

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Martin Hengstberger, BSc

Submitted at

Institute of Networks and

Security

Supervisor

Univ.-Prof. DI Dr.

René Mayrhofer

July 2016

STEGANOGRAPHY IN

FILE SYSTEMS FOR

MOBILE ENVIRONMENTS

WITH PLAUSIBLE

DENIABILITY

Master’s Thesis

to confer the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Martin Hengstberger: Steganography in File Systems for Mobile Environ-
ments with Plausible Deniability, © July 2016

Danksagung

Als erstes, ein wirklich großes Danke an meine Familie, meine
Onkel und ganz besonders an meine Eltern für die großartige
und andauernde Unterstützung, die es mir ermöglicht hat diese
Ausbildung abzuschließen. Diese ist alles andere als selbstver-
ständlich und ein Vorbild für mich um Sie an die nächste Gen-
eration weiter zu geben.
Mein Dank und meine Bewunderung gilt meinem Betreuer Prof.
Mayrhofer, seiner außergewöhnlichen fachlichen und mensch-
lichen Kompetenz, mit der er mich in vielen persönlichen Be-
sprechungen bereichert hat.
Dank auch an meine drei engsten Kollegen, mit denen ich das
ganze Studium gemeinsam meistern dürfte. Es war eine lehrre-
iche und lustige Zeit, auch oft auf engsten Raum - ein wirklich
tolles Team.
Danke an die JKU die mir viel gegeben hat, nicht nur wertvolles
Wissen und (Auslands-)Erfahrung, außerdem lernte ich dort
eine ganz besondere Frau kennen, meine Freundin. Danke für
deinen Beistand.

A B S T R A C T

Conventional encryption entirely relies on the secrecy of a password
(or secret key), which is not always good enough. Today, passwords
can be guessed, stolen or the users are forced to reveal them, which
then renders encryption ineffective.
Encryption with additional file hiding is secure and deniable. This
thesis proposes a new file system that allows the use to reveal pass-
words and still retain confidentiality of high importance data, only
surrendering predefined low importance data.
This file system improves file system security against forced pass-
word revealing, technical checks (e.g. string/magic number search),
and is particularly beneficial for the user in court cases due to Plau-
sible Deniability. This new file system hides and encrypts data in file
slacks.

Z U S A M M E N FA S S U N G

Konventionelle Verschlüsselung verlässt sich völlig auf ein Passwort
oder einen geheimen Schlüssel, was nicht immer gut genug ist. Pass-
wörter können erraten, gestohlen oder die Herrausgabe erzwungen
werden etc. Dadurch wird jede Verschlüsselung zwecklos.
Verschlüsselung zusätzlich kombiniert mit Verstecken von Dateien
ist sicher(er) und ableugbar. Diese Masterarbeit schlägt ein neues
Dateisystem vor, welches der NutzerIn erlaubt Passwörter heraus
zu geben. Trotzdem bleibt die Vertraulichkeit von wichtigen Daten
gewahrt . Es werden unwichtige vordefiniert, die dann herrausgegeben
werden können.
Dieses Dateisystem verbessert die Dateisystemsicherheit gegen erzwun-
gene Passwortherausgabe und technische Überprüfungen z.B.: Suche
nach Zeichenketten oder "magischen Zahlen". Das ist besonders vorteil-
haft für die NutzerIn bei gerichtlichen Verhandlungen. Dieses neue
Dateisystem versteckt und verschlüsselt Daten in "Datei-Slacks".

v

C O N T E N T S

i about this and related work 1

1 introduction 3

1.1 Structure of this Work 4

1.2 Problem Definition and Objective 4

1.3 Use Case . 5

1.4 Approach . 5

1.5 Related Work . 7

1.5.1 StegFS: Steganographic File System 7

1.5.2 DEFY: A Deniable File System For Flash Memory 8

1.5.3 MobiHydra: Pragmatic and Multi-level Plausi-
bly Denieable Encryption Storage for Mobile De-
vices . 10

1.5.4 OpenStego . 10

1.5.5 DeepSound . 11

1.5.6 TrueCrypt . 12

1.5.7 Bmap . 13

1.5.8 Comparison DHFS and Related Work 14

1.6 Fourth Extended File Ssytem (Ext4) 16

1.6.1 Ext4 and its built-in Cryptography Feature . . . 16

1.6.2 Comparison of Ext4, Dm-Crypt and Ecryptfs . . 18

1.6.3 Encryption in Android M (6.0) 19

1.7 File System in User Space (FUSE) 22

1.7.1 Modify Slack space 24

1.7.2 Read access . 25

1.7.3 Write access . 25

ii file systems in theory 27

2 steganography in file systems 29

2.1 File System Architecture 29

2.2 Steganography Strategies 30

2.2.1 Hide-out Data Locations by the Example of Hard
Disks . 30

2.2.2 Candidate Hide-out Strategies and Evaluation . 33

2.3 Candidate Selection of a Hide-out Location 39

2.4 Presence of a Steganography Tool 40

3 a file slack file system 43

3.1 Terminology . 43

3.2 File Slack . 43

3.2.1 Cluster Justification 43

3.2.2 Increasing Payload Space 45

3.2.3 Carrier Data Suggestions 46

3.2.4 Estimation of Payload Space Size 46

3.2.5 Calculation of Payload Space Size 47

3.3 File Lifecyle . 48

3.4 Problems of a File Slack File System 48

vii

viii contents

iii a file slack file system in practise 51

4 on implementing a steganographic file system

for android 53

4.1 System Overview . 53

4.2 Access Methodology . 53

4.3 FAT32 Driver Changes 55

4.4 Design Rationale . 59

4.4.1 Index Table . 59

4.4.2 Index Entries . 59

4.4.3 Checksum . 61

4.4.4 CRC32 Checksum 61

4.4.5 Index Marker . 61

4.4.6 End of Payload File (EEOF) 62

4.4.7 Compartments 62

4.4.8 Index Compartment Fragmentation 63

4.4.9 Compartment Numbers 63

4.4.10 Compression . 63

4.5 Encryption . 65

4.5.1 Need for Encryption 65

4.5.2 Individual File Encryption 66

4.5.3 Entropy for Random Number Generators 67

4.5.4 Encrypt-then-MAC vs. MAC-then-Encrypt . . . 68

4.5.5 Advanced Encryption Standard 69

4.5.6 Counter Mode (CTR) 70

4.5.7 DHFS Cryptography System 71

4.5.8 HMAC . 74

4.5.9 JDK Key Length Restriction 77

4.6 Memory Layout and Header Data 77

4.7 DHFS Initialization . 79

4.7.1 Index Table Example 79

4.7.2 Index Entry Distribution Algorithm 82

4.7.3 Carrier File and Index Carrier File Allocation . 82

4.7.4 Storing Indices into Index Carrier Files 84

4.8 DHFS Access . 84

4.8.1 Coincidential Fuzzy Testing 85

4.8.2 Index Search . 85

4.8.3 Payload File Search 86

4.8.4 Payload File Retrieval 86

4.8.5 Adding a Payload File 87

4.8.6 Example of DHFS State in Memory 88

4.9 Accessing Internal and External Memory in Android . 88

4.9.1 Internal and External Storage 89

4.9.2 Permissions for External Storage 90

4.9.3 File Access to Internal Storage 91

4.9.4 File Access to External Storage 91

4.9.5 Free Space and File Deletion 92

4.10 Security Analysis . 92

4.10.1 Index Parameter Manipulations 93

4.10.2 Header Parameter Manipulations 94

4.11 Potential Abuse . 96

contents ix

4.12 Android App Concept 96

iv future work , summary and conclusion 101

5 future work 103

5.1 Direct Block device access 103

5.2 Encryption parameter masking 103

5.3 Key Caching . 103

5.4 Integrity Checks . 104

5.5 Encryption and HMAC Key decoupling 104

5.6 Removing a Payload File 105

5.7 In place Payload File editing 105

5.8 Balancing DHFS . 105

5.9 Payload Directories . 106

5.10 Redundancy . 106

5.11 Payload file compression 107

6 summary and conclusion 109

6.1 Summary . 109

6.2 Conclusion . 109

v appendix 111

a additional material 113

a.1 Simple Use Case and Test 113

a.2 DHFS Class Structure . 119

bibliography 121

L I S T O F F I G U R E S

Figure 1 Abstract system overview over the DEFY ker-
nel module and its components 9

Figure 2 OpenSteg graphical user interface for hiding a
secret message in a harmless looking image file 11

Figure 3 DeepSound graphical user interface for hiding
some secret information within an audio file . 12

Figure 4 TrueCrypt’s Windows GUI client showing sev-
eral encrypted volumes 13

Figure 5 Overview of the Ext4 encryption process . . . 17

Figure 6 This scematic overview illustrates three well
known crpyto systems for unixoid OSes. Ext4,
Ecryptfs and Dm-Crypt are shown with their
according point of contact in a layered archi-
tecture . 19

Figure 7 This screenshot of an Android 5.0 (Lollipop)
device shows the available encryption options.
The SD card and the device itself can be en-
crypted . 21

Figure 8 Flow chart of an access to the FUSE "hello world"
example . 23

Figure 9 Layered file system architecture 29

Figure 10 Loop holes in digital storage devices 31

Figure 11 Block diagram of the FAT32 classes for reading
and writing . 56

Figure 12 A compartment index stored in a data con-
tainer with example data 59

Figure 13 Block diagram and algorithmic description of
CTR encryption mode 71

Figure 14 DHFS encryption block diagram. The HMAC
is only generated for payload files and not for
DHFS index files 75

Figure 15 DHFS decryption block diagram. The HMAC
is only generated and compared for payload
files and not for DHFS index files 76

Figure 16 Overview of the memory layout and the slack
header with header parameter sizes 78

Figure 17 A data container that stores payload data . . . 78

Figure 18 Illustration of data carrier and index carrier al-
location process 82

Figure 19 Example of memory state of a carrier file sys-
tem with DHFS 89

Figure 20 Screen shot series of DHFS Client App - part 1 98

Figure 21 Screen shot series of DHFS Client App - part 2 99

Figure 22 Decoupling encryption and HMAC keys . . . 104

Figure 23 Simple Use Case of DHFS 113

x

Figure 24 DHFS Class Structure 120

L I S T O F TA B L E S

Table 1 Comparison of DHFS and related work. Y =
YES, N = NO . 15

Table 2 Comparison of specific locations for steganog-
raphy in file systems. 34

Table 3 Standard cluster sizes for storage medium sizes
with FAT32. 46

Table 4 Example of an unencrypted index table of a
single compartment, e.g. compartment 1 with
explanatory entries. 81

Table 5 Fictional illustration of an encrypted index ta-
ble of e.g. compartment 2. This table is not
readable without decryption (with the correct
password) first. 81

L I S T I N G S

Listing 1 Executing the FUSE Hello World example [27] 23

Listing 2 Pseudo code for writing file slacks with com-
ments . 24

Listing 3 Attempt to read a file slack using Java in an
Android environment 25

Listing 4 Unmounting all mount points concerning the
SD card on Android 4.4.2 with an Samsung
Galaxy S5 . 54

Listing 5 Implementation of the methods readExtended

and writeExtended 57

Listing 6 Android write permission for external storage 90

Listing 7 Examples for opening a file in internal memory 91

Listing 8 Verbose debugging output of the test case de-
picted in Figure 23 useing the image file fat32test.img114

xi

Part I

A B O U T T H I S A N D R E L AT E D W O R K

1
I N T R O D U C T I O N

This thesis is about a program to hide files on a mobile device e.g. an
Android smart phone. Files are stored in blocks. Some files do not
need a whole block. That leaves unused space (file slack) to hide data.
The hidden files will be stored in file slacks. This choice is explained
in Chapter 2. Using password protection helps to limit access to per-
sonal or sensitive data, but if the password is compromised, this pro-
tection is lost. The password quality is important and at the same time
often low. Humans are generally the weakest link in this regard. It is
possible to memorize a complicated password with 15 characters or
more, but it is not convenient. Password leaks like the one at a popu-
lar carrier networking site Linkedin.com prove that the most popular
passwords are simple to guess e.g. "123456", "password", "111111" or
"qwerty" [22].
A user could be forced by judge in a legal proceeding to reveal a
password or a user could be blackmailed. If a journalist wants to pass
a country border of a war zone he could forced by soldier to reveal
passwords with a threat of violence. Relying only on the secrecy of a
password in insufficient in these cases, but there are ways for improve-
ment and this is what this thesis exemplifies. In software security it
is very (probably most) economic to secure the weakest link first. So
additional protection for these cases is desirable. This can be achieved
with complementary steganography and Plausible Deniability.
There are countless programs that hide information in pictures or au-
dio files. Hiding files in a file system works at a larger scale and can
offer more space and less restrictions. Picture steganography needs
picture file formats and audio steganography needs audio file for-
mats. In file systems there are no restrictions on file types as opposed
to the mass of picture and audio steganography methods. Any file
type can be used in file system steganography. However, it can be
more complicated too. Hiding large files might needs spliting into
smaller part that have to be reconstructed again. Furthermore there
is a danger that hidden data is overwritten by accident. This problem
needs to be mitigated.
Mobile devices are widely available and are typically always carried
along with the owner. It is unsuspicious to carry e.g. a smart phone
in and out of many places. So it is simple and common to physically
transport data. During traveling the devices might be inspected e.g.
at an airport with sensitive data on the device. The owner might want
to protect the data on his mobile devices, particularly in repressive or
instable regimes this can be important.
Plausible Deniability is sometimes a desirable quality when impor-
tant sensitive data is stored and active or passive involvement can
later be believably denied. With this Plausible Deniability characteris-
tic it is technically very hard, in the best case impossible to prove the

3

4 introduction

possession of sensitive data. It can be a significant advantage if one
can state to have no knowledge of something and the opposing party
can not disprove this claim. Additionally if sensitive data is hidden,
then an inspector has to find it first. There is a chance that the data
will be overlooked to begin with. The need of searching for that data
raises the afford an inspector has to make. An inspector will not have
infinite time and resources to continue searching for hidden data. So
he might stop looking before he has found the data. Steganography
and Plausible Deniability complement each other well.

1.1 structure of this work

The first chapter gives a context to the problem of password leakage
and the objective of this thesis. Furthermore several approaches and
existing tools are presented. Then two prominent file system drivers
(Ext4 and FUSE) are reviewed that ultimately had to be rejected. The
goals of this thesis can not be reached with them.
The second chapter evaluates various methods of hiding data in file
systems and chooses one data location that satisfies a set of criteria
best. This data location is the file slack.
The third chapter discovers issues and potential of the chosen data
location, especially the available space in file slacks.
The fourth chapter contains important implementation details, a de-
sign rationale of the created proof of concept implementation, a de-
scription of the used encryption and the internal processes of the new
file system. Finally, the security of the file system is analyzed and the
android user interface is pictured. This chapter holds the essence of
this master thesis.
The last chapter five includes future work, a summary and the con-
clusion of the created material.

1.2 problem definition and objective

A user stores files and wants these files to be private. The should stay
private even if the device on which the files are stored is checked by
an inspector.
An inspector would be a person that has physical control of the de-
vice and performs automated and manual tests trying to find what
ever information the device contains. Furthermore such an inspector
can force the user to surrender passwords with e.g. court order, black-
mail, violence etc.
This is a seemingly hopeless situation to keep the private files pri-
vate.
The objective of this thesis is to create a file system that will allow
the user reveal passwords and still guarantee the confidentiality and
integrity of high importance data, while some mildly compromising
data is made available with those passwords. So the existence of a
special file system made for hiding data is plausibly justified. Further-

1.3 use case 5

more the file system should not allow to circumvent the password
protection. In addition the private file should be hidden. So finally
a file system hides files and guarantees plausible deniability for very
important data. Non-technical measures are out of scope. The file sys- Providing

Availability is hard.
An inspector with
physical control can
always delete all
data or even destroy
the device.

tem should both hide the existence of the private files as well as pro-
tect its security. Security is represented by Confidentiality, Integrity
and Availability. This proof-of-concept file system shall minimize the
traces of the private files. The scope is only on the file system itself,
not on leakage of other components e.g. application leakage.

1.3 use case

Imagine a journalist wants to carry delicate pictures or documents
across country borders or war zones. Then it would be important
that the existence of the data is hidden additionally to making it im-
possible to access for an inspector.
Another case could be a traveling business person, who could take
data e.g. construction plans through mandatory security checks. If
the device’s data is copied using the on board file system drivers, the
file slack will not be copied. This is a major advantage.
Some repressive regimes may impose regular automated security scans
on citizens or regime members. Steganography can help to disguise
data and pass automated tests. Even if the steganography file system
is found, the user can give away one or two passwords that will ex-
plain the existence of the file system. Those compartments hold only
mildly compromising data e.g. some picture showing naked persons.
The important sensitive data’s password(s) are not surrendered and
remain private e.g. trade secrets, bank account credentials. Through
the Plausible Deniability characteristic the number of used compart-
ments (virtual drives) can not be determined. So nobody could prove
if one, two, three, all or none compartments were used. The user is not
able to change the predefined number of compartments. This is im-
portant for the construction of the Plausible Deniability characteristic.
A simple use case including a test output are shown in Section A.1.

1.4 approach

This section introduces relevant definitions and the subsections then
describe known approaches to steganography file systems.

Definition 1: Steganography is the art of concealing an informa-
tion (file, message, image or video). The term derives from the Greek
words steganos meaning "covered, concealed or protected" and graphein
meaning "writing". [51]

Definition 2: "Cryptography is the practice and study of secure com-
munication in the presence of third parties called adversaries"[49]

6 introduction

This definition makes clear that cryptography makes an apparent
message unreadable for an adversary, while the two communicating
parties can still understand the message. Steganography hides the
mere existence of a message. This thesis will combine both character-
istics.

Definition 3: "Plausible Deniability is the ability for persons to deny
knowledge of or responsibility for any damnable actions committed
by others because of a lack of evidence that can confirm their partic-
ipation, even if they were personally involved in or at least willfully
ignorant of the actions."[50]

In this case Plausible Deniability refers to a security property of
technical systems that allows believably denying to own an informa-
tion e.g. when confronted with a judge or an inspector. The user can
not be caught with technical measures. In theory the solution is the
one time pad. It offers perfect encryption with plausible deniability [5].
However, its high requirements discourage its use. Unfortunately the
one time pad is impractical to use for large data amounts, because a
random key has to have at least the length of the plaintext and can
never be reused. So this is not a good approach for data storage.

The following paragraphs discuss more practical approaches. The
first known designs of an encrypted file store with built in Plausible
Deniability were described by Anderson, Needleham and Shamir [2]
under the name steganographic file system.
The goal of such systems is to provide protection against the risk of
being forced to reveal encryption keys. The user can believably deny that
further unrevealed data exists on the storage medium. Steganography
file systems feature a high degree of security against forced disclosure
of their content. The legitimate user who knows the password for a
file is able to access it. The attacker without this knowledge can nei-
ther access any file nor even gain information on whether a file exists,
even with full physical access.

There are two basic concepts introduced by Anderson, Needleham
and Shamir [2]. One assumes that the attacker does not have any
knowledge about the plain text and therefore calculation intense en-
cryption is substituted with linear algebra operations. The system
uses a set of cover files which contain initially random data. The data
is stored by modifying several cover files. The hidden file can be re-
trieved as linear a combination (XOR) of the cover files. They must
be large enough to guarantees that a brute force attack remains com-
putationally infeasible. Large cover files have a large search space so
an attack would have only a tiny chance of recovering the data by
just trying all possible combinations to read the data. This approach
is rather vulnerable since no proper encryption is in place and the
non-random plain text can be (partly) known to the attacker.
In the second concept presented by Anderson, Needleham and Shamir
[2], it is suggested to initially fill the entire file system with random

1.5 related work 7

data and then write the encrypted file into pseudo random blocks
depending on a function of the path, filename and the password.
The carrier blocks are disguised within all the random data. With
increasing filling degree of the medium collisions will happen and
non-random data will be overwritten. According to the birthday para-
doxon this will most likely occur for the first time when

√
n blocks

were filled with hidden data, where n is the number of non-random
data blocks. Naturally the more used blocks the more likely are colli-
sions. Hence only very little of the disk space could actually be used
to avoid unpleasant data loss. As mitigation a used data block can be
written multiple times on the medium and overwritten blocks would
have to be at least identified.

1.5 related work

This chapter discusses several steganography tools and file systems
and their characteristics. Each section describes what algorithm or
mechanism the steganography is based on and on which file system
types, e.g. FAT32, EXT4 or file formats, e.g. WAV, JPEG, it works on.
Also some known issues or limitations of each method are mentioned.
Typically performance, data integrity and data confidentiality are the
design goals of the tools and file systems discussed at this point. The
systems and tools here represent only a very small portion of what’s
available.
Of the listed related work almost all tools implement cryptography,
only MobiHydra and Truecrypt provide Plausible Deniability. Though,
MobiHydra and Truecrypt do not offer steganography. This thesis
proposes a new file system that unites all three characteristics: stegano-
graphy, cryptography and Plausible Deniability. Additionally it uses
a completely different experimental data location, that location will
be file slacks. The data location (selection) is extensively discussed in
Section 2.2.2

1.5.1 StegFS: Steganographic File System

StegFS [31] is a deniable steganographic file system that tries to mit-
igate data loss at a file system level. This approach uses unallocated
memory and an additional block allocation bitmap. Each entry is an
encrypted 128-Bit entry. Without the proper security levels key, noth-
ing more than the presence of StegFS can be determined. The user
could give away some of the lower security level to justify the exis-
tence of the file system driver, which is not hidden. StegFS uses its
own partition to avoid accidental overwriting by normal user opera-
tions. This partition looks like it is unallocated and has been wiped
with a deletion tool, holding random data. StegFS implements a re-
movable kernel module that is based on the Ext2 file system. The
kernel module is located between the hardware device driver that
manages the blocks of the block device and the Virtual File System

8 introduction

(VFS) interface in the Linux kernel that serves system calls e.g. open(),
read(), write() which applications use to interact with the OS.
The user could be forced to overwrite the whole partition which
would effectively delete all data which is always possible. StegFS
contains the standard driver for Ext2 and a slightly altered version
to realize its hiding functionality. StegFS has a fixed number of 15

security levels and manages all security contexts. The payload data
is encrypted with Advanced Encryption Standard (AES) in Cipher
Block Chaining (CBC) mode with a 16 Byte initialization vector.
Users should not move files from a higher security level to a lower
one since higher Inode numbers indicate the existence of higher se-
curity levels. Then an intermediate range of Inode numbers would
not be visible because the according files are stored in a high security
level. Also symbolic links, paths, log files or the shell history could
give an adversary important hints, which the file system can not mit-
igate.
StegFS allows to plausibly deny the total number of files on the drive
and the confidentiality of hidden files is guaranteed. Deletion of both
hidden or non-hidden files automatically initiates a secure deletion
with overwrite. Lower security levels can be revealed to any adver-
sary forcing to give away a pass phrase, which reveals mildly com-
promising data, but justifies the installation of StegFS. Writing while
not all security levels are open can lead to overwriting of data from
higher security levels, but with a low probability assuming only a
moderate amount of writes occurs. Non-hidden files continue to be
accessible if the StegFS driver is removed. If the driver is installed
again also the hidden files are accessible again. Write performance to
hidden layer is slightly worse than to non-hidden layers.
StegFS and DHFS are very similar, but differ in one important point,
the data location. StegFS uses unallocated memory to store hidden
files. This implies that the user must not allocate all memory on the
medium, he can only allocate up to a certain limit otherwise hidden
data is lost. DHFS uses file slack to store hidden files. So the advan-
tage of DHFS is that the medium can be allocated up to 100% without
loss of data.

