used for the login
and everything worked without errors.

5.2.2 From AWS

The AWS-CLI is still installed from the import process, so there is just one thing left
to prepare for the export and this is editing the access control list for the S3 bucket.
Depending on the region in which the exported instance is running, an entry has to be
added to the access control list of the target S3 bucket. From there the export is pretty
straightforward. Only one statement and a json-file are needed. The very creative name
(suggested by AWS) of the json-file is “file.json”. It defines the format and target bucket
of the export and can be seen in figure 29.

Figure 29: Json-file for exporting an instance.

aws ec2 create-instance-export-task –instance-id i-08eb724ac56d380d4
–target-environment vmware –export-to-s3-task file://file.json

The statement above is used to start the export. It is comfortable that just one step is
needed, no AMI (Amazon machine image) has to be created first. The export can be
performed from a running instance and took a few hours to finish. It created a OVA-file
in the according S3 Bucket and a snapshot of the instance could be found in the EC2
Dashboard.
Similar to the import, the status of the export can be monitored with the following
statement: “aws ec2 describe-export-tasks –export-task-ids export-i
-0e681c2c228d55741”. This is no continuous information, but the statement has to be
executed every time the state of the export needs to be known. It also doesn’t show a
progress, but states such as active, deleting, deleted (export is cancelled), updating (status
is updated) and completed. The export information can be seen in figure 30. Finally a
file named “export-i-0e681c2c228d55741.ova” is in the according S3 bucket. This can be
downloaded and set up in a local system. After the appliance was imported to the virtual

46

Cloud interchangeability

box it started without any problems, this worked well for both Ubuntu 16.04 LTS and
Ubuntu 18.04 LTS.

Figure 30: Export status information.

5.2.3 From Azure

Exporting a virtual machine from Azure is not complicated at all. After stopping the
machine, a download link can be created under “Export Disk”. To create the link, only
the expiry time has to be set. After this the VHD-file can be download from the link
which is displayed (see figure 31) and imported to the local virtual box.

Figure 31: Download link for the VHD-file.

The VHD-file (32.31GB) is way bigger than the VMDK-file downloaded from GCP (ap-
proximately 2GB) and the OVA-file downloaded from AWS (approximately 1GB), it took
quite a while. But once it was downloaded everything started. Only some commands
couldn’t be executed due to a “unable to resolve host” - error. To solve this in
/etc/hosts the line “127.0.0.1 ubuntuazure” needed to be added. This gives the local
host name. Again, there was no difference in exporting Ubuntu 16.04 LTS and Ubuntu
18.04 LTS.

5.3 Docker
There are various reasons to run docker container in a local environment: they are small
and therefore don’t need much storage. Moreover Docker offers tools for Windows, Mac
and Linux based operating systems, which are easy to install, to run and to work with.

47

Cloud interchangeability

The downloaded containers can be run on all operating systems on which Docker Desktop
can be installed and on Linux, where the Docker Engine needs to be installed.

5.3.1 From GCP

The starting point for the export is a running container in an GCE instance. First an
image has to be created from the instance. This happens with the statement: “docker
commit [ContainerID] dockergcp”. Next, one has to authenticate to the container
registry via a token and then the image has to be tagged, in the same way as in section
4.3.1. After this it can be pushed to the registry. The statements for tagging and pushing
the image look as follows:

docker tag dockerubuntugcp2 gcr.io/canvas-adviser-294119/ubuntugcp
docker push gcr.io/canvas-adviser-294119/ubuntugcp

canvas-adviser-294119 is the GCP project name and gcr.io is the hostname, which gives
the location of the image. In GCP each resource has to be allocated to a project for
billing. The project name can be freely chosen or the suggestion of GCP can be accepted.
For getting a docker image from the container registry of GCP only one statement is
necessary and this statement is even given by GCP. When looking in the Container-
Registry a click on the wanted container and the according three dots shows the option
“show pull command”, this suggestion can be seen in figure 32. The according statement
has to be copied to a terminal (of course docker and the Cloud-SDK have to be installed)
and executed and then a container can be started based on this image.

Figure 32: Suggested pull command from GCP.

5.3.2 From AWS

Having a container running in an EC2 instance, one first needs to create an image by
using docker commit. The authentication to ECR happens via a token and then the
image can be tagged and pushed to the ECR Registry with the following statements:

docker tag dockerubuntuaws 300513033571.dkr.ecr.eu-central-1.
amazonaws.com/awsrepexport:latest
docker push 300513033571.dkr.ecr.eu-central-1.amazonaws.com/
awsrepexport:latest

48

Cloud interchangeability

For pushing the image to the registry, the user needs the right permissions. That’s why
the policy of the registry needs to be set accordingly. After this the image can easily be
pulled from the registry to the local machine by using the following command: docker
pull 300513033571.dkr.ecr.eu-central-1.amazonaws.com/awsrepexport:latest

5.3.3 From Azure

In Azure one can create a container instance from a docker image but this instance then
can’t be committed to an image again. So for the export here the starting point needs to
be the image stored in ACR (Azure container registry). To export it from there not much
needs to be done. Only permissions to execute the following pull command are needed:
“docker pull azuredockerprem.azurecr.io/ubuntuloc”. So the image can be pulled
to the local machine, where the image can be started.

5.4 Storage
Sometimes the confidentiality level of data changes and that makes it necessary to think
about the data storage again. Critical data should not be stored in the cloud but must
be stored on a secure server on the premises of the company. That’s why it is examined
here how data, which is stored in buckets, can be transferred from a cloud platform to
a local system. In all three cloud platforms the data could be exported but the access
rights couldn’t.

5.4.1 From GCP

Downloading one object in GCP can be done in the cloud-console with the “Download”-
button. This is quite impractical for large numbers of objects. So if more objects should
be downloaded at once, e.g. a directory or bucket, the Cloud-SDK should be used.
The statement “gsutil cp -r gs://storage localDest” downloads the whole bucket
to the local system. If just parts should be downloaded, the desired objects can be
marked in the cloud-console and when the download button is hit, the needed statement
is displayed. To download a whole directory tree -r needs to be included in the statement.
If just a subdirectory should be downloaded, the download location has to be appended
to the bucket in the following way: gs://storage/downloadfolder.