1.5.2 DEFY: A Deniable File System For Flash Memory

DEFY [36] is designed to work exclusively on solid-state drives, tar-
geted on ones that can be found in mobile devices. These drives have
unique properties and this deniable file system design addresses their
needs. This includes multiple layers of deniability, encryption and the
means to delete data securely. DEFY is implemented for Yet Another
Flash File System (YAFFS) with a full disk encryption. The deniability
of the file system is based on a set of keys that are needed to access
the encrypted disk. Each key reveals just one compartment of files.
The user may only give away a few keys that reveal normal data, not
keys that reveal sensitive data. An adversary can not determine the
total number of keys.

1.5 related work 9

DEFY provides a kernel module that handles wear leveling and at-
tempts to mitigate data loss. Flash memory blocks only sustain a lim-
ited number of write procedures. Therefore flash memory blocks that
failed can be reassigned to new unused blocks in order to extend the
memory’s life time. The forward writing nature of log-structured file
systems and the way of normal user interactions aid the deniability
of DEFY. WhisperYaffs is a similar tool that DEFY compares itself
with and proves comparable performance. DEFY hides its sensitive
data in unallocated blocks of the memory. There are several security
levels, so lower levels are not aware which blocks are allocated by
higher security levels. Hence the user is only guaranteed prevention
of data loss if all security levels are unlocked and all allocated blocks
are known to the kernel module. With no or low security level blocks
could be allocated that are used by a higher security level, then data
loss can occur with a certain probability. DEFY is designed for Unix-
based OSes and requires to load a kernel module running with root
permissions as seen in Figure 1. This kernel module lies between the
virtual file system interface, which is the file system abstraction the
kernel uses and the underlying hardware device driver.

Figure 1: Abstract system overview over the DEFY kernel module and its
components. [36]

DEFY has several disadvantages that DHFS has not. DEFY requires
flash memory. DHFS works on any block oriented hardware. DHFS
allows 100% medium allocation, DEFY does not. DEFY needs to add
an kernel module that is write and signature protected. This requires
root permissions on android. DHFS is self contained and does not
require root permissions.

10 introduction

1.5.3 MobiHydra: Pragmatic and Multi-level Plausibly Denieable Encryp-
tion Storage for Mobile Devices

MobiHydra [52] is a solution for securely hiding data in several hid-
den volumes also providing plausible deniability. It is meant for mo-
bile devices and supports multiple security levels, in this case user-
defined at installation time. It offers a plausibly deniable encryption
(PDE) mode and a standard mode. The user chooses the mode by
entering either the public password or the hidden password at boot
time. MobiHydra calculates an offset from the hidden password and
tries to mount the volume onto the file system mount point that is
otherwise used by the physical storage. The offset calculation is com-
plicated and unique for the current volume of theoretically an arbi-
trary amount of volumes, including hash functions and a salt com-
ponent. The hidden volumes are located in the external storage of
the device in empty space. The hidden volumes are first filled with
random bits to make them indistinguishable from empty (encrypted)
space. There is also a special hidden volume "Shelter" that is used
temporally to transfer data from standard- to PDE-mode. The Shelter
volume is wiped securely after each transfer to avoid traces. In order
to decrease the chance of an accidental overwrite the hidden volumes
and the Shelter volume are located close to the end of the storage. A
linear beginning to end allocation strategy is assumed. MobiHydra
uses a pair of 1024Bit RSA keys for its volumes and AES-XTS keys
for data. The authors[52] include a camera app that stores images di-
rectly in the Shelter volume.
This tool requires a separate physical FAT32 storage partition. The
user has to configure the equally big volume size so the offset does
not need to be stored. It can not be resized and data in the Shelter
volume is visible to all deniability levels.
MobiHydra mitigates the risk of a boot-time attack, which is a com-
mon vulnerability of other similar PDE tools that rely on hidden vol-
umes. MobiHydra compares itself to Android Full Disk Encryption
(FDE) and Mobiflag. Mobiflag was the first attempt to customize An-
droid FDE for plausible deniability. MobiHydra has performance ad-
vantages comparing to Mobiflag and have similar features. FDE does
not provide deniability.
DHFS does not allow a boot-time attack and does not have the need
to allocate 50% of an FAT32 formatted medium. DHFS differs from
MobiHydra greatly in the user interaction. Also DHFS does not re-
quire reboots. It can switch from hidden to accessible and back at the
user’s discretion. Therefore DHFS imposes less requirements, while
providing similar features.

1.5.4 OpenStego

OpenStego [45] is an open source Java steganography application that
supports two features. The first is data hiding in images and the sec-
ond is file water marking in images. It supports compression and

1.5 related work 11

encryption of the payload data. The digital watermarking is based on
"Dugad’s algorithm" and the data hiding is based on a "randomized
LSB" algorithm. The payload data is hidden in the error tolerant im-
age data. Each pixel of the image is stored with 3 color channel Red,
Green, Blue (RGB). The least significant bit (LSB) of a color channel
could be changed according to the payload file, which is how the
payload is encoded in the carrier image file. The picture only changes
slightly, since the LSB has very little influence on the actual appear-
ance of the final picture. If one channel does not offer enough space
for the data all channels could be used. This effective adds some noise
to the picture that the viewer will not notice. Depending on the file
format some format specific data in the header (if existing) e.g. magic
numbers at the beginning or end of the files have to be adequately In computer science

magic numbers are
numeric constants.
These are often used
to identify a file
format or generally
as distinctive unique
values such as an
identifier.

left unchanged.
This program can read and write a hidden message in an image file.
It is platform independent (Java) and was tested on Windows and
Linux as claimed by the author. This concept can only work with er-
ror tolerant data, but it is built with a modular architecture so other
algorithms could be added easily. OpenStego does not work on a file
system level, but on a file format level. It offers a command line inter-
face and a graphical user interface as shown in Figure 2.
This application represents one example of a very large pool of simi-
lar programs. Hiding data in pictures may be the most popular way of
implementing Steganography. OpenStego was released under GNU
General Public License v2.0.

Figure 2: OpenSteg graphical user interface for hiding a secret message in a
harmless looking image file.[45]

1.5.5 DeepSound

DeepSound [44] is a closed source free steganography tool that allows
the user to hide secret data in audio files. Of course the secret data
can also be extracted again. It supports the file formats FLAC, MP3,
WMA, WAV as well as APE and can convert one audio format into
another. DeepSound is a Windows only application and requires the

12 introduction

Microsoft .NET Framework 4.0. It allows to hide multiple payload
files within the audio carrier. It is recommended to disable volume
normalization if the audio file is burned to a CD to avoid data loss.
The resulting audio quality can be configured with three levels to in-
fluence the maximum payload size. Low quality for a WAV audio file
allows to use up to 50% of the carrier file for hidden data, medium
quality 25% and high quality 12.5%. DeepSound supports AES-256

encryption to improve data protection and comes with a graphical
user interface only as depicted in Figure 3.
There is no source code available for this tool so only the manufac-
turer knows how the steganography is implemented here. Kaliappan
[20] suggests to use a LSB-modification strategy. The encoding of the
secret data in the LSB of each audio sample at each discrete point
in time in the audio file is a simple solution. It is likely that Open-
Stego operates this way. Audio files are good steganography carriers
because the human auditory system is less sensitive than the visual
system. Therefore small errors are less noticeable in audio than in
visual context.

Figure 3: DeepSound graphical user interface for hiding some secret infor-
mation within an audio file.[44]

1.5.6 TrueCrypt

TrueCrypt [14] is a freely available open source on-the-fly encryption
solution. It is a discontinued project since May 2014, despite its great
success in the security community that made security for the masses
its motto. The message "TrueCrypt is not secure" appeared on the
manufacturer’s website, ending the official product’s lifetime. It is
assumed that there has not been an incident that really rendered it
insecure, but that no further security fixes will be provided from that

1.5 related work 13

time on. An independent audit reviewed it [1] and found four vulner-
abilities, although no significant flaws were present.
TrueCrypt can create virtual encrypted volumes in a file, partition or
encrypt the entire storage device. TrueCrypt is written in C/C++ and
Assembly and is available for Windows, OS X, Linux and Android
(LUKS manager) and was released under the "TrueCrypt" License. It
has a command line interface (CLI) and a GUI as shown in Figure 4

Plausible deniability is supported by allowing to create hidden vol-
umes within hidden volumes. Still application leakage is an inherent
problem with any steganography system. TrueCrypt supports paral-
lelization and has decent performance on standard workstations, but
does not support Trusted Platform Modules. Several encryption al-
gorithms and algorithm combinations are supported, including AES,
Serpent and Twofish. Also several cryptographic hash functions are
available: RIPEMD-160, SHA-512 and Whirlpool. TrueCrypt uses the XEX-based

tweaked-codebook
mode with
ciphertext stealing
(XTS) is a block
cipher mode of
operation used for
full disk encryption.
It allows random
access.

XTS mode for encryption.

Figure 4: TrueCrypt’s Windows GUI client showing several encrypted
volumes.[32]

1.5.7 Bmap

Bmap [39] is an open source forensic tool that is able to hide, recover
and clear data from the file slack. Encryption of the payload data
is supported. It was designed as a CLI tool that works on the Ext2
file system, but it’s compatible with later Ext file system versions. It

14 introduction

harnesses a powerful file system independent mechanism for mapping
logical to hardware sectors on a storage device. This tools determines
the device sectors that are used by a particular carrier file to then
calculate the free slack space by using the device’s block size and
the carrier’s file size. After that it can write an encrypted and secret
message in the file slack. This method may work for a larger variety
of file systems.
File slacks may be overwritten by other processes or an unaware user,
then the secret data is lost. This tool is publicly available, it released
without license and is therefore copyrighted by default.

1.5.8 Comparison DHFS and Related Work

This section shows the motivation for creating DHFS. DHFS combines
advantages of existing systems, while eliminating some restrictions.
The mentioned steganographic file systems all use unallocated space
as data location which leads to limited utilization. DHFS uses file
slacks instead of unallocated space and has therefore no space alloca-
tion limit. Table 1

1.
5

r
e

l
a

t
e

d
w

o
r

k
1

5

Name Encryption Security levels Steganographic Deniable No root required Medium utilization Hide-out location

DHFS Y Y Y Y Y no limit (100%) file slack

StegFS Y Y Y Y N limited unallocated space

DEFY Y Y Y Y N limited unallocated space

MobiHydra Y Y Y Y N limited to 50% unallocated space

Truecrypt Y Y N Y N no limit visible volumes

OpenStego Y N Y N N no limit Image files

DeepSound Y N Y N Y no limit Audio files

Bmap N N Y N Y no limit file slack

Table 1: Comparison of DHFS and related work. Y = YES, N = NO

16 introduction

1.6 fourth extended file ssytem (ext4)

This section investigates commonly used encryption technologies, in
particular the Ext4 file system’s out-of-the-box cryptography features
and its alternatives.
Ext4 could in the end not be used to satisfy the goals of this thesis,
but there is potential to do so in future versions.

1.6.1 Ext4 and its built-in Cryptography Feature

Linux and also Android are able to use the newly released Ext4 en-
cryption technology. This feature is particularly interesting for the
possibility of encrypting the Linux home directories individually. Hence
each user can not access another user’s data. This was not supported
before. The Ext4 encryption is already available for testing, but is still
in development. There is a general trend towards encryption in An-
droid.
Many Linux distributions already use Ext4 by default. Well-establish-
ed alternatives are Ecryptfs [25] and Cryptsetup-LUKS with Dm-Crypt
[11]. Ext4 tries to combine the efficiency of Dm-Crypt with the flexibil-
ity of Ecryptfs. However, for now Cryptsetup-LUKS with Dm-Crypt
remains the first choice for notebook systems. In June 2015 the Linux
kernel version 4.1 was released with the first appearance of the Ext4
encryption feature. "Theodore Ts’o" is strongly involved in the devel-
opment, who introduced the Ext file system family and is responsi-
ble for the Ext4 development.[47] The Ext4 encryption was especially
developed for a multi-user environment. This includes devices like
Android tablets, shared Notebooks as well as many cloud services
that are offered in great varieties nowadays, for example Amazon EC,
Google Drive, Dropbox etc.
Guillaume [21] summarizes the Ext4 encryption feature, which is

based on directories. An encryption policy can be applied to a initially
empty directory. File names and file content are separately encrypted.
File name encryption needs padding (4,8,16 or 32 Byte). In kernel ver-
sion 4.1.3 the encryption algorithm and mode are hard coded. For
the file name AES-256 with Cipher Block Chaining (CBC) and Cipher
Text Stealing with Initialization Vector (IV) of 0 is used. The cipher-
text is then encoded in a Base64-like encoding. No integrity checks
are available in this version. Later version may contain more cipher
modes including Galois/Counter Mode (GCM) which implements
authenticated encryption (Integrity check included). The policy of an
directory stores an 8 Byte descriptor referencing a master key from
the user keyring in the kernel. The key must be of type logon, which
is only accessible for the kernel. When a directory is accessed the mas-
ter key is fetched and a new directory specific key is derived from it
as well as a NONCE using AES-128 with Electronic Codebook (aka
ECB) mode so the content can be decrypted. In order to be able to
use the ext4 encryption feature the kernel needs to be complied with

1.6 fourth extended file ssytem (ext4) 17

Figure 5: Overview of the Ext4 encryption process [21]

the flag CONFIG_EXT4_ENCRYPTION. The command line tool e4crypt

allows the user to activate and configure the ext4 encryption. This
feature is in kernel version 4.1.3 not activated by default and is not
deemed stable by the author Theodore Ts’o. Development is going
own. However, there is no indication that Steganography or Plausible
Deniability will be integrated into Ext4. This is the most discriminat-
ing difference to DHFS which implements both characteristics.
Linux offers several encryption options with installer support, among
those are Truecrypt (see Section 1.5.6) and Cryptsetup-LUKS with
Dm-Crypt. Yet they are developed for a single user use case and en-
crypt everything that is written to the disk (Full Disk Encryption). In
order to make it possible to separate users, each user would need to
have their own partition, which imposes size limits and an additional
organizational afford. Furthermore it is necessary for each user to use
his own encryption key.
Ext4 avoids these problems by implementing encryption on a file
basis. Each file is encrypted independently in contrary to the full
disk encryption. This offers significantly more flexibility. Ext4 can
contain encrypted and unencrypted files. Different files can be en-
crypted with different encryption keys, thus allowing encryption sys-
tems with multiple users with different keys. They can coexist on the
same physical device, even the same partition.
The well known Ubuntu Linux distribution already implements a
home directory encryption in a multi-users environment with Ecryptfs.
Ecryptfs works in a transparent layer on top of any compatible file
system, which could be e.g. Ext4, Ext3, NFS, etc. Ecryptfs takes the
payload file, encrypts the content and creates an encrypted file name
in the underlying file system like Ext4. The layered architecture is re-
source intense for processor and main memory. Ext4 and Dm-Crypt

18 introduction

encryption techniques perform better.
Encrptfs is badly suited for smart phones, tablets and similar mobile
devices due to the relatively low performance and the limited power
supply by a battery. Using resource demanding methods reduces the
run duration for mobile devices that are powered by battery cells.[29]

1.6.2 Comparison of Ext4, Dm-Crypt and Ecryptfs

All three Ext4, Dm-Crypt and Ecryptfs are meant to provide decent se-
curity in the case that a mobile device is analyzed by an inspector e.g.
at brief security checks at an airport or a thief that stole the device
or a person in the same environment that seizes an opportunity to
inspect an unwatched device. None of the mentioned cryptography
systems provide an integrity check, whether or not the encrypted
data is the same as the decrypted data. Therefore the tools do not
recognize if the data was reconstructed incorrectly after an en- and
decryption cycle. This might very well happen if an attacker modi-
fies the encrypted data. This could also happen if the data carrier has
read problems and returns some faulty data. Of course this is a fatal
scenario when using encryption. If a single bit flips, the whole file
would not be deciphered correctly and appears as random data. The
standard solution for this is to introduce an checksum. Such a solu-
tion is missing in all three systems.
Ecryptfs and the Ext4 encryption are always recognizable as such. In
a court it cannot be denied that the according cryptography system
was used at all (no Plausible Deniability).

The new Ext4 file system can encrypt data within the file system
as seen in Figure 6. The whole disk encryption approach of Cryptose-
tup/LUKS and Dm-Crypt resides in between the file system layer and
the block layer. Ecryptfs runs on top of other file systems and stores
encrypted data using another file system. This occupies processing
and memory resources.

Ext4 encryption works on a per-file basis. Only the file content and
the file name are encrypted. Metadata other than that is not encrypted
and visible for any user with the according permissions. The creation,
modification and access timestamps may reveal file usage. File per-
missions and file sizes are likewise visible. Maybe the metadata per
se does not reveal any secrets, but might still allow some minor con-
clusion about the files. Any user with the according file system per-Of course the time

stamps can be faked
easily with standard

tools.

missions could change or delete encrypted files. The secrets would
not be revealed, but are effectively lost if no backup exists. It depends
on the application if that disadvantage can be accepted or not. How-
ever, this characteristics could also be leveraged by the Android op-
erating system. Temporary data or the browser cache could then be
deleted, if memory is needed. That could be even done if the data is
encrypted.

1.6 fourth extended file ssytem (ext4) 19

Figure 6: This scematic overview illustrates three well known crpyto sys-
tems for unixoid OSes. Ext4, Ecryptfs and Dm-Crypt are shown
with their according point of contact in a layered architecture.[29]

1.6.3 Encryption in Android M (6.0)

Leemhuis [29] discusses the available encryption in Android. Future
versions of Android can be expected to support Ext4 encryption and
maybe even to use it by default.
The current version of Android M (Marshmallow or 6.0) offers en-
cryption for an memory encryption as seen in Figure 7. In Android
5.0 (L) the encryption was meant to be enabled by default, but shortly
before the release the compatibility guidelines of Android were ad-
justed. So the encryption implemented with Dm-Crypt and the Ad-
vanced Encryption Standard (AES) encryption method became only
strongly recommended instead of default. At the same time a warn-
ing was issued that in future versions this may be none optional.
From an external point of view it is most likely that Dm-Crypt did
not perform well enough. Low performance requirements are abso-
lutely essential on mobile hardware to prevent high energy intense
use of processing and memory resources. Battery usage is an impor-
tant criterion whether or not to obligate an encryption technology.
The assumption that this decision was related to the release of a new
smart phone (Nexus 6) with worse performance than expected seems
logical. The low performance in this particular case is not due to

20 introduction

Dm-Crypt, but due to a missing driver for AES acceleration in the
Andorid 5.0 OS image that was used for the Nexus 6. The current ver-
sion Android M includes the driver for AES acceleration and there-
fore eliminate the issue effectively.
The preview [17] of the next version Android N further refines the
app-API to consider device encryption. An app can register to a lim-
ited functionality after an unexpected reboot of an encrypted device.
This is useful if an app handles alarms, messages or calls. The app
can then continue to notify the user. The "Direct boot" allows the
file based encryption of Android to enable fine grained policies for
system and app data. The system uses a device-encrypted store in
order to select system data and explicitly registered app data. By de-
fault the credential-encrypted store is used for everything else such
as system-, user-, apps and app-data. At the boot time the system
starts in restricted mode with only the device-encrypted data, with-
out general access to other data or apps. If an app component wants
to run in the restricted mode it can be registered in the app’s man-
ifest. After the reboot the component will receive a broadcast with
an LOCKED_BOOT_COMPLETED intent. The system guarantees to make
device-encrypted app data available before the unlock. Other data
and apps are unavailable until the user enters the credentials for the
credential-encrypted data. There is no indication of a change of the
encryption system from DmCrypt to Ext4 in the Android N preview.

SD cards are by default formated with FAT32 by the SD card ven-
dors because it is the common denominator among all file systems.
FAT32 is quite simple and almost all mobile devices can process
FAT32, at least for backwards compatibility. Sometimes missing pro-
cessing capabilities are the reason for using a simple file system. A
low cost micro processor on a digital camera or even a "feature" phone
can work effortlessly with FAT32. More advanced devices support
other file systems optionally as well.
It is an important question what happens if a FAT32 formated SD
card already has data on it. As soon as the SD card encryption with
Android 5.0 is enabled for that card, a password with at least 6 charac-
ters containing at least one number is required in the given example.
In practice a user, will likely choose a password with exactly 6 char-
acters. Furthermore the screen lock pattern is requested for enabling
the encryption, if one is used. A password is the only allowed lock
mechanism and consequently substitutes any prior used method e.g.
PIN or unlock pattern.
The user has the possibility to encrypt the whole SD card or to en-
crypt only the files created on that device, given the default ROM ad-
justed by Samsung is used. The ROMs by Google do not yet support
such encryption capabilities. The encryption even allows to included
or excluded media files of file types *.avi, *.jpg, *.mp3 etc. indepen-
dently from each other. The encryption key is not shared with any
other device or displayed. The encrypted files are bound to the de-
vice. If the device is set back to factory defaults the encrypted files
can not be decrypted again. The decrypted files would still be usable

1.6 fourth extended file ssytem (ext4) 21

Figure 7: This screenshot of an Android 5.0 (Lollipop) device shows the
available encryption options. The SD card and the device itself
can be encrypted. Device: Samsung Galaxy S4

in case of a factory reset respectively lost password. Dm-crypt can be
used with any arbitrary file system since it is working on a block level
underneath the actual file system. Hence an existing file system can
be used without the need for reformatting.

If the option "files created on this device" is chosen, only newly
created files are encrypted and none of the existing files that might
be used on other devices as well. Directories remain uninvolved. En-
crypted files viewed on another device show no sign of being en-
crypted to the user until they are opened. With the file based encryp-
tion all metadata (e.g. file name, time stamps and file size) are visible
and properly readable. Only file content and file slack are encrypted.
The file slack is encrypted due to the block oriented encryption. Any
program trying to use an encrypted file will fail with a message sim-
ilar to "file may be damaged" or "unknown format". No randomized
initialization vector (IV) is used for the encryption. The same file en-
crypted twice results in the same cipher.

22 introduction

1.7 file system in user space (fuse)

FUSE is a special module within the Linux kernel that allows stan-
dard users to create and use their own file systems, without the need
to change the kernel or require root privileges. This section intro-
duces FUSE and its capabilities. In the end it will be shown that it is
not possible to use FUSE to implement a file slack file system, which
is the goal of this thesis.
FUSE was released under GNU GPL and is publicly available online
[46] as GitHub repository. FUSE is a well known stable tool and also
available in common Linux package repositories. It works with vir-
tual file systems, but not all virtual file systems work with FUSE. It
is installed in the kernel, but the file system can be handled in user
space. Normally the file systems are handled in the kernel and are
not directly available to the user. Exposing virtual file systems to the
user space is the core feature.
Users can mount existing file systems e.g. image files (.iso) or archives
(.tar) and more importantly create their own file systems. FUSE was
originally implemented in C, but it is available for many languages
e.g. Python, Ruby, C# and Java.
For using FUSE the user has to mount a FUSE file system into an
(accessible) empty directory. Then the FUSE file system is located at
that directory. FUSE acts as a mediator. The user can access the FUSE
file system. The FUSE file system interacts with the Linux kernel ab-
straction of the Virtual File System (VFS) module that can only be ac-
cessed by a privileged user process. VFS then handles the non-virtual
file system and eventually proceeds to the hardware read/write. All
users may access the FUSE file system and FUSE may access the VFS
module. VFS is privileged. FUSE is not, but FUSE is trusted by the
VFS. Therefore any FUSE file system can be used without requiring
additional privileged system permissions.
FUSE also allows to implement custom file systems. Really any appli-
cation that allow data to be interpreted as files can be implemented.
Implementing such a file system is relatively simple. There is quite a
variety of examples:

• WikipediaFS: allows to read and edit wikipedia articles as if
they were files [4].

• SSDHFS: allows file access to a remote file system via the Secure
Shell (aka SSH) protocol [34].

• GmailFS: allows to store files as E-mails provided by the well
known free mail provider Google [24].

• FTPFS: allows to access remote File Transport Protocol (FTP)
servers files by using the FTP [30].

FUSE offers an interface of file operations that can be implemented
to create a new file system. FUSE contains a "hello world" example to

1.7 file system in user space (fuse) 23

get started, which produces the output shown in Listing 1. This mini-
malistic example implements the operations read, open, readdir and
getattr. These basic file operations are standardized by the POSIX
(Portable Operating System Interface) system calls. FUSE knows 25

basic file operations that have a corresponding POSIX system call,
supporting reading and writing files, directories, file attributes and
file permissions. Additionally, symbolic links are supported. It is pos-
sible to implement only a subset of those operations.

Listing 1: Executing the FUSE Hello World example [27]

> mkdir /tmp/fuse

> ./hello /tmp/fuse #program will vanish into the background

> ls -la /tmp/fuse

total 4

drwxr-xr-x 2 root root 0 Jan 1 1970 ./

drwxrwx--- 1 root vboxsf 4096 Jun 16 23:12 ../

-r--r--r-- 1 root root 13 Jan 1 1970 hello

>cat /tmp/fuse/hello

Hello World!

>fusermount -u /tmp/fuse �
Figure 8 shows the command flow of a directory listing of the FUSE

[27] "hello world" example. The user would have mounted the "hello
world" FUSE file system already as documented in Listing 1. Then
the user executes a directory listing. The underlying GNU Standard
C Library (glibc) issues a readdir system call to the OS, in this case
the kernel VFS module. VFS then recognizes that the FUSE kernel
module is responsible for that path and passes the call on to the FUSE
"hello world" driver through the glibc and the libfuse libraries. It
then looks up the custom implementation of the readdir operation,
which it turn returns the directory list as shown in Listing 1 the same
way back.

Figure 8: Flow chart of an access to the FUSE "hello world" example [48]

24 introduction

Fortunately Android has FUSE already installed. So the opportu-
nity presents itself to implement a file-slack file system with FUSE.
It is used to show the user only a limited view on the file system(s)
used in Android. Access to the SD card and to the user’s personal
folders (downloads, documents, music, etc.) is done through FUSE.
FUSE is an additional layer so the user is not directly working on the
underlying file system. This allows Android to manage file system
permissions flexibly. Android apps may not even leave this file sys-
tem sandbox that will be a different one for each app.
FUSE is using POSIX system calls and they do not allow access to
the file slacks. They were not specified to do that. File slacks are a
undesired, but logical side effect. It is possible in the GNU FAT32, Mi-
crosoft FAT32 and (Ubuntu 14.04 LTS) Extended 4 file system driver
implementations to write to file slacks. This can be done as described
in Section 1.7.1. However, Android has another additional securityBy default the GNU

and Microsoft
FAT32 driver

overwrite the file
slack with zeros.

layer called Security-Enhanced Linux (SELinux) that allows to define
extremely fine granular permissions for system and user processes.
Android prevents the file slacks to be modified on a system level.
Unfortunately reading the file slack using POSIX calls can not be
done in any of the mentioned implementations as described in Sec-
tion 1.7.2. Attempts with Java and C over the Java Native Interface
(JNI) provided the same results. The application ultimately has to is-
sue POSIX systems calls. POSIX system calls are the communication
between application and OS, hence it does not matter which program-
ming language is used.
A file-slack file system can not be implemented using a FUSE due to
a lack of file slack access as prevented by SE-Linux policies.

1.7.1 Modify Slack space

In Listing 2 a pseudo code abstraction for writing into a file slack is
noted. This method is only possible if no components like SELinux
interfere. Unfortunately modern Android systems are secured with
SELinux policies and the default forbids access this way. The SELinux
policies are created and maintained by the device manufacturer for
Android e.g. Samsung. It is possible but very unlikely that a manu-
facturer would intentionally allow access file slacks. This is a major
practical obstacle to implement a file-slack file system in Android.

Listing 2: Pseudo code for writing file slacks with comments

writeSlack (File carrier, String payload)

metadata = carrier.getmeta() // time stamps, file size

carrier.append(payload.append(endOfPayloadConstant))

carrier.setTimeStamps(metadata.timestamps)

carrier.setFileSize(metadata.fsize) // critical!

return carrier �

1.7 file system in user space (fuse) 25

1.7.2 Read access

In the Java API there is a way to access a file with a given offset and
lengh by using the RandomAccessFile class within the java.io pack-
age as attempted in Listing 3. Unfortunately the according method
readFully is protected against memory access beyond the file size of
the file. The method returns with an EOFException: "EOFException:
if the end of the source stream is reached before enough bytes have
been read." [19] For standard use of the file API the existence of this
exception is desirable. In this case the goal is to access the file slack
which this exception prohibits effectively.
The Java API does not offer the possibility to access file slacks directly.
Therefore another way must be found.

Listing 3: Attempt to read a file slack using Java in an Android environment

raf = new RandomAccessFile(PATH + FILENAME,"r");

byte[] inByte = new byte[4096];

raf.readFully(inByte, 0, 4095);

stringbuffer.append(inByte.toString()); �
1.7.3 Write access

The write process could just as well be divided in three steps:

• appending the payload data to the carrier file

• truncating the file to its previous size

• resetting the file’s time stamps to its previous state

Step 1 and 2 are easily possible via the standard API in Java, but step
3 requires the BasicFileAttributeView class of the java.nio package
(since Java 7). This class is not available in Android operating systems
since Android customized the file access API and refined the permis-
sion system. Nevertheless Android supports the POSIX [43] system
call conventions so it might be possible to directly interact with the
operating system avoiding the Android permission system. Android
native applications allow to embedd C code (using JNI) which can be
used to directly execute system calls and circumvent the Java API.[28]
However SELinux policies can not be circumvented, as a result this
way of write access is not permitted. An adjustment of SELinux poli-
cies is necessary, which requires either root permissions or a change
of the default policies by the manufacturer.

Part II

F I L E S Y S T E M S I N T H E O RY

2
S T E G A N O G R A P H Y I N F I L E S Y S T E M S

The first chapter of this part contains information about basic file
system architecture and discusses a set of possible steganography
strategies for file systems. Most importantly eleven candidate data
locations are discussed and finally one (file slack) is selected accord-
ing to specific criteria. Then the risk of presence of steganography
software is explained and a recommendation is given.
The second chapter is about about the idea of a file slack file system
and its implications. It is reasoned why there is file slack, how it can
be increased and how the size of file slacks can be estimated and cal-
culated. Furthermore the life cycle of a file is mentioned. Finally the
to-be-expected challenges of a file slack file system are noted.

2.1 file system architecture

The file system manages the abstraction of files and directories of data
and interacts with the adjacent layers as depicted in Figure 9. The
top layer contains a shell, which allows the user convenient access
to files. The shell is also used by user space applications. The lower
layer already interfaces the hardware and describes I/O control, e.g.
device drivers or interrupt handlers.
In monolithic operating system kernels the file system driver is a
kernel space component and part of the OS. The file system driver
cannot easily be manipulated by the user or user space applications.
Layered architectures like the one at hand, have interfaces between
the layers. As a result a single layer can be exchanged with another
component that implements the interface to the lower and upper layer
[33].

Figure 9: Layered file system architecture

29

30 steganography in file systems

2.2 steganography strategies

The following sections describe various data locations that can serve
to hide data. First a general overview is given by the example of hard
disks. Then a set of candidates is discussed in detail and one location
is chosen that will later get implemented as a proof of concept.

2.2.1 Hide-out Data Locations by the Example of Hard Disks

Berghel et al. [23] describe storage hiding mechanisms that are sum-
marized in this section and are further refined in Section 2.2.2.
There is a large variety of storage media available including hard
drives, USB flash drives, SD cards, CD-ROMs, DVDs, Blu-rays etc.
The architectural challenge of storing data on a medium is often very
similar to hard drives. So the example of hard drives shall serve as
demonstration of where potential data is unintentionally left behind
or can be hidden on purpose. In mobile environments most com-
monly flash memory is used.
A hard drive has a geometric structure that ultimately contains a set
of nested data structures: hard drives, partitions, file systems, files,
records, and fields. All these levels can offer space to hide data. Vari-
ous hiding mechanisms are depicted in Figure 10 and begin with the
hard drive level and then work its way down to all the nested data
structures. Many of these mechanisms apply to other media as well.

The Host Protected Area and Device Configuration Overlay as seen
in Figure 10 item 1 have a reserved area at the end of the disk that
allows to modify features of the hard drive e.g. a rescue system to set
the device back to factory defaults. This allows vendors to store data
which is not seen by OS tools and therefore not affected by format or
delete utilities. It is still possible to reconfigure the controller to allow
access to all blocks, but it is not possible by default. This represents a
"physical" hiding feature to ultimately improve the usability.
Standard OSs require that the hard drive is partitioned into virtual
file system(s) before it can be used, even if there is just a single vir-
tual file system present. A partition is a set of consecutive blocks1 on
a medium that the OS can see as a separate logical volume. In the
Windows OS family separate logical volumes are called drives and in
the UNIX OS family referred to as mount points. Hard drives using
DOS partitions have a reserved space in the beginning to hold the
Master Boot Record (MBR), see Figure 10 item 2. This is important
for the boot process and this will contain a partition table, if a parti-
tioned medium is present. The MBR is gradually replaced by a newer
boot process defined by Unified Extensible Firmware Interface (UEFI)
which provides a compelling pre-OS environment including network
capabilities. UEFI is combined with the Globally Unique Identifier
(GUID) Partition Table (GPT). The GPT uses GUID partition entries
to store information about the partitions. There can be extended par-

1 Blocks in Microsoft terminology are the same as clusters. The terms can be used
interchangeably.

2.2 steganography strategies 31

Figure 10: Loop holes in digital storage devices [23]

32 steganography in file systems

titions, which can contain logical partitions. Partitions must start on a
cylinder boundary (this is hard drive specific). The legacy MBR only
uses one sector, the rest of the sectors in this cylinder are unused.
For mobile environments almost only flash memory is used and with
the state-of-the-art GPT/UEFI.There is a pattern

here, with each
abstraction level

another hiding place
turns up.

If the partitions do not use all of the space the hard disk offers, the
remaining space can not be used by the OS (by default). This space is
called volume slack as shown in Figure 10 item 3. Of course a hard
disk can have several partitions filled with data. Volume slack also oc-
curs naturally if the number of sectors in a partition is not a multiple
of the cluster size.
If one partition is deleted only the metadata about the partition is
deleted e.g. start address, length etc., but the data in the partition is
still alive and hidden, see Figure 10 item 4.
Every partition contains a boot sector. If it’s not a bootable partition,
the MBR of that partition offers space for hidden data as depicted in
Figure 10 item 5.
Also any space within a partition that is not allocated to a file could
still hold data, compare Figure 10 item 6. Typically OSs clear data late
or lazy. That is right before a new allocation of that area, meanwhile
it is untouched by the file system.
File systems are capable of recognizing faulty clusters e.g. Bad Block

(0xFFF7) in FAT or $BadClust in NTFS. Well working "good" clusters
could be marked as bad to make the file system leave this cluster un-
touched, see Figure 10 item 7.
Disk slack as it is referred to in Figure 10 item 8, is a byproduct of an
acceleration mean to speed up the disk’s access by always writing a
whole cluster of sectors. In very old OSs data was written to the disk
with padding if needed. Berghel et al.[23] defines the data from the
file end to the next end of the cluster as called RAM slack. It used to
be data from the RAM memory to do the padding with. Berghel et
al.[23] defines file slacks differently than this thesis. They call unused
sectors of used cluster, file slack . In contrast, this thesis understands
file slack from the end of the file to the end of the cluster. In the
Extended file system family (ExtX) the superblock allocates 1 KByte
and 788 Byte can be used depending on the cluster size, see Figure 10

item 9.
Furthermore the ExtX group descriptor is only 32 Byte long. This is
followed by a block bitmap that must start on a cluster boundary.
Hence only 32 Byte of 1024 Byte are used, leaving 992 Byte empty as
illustrated in Figure 10 item 10, for hiding data. ExtX does store di-
rectories just like files in a whole cluster. Similar to file slack there is
directory slack from the last directory entry to the end of the cluster
which can be seen in Figure 10 item 11.
Another very powerful way of hiding data that must be mentioned
are Alternate Data Streams in the New Technology File System (NTFS)
that allows files to have an attribute that can store large amounts of
data. There are many more strategies that are not further discussed
such as swap files, changing unused registry files, rename a file e.g.
to .dll, hiding data in text documents e.g. with a white font, using

2.2 steganography strategies 33

comments in a .html file, steganography in databases, compression
and encryption mechanisms.

When partitioning is done, the next layer is about the file system
that is needed for the OS in order to access data. Modern OSs support
several different file systems, but they require at least one.

2.2.2 Candidate Hide-out Strategies and Evaluation

In this section eleven steganography strategies for hiding secret pay-
load data are discussed and evaluated for their potential space, qual-
ity and important characteristics. For the following proposals assume
a 4 GByte Secure Digital (SD) card with a 4 KByte block size and
formated with the file system FAT32 (File Allocation Table 32). The
numbering of the alternatives in this section is independent from Fig-
ure 10.

All the alternatives shown in Table 2 have a special property. This
property is to be invisible to unaware user. All eleven alternatives can
hide data without a change in the total memory usage of a medium
shown to the user. It is the goal to find a data location that is not
part of the normal free space calculation. For example under Linux
the command df (disk free) would show exactly the same use of disk
before and after storing the payload data. Of course similar tools like
df and even the OS should not be aware of the payload data. Each
alternative describes a data location and an estimate of its properties.

Alternative 1 (unused space in MBR): The MBR contains several
boot parameters that are necessary to detect the file system and con-
tains some code that is responsible for continuing the boot process.
The MBR starts at the first sector on the medium and it typically does
not use up the space that is available, which is exactly one block. In
this example it is 4 KByte big. The MBR would also have to fit into
a block of 512 Byte for compatibility of systems with a cluster size
of 512 Byte. The MBR typically does not even need these 512 Byte.
Hence at least 3.5 KByte are available for hiding data. In practice it
may be DHFShundred Bits more. The MBR is also a popular place
for viruses and other malware. In the MBR malware can modify code
early before other software or an OS is loaded. Malware wants to
survive a system reboot and wants to be started with every system
boot. Therefore it is also a popular place for Anti-Virus Scanners to
check the data stored there. As a result the MBR is maybe not the best
choice to hiding additional data. Hidden data could also be mistaken
for malware.

3
4

s
t

e
g

a
n

o
g

r
a

p
h

y
i
n

f
i
l

e
s

y
s

t
e

m
s

Nr. Data location discovered by
automated
search tools

space gain es-
timation

necessity to change
(meta)data

quality of
hide-out

persistence Comment

1 unused space in master
boot record

yes < 4 KByte yes medium no

2 boot record space in non-
bootable partition

yes 512 Byte per
Partition

yes medium no

3 unused/outdated file sys-
tem attributes: "heads"

unlikely several Byte yes good no

4 file slack unlikely several clus-
ter/2 per
file

yes or no, depending
on the methodology

good yes

5 partition slack unlikely several 100

MByte
yes, partition table good yes

6 unallocated space likely several GByte yes, administration
info

medium yes

7 deleted files (0xE5 FAT32

specific)
yes several GByte no bad yes

8 use good blocks marked as
bad

unlikely several clus-
ters

yes, administration
info

good yes

9 Encode bits in error tolerant
data (e.g. time stamps)

no several Byte
per file

yes good yes

10 Overwrite the second FAT
(FAT32 specific)

likely about 128MB yes, severe bad yes might result into file sys-
tem errors

11 Encode data with ordering
of used blocks

no 1Bit per Block no good no easily destroyed

Table 2: Comparison of specific locations for steganography in file systems.

2.2 steganography strategies 35

Alternative 2 (boot sector in non-bootable partition): Assume the
physical memory is partitioned in not only one but several partitions.
Each partition can have its own file system and would be independent
from the file system on the other partitions. And assume further that
all the partitions hold again FAT32, then each first sector of all parti-
tions would be reserved for the corresponding MBR. But only the first
MBR of the first partition would actually be necessary to start up the
OS contained on the first partition. If the other partitions do not hold
an OS then they are not bootable so there is no need for a MBR at all.
Nevertheless the MBR exists also for non-bootable partitions. Hence
all MBRs except the one of the first partition could be salvaged as
hide-out for steganographic data. If the partition is viewed as a block
device with a hex editor the steganographic data would be visible.
Each MBR is one block long. In this case the block size is 4 KByte
per partition. Typically only one partition will be needed on a rela-
tively small SD card of 4GB. Though it is still possible and plausible
to have several partitions. However, a large number of partitions is
uncommon e.g. ten would definitely attract attention and therefore
be suspicious.

Alternative 3 (unused file system attributes): The MBR contains
metadata and boot code. The metadata consists of the Boot Parame-
ter Block where several characteristics about the file system and the
used hardware are provided. The technology of the MBR reaches back
to the first hard disks. Some of the boot parameters there are depre-
cated by now and not used anymore. They still exist for backward
compatibility. For example one parameter stores the number of heads
of a hard disk. Hardware specific data for memory is nowadays ac-
cessed via the S.M.A.R.T. (Self-Monitoring, Analysis and Reporting
Technology). Hence it is safe to change the value of the "heads" vari-
able in the MBR (excluding legacy systems). It is very unlikely that
changes in this variable would be noticed. The "heads" variable itself
is only 1 Byte long, so the reachable capacity is extremely limited.
There are only very few other candidate parameters to increase the
capacity. Due to the low capacity this location qualifies only to store
some meta information e.g. a marker where to find more data or a
flag that this partition contains other structures for steganography. It
is very unlikely that this variable would be changed during normal
operations so it would deliver good persistence.

Alternative 4 (file slack): A file is stored in one or more clusters.
File content data starts at the beginning of the first cluster. If one clus-
ter is not enough to hold the file, a second block is allocated and so
on. Depending on the actual file length the last cluster in the cluster
chain is probably not used completely. Hence at the end of the cluster
can be some space left over.
A file containing only 1 Byte uses one whole 4 KByte cluster that
can not be used by any other file. 4095 Byte (4096 Byte - 1 Byte) of
file slack, this represents the worst utilization but the highest possible
slack space. On the contrary a file that has exactly 4096 Byte utilizes

36 steganography in file systems

the offered memory to 100%. Then there is no slack space at all avail-
able. So statistically, the last block of a file chain will be used for 50%
of its capacity on average. That leaves half a block empty for each file
on the file system. This space can be vacated by a secret payload. If
the memory is examined byte by byte of course the slack space will
be visible, but the viewer would still have to be aware of the file sys-
tem metadata, in particular the file length to tell where the file ends
and the slack space starts. If a file has been shortened, securely erased
or overwritten there can be some leftover data in the slack space. So
data in slack space can have various plausible reasons. The file sys-
tems’ user interface does not allow access to file slack as it is a file
system internal effect. Even a virus scanner would not be able to ac-
cess it and check its content. However if a file gets extended, the file
slack will be overwritten. Slack data can be overwritten during nor-
mal operations so the data integrity is definitely a problem here.
The potential space that can be harnessed depends strongly on the
number of files and the cluster size and the size of the medium, but
can be conservatively estimated with 10 to 100 MByte, this was ex-
perimentally determined. With an according setup several GByte are
possible. File systems keep track of the files creation, modification
and access timestamps. Depending on the method of accessing a file
slack they might have to be changed to efficiently hide the slack ac-
cess.

Alternative 5 (partition slack): Similar to file slack, partition slack
is the unused space after the end of a partition. In particular the last
partition on a physical medium potentially offers a slack space de-
pending on the size of the medium and size of the partition. The OS
may not allow the access of partition slack in user space. The parti-
tion slack is essentially unallocated space once the partitioning of the
medium took place. Partitioning is rarely changed over the lifetime of
the installed OS and sometimes not even when a new OS is installed.
The space gain for payload data can be constructed by the partitions
sizes.

Alternative 6 (unallocated space): Unallocated space in a file sys-
tem can hold secret data and appears as free space at the same time.
The data could be allocated by the memory manager and be provided
to any process. Therefore it is highly volatile. In order to store data
here, several restrictions must be made. The file system, respectively
the memory manager has a known allocation strategy and the user
does not allocate all the available space. For example FAT32 must
(and typically does) use the allocation strategy "next free cluster". This
means the file system is filled up from the lower memory address up
to the higher addresses in a linear way. If a file in a low address space
is deleted its cluster become free again and it will be used before an
address in the high address range. In conjunction to that the user is
aware that always x Byte of the disk must remain unallocated in or-
der to keep space for hidden data available. Then a program could
start to fill up the disk from the high memory addresses to the lower

2.2 steganography strategies 37

ones with x Byte of payload.
Furthermore this method would need a newly initialized physical
medium. An inhabited medium could already have high address
space allocated. This approach is known in literature as hidden volume.

Alternative 7 (deleted files): There are several levels of file dele-
tion. In the case of FAT32, the driver only marks files as deleted by
prepending the magic number 0xE5 to the file name instead of actu-
ally zeroing all the metadata and file content. Hence files that have
not been overwritten can be at least partly recovered. If the file was
constructed of more than one block, the first copy the block chain is
will be lost. The file chain is stored redundantly and can therefore
still be available for a deleted file. A file that has only one block does
not need the block chain information and it can be recovered by sim-
ply undelete it, which means to remove the deleted marker 0xE5. Of
course if the file cluster was overwritten with another file, the over-
written data is lost. There are many undelete tools for FAT32 that can
recover such files. This undelete method is well known and as a result
this is not a very good place for hiding data. However major parts of
the medium could be salvaged in this way. The user has to be aware of
space limitations to avoid overwrites. Fragmentation might become a
problem because it also might allocate big consecutive chucks of data.
Likewise defragmentation is a problem because a lot of clusters are re-
arranged on the medium and it is likely that slack data is overwritten.

Alternative 8 (good blocks marked bad): Storage mediums have a
limited lifetime and with growing age some sectors start to fail. Mod-
ern flash memory can offer reserve sectors to mitigate this problem.
Older media do not have such a feature and need the file system to
react to this failure. In FAT32 the cluster is marked as bad in the file
allocation table and will not be used any longer. Nowadays media
take care of this problem themselves and bad clusters should not oc-
cur anymore. If they do nonetheless it is a sign that the mediums’
lifetime comes to an end.
Some valid clusters could be marked as bad and still be used to hold
secret data. This way they would be guaranteed not to be used any-
more by the file system. The hidden data would not be overwritten.
It is visible if the medium is cluster wise inspected by e.g. a foren-
sic tool. There is a limited but existing risk that a file system check
tool such as chdisk (checkdisk) would recognize valid clusters that
were "mistakenly" set to bad and set them back to free/valid (0x00).
A disadvantage is the presence of bad clusters in purely image files,
because then bad cluster are obsolete. There will not be a fault in a
virtual disk. Bad clusters then are very suspicious.