5.4.2 From AWS

Downloading an object from AWS is not difficult, it can be done by selecting the object
and then choosing “Download” in the menu. Nevertheless when there is a folder or more
than one object is selected, the download-option in the cloud-console is not available. In
this case the AWS-CLI has to be used. The command for downloading a whole bucket is
the following: “aws s3 sync s3:<source_bucket> <local_destination>”. Also parts
of the bucket can be downloaded by just appending the directory to the bucket.

5.4.3 From Azure

With the help of the storage explorer downloading objects is easy. After selecting the
data which should be downloaded and clicking the “Download”-button the data is saved
to the chosen folder. In the Console only single files can be downloaded.

49

Cloud interchangeability

6 Migration between cloud platforms
There are various reasons to change the cloud provider but thinking about migrating
systems may let one hesitate to switch contracts. In this chapter it will be examined
which knowledge and tools are necessary for moving systems between two cloud platforms.
There are two options how this can be done. First the direct one, this means the data gets
transferred directly from one platform to the other. The second one, is the indirect one.
Here, the system first gets exported from the source cloud platform to the local system
and then in a second step, it is imported to the destination cloud platform.

6.1 Direct – from cloud platform to cloud platform
Not all systems can be migrated directly between all cloud platforms. Usually there
are special tools necessary to perform a direct migration. Unfortunately not all cloud
platforms offer to import systems from other cloud platforms. Sometimes just the direct
import from one certain cloud platform is possible. Sometimes the tools are more extensive
and imports from various cloud platforms are possible. Sometimes a tool even offers a
direct export option to other cloud platforms. So table 1 gives an overview of which direct
transfers are possible and those will be discussed in this chapter.

Table 1: Possible direct transfers. For the database a direct user transfer is not possible,
so here only the transfer of the structure, data, views, triggers, stored functions and
procedures is examined.

From To Databases Virtual machines Docker container Storage
AWS GCP yes yes yes yes
Azure GCP yes yes no yes
GCP AWS no yes yes yes
Azure AWS no yes no no
GCP Azure partly no yes no
AWS Azure yes yes yes yes

6.1.1 Databases

Moving databases directly between the three cloud platforms is possible with an mysql-
dump, which is piped into the other database. This works for the database structure, the
data, views and depending on the platform, also triggers, stored functions and procedures.
Unfortunately a direct migration doesn’t work for any users.
First, the platform where the database should be imported, needs to be prepared. This
means for all three platforms, creating a database instance, enabling the log_bin_trust_
function_creators flag and modifying the connection settings, so that a connection to
the database can be established. The platform from which the export happens, doesn’t
need to be prepared in any other way than having a database, ready for the export.
When doing the mysqldump, definers are dumped too. To remove them, the dump is mod-
ified with “sed”. An example of the full statement for the mysqldump looks as follows. In
this example the database is moved from AWS to Azure.

50

Cloud interchangeability

mysqldump -h sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com
-u admin
-p<passwordAWS>
--port=3306
--single-transaction
--routines --triggers --databases
sakilaAWS | sed -e ’s/DEFINER[]*=[]*[^*]**/*/’ |
sed -e ’s/DEFINER[]*=[]*[^*]*PROCEDURE/PROCEDURE/’ |
sed -e ’s/DEFINER[]*=[]*[^*]*FUNCTION/FUNCTION/’ |
mysql -h azureserversakila.mysql.database.azure.com
-u tanjaadmin@azureserversakila.mysql.database.azure.com
--port=3306
-p<passwordAzure>

In the statement above the two hosts and the ports are given, as well as users with root
privileges. --single-transaction makes sure changes, which are done in the database dur-
ing the mysqldump, are excluded from the mysqldump. In this way data consistency is
ensured. The parts with “sed” in it remove the definers in front of triggers, stored func-
tions and procedures. For other combinations only the host and user have to be changed
to the values shown in table 2. The port is the same (3306) for each cloud platform.

Table 2: Connection information needed for the mysqldump.
Cloud Platform User Host

GCP root 35.224.129.230
AWS admin sakilaaws.cmdy23z5qdep.eu-central-1.rds.amazonaws.com
Azure tanjaadmin azureserversakila.mysql.database.azure.com

When importing or exporting a database from Azure, nothing special has to be considered.
Nevertheless, some things have to be considered when exporting it from GCP or importing
the database to AWS. In GCP, when a mysqldump is created the flag --set-gtid-purged
needs to be used in the following way: --set-gtid-purged=OFF. It excludes information
about executed transactions. Otherwise the mysqldump can’t be imported to the other
cloud platforms.
When moving databases to AWS, already in section 4.1.2 was discovered that triggers,
stored functions and procedures can’t be imported. This is also the case when a direct
transfer is done. It doesn’t matter if Azure or GCP is the cloud platform from which the
database is exported. That means that only the database structure, the data and views
can be migrated to AWS.

6.1.2 Virtual Machines

Fortunately the cloud platforms offer migration assistants to directly move virtual ma-
chines from one cloud platform to the other. In GCP it’s called Migrate for Compute
engine, in AWS the AWS SMS (server migration service) is used and in Azure, Azure
Migrate: Server Migration. With the help of these migration assistants, virtual machines
can be transferred from one cloud platform to the other one without noteworthy down-
times. This is possible, because everything gets set up in the new environment while the

51

Cloud interchangeability

old machines are still running. Only once the new system is ready, the actual switch
is done and the old system can be turned off. Unfortunately the costs for the needed
resources are mostly not covered by the free trial credits, which are offered by the cloud
providers. So this subsection just gives a theoretical overview of the possibilities.

AWS and Azure to GCP: The tool offered to migrate virtual machines from AWS
and Azure to GCP is the Cloud Migrate for Compute Engine, which was formerly known
as Velostrata. In [25] an overview of the migration process can be found. Basically a
VPN for a secure connection between the cloud platforms is needed. Also the Migrate for
Compute Engine Manager has to be configured in GCP. A Migrate for Compute Engine
Importer is deployed on the source cloud platform during the migration. Finally the
Migrate for Compute Engine package has to be installed on the virtual machines, which
should be migrated. This package reconfigures the virtual machines for GCP.

Azure to AWS: On the base of [5] a short overview will be given, about how the
migration from Azure to AWS works. For this migration the SMS (server migration
service) connector of AWS is used. So virtual machines from Azure can be imported
to AWS but no virtual machines from GCP. The SMS connector needs to be deployed
in Azure. It coordinates the migration similar to the replication appliance server used
in Azure. This SMS connector then needs to be configured; for this a web interface is
provided. After this is done, the virtual machines which should be migrated can already
be seen in the AWS-console in the server migration service. Now a replication job can be
created, which then can be executed and results in an AMI (Amazon machine image) in
AWS. This machine image finally can be deployed to an instance.

GCP and AWS to Azure: To move virtual machines to Azure, Azure Migrate: Server
Migration is used. How this works is described in [18]. On this basis the process will be
outlined here. The migration tool guides one through the steps of the migration and can
be used for both GCP and AWS. First an Azure migration project has to be created. Next,
in GCP (or AWS) a Windows Server 2016 has to be set up and the according replication
appliance software has to be downloaded and registered. For this registration a key can
be downloaded from Azure. The windows sever is a so-called replication appliance server.
It will not be migrated but will coordinate the whole migration. Moreover an agent has
to be installed on every virtual machine which should be migrated, so the machines can
be discovered by the replication appliance server. Now only some details are missing,
such as the name of the replication appliance server, which of the discovered machines
should be migrated, the virtual network in Azure to where the virtual machines should
be replicated and the size of the imported virtual machines (this doesn’t have to match
with the original size). Finally the replication can be started. Once a replication is in
Azure, it can be deployed by clicking on the “Migrate”-button.

6.1.3 Docker

Also for docker not all options of direct transfers between the three cloud platforms are
possible. But the ones which are possible are discussed here. Direct means here, directly
pushing the docker image to the container registry of the other cloud. Once the image

52

Cloud interchangeability

is in the container registry of the target cloud, it can be run as described in chapter 4.3.
There were no unexpected problems for the scenarios in this sub-chapter.

AWS to GCP: To move a docker container directly from AWS to GCP, first the image
needs to be tagged accordingly. But before it can be pushed, one has to authenticate to
the GCP container registry. This happens via a token, which is valid for one hour. After
this, the image can be pushed to the GCP container registry. Once it is there, it can be
used e.g. deploy it to GCE. The necessary steps (authenticating, tagging and pushing)
can be seen in figure 33.

Figure 33: Authenticating to GCP container registry, tagging and pushing the image.

GCP to AWS: Moving a docker container directly from GCP to AWS happens quite
similar to moving it from AWS to GCP. In the running container instance one has to
create an image and authenticate to AWS ECR with a one time token. Then the image
can be tagged and pushed. The necessary commands can be seen in figure 34.

Figure 34: Authenticating to AWS ECR, tagging and pushing the image.

GCP and AWS to Azure: To move a docker container from GCP or AWS to Azure,
in Azure a premium container registry is necessary. Otherwise it is not possible to authen-
ticate from other platforms to the Azure container registry, because token authentication
is only a preview in Azure and not available in the basic option of the container reg-
istry. Besides that, the usual steps are necessary for the transfer: create an image, tag it,
authenticate to ACR and then push the image to the according repository. This is the
same for AWS and GCP. The code for GCP can be seen in figure 35. The docker login
command is provided by Azure when creating the token.

53

Cloud interchangeability

Figure 35: Authenticating to Azure ACR, tagging and pushing the image.

6.1.4 Storage

Moving the data from one cloud storage to another one directly is possible for four out of
six combinations and fortunately quite uncomplicated.

AWS and Azure to GCP: To transfer stored data from another cloud platform to
GCP, the function “Data transfer” in GCP can be used. It imports the data from an
AWS S3 bucket or an Azure container. For this the bucket or container name has to be
given, also the access key for AWS or a service SAS (shared access signature) for Azure.
The mask for importing objects from AWS can be seen in figure 36. Also the destination
bucket in the GCP cloud storage needs to be chosen and finally the time for the transfer
can be set. Once this transfer job is created it can be run and saved to be used later
again.

AWS to Azure: To move data from AWS to Azure, the tool azcopy can be used. After
downloading and installing it, first the access key for AWS has to be set. Then the copy
command can be used to copy a file, folder or bucket to Azure. In this statement, first
the S3 bucket has to be defined and then the destination in Azure. Additionally a service
SAS is needed, which is given as a string and appended to the destination. --recursive
has to be set true, so that all sub folders are copied too. The statements needed to copy
a bucket from AWS to Azure look as follows:

export AWS_ACCESS_KEY_ID=AKIAI5T55C5CEN3H33FA
export AWS_SECRET_ACCESS_KEY=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

azcopy copy ’https://s3.amazonaws.com/storagetest/’ ’https://tanja.blob.
core.windows.net/teststoragesv=2019-12-12&ss=b&srt=sco&st=2020-12-10
T19%3A47%3A38Z&se=2020-12-11T19%3A47%3A38Z&sp=rwdxl&sig=%2FLfT5OO
xKz1EXTSunrYbL%2BT%2FPpW2CyPjdKNgwKkA7Is%3D’ --recursive=true

GCP to AWS: To move data from GCP to AWS, the GCP-CLI can be used. With
rsync a file, folder or bucket can be copied from the GCP Cloud Storage to AWS S3. The
command looks as follows: “gsutil -m rsync -r gs://storagetest s3://storagetest”.
The origin and destination have to be given and -m is for performing a parallel multi-
threaded copy.