Alternative 9 (encode bits in error tolerant data): Encoding pay-
load data in error tolerant data is one of the central topics in steganog-
raphy. In case of encoding data in the file metadata, only a small
amount of data can be hidden. In FAT32 the access time is often not
used at all, sometimes not even displayed. A few Byte per file could

38 steganography in file systems

be harnessed to store hidden payload data. It is rather obvious that
there is suspicious data if an investigator would check. It is very likely
that an investigator would notice this. If the data would be prepro-
cessed so that only valid dates would appear the chances are better.
Even better if the access date would be in the past, not in the future,
this would be even more plausible and would probably go unnoticed.
If the file system is mounted in a device that does set the access time,
then the payload data will be overwritten. A user with standard read
and write permissions can set the time stamps to any value, without a
need to change the OS or the file system. Therefore this is a universal
method that works for any file system that supports such timestamps,
which is a basic feature found in most file systems.

Alternative 10 (Overwrite the second FAT): Overwriting the re-
dundant copy of the file allocation table (FAT) is dangerous and a
destructive way of hiding data. The redundant copy exists to repair
the first copy in case of a system crash. This purpose would not be
served anymore if the second FAT is overwritten. Also the second
FAT is regularly written. An invaild second FAT would definitely be
noticed by file system checking tools, probably seen as a large area of
corrupt data. The size of the FAT depends on the size of the medium.
For each cluster there is one 32 Bit address stored. The cluster size
is typically either 512 Byte or 4 KByte (or at least a power of 2). To
get the size of the needed FAT the medium size has to be divided by
the cluster size. This location is quite obviously visible in case that
some error with the file system occurs and the payload in the FAT
will very likely not survive a repair attempt depending on what the
repair tool tries to do exactly. The repair attempt is also very unlikely
to be successful at all since vital data has been overwritten. Even if
no errors occur at some point the changes from the first FAT will be
backed up in the second FAT.

Alternative 11 (Encoding data with ordering of used blocks): En-
coding data by selecting a special order of the used clusters is an ap-
proach known in databases. Watermarking in databases uses a fixed
order for its data sets. The order does not influence the functionality,
but lets a binary copy be discriminated from a copy, that merely hap-
pens to have the same content. Exporting a database dump and then
importing a dump will use the default ordering and not the prede-
fined watermark ordering.
This methodology can be reused with data allocation strategies of a
file system. The default ordering of cluster is "next free cluster". If this
was changed to another pattern, secret data could be encoded. For ex-
ample a file needs ten clusters and the memory manager has an area
where 20 clusters are free consecutively. The first cluster would have
to start at the first address anyway, but by choosing to either use the
next cluster or to skip a cluster one Bit of information can be encoded.
So the potential space gain is identical to the number of clusters in the
file system. This method will produce a lot of fragmentation which
should not be defragmented otherwise the payload data is lost. Also

2.3 candidate selection of a hide-out location 39

the read and write process for the payload data would have to be able
to change the allocation mechanism which is part of the file system
driver.

2.3 candidate selection of a hide-out location

The candidate shall be selected by several criteria. The first criterion
is that the space used to store the payload data should not be visible
to the user or the OS. Hence taking care of the central requirement of
the payload being hidden. This can be tested by determining the free
space on the medium via the OS. Before and after the payload data
was stored the free space must be the same. A simple method like
setting the hidden attribute of a file would not fulfill this criterion,
but in this case all eleven candidates discussed in Section 2.2.2 reach
this criterion.
The hide-out quality shall be rated "good" as discussed in Table 2 to
secure the primary goal of this method to hide the payload as well as
possible. That leaves candidates 3, 4, 5, 8, 9 and 11.
Furthermore the data location shall at least offer enough space for
several text documents, DHFSpictures or multiple table calculation
files. This will require at least 20 MB for average size and average res-
olution of a digital camera picture. Hence candidate 8 (good blocks
marked bad) can be disqualified. One cluster offers only 4 KByte and
marking many blocks as bad would indicate that the medium is dam-
aged and therefore would attract too much attention. 20 MByte would
need 5120 clusters. S.M.A.R.T. will definitely diagnose a medium bad
health status if 100 clusters are bad. Even worse is candidate 9 (en-
coding bits in error tolerant data) that can only encode several byte
in file metadata and does not provide enough space. The additional
requirement that the payload data in the binary image shall not be
stand out if it is read with a hex editor, eliminates candidate 3, leav-
ing candidates 4 and 5.
Candidate 5 (partition slack) provides naturally only DHFSMByte
due to rounding remainder or sometimes even none at all. To guaran-
tee at least 20 MByte, a partition has to be deliberately shirked or a
small partition created and then deleted. Automatic partitioning tools
will in most cases not waste this space. On these grounds it can be
suspected that the user left this space intentionally unpartitioned.
Candidate 4 (file slacks) offer enough space on a moderately filled
file system. Essentially the space is defined by the number of files on
the file system which can be roughly estimated by 2 to 10% of the al-
located medium from experience. For example on a 4 GByte medium
filled to 50% this would mean about 20 to 100 MByte. This estimation
and the exact determination of the available payload space is illus-
trated in more detail in Section 3.2.4. The data location exists without
the need for additional user interaction to allocate the payload as it
would be needed with creating and deleting a partition (candidate 5).
Both for partition slack and file slack the data could be viewed with a
device block viewer which is not a standard tool that comes with an

40 steganography in file systems

OS by default. File slacks however have a greater risk of being acci-
dentally overwritten by normal file operations, while partition slack
is assumed to be quite static during normal use. Nevertheless poten-
tial system upgrades, reinstalling an OS or setting back to factory
defaults will also destroy data in partition slack. A trade off between
better data persistence in partition slack and better hiding quality
has to be made. The goal of this thesis is to leave the least amount
of traces possible as mentioned in Section 1.2, as a result candidate 4

(file slack), is chosen.

2.4 presence of a steganography tool

Whenever a user wants to use steganography software it has to be
installed on the system at hand. The software is intended to hide the
payload data on the target file system. Even if it does so perfectly, the
mere existence of the software indicates to an inspector that it was
installed and used to hide the payload data. With knowledge of the
software source code, the methodology e.g. hiding data in file slacks
will be known. An inspector would know where to look for hidden
data. Therefore the steganography effect is decreased.
There are several strategies against this risk:

1. A rather theoretical solution is to memorize the code of the tool.
Then type it into the system, compile it, use it and delete it
again. This would leave the minimal amount of traces, but is
also very unpractical.

2. It might be possible to develop a self-modifying program, that
would destroy itself. It is however extremly hard to create and
modern OSs would likely not support such a program or even
forbid it.

3. If the software would be part of wide spread packages, frame-
works or even included by default in a common OS, the pres-
ence of the steganography tool would not imply that it was de-
liberately installed and used for its sole purpose, to hide data.

4. Develop a tool that also tries to hide the existence of itself. This
is however out of scope of this thesis.

5. Leave the software installed and prepare an excuse e.g. this tool
was evaluated on my device, but in the end not filled with data.
This might work for legal issues.

6. Accept the risk and leave the software installed.

7. Uninstall the software before a check or respectively uninstall
right after use and reinstall it from an external source right be-
fore the next use. This needs user action and might be forgotten
by an undisciplined user.

The last two options 6 and 7 seem to be the most realistic choices.
Choice 6 is very simple and need no attention of the user, so it is the

2.4 presence of a steganography tool 41

default option for users that do not care much. Choice 7 is still simple
enough so that any user is capable of doing so. It is more effort for the
user, but the protection is significantly improved. Therefore option 7

is the recommended one.

3
A F I L E S L A C K F I L E S Y S T E M

This chapter is about file slacks, why they exist, how they can be
increased, what are good carrier files and how the file slack size can
be estimated and calculated. Furthermore the life cycle of a file is
mentioned. Finally the to-be-expected challenges of a file slack file
system are noted.

3.1 terminology

This section explains some technical terms, so the reader is clear on
what is meant.

Carrier file: A file that carries additional data in its file slack. Here
the files stored on FAT32 are meant.

Deniable Hidden File System (DHFS) is a proof-of-concept file
system that this thesis proposes.

Payload file: The files stored in DHFS are payload files. DHFS uses
carrier files to store payload files in the carrier files’ file slack.

Carrier file system: Here FAT32 is the file system that contains the
carrier files.

Payload file system: Here DHFS, is the file system of the payload
files that inhabit the carrier file slacks.

3.2 file slack

File slacks exist in any block based file system, which is the dominant
class of file systems. A file slack file system can be potentially imple-
mented on any block based file system. FAT32 is chosen as carrier
file system, because it is very simple and wide spread e.g. the default
file system for SD cards. FAT32 is quite old and represents the "com-
mon denominator" of file systems. Many systems still support FAT32.
Modern file systems have advanced features, but might not be sup-
ported by such a large diversity of systems.

3.2.1 Cluster Justification

Files are stored in blocks or clusters. The terms are exchangeable for
this thesis. File Systems use clusters as their smallest addressable unit.

43

44 a file slack file system

Clusters can consist of one or more sectors. Sectors are the smallest
addressable unit in hardware such as hard disks, Solid State Disks
(SSD), Universal Serial Bus (USB) sticks or flash memory in general.
It became a widely accepted standard to use a cluster size of 4 KByte,
before that 512 Byte was commonly used. Details for cluster sizes can
be found in Table 3.
There is a need for clusters in order to keep large data amounts man-
ageable. If each Byte or even each Bit on a hard drive were address-
able on its own, the address space for accessing the data would be ex-
tremely large. For example, if 1 GB of data would be addressable per
Byte, roughly one Billion (exactly 1 073 741 824) different addresses
must exist to access them all. As Equation 1 illustrates, this needs an
address space of 230. Which means that a 30 Bit long address variable
is needed. With 32 Bit addresses and an address space of 232, 4 GByte
of data can be addressed.

1GByte = 1073741824Byte = 1024 · 1024 · 1024Byte = 230 Byte (1)

That means the address variable would have to have at least 30 Bit
to hold all addresses. Hence a 32 Bit variable was used. A 32 Bit ar-
chitecture is just enough to process such an address variable in one
calculation step. However, even 32-Bit architecture systems have the
desire to address more than just 4 GByte of storage, so Bytes are
grouped into clusters to increase the addressable data amount with-
out further increasing the address space. 64-Bit architectures could of
course process a 64 Bit address variable with many addresses more in
single step. Nevertheless file systems need to be independent of the
architecture, so the cluster concept is continued. Additionally a lot of
flexibility for a wide range of storage capacities is gained.

On hard drives with moving heads, mechanical repositioning of the
head is a very slow operation in the range of milliseconds while read-
ing from the disk. When the heads are already positioned correctly it
takes very little time to read in comparison, in the range of microsec-
onds. Moving the heads is expensive. At the point in time when a
file is deleted, it is not necessary to actually overwrite the data with
zeros or random data, which would be a strong delete operation. In-
stead it is enough to mark a file as deleted, and set the used memory
space back to unallocated. Hence the data is only marked deleted and
no further actions are needed, therefore it is significantly faster than
overwriting. This default lazy delete strategy absolutely makes sense
considering performance. It is possible but not default to use securityThis can be proven

experimentally by
comparing the time

of copying a 5
GByte file to

deleting a 5 GByte
file. If the time is not

more or less the
same, an overwrite

did not occur.

tools actually overwrite the data.
Today hard drives with mechanical parts get more and more obsolete.
New media like flash memory is a significantly faster alternative and
flash memory prices arrive at a quite affordable level. Particularly for
mobile devices flash is predominating. Due to the lack of mechanical
parts the flash memory is quite indifferent to vibrations, also mechan-
ically more stable.
The cluster concept is used independently of the underlying hard-
ware.

3.2 file slack 45

3.2.2 Increasing Payload Space

If the available payload space is too small, it can be increased. As
mentioned in Section 2.3, the offered size by this DHFS depends es-
sentially on the cluster size and the number of files. There are several
options how that space can be increased:

1. Creating many small files e.g. text files that contain only one
Byte drastically increases the slack space. That means the cluster
size minus one Byte is the created slack space, which is the
maximum slack per file. This can be repeated with many files
towards the maximum slack of the partition, which is a partition
completely filled with one Byte files.

2. Formating the medium intentionally with a large cluster size
also increases space significantly. There are cluster sizes of 512

Byte, 1, 4, 8, 16 and 32 KByte possible. Choosing 32 KByte (32768

Byte) is the maximum and yields a maximum slack of 32767

Byte per file.

3. Providing a larger medium so it can hold more files also in-
creases the potential space. FAT32 has a maximum volume size
of 2 TByte, with a cluster size of 4 KByte, which is still more
than enough for a mobile environment.

Option 1, creating many one Byte files can not be recommended,
because their usefulness and existence is hard to be explained. This
is suspicious. It is still possible to design the file lengths of files so
that the remainder of the file size divided by the cluster size is large.
However this is also not recommended at this point because a plausi-
ble explanation for such files is hard find.
Option 2, choosing a larger cluster size than default is a good ap-
proach. It is unlikely to be discovered and could still be explained
by a misconfiguration of a formating tool. Still it is not standard to
change this, so it leaves a small trace.
Option 3 offers the most advantages. A large medium has a lot of
space to store files, hence the number of files can be overall larger
than on a smaller medium. As seen in Table 3, the default cluster size
rises with the increasing size of the medium stepwise. As a result of
a large medium two key factors are positively influenced, on the one
hand the increasing maximum number of files and on the other hand
the increasing cluster size. Additionally it is a simple and convenient
measure. MicroSD cards for tablets or phones with 32 GByte are inex-
pensive, even microSD cards with 128 GByte are available for about
40 € at the time of writing this thesis. In future the available memory
on a microSD cards can be expected to rise.

The conclusion of this section is that the carrier medium should
contain as many small files, then a lot of slack space is available.
The bigger the medium the better. Using a big medium is the recom-
mended (option 3) which automatically includes a large cluster size
(option 2).

46 a file slack file system

medium size cluster size

500 MByte - 8 GByte 4 KByte

8 - 16 GByte 8 KByte

16 - 32 GByte 16 KByte

over 32 GByte 32 KByte

Table 3: Standard cluster sizes for storage medium sizes with FAT32.

3.2.3 Carrier Data Suggestions

As Section 3.2.2 describes the medium should contain many small
files to provide slack space. The worst case is an empty medium with
no files at all. No carrier files means no file slacks.
There are no requirements on the carrier file type, many other steganog-
raphy tools do require a file type or format e.g. *.jpg, *.mp3 etc.
A plausible way to fulfill the criterion of having many small files,
is to create a mirror of a large website. It typically contains many
*.html files which can be estimated with about 20 KByte each. An in-
complete mirror of the Johannes Kepler University website delivered
about 45000 files with a total size of 2.22 GByte. This data stored on
a medium with a cluster size of 4 KByte produces about 80 MByte of
slack space.
Some applications also have a lot of files e.g. the integrated develop-
ment environment "Eclipse - Mars" (3668 files) is 318 MByte large and
offers about 10 MByte of slack space with again 4 KByte cluster size.
A large collection of single icon files could also produce a great slack
space, particularly if the icons are small and the medium is large.
Particularly well suited is the source code repository of the Linux ker-
nel. The version 4.6.3 has 53645 files which needs 689 MByte on a
medium with cluster size 4 KByte of which only 594 MB are content,
consequently 95 MByte (14%) are file slack. Git was developed for the
development of the Linux kernel, so it is (one of) the most important
projects using Git. A large number of code repositories are available
under github.com. From testing experience they typically satisfy the
criterion of having many small files.
The user on a mobile system e.g. a smart phone will use data that is
on the microSD card already. These could be pictures taken with the
device, music to listen to while traveling, some downloaded data and
probably some data of applications that use the external storage.

3.2.4 Estimation of Payload Space Size

Media with a size over 32 GByte are definitely recommended to reach
useful capacities. Additionally the assumption that many small files
are stored on the medium must hold. Then the file slack size can be
estimated with an statistical average of 50% of the cluster size per file
as formulated in Equation 2. These are 16 KByte per file in case of
a 32 KByte cluster size or 2 KByte in case of a 4 KByte cluster size.

3.2 file slack 47

The website mirror mentioned in Section 3.2.3 is estimated with 88.18

MByte. Actually it delivers 80 MByte slack space so the estimation in
this case is slightly above the real value here.

TotalSlackSize = NumberOfFiles · ClusterSize
2

(2)

TotalSlackSizeWebsite = 45142files ·4KByte
2

= 88.18MByte (3)

This leads to the very rough general estimation that 1 to 15% of the
medium size can be harvested for slack space.

3.2.5 Calculation of Payload Space Size

The estimation of the previous section provides only a very rough esti-
mate. All the needed factors can be known a priori, which leads to an
exact result. This section provides the exact calculation of how much
slack space is available for a given medium. In order to get the num-
ber of used clusters of a file the file length divided by the cluster size
has to be rounded up as Equation 4 describes. Then the maximum
size of the file on the medium is determined by Equation 5. After
that the slack size of the current file is the difference of the actual file
length and the maximum size as seen in Equation 6. Combining these
three equation by substituting them and adding a sum over all avail-
able files n on the partition Equation 7 emerges. It is recommended,
but not necessary, to use only one partition on the medium. DHFS
allows only the use of one partition.

NumberOfClusters =

⌈
FileLength

ClusterSize

⌉
(4)

The cluster size can
only have certain
values which must
be powers of 2.

MaximumSize = NumberOfClusters ·ClusterSize (5)

SlackSize = MaximumSize− FileLength (6)

ClusterSize ∈ {512, 1024, 2048, 4096, 8192, 16384, 32768}

TotalSlackSpace =

n∑
i=0

⌈
FileLengthi

ClusterSize

⌉
·ClusterSize− FileLengthi

(7)

48 a file slack file system

3.3 file lifecyle

There are two principal parts separated in OSs, the user space and
the kernel space. The user space is the set of programs and memory
the user can directly influence. The kernel space can not directly be
influenced. It is the area of the OS and it may only be accessed via
the interfaces the OS provides.
The lifetime process of a file is as follows: The first step is the file cre-
ation. A process requests space to create a file. This request is passed
from the user space via a system call to the kernel space. Then the
kernel forwards this request to the file system driver. The memory
manager of the file system driver allocates a previously unallocated
space, marks it allocated and returns the according start address. By
default the allocation guarantees the according memory to be all ze-
ros. Hence the memory is overwritten at allocation time, not before
(lazy delete). This can be time consuming if the process asked for a
big chunk of memory. This also depends on the write speed of the
medium.
There are memory wipe tools that implement secure delete that over-
write the deleted files immediately, sometimes even multiple times to
be sure. These tools could also overwrite unallocated data by allocat-
ing it and then releasing it again. It is much harder to overwrite file
slacks since the OS does not allow accessing it. But it is still possible
to do so, by copying data into newly allocated memory and securely
deleting the original. However this is a very time consuming process
and is very specific to file slacks, which are typically ignored during
normal operations. A more systematic approach would be to start up
a system from a live CD or bootable USB stick to be able to have
complete access to the whole medium instead of starting an OS that
runs on the medium that should be cleaned. On laptops this is easily
possible, on a smart phone or a tablet this is more difficult because
the boot process is more restricted and there are no external drives
like a CD-ROM drive.

3.4 problems of a file slack file system

Assume the payload file is a PDF (Portable Document Format) file
with a size of 1MB. With a statistical average of 2 KByte file slack
per file 1024 KByte / 2 KByte = 512 file slacks would proximately be
needed to store the file. Now the question arises which carrier files to
select and how to store the order of the 512 parts. Managing this in-
formation and additionally the metadata are essential duties for each
file system. The answers to these questions will be discussed in Sec-
tion 4.7 and Section 4.8
Due to the distribution of data over many file slacks, advantages of a
sequential read of the medium can not be used. This will much more
be like a random access. This in addition to the large number of file
slacks might be a performance issue. Read and write performance is
integral for any file system.

3.4 problems of a file slack file system 49

File slacks can be overwritten by normal use of the file system. In
fact the cases where existing files are extended, deleted or moved are
problematic, while creating new files or reading files are not a prob-
lem. A file slack file system would have to somehow mitigate this risk
of losing data.

Part III

A F I L E S L A C K F I L E S Y S T E M I N P R A C T I S E

4
O N I M P L E M E N T I N G A S T E G A N O G R A P H I C F I L E
S Y S T E M F O R A N D R O I D

This chapter describes design and implementation decisions of a proof-
of-concept file system, DHFS. The implementation is discussed in de-
tail, which is followed by a security analysis.

4.1 system overview

This section gives an overview of the implementation. DHFS is a
steganography file system that uses 8 independent compartments to
construct the plausible deniability characteristic. Two compartments
are intended for filling with midly compromising data to surrender.
Another two for storing top secret data that stays confidential and
another 4 as reserve. It is up to the user how many compartments are
used for what purpose. Files stored in DHFS are stored in file slacks The number-of-

compartments
constant (default 8)
can be set in the
source code in the
range of positive
integer value limits.

of the carrier file system. In order to access file slacks a custom driver
is used, because standard drivers do not suffice.
There are two major components of DHFS. One is the index that
stores which file slack is part of which payload file. The index is com-
pressed to avoid wasting space. The second is the file slack header.
The file slacks stores data and a header that holds meta data about
file slack length, integrity and encryption.
DHFS has a focus on security, so each compartment is encrypted with
a password. The details of the encryption are discussed in detail, be-
cause even small mistakes can make a system insecure.
Examples of the index and the memory clarify how DHFS works.
DHFS should stay hidden so the index is also stored in file slacks,
which makes the system more complicated but hides its existence
better. In the initialization first the index has to be found. Then in-
dividual files can be displayed. There is always the danger that the
carrier file system overwrites file slack, which can lead to data loss.
A mitigation for that can be redundancy, which DHFS does not (yet)
take care of. However payload files are integrity protected with a
cryptographic checksum, so if data is changed or damaged, the sys-
tem will notice.

4.2 access methodology

There are basically two methods how to get a block device to work
with DHFS on Android. One is actually using a block device supplied
by the system, located at /dev/block/. The second is to use an image
file of a block device e.g. stored on the SD card, which can then be
opened as a file. In both cases the file system has to be read and un-
derstood by DHFS, which integrates a FAT32 driver in order to do so.

53

54 on implementing a steganographic file system for android

Using the system block device is the method DHFS is intended for.
The FAT32 implementation of Android is not able to access file slacks.
If the system driver is used the data in the file slack cannot be ac-
cessed, so data there is well hidden. However there are many barriers
that one has to overcome to directly use a block device circumventing
the volume daemon vold which responsible for handling the SD card.The volume daemon

of the Android
emulator only

mounts an SD card
image once at start
up. Passing on the
access via USB is

not intended on the
emulator. Testing
needs to be done
with a physical

device.

The volume daemon is responsible for mounting the SD card on start
up of the system and also for mounting and unmounting it if the SD
card access is passed on to a PC over the smart phone’s USB port.
One of the barriers to access the SD card are the file system permis-
sions. The block device is managed by Android and an app or the
user is not permitted to directly access it. Thus the user needs root
permissions, which can be done by "rooting" it. Various tools depend-
ing on the phone and installed Android version can help with that.
Some organizations may forbid that their phones are rooted. This can
be detected. However in Asia (3-4%)and Russia (~1%) it is common
to use a non-malicously-rooted smart phone, because it is needed
to add features that the Android API does not provide [15]. Some
testing was conducted to explore this method on a Samsung Galaxy
S5 with Android 4.4.2. The block device of the SD card is located at
/dev/block/vold/179:65.
The block device [7] is named with "major device number":"minor device
number". The major device number is selects which device is selected
for input and output operations of the device driver. The minor de-
vice number is a parameter for the device driver, its use depends com-
pletely on the device driver. The manual of the device driver should
state the meaning of the minor device number.
Only setting the block device file to public readable (permission mask
777) is not enough to access the file. All the directories in the path also
have to be accessible. So with root permission those directories were
also set to public readable (permission mask 777). Still the block de-
vice can not be accessed. In order to avoid access from the volume
daemon and other processes all mount points involving the SD card
were removed as seen in Listing 4.