54

Cloud interchangeability

Figure 36: Data transfer mask, to import data from AWS.

6.2 Indirect – with the help of a local system
The indirect option of moving systems between two cloud platforms has the advantage
that it works for more combinations than the direct transfer. And it is usually quite
uncomplicated, if the export from and import to the different systems worked already. Of
course different requirements and compatibilities have to be considered. For this option
only the different steps of chapter 5 and chapter 4 have to be combined. So in here, it
is highlighted if any special modifications need to be done to the system, which weren’t
necessary for the migration from a local system to a cloud platform.

6.2.1 Databases

Moving databases from one cloud platform to another, with the indirect version and
by using mysqldump, means simply dumping the structure, data, views, triggers, stored
functions and procedures to an SQL-file. This can be done via MySQL-Workbench or

55

Cloud interchangeability

with the mysqldump statement. After the structure and data is dumped to a file on the
local infrastructure, it can be modified if necessary. Here usually the definers needed to
be removed. Then it can be imported again to the other cloud platform. How the import
is performed for each cloud platform can be seen in section 4.1.
To move users from one cloud platform to another, first the data has to be extracted as it
was done for each platform in chapter 5.1 or simply with “SELECT * from mysql.user;”.
Once this is done, the users can be created on the other cloud platform. Usually users can’t
be imported but have to be created manually. How this works for each cloud platform
can be seen in chapter 4.1. There is also the option to write an SQL script and run it,
which is probably less time consuming than creating every user in MySQL-Workbench (in
GCP users have to be created with the according gcloud command). Because the indirect
move is only a combination of export and import and saving the data locally in-between,
there were no unexpected problems.

6.2.2 Virtual Machines

To move a virtual machine from one cloud platform to another indirectly takes quite
some time. Big amounts of data have to be downloaded and uploaded again. This makes
it quite time and bandwidth intensive. Also all import requirements of the new cloud
platforms have to be considered. Moreover, the format of the exported image often needs
to be changed, because not all formats can be imported and exported from all cloud plat-
forms. An overview, of possible import and export formats, is given in table 3. Locally
the formats can be changed with the help of VirtualBox or other tools. Another problem
is, that the images are not standardised, so every cloud platform uses slightly different
images. So they can have different device divers and guest additions for example, which
can cause problems during the migration.

Table 3: Possible import and export formats of the cloud platforms.
Cloud Platform Import format Export format
GCP OVA, VHD, VMDK VMDK, VHDX, QCOW2
AWS OVA, VHD, VMDK OVA, VHD, VMDK
Azure VHD VHD

How virtual machines can be exported from each cloud platform can be seen in chapter
5.2 and how they can be imported can be seen in chapter 4.2. For the transfer from
GCP to AWS for example, either one imports the VDMK to Azure or changes it to an
OVA with the help of VirtualBox. Here the second option was used. Unfortunately
when trying to migrate a virtual machine from GCP or Azure to AWS, the following
error occurred: “ClientError: Multiple different grub/menu.lst files found” and this error
could not be resolved. The virtual machines exported from GCP and Azure were running
locally without problems, but there was no indication on what to change so that the
virtual machines could be imported to AWS.
Also the indirect migration from GCP and AWS to Azure was not possible. As can be
seen in chapter 4.2.3, special preparations have to be done to import a virtual machine
to Azure. These preparations have to be done locally, because at the end the kernel is
changed and with an Azure tailored kernel the virtual machines neither work in the other

56

Cloud interchangeability

clouds nor can be exported from there. But as was also mentioned in chapter 4.2.3, the
preparations can’t be done without a Hyper-V manager.
At least the migration from AWS and Azure to GCP worked fine. For a faster upload the
exported VHD-file from Azure was changed to an OVA-file, which then was imported to
GCP.

6.2.3 Docker

The indirect version for moving docker images means, that images get pulled from the
respective cloud platform to the local system. There they get tagged accordingly, then
pushed to the other cloud platform and finally they can be deployed there. How the
export works in detail for every cloud platform can be seen in chapter 5.3 and for import
to the cloud the detailed information can be found in chapter 4.3. The indirect move
works fine for every combination of cloud platforms.

6.2.4 Storage

Moving data between two cloud platforms indirectly works well. First the data has to be
downloaded. How this works for each cloud platform is described in chapter 5.4. From
there it can be imported to the next cloud, as described in chapter 4.4. This way data
can be moved indirectly. Access permissions can’t be exported or imported. A new access
control list has to be created for each cloud platform.

6.3 Comparison
It can’t be said, which method is better for transferring systems between two cloud plat-
forms, the direct or indirect one. Both options have their advantages and disadvantages.
While the indirect move is possible for more combinations of cloud platforms, the direct
transfer usually is faster because there are fewer data transfers needed. Moreover, the
connection between cloud providers is normally faster than the up- and download at home
or work. Besides, for the direct option no local setup is necessary, which saves resources.
Also it could be a lot of work to set up a local system, only for moving systems from one
cloud platform to another. One more point to consider are the costs, if special hardware
is needed for the indirect transfer.
Nevertheless, the direct option is usually only available, if the cloud providers support
it. Most of the time, there are special tools needed for the direct transfer, like the GCP
Transfer Service for data, the Cloud Migrate for Compute Engine for migrating virtual
machines to GCP, the SMS connector of AWS or the Azure Migrate: Server Migration
tool. An exception was the transfer of the database, there it worked with redirecting the
mysqldump to the other cloud platform. But some things - like the users of a database
- can’t be transferred directly. That’s because of insufficient permissions in the target
cloud. However, when transfer services are used, one can never be sure which changes
are done to the system. Often they offer a transfer where the system doesn’t need to be
stopped. So this is an advantage when the system needs to be available continuously.
Also for docker, the direct and indirect transfer option have advantages and disadvan-
tages. While not everything can be transferred directly, it is quite convenient to directly
push an image to the container registry of another cloud platform and use it there. This
is definitely the fastest option. The advantage of the indirect move is, that no tokens