Listing 4: Unmounting all mount points concerning the SD card on Android
4.4.2 with an Samsung Galaxy S5

C:\Users\user\AppData\Local\Android\sdk\platform-tools\adb.exe -

shell

shell@klte:/ $ mount # lists all active mount points

...

/data/knox/sdcard /mnt/shell/knox-emulated sdcardfs rw,nosuid,

nodev,relatime,uid=1000,gid=1000,derive=none 0 0

/data/privatemode /mnt/shell/privatemode sdcardfs rw,nosuid,nodev

,relatime,uid=1000,gid=1000,derive=none 0 0

/data/media /mnt/shell/emulated sdcardfs rw,nosuid,nodev,relatime

,uid=1023,gid=1023,derive=legacy,reserved=20MB 0 0

/dev/block/vold/179:65 /mnt/media_rw/extSdCard vfat rw,dirsync,

nosuid,nodev,noexec,noatime,nodiratime,uid=1023,gid=1023,

fmask=0007,dmask=0007,allow_utime=0020,codepage=cp437,iocharset=

iso8859-1,shortname=mixed,utf8,errors=remount-ro 0 0

4.3 fat32 driver changes 55

/dev/block/vold/179:65 /mnt/secure/asec vfat rw,dirsync,nosuid,

nodev,noexec,noatime,nodiratime,uid=1023,gid=1023,fmask=0

007,dmask=0007,allow_utime=0020,codepage=cp437,iocharset=iso

8859-1,shortname=mixed,utf8,errors=remount-ro 0 0

/mnt/media_rw/extSdCard /storage/extSdCard sdcardfs rw,nosuid,

nodev,relatime,uid=1023,gid=1023,derive=unified 0 0

shell@klte:/ $su

shell@klte:/ $umount /data/knox/sdcard

shell@klte:/ $umount /data/privatemode

shell@klte:/ $umount /data/media

shell@klte:/ $umount /dev/block/vold/179:65

shell@klte:/ $umount /mnt/media_rw/extSdCard �
These steps are not yet enough to make the block device available
to an test app. When the app tries to read the block device an er-
ror: " Error 20 : A component of path is not a directory." ap-
pears in the Android logging tool (logcat). The log messages do not
indicate a denied permission of SELinux, however it is a likely ex-
planation for this behavior. This method still needs more exploration,
since it offers desirable qualities e.g. no need for an easy to access and
visible image file (better repudiability). Using a block device would
not be leave a visible image file and also make it harder to make to
view and change file slacks. The payload data is well hidden and
traces can be removed to a satisfactory extend.

As result the simpler method of using an image file is used. For
this proof-of-concept the visible image file is accepted. This method
allows any user or application to inspect the image file including the
file slacks, which is undesired. In addition this image is a significant
trace of data being hidden.

4.3 fat32 driver changes

Android offers a developer tool called "JOBB" [16] that allows to cre-
ate Android application package (aka APK) expansions in the Opaque
Binary Blob (OBB) format. These OBB files can provide additional
files like graphics, sounds, videos to an Android application in a sep-
arate APK file.
This JOBB tool internally uses a Java library that represents a full im-
plementation of a FAT32 driver without external dependencies. This
is a publicly available open source driver [10] licensed under LGPL.
Based on this driver, access to a block device or image file can be
achieved (as java.io.RandomAccessFile). Still this driver is not able
to access file slacks. Accessing file slacks is a new use case for this file
system driver. However DHFS requires access to file slacks to fulfill
its purpose. Hence the driver must be adapted in order to be able to
allow access to file slacks which other drivers rightfully do not per-
mit.
The driver contains two interesting packages. The first package (de.wa-
ldheinz.fs.fat) contains the FAT32 classes that actually implement
the core of the driver, which represents the index chain management,

56 on implementing a steganographic file system for android

file allocation table, allocation strategy, file metadata format, short file
names, long file names, directories and some data types.
The second package (de.waldheinz.fs) essentially contains a more
abstract view on the FAT32 file system. It has an interface that any
file system could implement that is provided to the library user. As
a result the layered architecture is reflected and by using this generic
interface the file system could be exchanged for another one without
changing the interface.

The following paragraphs contain technical details of how the FAT32

driver was changed. Figure 11 shows the interlacing of FAT32 driver
classes for accessing files. The driver works on a block device which is
a low-level view to a storage medium e.g. an SD Card. Several classes
on top of that create the high-level abstraction of files. The original
FAT32 driver uses the methods read and write that do not allow file
slack access. The methods readExtended(...) and writeExtended(...)

were added, that do allow access to the file slack.

Figure 11: Block diagram of the FAT32 classes for reading and writing.

The main change for the access to file slacks lies within the driver
implementation package (de.waldheinz.fs.fat) and there in the
functions that contain

• read(long offset, ByteBuffer dest)

• write(long offset, ByteBuffer srcBuf)

to a file located in the class FatFile. Exchangeable to these two func-
tions, two new functions

• readExtended(long offset, ByteBuffer dest)

• writeExtended(long offset, ByteBuffer srcBuf)

4.3 fat32 driver changes 57

are created, see Listing 5.

Listing 5: Implementation of the methods readExtended and writeExtended

public void readExtended(long offset, ByteBuffer dest) throws

IOException {

checkValid();

final int len = dest.remaining();

if (len == 0) return;

double numOfClusters = Math.ceil((double)getLength()/(double)

chain.getClusterSize());

long maxSize = (long)numOfClusters * (long)chain.getClusterSize()

;

//This calculation includes the file slack as a new maximum read

//length it allows the last cluster to be read completely

// no real EOF check

if(offset+len > maxSize){

throw new EOFException();

}

//no update for the timestamp

chain.readData(offset, dest);

}

public void writeExtended(long offset, ByteBuffer srcBuf) throws

ReadOnlyException, IOException {

checkWritable();

// no update of timestamps

final long lastByte = offset + srcBuf.remaining();

double numOfClusters = Math.ceil((double)getLength()/(double)

chain.getClusterSize());

long maxSize = (long)numOfClusters * (long)chain.getClusterSize()

;

//This calculation includes the file slack as a new maximum read

//length it allows the last cluster to be read/written completely

if (lastByte > maxSize) {

throw new EOFException();

//setLength(lastByte); // omitted

}

chain.writeData(offset, srcBuf);

} �
The second parameter (ByteBuffer) represents a buffer to which the
data can be read in or be written to. It contains the file content. The off-
set parameter describes at which offset of the dest or srcBuf buffers
shall begin to be written to or read from. The length of that content
is determined by the remaining() function of the ByteBuffer class.
That means the length of the content is determined by the remaining
space of the buffer.
Hence the length is configured when the buffer is created with a spe-
cific size. That size must be calculated accordingly to the amount of
content data for reading or writing.

58 on implementing a steganographic file system for android

Reading beyond the End of File (EOF) is not possible, an EOFException

would be triggered by the read and write functions.
The function read(long offset, ByteBuffer dest) was copied and
some aspects were changed. The determination if the destination
buffer is big enough can stay the same. Updating the access times-
tamp depending on if the device is writable can be left out. Since
writing the access time of a file is a hint that the file was indeed ac-
cessed. That is undesirable for the purpose of hiding secret data. In
the next step the offset and the remaining length of the buffer are
compared with the file’s size stored in the FatDirectoryEntry that
contains also the timestamps and some file attributes. This is indeed
the critical part. This check is changed to allow not only to read up
until the file size is reached, but until the cluster border is reached.
Then the file slack can also be read. The new check needs to know
the cluster size. The FAT32 file system reads that information from
the MBR’s boot parameter block when the file system is initialized.
Fortunately the cluster size is also stored in the class ClusterChain
and this class allows access so there is no need to change any more
code. With that cluster size the total number of clusters used by the
current file can be calculated by rounding up to the next cluster as
shown in Equation 4 in Section 3.2.5. Afterwards the new maximum
size is calculated, which the whole file occupies on the medium. This
space is partly file content and partly file slack see Equation 5. This
new maximum size is then substituted for the file size that was men-
tioned beforehand.It is important to

know that internally
the driver can only

read or write full
clusters. E.g. an

append for one Byte
needs to read a full
cluster, append one

Byte and then write
a full cluster back.

Then the function chain.readData(offset, dest) is called that
looks up the file’s cluster chain entries and copies the file content
into the buffer. This function reads the file cluster-wise, since a cluster
is the smallest addressable unit in a file system.
The function for writing, writeExtended(long offset, ByteBuffer

srcBuf), is built and changed in a similar way to the read function.
However, before the actual writing the write function checks if the
block device is writable. This is also useful in the writeExtended

function. The update of the modification and access timestamp are
not wanted in the new version and are skipped. Then again the Num-
berOfClusters and the new MaximumSize are calculated as described
in Equation 4 and Equation 5. Then there is a check that compares the
offset and the remaining buffer length to the file size. If the file size is
exceeded, an append operation is recognized and the new file size is
set. This needs to be changed since the file size must not change when
writing to the file slack. So this check now issues a EOFException if
the MaximumSize is exceeded. This has an twofold effect, for one that
a write beyond EOF is now possible and second that the file size is
not changed. Hence this function should not be used to extend a file,
but only to write to the file slack. In the last step the file chain func-
tion writeData writes the buffer with the file content and the slack as
a whole to the memory. A new class that handles these parameters
and offers a more friendly interface to read or write only the file slack
would be the best way to enable DHFS access to file slacks.
Now that the two functions readExtended and writeExtended are cre-

4.4 design rationale 59

ated, they need to be accessed somehow. Either the file system specific
internal interface is used or the generic file system independent inter-
face is used. The architect of this driver clearly intended the generic
interface because it is one abstraction layer above the specific inter-
face. Therefore the two access functions are added accordingly to the
public generic interface. The specific FatFile class implements the
generic FsFile interface. The naming convention is that the specific
implementation classes start with the prefix Fat and the generic inter-
faces that will be used for the steganography tool start with Fs (file
system).

4.4 design rationale

This section covers design decisions and motivation for the created
file system prototype DHFS. Major elements are explained and rea-
sons why they are needed are given.

4.4.1 Index Table

Many payload files can not be stored in one continuous chunk be-
cause they do not fit in one single file slack. File slacks range from
several Bytes up to about 32 KByte, depending on the cluster size.
That means these files have to be split up in fragments and the frag-
ments are stored in several carrier files as the carriers are available.
When the payload file is read the fragments have to be merged again.
For merging the order of the fragments has to be stored, otherwise
they could be merged in the wrong order. This storing is done in a
clear and systematic way in the index file. The design of the index
table is explained in Section 4.7.1.

4.4.2 Index Entries

Figure 12: A compartment index stored in a data container with example
data.

One entry of the index table consists of exactly four poperties, see
Figure 12. It has to identify a carrier file uniquely. Fortunately, this
does not need an extra ID variable, because the path of the carrier file
already uniquely identifies it. So this path is stored first in the index

60 on implementing a steganographic file system for android

entry.
The second part is the name of the payload file. It is possible to ex-
tend this to a payload file path, but the proof-of-concept implementa-
tion DHFS is restricted to payload files. It does not allow folders and
subfolders.
As a third part the payload file length is stored. The motivation for
this can be found in Section 4.4.6.
The last part is a sequence number to store which part of the payload
file is stored in which carrier file. The payload file parts have to be
joined together in the exact same order as it was before the split-up
into several fragments. This sequence number allows to save this or-
der. The correct order matters here, in contrast to the compartment
index where the order is irrelevant for the functionality.
An index entry needs to be stored in a binary format in order to store
it. It is the simplest way to process a list of comma separated values
(CSV) for an index entry. So each of the four parameters are printed
in a string, separated with a separation character and finalized with
a special character.
The comma character "," is a bad choice since it could already ap-
pear in one of the parameters, most likely in the file paths. There are
several characters "?", "<", ">", "|", "\", "/", "*", """ and ":" which are
reserved in FAT long file names. So a file name can not contain them.
This makes them better separator characters than the comma. So the
separation character is the colon character ":" and the finalization char-
acter is the "greater than" character ">". This is a limitation on FAT.
Other file systems may have different character limitations. In UNIX
systems paths can be escaped, so the only forbidden characters are
the null character and the backslash. However sometimes command
line shells introduce D DHFSmore reserved characters. Most UNIX
systems are POSIX compliant. POSIX fully compliant file names [26]
contain only characters "A-Z", "a-z", "0-9", ".", "_" and "-". So almost all
special characters that are problematic, are excluded. DHFS will pro-
cess fully POSIX compliant file names correctly. It will also handle
FAT and NTFS file names correctly that allow several special char-
acters more. In fact only the characters that are problematic are the
chosen characters "colon" and "greater than". In NTFS the limitations
are as well the backslash and the null character and further forbids
""", "*", ":", "<", ">", "?", "\", "/" and "|". In general NTFS allows e.g.
Unicode or UTF-16 character sets.
A CSV is easy to generate and simple to parse back in. This also im-
plies that neither of the parameter can contain a comma, which is any-
way not possible for numeric values. Carrier file paths and payload
file names must not contain the coma character ",". It is uncommon to
use the comma in a file name or path, but possible with FAT32 long
files names. For FAT 8.3 file names (also known as short file name)
the comma is not permitted, so there is no problem with short file
names in both carrier and payload files.
For writing the CSV an encoding has to be chosen. This encoding is
UTF-8 in DHFS, which is a wide spread standard encoding. UTF-8 is
backward compatible with ASCII encoding.

4.4 design rationale 61

4.4.3 Checksum

If payload data is read, the DHFS file system driver needs to be able to
validate it. The read process finds data in the file slack. It might be all
zeros (empty), random data (written by the initialization), data that
is left over from the carrier file system or actual encrypted payload
data. In order to identify what data is at hand, DHFS calculates and
prepends a checksum of the payload data in this file slack. Hence the
data is decrypted with the password the user entered. For resulting
data the prepended checksum is read and another checksum of the
payload data is calculated. If the checksums match, the payload data
is valid and can be further processed. If the checksums do not match,
the data is invalid. This could be the case because the password was
wrong and the cipher text was decrypted into some invalid random
data. The checksum could be wrong also because there was random
data or other data in the file slack in the first place. If a wrong pass-
word was entered the user or inspector can not know if the password
was wrong or if there is no data there at all.
The chosen checksums is discussed in Section 4.4.4 and Section 4.5.8.

4.4.4 CRC32 Checksum

The Cyclic Redundancy Check with 32 Bit (CRC32) [37] is an error
detection code. There are several versions which differ in the result-
ing hash value (checksum). In case of DHFS the checksum has 32 Bit
and its purpose is to detect errors after storage (or transmission).
CRC32 is based on a binary polynomial division without considering
the carry. The processing is a repeated blockwise division of the long
binary data. The resulting checksum is the remainder of that division.
CRC32 an be efficiently implemented in hardware because XOR can
be used instead of subtraction. CRC32 is mainly for detecting errors,
but it is also able to correct D DHFSBit errors. DHFS uses it for an
integrity check only. CRC32 can not always guarantee to recognize
if the data is not valid. Actually it is easy to manipulate the data in
a way so that CRC does not notice a change due to the systematic
algorithm. Cryptographic hash functions do give this guarantee e.g.
MD5 or SHA1. This guarantee is desirable for DHFS, but MD5 hash
values need 128 Bit and SHA1 hash values are even 160 Bit long. As
discussed in Section 4.4.3 file slack is sparsely available and a trade-
off has to be made between quality of the checksum and investing
space in the slack header, for DHFS in favor of CRC32.
A cryptographic integrity check is done at payload file level addition-
ally which is discussed in Section 4.5.8.

4.4.5 Index Marker

As discussed in Section 4.4.1 the DHFS index is stored in the file slack
just the same as the payload data. During the read process, see Sec-
tion 4.4.3, the DHFS driver needs to decide if the found data is data

62 on implementing a steganographic file system for android

of the index, actual payload data or neither. As a result there has to
be some kind of marker in the header, if the current data is index or
payload data.
This information can be stored in a single bit in the header. Due to the
header alignment the POC implementation uses a magic number to
store this information. For development it is easier to invest a whole
Byte instead of using one Bit. Then Byte alignment allows nice de-
bugging of the implementation. This magic number is finally stored
encrypted so there are no security issues expected. The header layout
is explained in Section 4.6.

4.4.6 End of Payload File (EEOF)

The use of EOF
produces file slack.

Ironically this
system on top of

carrier files, uses of
a marker for the end

of payload, EEOF,
produces slack as

well, file-slack-slack.
Theoretically

another system on
top of this could

produce file-slack-
slack-slack...

recursively until the
disk space is 100%

utilized.

Similar to carrier files that can be smaller than the available cluster
size, payload file can be smaller than the available slack of a car-
rier. This is handled by FAT32 with EOF as mentioned in Section 4.3.
DHFS has to solve the same issue. EOF suggests by its name that there
is an end marker at the end of every file. But in fact there is no magic
number at the end of the file, because then this magic number could
not be stored within any file. It would be mistakenly recognized as
the end of the file. The magic number would have to be escaped with
an escape symbol. This is a inconvenient approach.
It is much better to store the length of the file as a meta information
in the file header. Then any data can be stored. Since the maximum
file slack size is 32 KByte the payload data length of one file slack can
not be greater than 32 KByte. The header data and its data types are
described in Section 4.6.

4.4.7 Compartments

A compartment is a container of payload files. The whole payload file
system (DHFS) contains multiple compartments to generate the plau-
sible deniability property. The compartment number is fixed to eight.
So the user can plausibly explain the existence of all compartments.
He can not change the number. Each compartment is encrypted with
its own password, see Section 4.5.1 and Section 4.5. So a compartment
holding random data can not be distinguished from a compartment
with secret data, without the correct password.
The plausible deniability allows the user to give away one or two com-
partments that hold mildly compromising data. An inspector could
force the user to give up those two compartments. This explains why
the tool was installed and what it was used for. The inspector can not
determine whether or not the rest of the compartments are unused or
still contain more data. So the user can claim to have given away all
passwords and it can not be proven otherwise. Since some data was
given up it is plausible and believable to have found all data, while
the user can still have important secrets in the rest of the compart-
ments.

4.4 design rationale 63

4.4.8 Index Compartment Fragmentation

Each compartment has its own index. If this index does not fit into a
single file slack, multiple file slacks have to be used. A compartment
index can be fragmented, this is a likely case since all files allocated
to that compartment store one entry in the index. The general goal of
having many small files for generating many file slacks, also gener-
ated many entries in the index. One compartment can easily have D
DHFSthousand entries or more.
The internal order of the entries in the index does not matter. So
there is no need for an additional sequence number. The compart-
ment number, see Section 4.4.9, is enough to reconstruct the index of
a compartment. In order to find all compartment index data, all file
slacks have to be checked in an exhaustive search.

4.4.9 Compartment Numbers

Each compartment has to store an Identification (ID) number so when
index data is found, it can be connected with the right compartment.
If there were no compartment ID it would be impossible to decide
which index data corresponds to which compartment.

4.4.10 Compression

The index table stores which carrier files holds which payload file.
Not only the payload data is stored in file slack, also the index tables
are stored in file slacks. Slack space is sparsely available. In order
to minimize the file system overhead the index table should be com-
pressed. The index table is stored as Comma Separated Values (CSV)
and can therefore be compressed effectively similar to normal text.
Also there are many entries that have the same structure.
Consider the following example as proof of the necessity of compres-
sion for DHFS: Assume there are 20 000 carrier files. That means
20 000 carrier paths have to be stored, no matter if any are used or
not. Those are approximately equally distributed over eight compart-
ments, resulting in 2 500 paths per compartment. Now assume an
average path will have 45 characters (also about 45 Byte). That sums
up to 112 500 Byte (about 110 KByte) per compartment. With com-
pression this could be reduced by approximately one third.
Since the use of this file system encourages the use of many small
files, the compression is obviously useful in place. The more carrier
files the more efficient the compression will get. A typical set-up can
easily have 100 000 files or more.
Any text compression algorithm could be used here. "GZip" is a stan-
dard compression tool that is described in Section 4.4.10.2.

4.4.10.1 Index Compression

The index table entries stored in carrier files are compressed with the
Deflate algorithm. The payload data is not compressed, because it

64 on implementing a steganographic file system for android

could already be compressed and then no further advantages can be
gained. For Index data there is a gurantee that it is not compressed
yet. The index format is known and is promising to allow good com-
pression results. There are two ways of implementing the compres-
sion:
Variant A: compress the whole index table and then distribute the
fragments to carrier files.
Variant B: distribute index entries first and then compress the frag-
ments.

In variant A the compression can achieve better effectiveness since
many similar entries can be compressed better than fewer. But then
the binary fragments would have to be reconstructed in the correct
order so the original index table could be decompressed again. This
would result in a need for storing the order of the fragments with an
additional index carrier header parameter e.g. fragment number. This
fragment number could then provide the order information. Another
disadvantage would be that if one index carrier file is overwritten or
somehow damaged the complete compartment index is invalid.

In variant B with distributing the index entries first and then com-
pressing only the fragments, the compression will be less effective
than in variant A. Particularly for very small file slack sizes the com-
pression could be completely ineffective, so a lower bound for in-
dex carrier sizes should be introduced, which is determined in Sec-
tion 4.4.10.3. The minimum of approximately three index entries have
to fit in one index carrier, so the compression will actually produce
shorter output. Assuming the recommendation of media larger than
32 GB is followed, the block size will be 32 KByte, so a statistical
average of 16 KByte file slack size can be expected. In this optimal
situation a lower bound of three index entries (3 · 66Byte) is insignifi-
cant. So files that do not offer the lower bound of slack space would
be disqualified as index carriers, but could still be used as payload
carriers.
The most important advantage of variant B is that there is no need for
the index carriers to be ordered, so no fragment number is needed. If
one index carrier should be overwritten or destroyed, only this one
block is invalid and not the whole index.

At this point robustness is more important than space efficiency, so
DHFS will implement variant B, with distributing index entries first
and then compressing the fragments instead of the other way around.

4.4.10.2 GZip Format

The GZip [53] lossless compression program uses the "DEFLATE"
compression algorithm and is part of the GNU Project. It is publicly
available under GNU GPLv3 and is also part of a standard Java li-
brary in the package java.util.zip. The class Gzip uses this library
to provide convenient methods to compress and decompress data.

4.5 encryption 65

The GZip binary format starts with a magic number (0x1F8B), a ver-
sion number and a timestamp as header, more optional parameters
are allowed. Then the body contains the compressed binary data. In
the end is a footer containing a CRC32 checksum to validate the in-
tegrity of the binary data and also the length of the original data. The
total of the GZip header and footer take at least 12 Byte.
Due to this header and footer a very short input could result in a
larger output. Space is sparse for DHFS and the resulting space has
to be calculated to decide how many carrier files are needed. In order
to minimize the overhead, the header and footer are not used and
only the body remains. The implementation can now directly use
the DEFLATE algorithm provided by java.util.zip.Deflater and
java.util.zip.Inflater implemented in the class DeflateCompress-
ion.
Compression with GZip including the header and footer of 1 Byte
results into an output of 21 Byte, so 20 Byte of overhead are added.
Omitting the GZip header and footer reduces the output length to
nine Byte, so only 8 Byte of overhead remain due to a minimum
output length of the deflate algorithm. So there is still a minimum
overhead, but smaller than if GZip is used.