57

Cloud interchangeability

for the authentication have to be generated and disclosed. This authentication method
should also not be taken as granted, because in Azure it is only available as a preview yet.
The tokens are needed because the container instances, in which the docker containers
are running, only have docker installed and nothing else can be installed there. But for
the authentication to GCP, AWS or Azure usually gcloud, the AWS-CLI or Azure-CLI
are necessary.
When it comes to virtual machines, a migration with the help of a migration manager is
definitely more comfortable. Virtual machines have strict import requirements for each
cloud platform. So it can be quite tricky to prepare the virtual machine for the import to
another cloud platform. Also for the indirect transfer to Azure, special Microsoft tools are
necessary, like the Hyper-V Manager. With a transfer manager, big numbers of virtual
machines can be transferred at the same time, which is more convenient than preparing
them all manually but therefore also costs for the transfer manager and other needed tools
have to be considered. Virtual machines were also the only part of the test system, where
the indirect transfer between the cloud platforms was not possible for all combinations.
The import to Azure was not tested because no Hyper-V Manager was available. But also
the migration from GCP and Azure to AWS did not work. This was surprising, because
the import of a virtual machine, which was not exported from another cloud platform
before, worked just fine.
Last but not least, when one already knows how to import and export systems from cloud
platforms, then the indirect option has the advantage, that this knowledge usually can be
used and no time for researching or to train people needs to be planned.

58

Cloud interchangeability

7 Summary and Conclusion
In this section a recapitulation and final conclusion is given, as well as a short outlook of
possible future and related works.

7.1 Results
As mentioned in chapter 1 there are various reasons why systems should be migrated
to the cloud or between clouds. So, in this thesis it was examined how a migration to
and from the three chosen cloud providers works. The used cloud platforms were GCP
(Google), AWS (Amazon) and Azure (Microsoft), because they are by far the largest.
For the experiments a test system, consisting of a database, virtual machines, a docker
container and storage was set up. Not just the import and export to the cloud platforms
was tested but also the transfer of systems between the cloud platforms. For this last
option the direct and indirect variant was examined. The goal of each experiment was a
running system, either on a cloud platform or on a local system.
One thing that all tested cloud platforms had in common was, that a command-line in-
terface or the cloud console could be used for import and export tasks. For GCP the
command-line interface is called gcloud, for AWS it’s the AWS-CLI and Azure-CLI is
used for Azure. With the command-line interface, most import and export tasks could be
completed. Sometimes it was only a choice of preference to use the cloud-console instead.
Those command-line interfaces are available for different operating systems and installed
within a few minutes. Installing them was usually the first step for a migration.
Migrating the MySQL database was not a problem, when just the structure of the
database, the data and views were migrated. In GCP and Azure a special flag had
to be set to also import triggers, stored functions and procedures. Contrary to that, in
AWS it was not possible to import triggers, stored functions and procedures. Those had
to be created after the database was already running. For the import to GCP, an SQL-
file was uploaded to the cloud storage and imported from there, in AWS mysqldump was
used and in Azure the database was connected with MySQL-Workbench and the import
function of MySQL-Workbench was used. For the export, similar strategies were used:
in GCP an SQL-file was exported with the help of the cloud console, in AWS mysqldum
was used and in Azure the export was done via MySQL-Workbench.
However, the import process for database users is definitely something that should be
improved by all tested cloud providers. The processes for that seems not suitable for
large amounts of users. An automated import is usually not possible. In GCP, users have
to be created manually in the cloud console, before their permissions can be changed in
the database with REVOKE and GRANT. In AWS and Azure CREATE statements can be used.
For exporting the users in GCP and AWS, the database “mysql” had to be exported with
a mysqldump. There a section with user details can be found. This section includes
the INSERT statements of the users, which were copied to the local database. In Azure
the users and their permissions had to be exported with the SELECT * FROM mysql.user
statement. With this information the users could be rebuilt in the local system. When
migrating a database, the biggest problem in all three cloud platforms was the lack of
permissions, even for the admin user.
Virtual machines were the part of the test system, which had the strictest requirements
and regulations, no matter to which cloud platform they should be imported. The import
and export formats are limited as well as the operating system versions and sometimes

59

Cloud interchangeability

even the kernel version of the virtual machine has to be considered. Regarding the import
formats, Azure has the most limited selection. There only VHD files can be imported
and exported. In GCP and AWS more formats are possible, so the import was done with
virtual appliances (OVA). These needed to be uploaded to the cloud storage first, before
a virtual machine could be created from them. In GCP and AWS the export worked
similar, the generated file had first to be exported to the cloud storage and could then
be downloaded from there. Azure, on the other hand, simply created a download link for
the VHD file.
For uploading docker container to the cloud, the process for all three cloud platforms was
quite similar. Each cloud platform offered a container registry, to where the image had
to be pushed and from where it could be deployed to an instance. The export was the
reverse process: creating an image in the cloud and then pulling it from the respective
container registry.
To manage the storage, in Azure a special tool is used, the so called Azure Storage Ex-
plorer. With this tool, objects can easily be uploaded and downloaded from the cloud.
Also, for GCP and AWS, simple drag and drop is not an option. One can upload objects
via drag and drop but only download one object a time with this. So for large amounts
of data the command-line interface must to be used.
The next part of the thesis was about the migration between two cloud platforms. The
advantage of the indirect migration was definitely, that it is possible for almost all com-
binations. The exception for this was the transfer of a virtual machine to AWS (an
unsolvable error occurred) and to Azure (for that Hyper-V would be needed to prepare
the machine accordingly). But for all other parts of the test system the steps from the
export and import were combined with some small modifications of the system, while it
was stored on the local system.
Nevertheless, the much faster and less resource intensive option is the direct one. Un-
fortunately this option is not available for all combinations of cloud platforms. Only the
database structure, data and views can be transferred between all cloud platforms with
the help of a direct mysqldump. Also from GCP and AWS the docker images can be
directly pushed to another container registry and no local system is needed in-between.
For a direct storage transfer GCP even offers a special data transfer option, where AWS
and Azure can be used as a source.
Finally one thing has to be said: there is not only one right way to move a system to
the cloud or between different cloud platforms. There are various ways, variants and
options which may suit one system but do not work with other systems. Also, each of
the tested cloud platforms has their strengths and weaknesses. While in AWS the import
of a database was more problematic than in GCP and Azure, Azure definitely makes it
the most difficult to import virtual machines. Regarding the migration process, it felt
like the processes of GCP and AWS are more similar to each other and Azure just uses a
completely different strategy.
This thesis was challenging in many different ways. While all the used tools were known
before, it was interesting to look at them regarding the migration process. Some migration
specific errors arose and to solve them it was necessary to gain a better understanding of
the used systems. Sometimes it was also hard to decide which way to go. Usually there
is more than one way to migrate a system and due to the limited time one way had to be
chosen and examined. Nevertheless it was not always clear which variant is the best or
most suitable one in a certain situation.