4.4.10.3 Deflate Break Even Point

So the question arises from which input length will the compression
actually result in a shorter output than input. Generally that depends
strongly on the input entropy. In the case of "lorem ipsum" the break
even point was determined at 66 characters using the DEFLATE al-
gorithm without the GZip headers. At 66 characters input to the
compression also 66 characters output are produced. For less input
characters the output is larger than the input. For more than 66 input
characters shorter outputs than inputs are the outcome. Naturally the
users want to be above that break even point to store data with less
than the original size.
For index entries this break even point will be approximately two to
three entries. One entry may have about 35 Byte. To be on the safe side
the break even point for DHFS can be estimated to about three index
entries. If more than three index entries are stored in one fragment
the compression gives an advantage. This is a moderate requirement.
The index compression can be expected to be effective.

4.5 encryption

This section covers encryption-motivation, -challenges and -solutions
for DHFS. The used encryption is explained and a motivation for the
choices is given.

4.5.1 Need for Encryption

All the data stored in DHFS is stored in file slack. File slack is not
directly accessible by the OS, but if the raw storage data of a bock

66 on implementing a steganographic file system for android

is viewed the data is visible. If nobody checks the file slack the data
is not found, but if this data is inspected then the secrets would be
discovered. A simple string search will find the data. To avoid only
relying on the steganography component the used file slacks must
be encrypted. Hence an inspector would only see encrypted data (ci-
pher text) which is not distinguishable from random data. So if the
steganography fails, there is still a strong encryption in place that pro-
tects the secrets from an inspector. Choosing a strong encryption al-
gorithm and all needed parameters is a difficult task and can quickly
result in a system that looks secure to the layman, but can be trivial
to break for a knowledgeable attacker. Among these parameters are
the algorithm itself, the encryption mode, the initialization vector and
many other small details. This is discussed in detail in Section 4.5.
Each compartment will have its own encryption key generated with
a password. This means only secret key algorithms will be used in
contrast to public key systems. Secret key systems have only one se-
cret key that only the person that created the compartment knows.
So each compartment is independent from the others. This is also
important for the plausible deniability characteristic of DHFS.

4.5.2 Individual File Encryption

For file systems it is desirable to encrypt each file differently, so two
identical files stored twice do not result in the same cipher text. This
is because some data is recurring often e.g. the file header of a PDF
file. If recurring passages in the cipher text appear, one could guess
that this must be a PDF file header, thus a known plain text attack
is created. In order to minimize the attack surface each file will be
encrypted differently.
In 2015 and 2016 ransomeware became quite a trend among classical
malware, due to its relatively low programming effort in comparison
to e.g. banking tojans. If ransomeware somehow infects a systems, it
silently starts to encrypt all accessible files and then asks the user to
pay a certain amount of money to get the data back. Otherwise the
data stays encrypted with a key the victim does not know.
So ransomware faces the same technical problem to implement secure
encryption. For example Schmidt [42] describes that Teslacrypt 2.0 is
malware that works with this concept. It uses one symmetric key to
encrypt each file. Assume there are n=10 000 files then there are n
keys to access all of the files. Now these n keys are again encrypted
with a master key that is sent to (or predefined by) the extortioner
and then deleted from the local disk. Telascrypt made a mistake with
encryption of the n keys. So with some effort the n individual keys
could be recovered without the master key. Teslacrypt 2.0 was broken.
For the extortioner it would have been better not to store the n indi-
vidual keys. If they had not stored them in the first place, they would
not have been retrieved.
An alternative to using n different keys is to look closely at the encryp-
tion mode and use one initialization vector (IV) and add a sequence

4.5 encryption 67

number to that IV for each file. This is a standard technique for cryp-
tography systems. Then each file is encrypted differently, so no re-
curring ciphers appear among files. The IV can be publicly known, Speific limitations

depends on the
encryption mode e.g.
The IV used with
CBC-mode needs to
be protected against
modification.

without weakening the security of the encryption. No individual keys
must be stored, so no keys can be recovered from storage. Only one
master key is used.
DHFS is using a different IV for each carrier file. Also Teslacrypt cre-
ators (black hats) noticed this flaw and evolved Teslacrypt to version
4.0, which was discontinued in May 2016. The producers of Teslacrypt
published their master key with which all files can be decrypted.
Ransomware is still very popular and several implementations with-
out major design flaws circulate.
There are also other examples of file system encryption, Ext4 encryp-
tion mechanics were already discussed in Section 1.6.1.

4.5.3 Entropy for Random Number Generators

Security related processes often require or use random numbers. The
quality of these random numbers is often attacked, so they can be
predicted which sometimes has an impact on security.
This first implementation decision is to use a Pseudo Random Num-
ber Generator (PRNG) or a True Random Number Generator (TRNG).
PRNGs can inherently be predicted. Sometimes they are seeded with
a start value to make this prediction more complicated. There are
poor start values that should not be used e.g. the current time and
date or CPU fan speed that may come to mind. Assumptions about
those sources can be made. The used time stamp can be estimated to
be in certain range which does not offer a enough entropy. Similarly
the fan speed has a small range and it can even be manipulated by
letting the system calculate difficult problems. Then the system will
heat up and the fan is likely to run at its maximum or at least a very
high speed. Mobile systems are usually cooled passively so this is not
an option to begin with.
However, mobile devices e.g. smart phones, tablets etc. have a variety
of sensors and receivers that can be used to gain entropy properly.
This is an advantage over many other devices that do not have that
many sources available. There are e.g. the gyroscope that measures
the three dimensional acceleration, the WiFi, GSM, UMTS, LTE and
Bluetooth receivers as well as light sensors, the camera and micro-
phone that could potentially be a source of entropy.
The Android operating system offers entropy which is used for the
Java TRNG java.security.SecureRandom . Additionally the user could
be asked to draw a random pattern with his finger, if one does not
want to rely on system entropy. The user can always be a source of
entropy independently from the device.
In few cases there is a hardware module to generate entropy by mea-
suring thermal noise of a semiconductor (diode), which is a very good
source because it is hard to influence.

68 on implementing a steganographic file system for android

4.5.4 Encrypt-then-MAC vs. MAC-then-Encrypt

Namprempre and Bellare [3] suggest that simple encryption modes
e.g. Cipher Block Chaining (CBC) do not include a Message Authenti-
cation Code (MAC) which allows to check integrity and authenticity
additionally to the confidentiality and non-repudiation provided by
the encryption itself. More advanced encryption modes like Galois/-
Counter Mode (GCM) already automatically include a MAC.
A MAC can be created e.g. as a hash based MAC (HMAC) with a
hash function. A HMAC uses both the secret key and the message to
create a unique MAC using a cryptographic hash function e.g. MD5

(deprecated), SHA-1 (deprecated) or SHA-256 (strong). The correct
name would then be HMAC-SHA256 for example.
There are basically three ways of assembling encrytion and MAC:

• Encrypt-and-MAC: Computes a MAC on the clear text, encrypts
the clear text and appends the unencrypted MAC to the cipher
text.

• MAC-then-Encrypt: Computes a MAC on the clear text, ap-
pends it to the data and finally encrypts the combination.

• Encrpyt-then-MAC: Encrypts the clear text, then computes the
MAC of the cipher text and appends the MAC to the cipher
text.

Encrypt-and-MAC provides no integrity on the cipher text because
the MAC has the clear text as input. This is dangerous because chosen-
cipher-text attacks are then possible, which is an unnecessary attack
surface.
Still the integrity of the plain text can be verified. If the cipher scheme
is malleable the cipher text could be changed. Malleable means that
the cipher text can be changed so after decryption a related plain
text is the result. Then after decryption the plain text is invalid, even
though just slightly changed. Of course decryption errors can be ex-
ploited. The MAC might reveal information about the plain text. Also
a repeated message will have the same MAC unless the MAC already
includes random input.
MAC-then-Encrypt does not provide integrity on the cipher text.
Without decryption there is no way of proving if the message is au-
thentic or forged.
After decryption the plain text can be checked for integrity.
If the cipher scheme is malleable it might be possible to change the
clear text and also change the MAC accordingly so that the message
appears valid.
In this case the MAC is encrypted so it can not reveal any information
about the clear text, which is good.
Encrypt-then-MAC provides a mean to check the integrity of the ci-
pher text. As long as the MAC shared secret was not compromised it
is possible to prove if the cipher text is indeed authentic or if it was
forged.

4.5 encryption 69

If the cipher scheme became malleable, the MAC will show this im-
mediately and no further processing takes place. Integrity of the plain
text can still be verified.
The MAC is not giving away any of the plain text information since
the output cipher appears to be random and the MAC does so too.
The structure of the plain text is not reflected in the MAC, because
it was created from the cipher in addition to the one-way function
property of the MAC calculation.

To summarize this section, Encrypt-then-MAC is the best choice. Any
modification on the cipher text can be detected and if so the message
will be ignored. Invalid data is not even decrypted preventing any
further attacks on the decryption implementation. Since the MAC
has the cipher text (appears as random data) as input, the MAC itself
can not be used to infer any information about the plain text. Encrypt-
then-MAC provides the highest security of the three alternatives.
The choice between the three alternatives matters most in Client-
Server architectures, where the message is transported on a public
wire. For file systems the transport of data takes place over time in-
stead of space, so forging cipher texts would require write access to
the medium. Doing that unnoticed is even harder.
The Xor-Encrypt-Xor (XEX) -based tweaked-codebook mode with ci-
phertext stealing (XTS) by Rogerway [40] Encryption mode does not
provide any integrity check of the ciphertext. XTS-mode is intended
for and used in at least nine disk encryption products, indeed it is
only NIST approved for this purpose, other usage is discouraged. XTS
is fast and the the de-facto standard in Full Disk Encryption. This
mode uses relatively small blocks (16 Byte) in contrast to other modes
like CBC. XTS is a wide-block tweakable mode from a narrow-block
tweakable mode. This is a complicated construct, in other words, hard
to prove its correctness. XTS does not provide integrity protection
mechanism e.g. MAC is missing. Sector data (file content) is by de-
fault not integrity protected. The most important weakness of the
XTS-mode is that the integrity of the cipher text is not validated.
Hence the cipher text can be manipulated and will be decrypted
unnoticed unless the application on top of XTS implements an in-
tegrity check. XTS is vulnerable to chosen-ciphertext attacks, replay
and randomization attacks as Ptacek [38] describe. An authentica-
tion each sector is too expensive. Rogerway [40] criticizes an unclear
specification of the security goals and argues that three goals are
limitedly reached and not formally proved: limited privacy, limited
non-malleability and "some sort of key-dependent message-security
at least something strong enough to allow the encryption of ones own
key" [40].

4.5.5 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is deemed a strong secure
encryption standard commonly used in many applications and pro-

70 on implementing a steganographic file system for android

tocols e.g. for wireless communication Wifi Protected Access II or in
Transport Layer Security for secure communication over the World
Wide Web.
AES is based on the Rijndael algorithm and is a symmetric block ci-
pher that can process data blocks of 128 Bits. It can use cipher keys
with lengths of 128, 192 or 256 Bit. The National Institute of Standards
and Technology (NIST) of the United States of America standardized
AES.[35]
The AES block cipher is the basis for the used encryption in DHFS.

4.5.6 Counter Mode (CTR)

CTR is defined by the NIST in [8]. CTR is an encryption mode that
can be used with 128 Bit block ciphers. NIST requires the underlying
block cipher to be approved, which means it must be AES with one
of its three key lengths. The CTR mode is the simplest and therefore
most elegant mode of all the confidentiality-only modes. It was first
suggested by the famous Diffie and Hellman at the same time the
other four modes Electronic Codebook (ECB), Cipher Block Chaining
(CBC), Cipher Feedback (CFB) and Output Feedback (OFB) were pre-
sented. "The simplicity, efficiency, and obvious correctness of CTR
make it a mandatory member in any modern portfolio."[40] CTR
can generate ciphertexts with an arbitrary length, so no padding is
needed to fill up the current block. CTR mode generates essentially a
stream cipher, which is quite an advantage for DHFS.
However, there is one downside of CTR. The used counter value key
combination can never be reused. These values pass the hands of the
encryption user which leaves plenty of opportunity to disobey this
critical instruction. Reusing counter values which is in this mode the
IV will lead to a catastrophic outcome for the system security. So the
IV is defined to be a Number used Once (NONCE). A NONCE guar-
antees to be unique in the according cryptography context.
The second disadvantage of CTR is that it does not offer any authen-
ticity, chosen-ciphertext attack security or non-malleability. The en-
cryption user can not assume any of these properties and will almost
certainly fail in doing so. In Section 4.5.4 are the solutions for au-
thenticity and non-malleability discussed. The mitigation for chosen-
ciphertext attacks is discussed in Section 4.5.2.
The encryption and the decryption algorithm are precisely the same,
which is a remarkably pleasant property of CTR. Encryption can be
fully parallelized. CTR has excellent performance (fastest of the five
modes) and its provable security guarantees confidentiality similar to
the other four modes.
The CTR mode takes as input a secret key K, a NONCE N and a plain-
text P. It returns a ciphertext C as output. The underlying block cipher
is E processes a fixed length NONCE part Nx to the intermediate vari-
able Yx with the same length. Yx and the plaintext are combined with
a logical XOR to arrive at the final result, the ciphertext C. Figure 13

shows a block diagram and a mathematical representation of the CTR

4.5 encryption 71

algorithm.

Figure 13: Block diagram and algorithmic description of CTR encryption
mode.[40]

The Galois/Counter Mode (GCM) defined by NIST in [9] is a combi-
nation of the CTR mode and Carter-Wegman message authentication,
in the style encrypt-then-MAC. GCM therefore already achieves Au-
thenticated Encryption with Associated Data (AEAD) out of the box.
For DHFS it is a unfavorable choice, because then the index table
data is hard to include in the MAC. By including the index table data
(payload file name and file size) payload file meta data can also be
checked if they are forged or authentic. With the standard GCM only
the payload file content could be checked.
Another alternative would be to use CBC mode in combination with
an HMAC. Unfortunately CBC [40] can only produce ciphertexts that
are a multiple of the block size e.g. 16 Byte. Thus the last block has to
be filled up with padding e.g. PKCS5. DHFS has an arbitrary length
of file slacks to fill, hence an arbitrary ciphertext length simplifies the
read and write process.

4.5.7 DHFS Cryptography System

The Open Web Application Security Project (OWASP) Guide to Cryp-
tography [13] states recommendations for the design of cryptography
systems. So design decisions can be well made, respectively typical
pitfalls can be avoided. Important topics are the choice of a proper
encryption algorithm, key lengths, key storage and transmission of

72 on implementing a steganographic file system for android

keys. DHFS does not store any keys, nor are keys transmitted, not
even a master key. The choice for a strong block cipher fell to AES
because it is a well known secure algorithm that is expected to stay
secure in the foreseeable future. A key length of 128 Bit for AES isThe number of

atoms contained in
our galaxy is

estimated with
2233[41]. 2256 Bit
offer a large search

space.

deemed secure. The longest (most secure) key length for AES is 256

Bit so this is used by DHFS. For the application in file systems that
typically has one (or very few) users that require both read and write
access symmetric keys are used.

4.5.7.1 Key Derivation Function and Salt

The user should be able to encrypt and decrypt his data by using a
password. This password is processed into a 256 Bit long key for the
data encryption. This is done by a Key Derivation Function (KDF).
KDFs are mathematical one way functions, meaning it is easy to cal-
culate the key from a given password, but it is extremely hard to do
the reverse, to calculate the password from a given key. It can be at-
tempted to calculate the outputs for all inputs. Such a table is called
rainbow table, which can then be used to look up the password for a
given key. The password - key space is designed to be enormous, so
that this approach would represent a huge computational task that
would take thousands of years with today’s computers. However for
some antiquated algorithms today’s computers are fast enough e.g.
MD5 was broken this way. If such a KDF takes not only the password
as input but also a fixed value, called salt, per user or per application
instance, then such a precomputed rainbow table would have to be
computed again for each user or application instance. Thus the KDF
is customized and a general rainbow table is useless. This represents
a significant increase in the KDF’s strength and the salt can still be
public.
The salt does not need to be a true random number (TRN), a pseudo
random, or even a sequence number serves the purpose. Essentially
the higher the entropy the better. The TRN is best, because if one
could assume a fixed start value and a sequence number for a low
number of files then only very little of the large value range would be
used. Computing e.g. "the first few hundred" rainbow tables might be
feasible in future. A TRN uses the whole range avoiding this assump-
tion of few reused salts. The salt has to be different for each use case,
avoiding reuse even with another key provides additional computa-
tional security. Nevertheless a TRN is used in DHFS, implemented
with the self seeding TRNG java.security.SecureRandom. The salt
length is set to 128 Bit, so the possible range is 2128 = 3, 4 · 1038 pos-
sibilities which gives a probabilistic guarantee that there are enough
different salt values. Precomputing a KDF for all salt-password com-The estimated

lifespan of the
universe is 261

seconds. The
number of atoms in

the planet earth is
about 2170 [41]

binations is infeasible.
There are many KDFs, DHFS follows the recommendation of the In-
ternet Engineering Task Force defined in [12] known as Password-
Based Key Derivation Function 2 (PBKDF2). PBKDF2 is a pseudo ran-
dom function that uses a password and a salt to create a key of a cer-

4.5 encryption 73

tain length. This is repeated for many iterations. The iteration count
is also a parameter of PBKDF2 as well as the algorithm to be used.
For DHFS the underlying algorithm is SHA256. The crypto library
javax.crypto.SecretKeyFactory is used to create the PBKDF2. The
iteration count is relatively high with 65536. A few thousand would
also be enough, but the more iterations the better is the computational
security. The iteration count was intended to be able to increase secu-
rity post release. Choosing this value is a tradeoff, more iterations are
more secure, but require more computing. The number of iterations
is configurable so security can be adjusted for different devices. Weak
CPU devices may choose a low number of iterations e.g. 2000. Power-
ful Server hardware may afford a much higher number of iterations,
because a lot of computing power is available e.g. 100 000.
The relative high number of iterations was a performance problem
for the test device due to the high number of repetitions. If the calcu-
lated key is cached and therefore only calculated once, so the iteration
count can remain high. The KDF is used both for encryption and de-
cryption as depicted in Figure 14 and Figure 15. At the moment the
HMAC and the encryption are derived from the same password. Sec-
tion 5.5 describes a way to use two separate keys to decouple the
integrity check and the encryption.
An alternative PBKDF is Scrypt that requires not only computational
power, but also costly memory. The large memory requirements are
problematic for specially dedicated cryptography mining hardware
such as ASICs but also for off-the-shelf graphic cards with. The Graph-
ics Processing Unit has a high computation power but the connected
bus system is in comparison quite slow (the bottleneck) and thus
additional high memory requirements slow down the process signifi-
cantly.

4.5.7.2 Payload and Index File Encryption

After the key is derived from the password as Section 4.5.7.1 describes
it, the data is encrypted with that key. The data in this case is the cur-
rent payload file e.g. MySecret.pdf. The encryption with AES-CTR is
already described in Section 4.5.5 and Section 4.5.6 and also shown in
Figure 14. One salt is needed per password. Since there is one pass-
word per compartment, one salt per compartment is enough. How-
ever the salt is stored in the header of each file due to a lack of a
per-compartment storage. For the same reason the IV is also stored in
the header of each file. The IV (counter value) for CTR mode needs In CTR mode the IV

(counter value) must
be a NONCE. This
is extremely
important! If it is
not a NONCE, the
encryption is
pointless.

to be a NONCE, which is a true random number in DHFS instead
of an increasing sequence number. The CTR mode requires only that
the counter value (and key combination) does not repeat itself. The
range of the IV (128 Bit) is a large enough so a coincidental repeated
IV is statistically unlikely. Both the salt and the IV can be publicly
known without hurting the confidentiality of the encryption. There
is a NONCE for each payload and index file fragment. The encryp-
tion of payload files includes the authentication and integrity check
performed with HMAC. The encryption of DHFS index files does not

74 on implementing a steganographic file system for android

include a HMAC, but most index data is still included in the HMAC
for payload files.

4.5.8 HMAC

As mentioned in Section 4.5.4 the HMAC is a cryptographic integrity
protection checksum. It is used to provide message authentication, in
the sense that the user has knowledge of the secret key, but not more.
It is created using the secret key and the message. For DHFS, the
HMAC-SHA256 algorithm is used. Any change in the message will
lead to a (drastic) change in the checksum. Therefore changes in the
message can be discovered. A manipulated message is invalid and
will not further be processed. There is one HMAC per payload file
fragment. The message in this case is the payload fragment itself in-
cluding the header data and payload file meta data in the index table.
Particularly the payload file name (including the extension), the total
payload file size, the part number and the payload fragment length
are included in the message and hence integrity protected. This is
important for various attack scenarios discussed in Section 4.10. The
only parameter that is not secured with the HMAC is the carrier path.
If that part is wrong the payload data will simply not be found.
For the implementation of the HMAC the Java library javax.crypto.

Mac was used. If a payload file is stored the HMAC is generated and
stored in the index table. Lastly when the compartment is closed,
the index is written to the medium. When a compartment is opened,
the unencrypted index is available again. Then if a payload file is
opened, the according entries in the index are collected. The HMAC
for each fragment is calculated from the metadata and the whole pay-
load fragment. If it matches the stored HMAC no unallowed changes
were made and the payload file is passed to the user. If the calculated
and stored HMAC do not match then an unauthenticated modifica-
tion was made. Therefore the fragment and consequently the whole
payload file is invalid and the user is informed about this incident.
Such a change could happen due to normal carrier file system oper-
ations e.g. partly or completely overwriting a file slack, but it could
also be an attack on DHFS. In both cases the payload file is invalid.
The HMAC is stored in the index with a Base64 encoding so it can be
guaranteed that the special characters for separating the index param-
eters are not included, which are the "colon" and the "greater than"
characters.

4.
5

e
n

c
r

y
p

t
i
o

n
7

5

Figure 14: DHFS encryption block diagram. The HMAC is only generated for payload files and not for DHFS index files.

7
6

o
n

i
m

p
l

e
m

e
n

t
i
n

g
a

s
t

e
g

a
n

o
g

r
a

p
h

i
c

f
i
l

e
s

y
s

t
e

m
f

o
r

a
n

d
r

o
i
d

Figure 15: DHFS decryption block diagram. The HMAC is only generated and compared for payload files and not for DHFS index files.

4.6 memory layout and header data 77

4.5.9 JDK Key Length Restriction

Unfortunately the Java encryption library [6] comes with a default
policy that only allows a key length up 128 Bit. If one wants to use
key longer than that e.g. 256 Bit an InvalidKeyException with the
comment "Illegal key size or default parameters" occurs. This
is not a programming mistake, but a non-technical restriction (policy)
of Java with default settings. The Cipher class permits only up to 128

Bit long key. This restriction can be removed by replacing the accord-
ing policy file found at %JRE_HOME%\lib\security.
This limitation was implemented due to legal limitations in some
countries on encryption strengths. Android does not impose such a
policy that limits encryption key lengths.