60

Cloud interchangeability

7.2 Implications and future directions
Cloud platforms are changing systems, they adapt to the users needs. That’s why one
possible future research could be to recreate the experiments from this thesis and have
a look on how the import and export processes have changed. Maybe they will stay the
same, because companies don’t tend to change their cloud providers. Maybe only the
transfer between clouds will change, because most systems in the future will be already
running on a cloud platform and the import from a local system will not be as impor-
tant. Maybe due to GAIA-X, a European cloud specification, cloud environments will
be designed more similarly and migrations between different platforms can be done with
one click. There are various options how this can develop and therefore for this topic, the
time when the experiments are performed definitely matters.
One more option would be to look at other test systems. Here, the test system consisted
of a database, a virtual machine, a docker container and a storage system but many more
systems are used for daily businesses. Different development tools, monitoring tools or
whole kubernetes environments are just a few examples, which weren’t explored here.
Also in this thesis only the three biggest cloud platforms (GCP, AWS and Azure) were
examined. So another idea would be to compare the import and export options of more
or other cloud platforms. Maybe smaller cloud providers offer more individual import
and export strategies or maybe systems even have to be transferred by their specialists
and an external user can’t do any imports or exports. Of course it could also happen,
that another cloud provider gains more customers and then in a few years GCP, AWS
and Azure are not the biggest ones anymore.
Moreover, systems where parts are on a cloud platform and the other part is either on a
local system or on a different cloud platform can be examined. If those two or more sys-
tems have to communicate, which implications does this have on the import and export
process? Are there certain permissions needed for setting something like this up? What
if just a part of the system should be exported, can the other one still run in the cloud
without complications?
A different approach to this topic, would be to try to develop a tool which automates
the import and export process for all cloud platforms. This seems like a big challenge,
because for now all cloud platforms have different processes and requirements. Maybe a
first step towards this goal would be to work on a guideline with recommendations for
standardized import and export processes.
As can be seen there are many more paths to explore, when it comes to cloud inter-
changeability. Import and export processes are definitely an interesting topic, where a lot
of things can still be automated and optimized.

61

Cloud interchangeability

References
[1] Migrating to AWS: Best practices and strategies. https://s3-ap-southeast-

1.amazonaws.com/mktg-apac/Cloud+Migration+to+AWS+Campaign/AWS+ebook+
Migrating+to+AWS.pdf. (visited on 13.1.2021).

[2] Inc Amazon Web Services. Angebotstypen. https://aws.amazon.com/de/
free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-
tier.sort-order=asc. (visited on 14.10.2020).

[3] Inc Amazon Web Services. Aws migration competency partners. https:
//aws.amazon.com/migration/partner-solutions/?partner-solutions-
cards.sort-by=item.additionalFields.partnerNameLower&partner-
solutions-cards.sort-order=asc. (visited on 15.1.2021).

[4] Inc Amazon Web Services. Cloud-Produkte. https://aws.amazon.com/de/
products/. (visited on 14.10.2020).

[5] Inc Amazon Web Services. Install the server migration connector on
Azure. https://docs.aws.amazon.com/server-migration-service/latest/
userguide/Azure.html. (visited on 7.1.2021).

[6] Inc Amazon Web Services. Migrate petabyte-scale data to the cloud.
https://aws.amazon.com/getting-started/hands-on/migrate-petabyte-
scale-data/services-costs/?nc1=h_ls. (visited on 15.1.2021).

[7] Inc Amazon Web Services. Unsere Geschichte: Was aus einer Garagen-Idee wer-
den kann? https://www.aboutamazon.de/über-amazon/unsere-geschichte-
was-aus-einer-garagen-idee-werden-kann. (visited on 14.10.2020).

[8] Inc Amazon Web Services. What is AWS marketplace? https://docs.aws.
amazon.com/marketplace/latest/userguide/what-is-marketplace.html. (vis-
ited on 14.10.2020).

[9] Mohammad Ubaidullah Bokhari, Qahtan Makki Shallal, and Yahya Kord Taman-
dani. Cloud computing service models: A comparative study. In 2016 3rd Interna-
tional Conference on Computing for Sustainable Global Development (INDIACom),
pages 890–895. IEEE, 2016.

[10] Sneha Borge and Nidhi Poonia. Review on amazon web services, google cloud
provider and microsoft windows azure. Advance and Innovative Research, page 53,
2020.

[11] Microsoft Corporation. About microsoft - explore a timeline of microsoft’s journey.
https://news.microsoft.com/about/. (visited on 14.10.2020).

[12] Microsoft Corporation. Azure products. https://azure.microsoft.com/en-us/
services/#windows-virtual-desktop. (visited on 14.10.2020).

[13] Microsoft Corporation. Kostenloses Azure-Konto. https://azure.microsoft.com/
de-de/offers/ms-azr-0044p/. (visited on 14.10.2020).