4.6 memory layout and header data

Figure 16 reveals the order and composition of the file slack data for-
mat. The index bit is first, because before one can access payload data
the index must be loaded. The CRC32 checksum identifies if valid
data resides in the current file slack, otherwise further processing can
be skipped.
Assume the data container holds index data. So the data container
must be read into a compartment. Then there can only be one GZip
fragment for index data. In the next step the index data can be de-
compressed and loaded into memory.
Otherwise the data container holds payload data. In this case the
compartment number is irrelevant. The compressed data could be a
fragment of a larger compressed file or it could be small enough to
fit in one slack and have only one fragment. The index table holds
that information. Accordingly fragments have to be concatenated in
the correct order and can then be decompressed. If there is only one
fragment no concatenation needs to take place.

The case where index data is enclosed in the data container is de-
picted in Figure 12. One data container will typically hold many se-
rialized index entries as CSVs. One compartment index can and will
likely need multiple data containers. That means multiple index car-
rier files. More detailed information on index entries can be found
in Section 4.4.2. Figure 17 presents the case where the data container
is filled with payload data. In this example file content of the pay-
load file MySecret.pdf is stored. The payload data could use all the
available space of the data container or just a part of it. The length
of the container depends on the slack size. Self-evidently the size of
the slack header has to be deducted from the slack space to arrive at
the correct maximum net data container size. This overhead has to be
kept in mind when fragmentation takes place. A 1000 Byte payload
file needs net 1000 Byte container length. If that payload file is split
in three fragments then the gross space need is 1000 Byte plus three
times the header length (38 Byte), which results in 1114 Byte. The

78 on implementing a steganographic file system for android

Figure 16: Overview of the memory layout and the slack header with header
parameter sizes

needed space for the index is not included. Depending on the avail-
able carrier files, the fragment number will vary and therefore the
additional overhead. The more fragments the more overhead. With a
cluster size of 32 KByte the overhead of 38 Bytes becomes negligible
in terms of wasting space.

Figure 17: A data container that stores payload data.

Figure 16 shows the header parameters in detail including header
parameter sizes. The figure shows that first the IV is stored. This en-
cryption parameter can be public just as the salt that is stored right
after the IV. The salt and the IV are needed to decrypt the encrypted
data that follows them. So only the two absolutely necessary param-
eters are stored unencrypted. The relatively long size with 16 Byte
each is necessary to create a large enough range of values, so it is sta-
tistically unlikely that values would be repeated by the TRNG. The
meaning and need of the IV and salt are discussed in Section 4.5
The index bit is actually one Byte long and contains the magic num-
ber 0x0A (ASCII Line Feed). The approach with an encrypted magic
number is simpler to implement, but one Bit would also be enough.
The CRC32 checksum is here the perfect trade-off between checksum
length and integrity verification quality, see Section 4.4.4
The compartment number can be expected to be in the range of 0 to

4.7 dhfs initialization 79

255, which is 28 − 1, so one Byte (8 Bit) is enough. The corner case of
zero compartments is negligible. The system is not usable with zero
compartments. The number of compartments is a constant, fixed to 8

and starts counting at 1 not 0. Future version of DHFS might increase
this value.
Since the file slack varies, also the available data container length is
variable. There is a minimum requirement for file slack sizes. It has
to be able to store at least the size of the header including IV and salt
plus one Byte of payload data. Otherwise it is too short and will be
ignored by DHFS. An even larger minimum file slack length require-
ment might be useful because it might not be worth the processing
effort to gain just one Byte of payload space.
The compression is only applied to index files because there the con-
tained index data is well defined and can be proved to be compressed
effectively. Payload data compression might result in more data if e.g.
the data is already compressed.

4.7 dhfs initialization

The assumptions mentioned earlier in Section 3.2 must hold (reason-
ably enough file slack). Essentially a decent amount of carrier files
that have to offer at least some slack space. Then using DHFS for the
first time, some initialization has to be done.
DHFS finds an amount of carrier files N. Let N e.g. be 8 000. These
carrier files are distributed among the 8 compartments equally. So
each compartment gets 1 000 carrier files. The file slack of each car-
rier file will vary, so the slack space distributions is statistically equal
for large N. So each compartment has a similar capacity. After the
initialization each compartment has a list of carrier files that are only
associated with the current compartment. Each carrier file can only
be associated to one compartment, otherwise conflicts would occur.
This would be trivial if the indexes of the carrier would not also re-
side in the same carrier files. The index carriers can not be payload
carriers.

4.7.1 Index Table Example

This section contains an example of an index table, see Table 4. It
should clearly visualize the complex index structure.
An index table as described in Section 4.4.1 contains index entries.
The individual index entries are shown in Section 4.4.2. Each index
table describes one compartment only. There are allocated entries
like the one in the first line. This entry states that the first part of
the payload file MySecret.pdf is stored in the slack of the carrier
file /path/to/file.exe. The whole payload file MySecret.pdf has 1

MByte which is stored as the number of Bytes. Assuming an average 1 MByte =

1024 · 1024 Byte =

1048576 Byte
slack size of 2 KByte, the MySecret.pdf would need 512 fragments.
The total size of the payload is stored redundantly for each fragment.

80 on implementing a steganographic file system for android

In contrast to the length of the payload fragment which is stored only
once. The payload fragment size describes how much of the payload
data is stored in the current file slack. The fragment size is very im-
portant. It states how much of the available data in the file slack must
be processed. This can only be stored in the index because the file
slack data, including the header, is still encrypted. Before decryption
the whole file slack is read and therefore the length of the data has to
be known.
The slack fragment size has two Bytes so a non-negative integer can
be saved in an appropriate range. Two Bytes (16 Bit) allow to store
numbers from including 0 up to including 65535, which is 216 − 1.
Unfortunately in Java, primitive data types are stored in the two’s
compliment representation. So they always have a (almost) symmetric
range of positive and negative numbers. The only exception is char

which is too small in this case. In order to do the conversion from
two’s complement into unsigned binary numbers, the class ByteConvert-
Util was created as part of DHFS. The fragment size corresponds to
a 8 Byte unsigned short in C.

Table 4 is decrypted and loaded into memory. Compartment 1 is
therefore opened. Other compartments may not be opened or empty
(and therefore can not be opened).
Notice that there are no restrictions on the carrier file type or format.
Also any payload file can be stored. There are no payload directo-
ries, only payload files without hierarchy are supported by DHFS.
The various file lengths are stored in Byte. Each payload fragment
has one row in the index table. The fragment length varies due to
varying slack sizes and also according to the payload file length. The
HMAC is a cryptographic integrity checksum that is described in
Section 4.5.8. Empty compartments are still initialized and encrypted
with a random password.
Table 5 represents an unopened compartment (password not known).
It could contain random data or encrypted data. DHFS does not
know, until the correct password is entered. Neither could an inspec-
tor know. Table 5 is an illustration that encrypted compartments can
not be read and carrier files allocated to this compartment can not
be recognized. Neither for the purpose of allocating new carrier files,
nor for protecting existing carriers of overwriting, nor for an inspec-
tor to find out about secret payload data. Actually DHFS could not
even create a table like Table 5 because needed parameters are still en-
crypted, the index entry separator for breaking the table rows is only
available in the unencrypted version. After decryption, DHFS would
not attempt to create an index table unless the correct password was
provided.

4.
7

d
h

f
s

i
n

i
t

i
a

l
i
z

a
t

i
o

n
8

1

Carrier path Payload file
name

Total pay-
load file
size

Part
num-
ber

Payload
fragment
size

HMAC (Base64)

/path/to/file.exe MySecret.pdf 1048576 1 412 bQk8Y2T4x5JhYm1B4ya+ro6tDe64phhnCEUtIaYQYZs=

/an/empty/file.doc

/path/to/a/file.pdf Illuminati.xls 1337 1 165 Z4g3MhW4sFg/3FRZSYbKH0nKDyDIrGBBByE90xq5tMY=

/another/empty/file.jpg

/path/to/anotherfile.png MySecret.pdf 1048576 2 283 hf4JS1Htp+IoR8Mzkpq+anrjQKF1DqdtW+fJFNunahM=

/path/to/a/Readme.txt MySecret.pdf 1048576 3 42 Prl2R6d+CFm+fXhfrB+sAmfvEH5nJ5itQQDLkv3PCyo=

/emptyRootDirFile.mp3

.

Table 4: Example of an unencrypted index table of a single compartment, e.g. compartment 1 with explanatory entries.

Carrier path Payload file
name

Total pay-
load file
size

Part
num-
ber

Payload
fragment
size

HMAC (Base64)

tkHpCamCIlgomsVcKOqMFPewmYYJTYvOywNDBCd6v66XRV8agnHqTArwwu5hJOzZH78pUufIUfz95Bp

vHxtreWcv4QWKDHuLhS7eCyf3sp4fZM7YjVVateS0hrVFiRJXDXjbycSRIHpTuhTm4PoxekVbcYM7

lvr9qK7eNdilTdCcdYBk424WLUZCopOnSJBQZgxUuzrWkNs4ucDikBUFmysv6yj1BTU6AZei9exVY

IS3Z6imTkc6tIiiiTzCt8ENuxJOLe7ozyrDR7ROkDHHjwAW73lPgwu4L4LidXdeWQJyvJDiUZEn7vvUd

KJ412zFfP9WpiCJgfOl8cGarUeOjQX13nYjf8bk4s97dH2LWoev1mnDmvXWkc5lfmPwxC2l2KeMNBhOnQ

. . .

Table 5: Fictional illustration of an encrypted index table of e.g. compartment 2. This table is not readable without decryption (with the correct password) first.

82 on implementing a steganographic file system for android

4.7.2 Index Entry Distribution Algorithm

Only complete index entries are written to index carriers. No index
entry fragments are allowed. Each carrier is filled with index entries,
which then are compressed. If the compressed data still fits into the
carrier another index entry can be added and then the whole index
entry list is compressed again and checked again. Finally the point
is reached where the compressed data is too large, then the previous
result that barely fitted is written to the index carrier.

4.7.3 Carrier File and Index Carrier File Allocation

Figure 18: Illustration of data carrier and index carrier allocation process

Figure 18 visualizes the the process of the carrier allocation. In the
first step of the initialization DHFS finds a medium with n carrier files.
They are identified by their path and file name. So DHFS browses the
carrier file system (directory tree) in a deepth traversal first manner
and collects all carrier files in a list. This could also be done in a

4.7 dhfs initialization 83

breath traversal first. This would have the consequence the neighbor-
ing files (same directory) would be neighbors in the traversal file list.
The compartments are allocated in order of that list, so depending
on the traversal strategy neighboring files would be in the same com-
partment or not. This could be important for an redundancy concept,
see Section 5.10.
In the second step the carrier file list has to be distributed among the
compartments. This is a typical distribution problem. So each com-
partment gets the same amount of carrier files, distributed in a round
robin manner. Round Robin is a

scheduling
algorithm that gives
away resources, here
carrier files, one each
and repeats until all
files are distributed.

Then all compartment indices are filled with the carrier file paths.
Now the indices have to be stored in carrier files. So the size of each
compartment index is determined and written into a list. With this list
the method findExtractAllIndexCarriers(...) in the Index class
selects carrier files out of all N carrier files to hold index data. They
are selected randomly, which is described in the next paragraph. The
selection works compartment wise. For example if compartment one
needs 500 Byte for its (uncompressed) index then the selection of car-
riers continues until at least 500 Byte worth of carrier files are found.
Of course the selected carrier files have to be removed from the index DHFS assumes that

there is enough slack
space available to
store all the indices.
This is the defacto
lower space bound
that DHFS needs.
This lower bound
depends strongly on
the number of files
and the amount of
offered slack space.

they are listed in. Therefore all compartment indices are searched for
the carrier files and finally removed. This removal of a few index car-
rier files reduces the already determined size of the indices for a few
index entries. This reduction of the index size can cause the number
of needed index carrier files to drop by a small amount. This will
particularly happen if the offered file slack by the selected index car-
rier files is low. In that case there are e.g. one or two index carrier
files that are not needed. They are then not filled with any data and
will therefore not be used at all. They are orphaned files because they
were already removed from the indices. As a result they are neither
carrying index data nor can they be filled with payload data. Such or-
phaned files can be reintegrated by doing a balancing of DHFS which
takes care of unseen files, see Section 5.8.
The random selection must not allow duplicates, so a carrier file can
only be chosen once. For development a PRNG (java.util.Random.
Random(long seed)) with a fixed seed (one) is used. As a result al-
ways the same sequence is generated and the DHFS driver can be
repeatedly tested under the same conditions. For operational use a
true random number generator is better, because then the carrier files
for the index are different for each initialization. As a True Random
Number Generator java.security.SecureRandom.SecureRandom() is
used. SecureRandom() is self-seeding, so a proper initial value for the
Random Number Generator is chosen automatically each time in a
secure way.
If a randomly selected carrier file does not offer any slack space, it is
disqualified and not added to the index carriers.
For strongly inhomogeneous file slack sizes the distribution of slack
space among the compartments would vary a lot. In terms of slack
space this distribution does not give a fairness guarantee, only the
number of carrier files is evenly distributed. Starvation is possible,

84 on implementing a steganographic file system for android

but an unlikely case if the number of files is large, which is also re-
quired for slack size reasons. In mobile environments this is not a
problem.
The carriers are spread over the compartments in the same order they
are found. The combination of deepth traversal first and round robin
will likely create a mixed pattern of compartments. For example if
there is a carrier file system directory containing eight carrier files,
each carrier file would be associated with a different compartment. If
instead of round robin, all the N carrier files are split in eight blocks,
the eight carrier files will likely be associated with the same com-
partment. These patterns of which carrier files attends to which com-
partment can be important if data is overwritten or redundancy is
introduced into DHFS.
The calculated space must be adjusted by another factor, when it is
split into multiple index fragments. Each fragment resides in a car-
rier file that needs a header. If the total index size of a compartment
is 500 Byte and it is stored in three index carrier files the total space
needed on the medium is 500 Byte plus three times the header size.
This is considered by DHFS. Depending on the available file slack the
fragments are created "on the fly". The number of fragments is not
predetermined. Such a predetermination would be tricky, because the
assumed needed space rises with each fragment. The initially deter-
mined number of fragments would be insufficient. Then an additional
carrier would have to be allocated. In the worst case this could hap-
pen multiple times.

4.7.4 Storing Indices into Index Carrier Files

Now all the index carrier files are prepared. In the next step the in-
dices have to be written into the index carrier files. This is done by the
method writeIndexOfCompartment(...) in the Index class for each
compartment.
An according number of index carrier files that provide enough space
for all the index entries is provided already as Section 4.7.3 describes.
The method writeIndexOfCompartment(...) can rely on having en-
ough space. So each carrier file receives one serialized index entry
after another. The serialized index entries (CSVs) are provided by the
index compartments. Only complete CSV entries are stored in an in-
dex carrier file. Therefore the order in which the carriers are read is
irrelevant. Then the index carrier path is traversed to get to the actual
index carrier file and then the CSV index entries are written.

4.8 dhfs access

This section is about the process of reading a DHFS that was already
correctly written and is undamaged. Here is described how a stored
payload file can be recovered.
The first task of DHFS is to read the index one compartment at a time.

4.8 dhfs access 85

When the index of a compartment is read it goes to the opened state.
Then the content of the opened compartment is displayed and the
stored files can be accessed. the compartments are closed again.

4.8.1 Coincidential Fuzzy Testing

Due to the plausible deniability characteristic of DHFS, the file sys-
tem itself does not know if a compartment is filled with data or if
the compartment is only random data. DHFS will have both. A com-
partment that is not a compartment at all, but only random data is
essentially fuzzing input for DHFS.
Fuzzy testing is a well known and extremely successful testing ap-
proach to find bugs and security issues. A program is given ran-
dom data as input, which leads in many cases to application crashes.
Implementation often make conscious or unconscious assumptions
about the input data e.g. assume a counter only to have positive val-
ues. If a counter then has negative values the program is not prepared
to handle this. That is a cause why strange errors may appear.
Any file slack could be random data. This is a consequence of plausi-
ble deniability. This fuzzy testing aspect was initially not anticipated
and it uncovered several implementation problems that were then
solved. For example huge fragment size that were longer than the
file slack triggering various buffer overflows. The solution was then
a sanity check. The fragment size must be between one and the slack
size of the current carrier file.
Fuzzy testing also appears in DHFS if data is decrypted with a wrong
password. Then the resulting plain text is random data salad as men-
tioned in Section 4.8.2.

4.8.2 Index Search

The user "opens" a compartment x and provides a password for this
compartment. In order to read the index, an exhaustive search is carried
out. DHFS gathers a list of all files on the file system (e.g. SD card).
Then every file slack is attempted to be decrypted with the compart-
ment user provided password, the IV and the salt that are read from
the slack header. If and only if all three parameters are correct, the
decryption will provide the correct unencrypted data. If any of those
parameters are wrong, the decryption will produce randomw data.
In this case DHFS is trying to process random data, which is coinci-
dentally the same as fuzzy testing.
After the decryption the plaintext (or trash data) is tried to be pro-
cessed. First the index Bit (magic number) is checked, see also Fig-
ure 16. If it is the index magic number it is further processed, if not,
DHFS continues with the next carrier. This is an early knock out crite-
rion to avoid unnecessary processing in an already resource intensive
search.
Next is an error-detection check. The CRC32 checksum is read and

86 on implementing a steganographic file system for android

then compared with a newly created checksum from the data. Ac-
cidental data changes can be recognized. If the checksums match,
DHFS assumes valid data. This is a check to detect accidental errors in
the data. CRC32 can easily be forged by a malicious user, an HMAC
not, see Section 4.5.8. This way the index Bit is not integrity protected,
but still confidentiality protected.
In the following step the read compartment number is compared to
the user requested compartment number. If they match processing
continues. It could happen that the user is using the same password
for two independend compartments, then the decryption could re-
sult in the valid plaintext data for two compartments. Of course it is
recommended not to reuse a password, but DHFS would handle it
correctly.
Thereafter the compressed data fragment is uncompressed. Then a
CSV list of index entries emerges, that can be parsed and loaded into
RAM. The order in which the those index fragment are recovered
does not matter. Each index fragment only holds complete index en-
tries. The ordering of index entries in the index table can be arbitrary.
When all files in the file system are processed once, the whole index
of compartment x is found. If one index file is damaged, it is not read
and the index entries of that index fragment are missing. Nonetheless
the valid index fragments are read correctly, and the index still works
for the available entries. Whether or not a index fragment is missing
can not be determined by DHFS. Some additional mechanism would
be needed for that.

4.8.3 Payload File Search

After the index was successfully read, the user gets a compartment
listing, a list of all payload files that are stored in the opened com-
partment x.
For this DHFS iterates through the compartment index entries, check-
ing for inhabited index entries and adds them to a result set without
duplicates. Each fragment has one index entry. One file could have
many fragments, but is only be listed once. This result list is then
displayed to the user.

4.8.4 Payload File Retrieval

Assume the user has already opened a compartment x and got a list
of available payload files. Then a payload file can be selected for re-
trieval from that list.
DHFS now gets the payload file name and the compartment number
x of the file to be opened. The index of compartment x is iterated
for all occurrences of the given payload file name. Each occurrence
represents one fragment of the payload file and is collected in a frag-
ment list. This list is sorted first by ascending part numbers, so the
fragments can already be processed in the right order. There has to
be at least one entry per payload file.

4.8 dhfs access 87

The fragment list is worked through as follows. The first carrier file’s
file slack is read. Before anything else happens with the data, the
cryptographic HMAC checksum is checked. The metadata from the
index, the still encrypted file slack and the secret key are used to gen-
erate a HMAC. If it does not match with the stored HMAC from the
index, this fragment is invalid. The user gets an error message. If the
HMACs match, valid data is at hand.
Then the password, IV and salt are used to decrypt the rest of the data.
This is exactly the same process as with index files. Then the header is
next. First the index Bit (magic number) must match "P" for Payload,
otherwise this fragment is not seen as payload and skipped. Then the CRC32 checks for

payload could be
omitted, because the
integrity is already
checked.

CRC32 checksums and the compartment numbers must match, also
exactly as for index files. There is no decompression because payload
data is not compressed.
Finally the first payload file fragment is extracted. This data fragment
is stored in a byte buffer. The next iteration of the fragment list re-
turns an additional fragment, which is appended to the buffer. Since
the fragment list is sorted the order of the fragments is correct. The
fragment list is worked through until all fragments are found. Then
the complete payload file byte buffer can be handed back to the user.
The user now has a copy of the payload file in memory, not as a
temporary file because this file would need protection.

4.8.5 Adding a Payload File

This section describes the process of adding a payload file to a com-
partment x. The compartment x has to be opened already, as de-
scribed in Section 4.8.2.
The user provides DHFS with a payload file to be stored in the com-
partment x. If the payload file is too large, DHFS will fill all available
space of the compartment and then finally return with an error. On error cases

DHFS might store
left over data. A
balancing step could
neutralize this
behavior. Anyway
the written data
would be protected
just like normal
data.

The procedure of adding a payload file is as follows. The whole pay-
load file is read into a byte array. The payload file has to fit into the
memory, otherwise DHFS can not handle it. Then the index of com-
partment x is iterated until an unused carrier is found. This is a linear
allocation strategy. However, the order of the table depends on the
sequence in which it is loaded. After reinitialization or balancing the
ordering could be different, particular if the number or locations of
carrier files change.
The free index entry carrier file is checked for how much space is
available in its file slack. At least the IV, salt and a header plus 1 Byte
payload data have to fit into that slack to be further considered.
Assuming the slack is large enough, the available net slack space is
filled with the first part of the payload file. DHFS stores the current
offset where the not-yet-written payload byte begins. Then the index
entry is updated and the file slack including header, IV and salt are
written. The first fragment is finished. After that this procedure is
repeated as often as needed. This way the fragments utilize the max-
imum slack space of the current carrier. However, the file’s last frag-

88 on implementing a steganographic file system for android

ment is special. It is unlikely that the last fragment also fits exactly in
the last file slack. In general it will be shorter than the space that is
available. DHFS only writes the needed amount of Bytes to the slack.
Whatever data is stored in the file slack remains there. This will most
likely be random data from the initialization. It could also be left
over data from a previously stored payload file. This would still be
encrypted and then partly or completely overwritten. Fragments of
encrypted data look like random data and can anyway not be recov-
ered.
After the last fragment was written, the job is done and DHFS re-
turns to the user. The process of removing an added payload file is
discussed in Section 5.6.

4.8.6 Example of DHFS State in Memory

Section 4.8 describes the procedures that DHFS uses to implement
file operations e.g. index carrier allocation, payload carrier allocation,
payload fragmentation etc. These operations generate memory arti-
facts in the file slack of carrier files.
Figure 19 illustrates a possible arrangement of different elements that
could be stored by DHFS. This figure continues with example data
used in the example index table Table 4.
Figure 19 shows three fragments of MySecret.pdf. The first two use
all the available slack space, the third and last does not as it is typical.
The unused space is file-slack slack. Also notice that the ordering in
which the fragments are stored in the carriers is arbitrary.
The Illuminati.xls has just one fragment and does not even fill the
Slack2. DHFS only allows a maximum of one fragment per carrier,
even if there is still space left.
Figure 19 also exhibits nicely that both payload data and index data
are stored in file slacks. This lack of separation of index and pay-
load data is not typical in file system and leads to implementation
challenges. Payload data and index could potentially overwrite each
other, without separated address spaces. However DHFS handles this
nicely.

4.9 accessing internal and external memory in android

This section describes how to program with the Android File inter-
face for file systems. It is very similar to disk-based file systems used
on other platforms. Memory location choices and basic file operations
are discussed from the view of an app. Particularly how to save a file
to internal or external memory, free space and file deletion are dis-
cussed.