62

https://s3-ap-southeast-1.amazonaws.com/mktg-apac/Cloud+Migration+to+AWS+Campaign/AWS+ebook+Migrating+to+AWS.pdf
https://s3-ap-southeast-1.amazonaws.com/mktg-apac/Cloud+Migration+to+AWS+Campaign/AWS+ebook+Migrating+to+AWS.pdf
https://s3-ap-southeast-1.amazonaws.com/mktg-apac/Cloud+Migration+to+AWS+Campaign/AWS+ebook+Migrating+to+AWS.pdf
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc
https://aws.amazon.com/migration/partner-solutions/?partner-solutions-cards.sort-by=item.additionalFields.partnerNameLower&partner-solutions-cards.sort-order=asc
https://aws.amazon.com/migration/partner-solutions/?partner-solutions-cards.sort-by=item.additionalFields.partnerNameLower&partner-solutions-cards.sort-order=asc
https://aws.amazon.com/migration/partner-solutions/?partner-solutions-cards.sort-by=item.additionalFields.partnerNameLower&partner-solutions-cards.sort-order=asc
https://aws.amazon.com/migration/partner-solutions/?partner-solutions-cards.sort-by=item.additionalFields.partnerNameLower&partner-solutions-cards.sort-order=asc
https://aws.amazon.com/de/products/
https://aws.amazon.com/de/products/
https://docs.aws.amazon.com/server-migration-service/latest/userguide/Azure.html
https://docs.aws.amazon.com/server-migration-service/latest/userguide/Azure.html
https://aws.amazon.com/getting-started/hands-on/migrate-petabyte-scale-data/services-costs/?nc1=h_ls
https://aws.amazon.com/getting-started/hands-on/migrate-petabyte-scale-data/services-costs/?nc1=h_ls
https://www.aboutamazon.de/�ber-amazon/unsere-geschichte-was-aus-einer-garagen-idee-werden-kann
https://www.aboutamazon.de/�ber-amazon/unsere-geschichte-was-aus-einer-garagen-idee-werden-kann
https://docs.aws.amazon.com/marketplace/latest/userguide/what-is-marketplace.html
https://docs.aws.amazon.com/marketplace/latest/userguide/what-is-marketplace.html
https://news.microsoft.com/about/
https://azure.microsoft.com/en-us/services/#windows-virtual-desktop
https://azure.microsoft.com/en-us/services/#windows-virtual-desktop
https://azure.microsoft.com/de-de/offers/ms-azr-0044p/
https://azure.microsoft.com/de-de/offers/ms-azr-0044p/

Cloud interchangeability

[14] Microsoft Corporation. What is Azure? https://azure.microsoft.com/en-us/
overview/what-is-azure/. (visited on 14.10.2020).

[15] Microsoft Corporation. Windows virtual desktop. https://azure.microsoft.com/
en-us/services/virtual-desktop/#features. (visited on 14.10.2020).

[16] Microsoft Corporation. About azure migrate. https://docs.microsoft.com/en-
us/azure/migrate/migrate-services-overview, 2020. (visited on 15.1.2021).

[17] Microsoft Corporation. Agent-based migration architecture. https://docs.
microsoft.com/en-us/azure/migrate/agent-based-migration-architecture,
2020. (visited on 7.1.2021).

[18] Microsoft Corporation. Discover, assess, and migrate Amazon Web Services (AWS)
vms to azure. https://docs.microsoft.com/en-us/azure/migrate/tutorial-
migrate-aws-virtual-machines, 2020. (visited on 7.1.2021).

[19] Oracle Corporation. Structure. https://dev.mysql.com/doc/sakila/en/sakila-
structure.html. (visited on 16.10.2020).

[20] Oracle Corporation. Welcome to virtualbox.org! https://www.virtualbox.org.
(visited on 29.3.2021).

[21] Tinankoria Diaby and Babak Bashari Rad. Cloud computing: a review of the con-
cepts and deployment models. International Journal of Information Technology and
Computer Science, 9(6):50–58, 2017.

[22] Dijiang Huang and Huijun Wu. Chapter 3 - mobile cloud service models. In Dijiang
Huang and Huijun Wu, editors, Mobile Cloud Computing, pages 65 – 85. Morgan
Kaufmann, 2018.

[23] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud migration research: a
systematic review. IEEE transactions on cloud computing, 1(2):142–157, 2013.

[24] Muhammad Ayoub Kamal, Hafiz Wahab Raza, Muhammad Mansoor Alam, and
Mazliham Mohd Su’ud. Highlight the features of aws, gcp and microsoft azure that
have an impact when choosing a cloud service provider. 2020.

[25] Google LLC. Getting started with migrate for compute engine. https://cloud.
google.com/migrate/compute-engine/docs/4.5/getting-started. (visited on
15.1.2021).

[26] Google LLC. About google cloud services. https://cloud.google.com/docs/
overview/cloud-platform-services, 2020. (visited on 14.10.2020).

[27] Google LLC. From the garage to the googleplex. https://about.google/intl/en/
our-story/, 2020. (visited on 14.10.2020).

[28] Google LLC. Google cloud free program. https://cloud.google.com/free/docs/
gcp-free-tier, 2020. (visited on 14.10.2020).

[29] Google LLC. Google cloud overview. https://cloud.google.com/docs/overview,
2020. (visited on 14.10.2020).

63

https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/services/virtual-desktop/#features
https://azure.microsoft.com/en-us/services/virtual-desktop/#features
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview
https://docs.microsoft.com/en-us/azure/migrate/agent-based-migration-architecture
https://docs.microsoft.com/en-us/azure/migrate/agent-based-migration-architecture
https://docs.microsoft.com/en-us/azure/migrate/tutorial-migrate-aws-virtual-machines
https://docs.microsoft.com/en-us/azure/migrate/tutorial-migrate-aws-virtual-machines
https://dev.mysql.com/doc/sakila/en/sakila-structure.html
https://dev.mysql.com/doc/sakila/en/sakila-structure.html
https://www.virtualbox.org
https://cloud.google.com/migrate/compute-engine/docs/4.5/getting-started
https://cloud.google.com/migrate/compute-engine/docs/4.5/getting-started
https://cloud.google.com/docs/overview/cloud-platform-services
https://cloud.google.com/docs/overview/cloud-platform-services
https://about.google/intl/en/our-story/
https://about.google/intl/en/our-story/
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/docs/overview

Cloud interchangeability

[30] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[31] Dana Petcu and Athanasios V Vasilakos. Portability in clouds: approaches and
research opportunities. Scalable Computing: Practice and Experience, 15(3):251–270,
2014.

[32] Aaqib Rashid and Amit Chaturvedi. Cloud computing characteristics and services: a
brief review. International Journal of Computer Sciences and Engineering, 7(2):421–
426, 2019.

[33] Derrick Rountree and Ileana Castrillo. Chapter 1 - introduction to the cloud. In
Derrick Rountree and Ileana Castrillo, editors, The Basics of Cloud Computing, pages
1 – 17. Syngress, Boston, 2014.

[34] Derrick Rountree and Ileana Castrillo. Chapter 3 - cloud deployment models. In
Derrick Rountree and Ileana Castrillo, editors, The Basics of Cloud Computing, pages
35 – 47. Syngress, Boston, 2014.

[35] Derrick Rountree and Ileana Castrillo. Chapter 4 - cloud service models. In Derrick
Rountree and Ileana Castrillo, editors, The Basics of Cloud Computing, pages 49 –
94. Syngress, Boston, 2014.

[36] Chellammal Surianarayanan and Pethuru Raj Chelliah. Cloud Migration, pages 221–
240. Springer International Publishing, Cham, 2019.

[37] Chellammal Surianarayanan and Pethuru Raj Chelliah. Fundamentals of Cloud Com-
puting, pages 33–67. Springer International Publishing, Cham, 2019.

[38] Chellammal Surianarayanan and Pethuru Raj Chelliah. Introduction to Cloud Com-
puting, pages 1–32. Springer International Publishing, Cham, 2019.

[39] Jun-Feng Zhao and Jian-Tao Zhou. Strategies and methods for cloud migration.
international Journal of Automation and Computing, 11(2):143–152, 2014.

64

Cloud interchangeability

List of Figures
1 The five essential characteristics of cloud computing [21]. 5
2 “Self-service based access” [37]. 6
3 “Resource Pooling and multi-tenancy” [37]. 7
4 Responsibilities in the three service models [22]. 8
5 Scheme of a hybrid cloud [37]. 12
6 Parts of a system, which can be migrated to a cloud platform [23]. 13
7 Migration strategies [36]. 14
8 Azure migration architecture [17]. 17
9 Market shares of GCP, AWS and Azure in 2020 [10]. 18
10 Logo of GCP [29]. 19
11 Logo of AWS [2]. 20
12 Logo of Azure [13]. 21
13 Scheme of Sakila (sample database) [19]. 25
14 Mask for exporting a database with MySQL-Workbench. 28
15 Database import screen of GCP. 29
16 Connection information of the created AWS RDS instance. 31
17 Mask for creating the database instance. 32
18 Server details of “azureserversakila’.’ . 33
19 Output of the precheck-tool. 34
20 Contents of trust-policy.json. 35
21 Contents of role-policy.json. 35
22 Contents of containers.json. 36
23 Tag a docker image and push it to the GCP repository. 38
24 Connecting to the container. 38
25 Suggested commands from AWS, to push an image to ECR. 39
26 Tag the image and push it to ACR. 39
27 Mask for exporting a database from GCP. 43
28 Export information screen. 45
29 Json-file for exporting an instance. 46
30 Export status information. 47
31 Download link for the VHD-file. 47
32 Suggested pull command from GCP. 48
33 Authenticating to GCP container registry, tagging and pushing the image. 53
34 Authenticating to AWS ECR, tagging and pushing the image. 53
35 Authenticating to Azure ACR, tagging and pushing the image. 54
36 Data transfer mask, to import data from AWS. 55

65

Cloud interchangeability

List of Tables
1 Possible direct transfers. For the database a direct user transfer is not

possible, so here only the transfer of the structure, data, views, triggers,
stored functions and procedures is examined. 50

2 Connection information needed for the mysqldump. 51
3 Possible import and export formats of the cloud platforms. 56

66

	Introduction
	Motivation
	Scope

	Theoretical Background
	Definition of Cloud Computing
	Characteristics of cloud computing
	Service Models
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Other service models

	Deployment Models
	Private cloud
	Public cloud
	Community cloud
	Hybrid cloud

	Cloud Migration
	Migration process
	Migration strategies
	Mobility of services in the cloud
	Automation of the migration process

	The cloud platforms investigated
	Google Cloud Platform (GCP)
	Amazon Web Services (AWS)
	Microsoft Azure

	Approach
	Tests to perform
	Migrating a local system to a cloud platform
	Migrating a system from a cloud platform to a local system
	Migration between cloud platforms

	Test Systems
	Databases
	Virtual Machines
	Docker
	Storage

	Assessment criteria
	Migration approach

	Migrating a local system to a cloud platform
	Databases
	To GCP
	To AWS
	To Azure

	Virtual Machines
	To GCP
	To AWS
	To Azure

	Docker
	To GCP
	To AWS
	To Azure

	Storage
	To GCP
	To AWS
	To Azure

	Migrating a system from a cloud platform to a local system
	Databases
	From GCP
	From AWS
	From Azure

	Virtual Machines
	From GCP
	From AWS
	From Azure

	Docker
	From GCP
	From AWS
	From Azure

	Storage
	From GCP
	From AWS
	From Azure

	Migration between cloud platforms
	Direct – from cloud platform to cloud platform
	Databases
	Virtual Machines
	Docker
	Storage

	Indirect – with the help of a local system
	Databases
	Virtual Machines
	Docker
	Storage

	Comparison

	Summary and Conclusion
	Results
	Implications and future directions

	References
	List of Figures
	List of Tables