The Android File API was designed for writing data in a linear
start-to-finish manner e.g. images or network traffic. Reading and
writing files is a basic task of an application (app). This API is re-

4.9 accessing internal and external memory in android 89

Figure 19: Example of memory state of a carrier file system with DHFS.

lated to the standard Java library java.io.

4.9.1 Internal and External Storage

Android distinguishes between internal and external storage. This is
true for all Android devices. The naming stems from early times of
Android devices, when most devices still offered one internal non-
volatile, non-removable memory and additionally a removable (there-
fore external) medium typically a micro SD card. Other devices omit
a removable memory, but then still have one partition used as inter-
nal memory and another partition as external memory. So there are
always two types of memory available.
Internal storage ...

1. is always available,

2. ensures that files are by default only accessible for the app that
created,

3. garantees that all files associated with an app are deleted, when
the app is uninstalled.

Internal Storage encapsulates app data and thus supports the app to
keep data private. Neither other apps nor the user is able to access
those files. There are only very few exceptions e.g. if the device is
rooted the user gains access also to the app internal data.
External storage ...

1. is not always available. Depending on the device, external mem-
ory can be physically removed. It could also be accessed via
USB and is therefore unmounted. Then only the remote device
can access it,

90 on implementing a steganographic file system for android

2. is publicly readable (until Android 4.4). Other apps or the user
may delete, modify or read the data. The data is not exclusively
under control of the creating app,

3. may leave back data after the app is uninstalled. The system
only deletes data from the external memory if the app places it
in a predefined location given by getExternalFilesDir().

External storage is best if there is no need to keep data private or the
app wants to provide the data to other apps or to allow the user to
access it with another computer. Also size considerations play a role.
Depending on the internal and external memory sizes, users might
prefer to use rather external memory than internal. Typically older
and low cost devices were built with little internal memory.
Apps are by default installed in internal memory e.g. /data/data/com.
myapp.appname/ , but an app can specify in the app’s manifest file
the attribute android:installLocation which allows "internal only",
"auto" or "prefer external". In the latter case a large .apk file can be
stored in the external memory. Other data will still be stored in the
internal memory.
Internal memory is using an underlying file system driver of the ex-
tended family, most commonly Ext4, which is device specific. In con-
trast to external storage, which is pre-formated with FAT32. External
storage could also be reformated to an extended file system or an-
other file system that is supported by the Android kernel.

4.9.2 Permissions for External Storage

File permissions for internal memory are implicitly given (for a very
limited per-app space) for an apps, while external storage permission
have to be specifically declared.
Access has to be declared in the app’s manifest, which can be found
in the root of the app with the exact name "AndroidManifest.xml".
As seen in Listing 6 the write permission has to be defined if needed.
Note that write permissions implicitly include read permissions. Gen-
erally for access an declaration has to be made. Depending on the API
level this permission can be left out if and only if getExternalFiles
Dir() are used. For Android 4.4 (API level 19) this is true. For An-
droid 4.3 (API level 18) and lower the declaration is needed anyway.
There is also a corresponding read permission, which should be used
if read access is sufficient for an app.

Listing 6: Android write permission for external storage

<manifest ...>

<uses-permission android:name="android.permission.WRITE_

EXTERNAL_STORAGE" />

...

</manifest> �
There is no permission to request access to a block device.

4.9 accessing internal and external memory in android 91

4.9.3 File Access to Internal Storage

An app has two predefined file locations (directories), one for caching
files returned by getCacheDir() and one for regular persistent files re-
turned by getFilesDir(). Those are per default /data/data/com.my
app.appname/cache and /data/data/com.myapp.appname/files. If system memory

runs low, the system
may decide to delete
cache files without
warning!

Other directories can generally not be accessed from the app. In List-
ing 7 two standard ways for opening a file are depicted. The first
version returns a File type, which allows several meta operations
e.g. to check for write permissions. For reading from or writing to
the file additional classes are needed. In the second version the re-
turn type FileOutputStream directly allows file access. Furthermore
the context mode is specified which version one does not specify. If
MODE_PRIVATE is used the file created by the app are only accessible by
the app. An app programmer can allow read and write permissions
for other apps, however this is rather considered a security flaw than
a communication mechanism. Another app does not have the right to
browse directories, for access it would have to know the correct path
already. The correct path is a fixed base directory /data/data/ and
the app package including folder e.g. com.myapp.appname/files and
the correct filename e.g. hello.txt.

Listing 7: Examples for opening a file in internal memory

Version 1:

File file = new File(context.getFilesDir(), filename);

Version 2:

FileOutputStream outputStream = openFileOutput(filename, Context.

MODE_PRIVATE);

outputStream.write("Hello World!"); �
4.9.4 File Access to External Storage

As mentioned in Section 4.9.1 the external storage can be removed
or used via a PC and could therefore be unmounted. An app should
always verify whether or not the external memory is used otherwise.
If the function getExternalStorageState() returns MEDIA_MOUNTED,
there are no obsticals for further use.
The external storage is modifiable by the user and other apps, still
there are two categories of files, public files and private files. Public
files are freely available to the user as well as other apps. If an app
is uninstalled public files stay at the user’s disposal e.g. pictures or
downloaded files.
Private files are associated with an app and do not offer any use
without the app. These files are deleted by the system when the app
is uninstalled, given that they can be found in the app’s external pri-
vate directory. E.g. temporary media files or additional downloads
are private files. Technically these files are not protected from outside
manipulation.

92 on implementing a steganographic file system for android

Android offers the method getExternalStoragePublicDirectory()

for getting the appropriate directory for public files. Moreover one
can pass a parameter such as DIRECTORY_MUSIC or DIRECTORY_PICTURES
(and more) in order to get the collected data according to its purpose.
The function getExternalFilesDir() delivers the correct path for pri-
vate app data, which of course is for each app a different one. Unfor-
tunately some apps hardcode paths that are not universally adaptable.
This may lead to inconsistencies and is bad programming style.

4.9.5 Free Space and File Deletion

If it is known how much space a file allocation takes, it makes sense to
check if the required space is available. The methods getFreeSpace()
and getTotalSpace() help in this regard. These methods allow in
advance checking for space without causing an IOException due to
too little free space. Also filling up memory beyond a certain thresh-
old may be desirable for performance and the possibility of makeing
use of swap space. The system does not guarantee that all of the free
space is indeed be used up. If the storage is used less than 90% writ-
ing is very likely still safe.
If the file size is not known in advance an IOException should be
caught by the app by default or better additionally.
File deletion is straight forward by using the delete method of the file
interface, respectively the deleteFile() method of the app’s context.

4.10 security analysis

The first barrier for an attacker is that the data is hidden. So the at-
tacker has to find out that there is data hidden in the file slacks. This
is only an obscurity measure. It can be expected that (only) simple
superficial searches for data can be fooled that do not check the file
slacks. The data in the file slacks appears random, but is ciphertext.
DHFS has this obscurity component to hinder attackers in their recon-
naissance, so they would not know where to start attacking DHFS.

The second barrier is a classic encryption solution. Even if the at-
tacker finds out DHFS is used and has detailed knowledge of the
system, the encryption has to be broken first before any plaintext
data can be retrieved. However the attacker could read and write to
the medium and thus has a chance to interfere with the system. There
are generally three security goals: Confidentiality, Integrity and Avail-
ability. Confidentiality is protected by strong encryption, Availability
can not be protected if the attacker has physical access to the device.
If the attacker securely deletes all data on the device or destroys it, all
data is gone. The DHFS encryption system protects the confidential-
ity of all the payload and index data including metadata (header and
index). The only exceptions are the IV and the salt, which need to
be available for decryption. They can be by definition public knowl-
edge. Section 5.2 suggests a obscurity measure to hide these parame-

4.10 security analysis 93

ter from inspectors without knowledge about DHFS. Integrity is pro-
tected with an HMAC (not CRC). The following paragraphs describe
what would happen if data of DHFS was changed by an attacker.
First the manipulation of the index is discussed and then manipula-
tion of payload header data and index header data.

4.10.1 Index Parameter Manipulations

The index data is encrypted, but with knowledge of the data format
the parameters would be changed. All possible parameters are listed
below with the according outcome of an integrity attack.
The term "HMAC protected" applies so several parameters. It means
the parameter is part of the cryptographic checksum, HMAC. If HMAC
protected data were changed or spoofed DHFS will detect this and
give an error message instead of accepting spoofed data.

• spoofing the carrier path
The carrier path could be changed undetected. It is not pro-
tected. This is intentional, because a redundancy solution still
has to be found, which may allow multiple copies of an frag-
ment. If it were maliciously changed, the original data fragment
would simply not be found. Instead of the original a forged
fragment could be used from a different location. However for
forging an encrypted fragment, the secret key would have to
be known, otherwise the decryption would produces random
data. Random data or even spoofed data would be detected
due to the HMAC checksum. As a result changing the carrier
path does not allow forged fragments, only duplicated fragment
would be valid.

• spoofing payload file name and/or file extension
HMAC protected, only the valid parameter will be processed

• spoofing the total payload file size
HMAC protected, only the valid parameter will be processed

• spoofing the part number
HMAC protected, only the valid parameter will be processed

• spoofing the ordering of payload fragments
HMAC protected, only the valid parameter will be processed

• spoofing/changing the HMAC
The HMAC is stored in the index table, which is stored in file
slack (fragments) with a header. The header contains a CRC
check, so if the HMAC was accidentally changed the CRC check-
sum for the according index fragment would be invalid. This
index fragment with all its entries would not be processed. The
other valid fragments would still work independently.
The attacker could attempt to manipulate the CRC checksum.

94 on implementing a steganographic file system for android

This is generally possible due to the lack of cryptographic guar-
antees of the CRC checksum. However the CRC checksum of
the index fragment that contains the changed HMAC is also
encrypted with the secret key. A changed HMAC would result
in an invalid fragment. Even if the attacker would generate an
adjusted CRC checksum he could only have it as plaintext, but
the header is encrypted. In order to create the correct ciphertext
CRC the secret key is needed.
An intentional spoof of the HMAC is not possible. The secret
key is part of the HMAC input data, so the secrete key would
have to be known to successfully forge the HMAC. If the secret
key is known to the attacker he has complete access anyway.

4.10.2 Header Parameter Manipulations

Another attack surface are the header parameters. If the attacker has
knowledge about the header format, he could attempt to change pa-
rameter to influence DHFS. The complete fragment including all pa-
rameters are input the cryptographic HMAC checksum for payload
fragments, hence if any payload data or payload header parameters were
changed the DHFS would detect it and the according payload file frag-
ment would be invalid.
The HMAC is stored in the index table. There is no additional HMAC
for the index fragments, yet. However, used index entries are already
HMAC protected, only unused entries and index header are not HMAC
checked. An attacker could attempt to change the index fragments
with all of its parameters and data. The consequences of a change of
each index data and index header modification are listed here: The index
header and data are encrypted, so changing it in a meaningful way
requires the knowledge of the secrete key. Nevertheless a change of
the encrypted data is possible, spoofing is very hard or not possible.
Changing the ciphertext at a specific location will result into a change
of the plaintext at about the same location. The change would not
propagate though the complete ciphertext like it would in Cipher
Block Chaining mode, where each block depends on the former block.
A change would stay within the block boundaries, which is the IV (or
key) length (16 Byte in DHFS). Due to the diffusion property of the
underlying block cipher a change of one Bit of the input would result
into a drastic change of the output block. Therefore a change of only
one or several bits is hard to reach.
For the sake of this analysis it is assumed that single parameters or
data could be changed:

• changing the index Bit (currently magic number)
If the attacker changed the magic index number it is very likely
that it will be processed to an arbitrary number. Most likely
magic number would be nether of the two valid magic num-
bers. Then the fragment would be ignored as random data.
If it were luckily recognized as payload it would be uncovered
during the access by the an invalid HMAC for payload frag-

4.10 security analysis 95

ments. If it were luckily recognized as index, due to a rare col-
lision in the encryption, the fragment is processed as a index
fragment. This requires the to have the correct format.

• changing the CRC32 checksum
A change in this value would indicate that the fragment is in-
valid. A spoofed CRC check could allow spoofed index data.
However the checksum is encrypted is therefore hard to change
in a meaningful way.

• changing the compartment number
A change of this parameter (1 Byte) would likely result in a
non-existing compartment number, which means DHFS would
not associate it with one of the valid 8 compartments. Therefore
DHFS would never access it. If the compartment number were
luckily a valid compartment number, it would not have it listed
in the correct compartment index and never try to access it.

• changing the compressed index data (fragment)
If the compressed data were changed, it would very likely result
in a damaged uncompressed data. Then the index format (sep-
arators) would not appear as DHFS expects them. This would
result in a parsing error. DHFS would run into an Exception,
because it relies on the index data format, which is checked by
the CRC checksum.

• changing the index data of the index fragments
The index data is stored compressed and is only uncompressed
if an compartment is in the state "opened". Then the index is
held in memory. For reaching the opened state the secret key
is needed. Then the data of that compartment is plaintext read-
and write-able. The user has to avoid the szenario of having the
device inspected if any of the compartments are still opened.
Even more the DHFS app should be uninstalled before a fore-
seeable check happens. For unforeseeable checks an automatic
close of all compartments could take place after a certain time
e.g. 5 min. If the device were powered down with an opened
compartment, all changes of this session could be lost, because
they were not persisted to the medium.

All payload file data and meta data is HMAC protected (excep-
tion carrier file path). Only the unused index entries and the index
header are not HMAC protected. So only information about the in-
dex (meta meta data) might be changed undetected. An additional
HMAC could protect this data too, see Section 5.4
DHFS does not suffer from a boot-time vulnerability as MobiHydra
[52] does. There are no known attacks on DHFS that can lead to harm
for the confidentiality or integrity of the data. Availability can still be
improved (see Section 5.10), but provably not guaranteed, because the
use case assumes physical access of the device for an inspector.

96 on implementing a steganographic file system for android

4.11 potential abuse

DHFS could be abused to transfer illegal data e.g. child pornography.
DHFS is merely a tool with security emphasis.
Steganography is a topic that is interesting for malware producers.
Trojans generally want to be and stay hidden from the user, a virus
scanner or a forensic investigator. Standard file system drivers can not
access the file slack. If a virus scanner is limited to standard drivers,
file slacks can not be inspected. Maleware could be stored in DHFS.
Only a loader component would be needed additionally that reads
and writes from/to DHFS. Such a loader could easily avoid signature
based virus scanners by using randomizing components.

4.12 android app concept

This section suggests an Android User Interface (UI) and provides
a conceptional solution as well as implementation hints. The DHFS
Android app would use DHFS as Java library, imported as an archive
(.jar). The class HFileSystem represents the class with which the li-
brary user interacts. The app does not require root permissions, only
access to the SD-card is requested by the app in order to be able to
read and write to the FAT32 carrier file system image, see Listing 6.
Any Java enabled platform (Servers, PCs, notebooks, tablets) could
potentially implement a client.
The Android app could use the library to provide a Service limited
only to the client app by setting android:exported="false" in the
service declaration in the manifest file.
The different Activities (screens the user sees) could call service
methods such as open/close compartments, list compartment’s pay-
load files etc. This service has performance intense tasks e.g. search-
ing all file slacks for indices and decrypting them, therefor the service
should not run in the Graphical User Interface (GUI) thread but in an
separated thread. So the GUI does not freeze when the thread is busy,
instead a circular loading bar could be displayed.
The Activities in the DHFS app will often work with lists e.g. of
compartments or payload files. The communication between Activi-

ties works with Intents that allow to pass on custom lists via the
intent.putExtra() respectively intent.getExtras().
The app would need to interact with other apps. New payload files
are an input to the DHFS app and stored payload files e.g. MySe-
cret.pdf are outputs. After storing a file, the user may want to open
or export them again e.g. open the stored MySecret.pdf with an PDF
viewer app. As a result the DHFS app has to provide the PDF to a
viewer of the user’s choice. For the DHFS app this is not trivial.
Inter-app-communication typically uses Intents, but they use Uni-
form Resource Identifiers (URIs) to pass on files, these are references
of files. DHFS can not provide an URI (due its hidden files) that
could be opened by an external app. Instead it would directly pro-

4.12 android app concept 97

vide the file content as ByteArray. This is possible with Intents, but
external apps would (likely) not expect this form. They would expect
an URI and try to open it as a file. Since Android 4.4 (API level 19)
the Storage Access Framework (SAF) [18] which is a content provider
is available. This is an interface for cloud file providers e.g. Google
Drive to browse and access remote files on Android. SAF offers a
file picker (Intent.ACTION_OPEN_DOCUMENT) that can be used for se-
lecting input (payload) files. Additionally DHFS could implement a
DocumentsProvider as described by Google documentation [18] to
make payload files available to other apps. A DocumentsProvider

class would wrap the ByteArray of the payload data. In this case the
file data is not provided with an URI, but an ParcelFileDescriptor

to other apps. This avoids the problem of using Intents that work
with URIs.
In contrast to cloud file providers DHFS does not need to transfer
files over the Internet to the user, but only from the locally hidden
file system to the user. Nevertheless the interface works for this pur-
pose.
It is important that after a use of DHFS all opened compartments are
closed again. For convenience the app could support this by automat-
ically closing all compartments if it thinks the use is over e.g. after
5 minutes of the last user action or when the display is turned off
(using a android broadcast receiver for this event). Figure 20 and Fig-
ure 21 show how an Android client app could look like. These screen
shots were taken on the Android emulator.

9
8

o
n

i
m

p
l

e
m

e
n

t
i
n

g
a

s
t

e
g

a
n

o
g

r
a

p
h

i
c

f
i
l

e
s

y
s

t
e

m
f

o
r

a
n

d
r

o
i
d

(a) Start- and logon- screen (b) Entering compartment passwords (c) Opening compartments in an addi-
tional thread

(d) List of opened compartments

Figure 20: Screen shot series of DHFS Client App - part 1

4.
1

2
a

n
d

r
o

i
d

a
p

p
c

o
n

c
e

p
t

9
9

(a) Tap compartment 2 to open it (b) Payload file list of compartment 2 -
tapping a file would display app(s)
to open it

(c) Tapping the "plus" in the right bot-
tom triggers the file picker to add a
new payload file

(d) Tap the "back" button in the left
bottom until the initial screen reap-
pears and tap "close all" to end the
app

Figure 21: Screen shot series of DHFS Client App - part 2

Part IV

F U T U R E W O R K , S U M M A RY A N D
C O N C L U S I O N

5
F U T U R E W O R K

5.1 direct block device access

Currently the FAT32 carrier file system is located in an image file
that is e.g. on a mobile phones’s SD-card. This image file is visible
and easy to inspect, but for a proof-of-concept this disadvantages are
accepted. The data would be better hidden if instead of the image
file the actual SD-card file system were used. Section 4.2 discusses an
attempt to do this, but SE Linux policies forbid it. For an Android
firmware manufacturer it would be possible to simply adjust the SE
Linux policies to allow access to a block device for the use case of
DHFS, probably by creating a request able permission (similar to Sec-
tion 4.9.2) for this access. There are several Android firmware alterna-
tives that claim to have an security emphasis e.g. DarkMatter Phone,
Guardian Rom, Tails Mobile etc. It would be simple for them to intro-
duce the needed change of the SE-Linux policy.

5.2 encryption parameter masking

Each file slack header begins with the IV and the salt values. They can
not be encrypted. The IV is the same for each payload file fragment
and the salt is the same for data and index fragment in a compart-
ment. In the case of an inspector checking the file slack, he might
notice those repetitive values. This might be a hint for further investi-
gation. From the point of view from the encryption these parameter
can be public. In order to hide these parameters better they could
be combined with an HMAC (or another any data checksum) of the
encrypted data and subsequently only store the combination e.g. the
Xor operation is easily reverse able. As a result no reappearing values
would occur. This makes the IV and Salt parameters less visible. An
attacker without knowledge of the system will not have access to the
original parameters.

5.3 key caching

It would be a significant performance improvement if the key de-
rived via the PBKDF2 would be cached within one session, otherwise
each operation would again derive the needed key from the given
password. The PBKDF2 uses performance intense calculations hence
reducing the number of calls to it will have a noticeable positive im-
pact.

103

104 future work

5.4 integrity checks

The HMAC protects payload file fragments and payload file meta
data, but the index carriers are only CRC32 protected. The index data
could also be HMAC protected, by e.g. perpending an HMAC to the
complete index or even each index fragment. Then the index would
also be adequately integrity checked with cryptographic guarantees
that CRC32 lacks. In fact then the CRC32 could be completely omit-
ted, because it is substituted with a better solution.

5.5 encryption and hmac key decoupling

At the moment the same key is used for the encryption and for the
creation of the HMAC. This is not a security hole, though using inde-
pendent keys provides additional security. If one key is compromised
the other key is not automatically compromised as well. One would
need to have knowledge of both secret keys to trick the encryption
and the integrity check. If the encryption is broken the data can be
read, but not changed without detection. If the HMAC key is broken,
the ciphertext can be changed without detection, but not read it in
plaintext.
There is a simple way to implement this decoupling as shown in
Figure 22. The Key Derivation Function returns one key. In order to
create n new keys the key could be combined (XOR) the SHA-256

hash value of the constant 1. A second new key could be derived by
using the constant 2 instead of 1. Then one new key is used for the
encryption and the other for the HMAC.

Figure 22: Decoupling encryption and HMAC keys

5.6 removing a payload file 105

5.6 removing a payload file

If the user wants to remove a payload file there are (at least) two ways
to do it: mark deleted and overwrite.
For both cases the compartment has to be opened. The user would
define which file to delete as an input to the delete method. It would
search the compartment index for all entries that match the payload
file name. The read method already implements this. In order to mark
the file deleted, the according index entries would empty the file meta
data (payload file name, size and fragment number) and then store
the index entries. Then there are no references to the data left, but the
data it self would still be there. This is a common way of deleting a
file.
Going one step further would be to overwrite the data as well. This
leaves less traces of the previously stored data but takes additional
write operations (worse performance).
The start is the same as for the mark-deleted methodology. But before
the list of index entries of the to be deleted payload file is emptied,
it has to be iterated. For each index entry a method has to be called
that overwrites this file slack with random data. The file slack write
method can be reused for this. After that again the references in the
index entries should be removed as described for the mark-deleted
method.

5.7 in place payload file editing

At the moment DHFS can read and write data to file slacks. It would
be an improvement if a change in a payload file could be persisted
without the need to rewrite unchanged fragments.

5.8 balancing dhfs

DHFS uses the available carrier files at the time of its initialization.
However new files could be added or existing files could be deleted.
When the carrier file system changed DHFS could be balanced, so un-
used files are included in the index and thus will be usable for DHFS.
This process could be implemented similar to the initialization, see
Section 4.7.
Balancing will be different for used and unused compartments. Un-
used compartments could be reinitialized (overwritten). The unused
compartment’s indices can not be accessed because the indices are
encrypted with an unknown key.
The used compartments can only be balanced if they are opened. So
the first step would be to ask the user to open all used compartments.
The system does not know due the plausible deniability characteristic.
Then all the indices should be checked if carrier files were deleted. If
so the according index entry should be deleted. This could be done
by traversing the carrier file system and creating a complete list of
all available files. Then each carrier file path from the compartment

106 future work

indices entries is looked up and removed in the new carrier file sys-
tem listing. Then the carrier files of the unused compartments and
the newly added carrier files remain in the list.
In the next step the unused compartment should get carrier files as-
sociated up to the average of the used compartments. Hence all com-
partment will have roughly the same amount of carrier files. Either
there are less carrier files available then the unused compartments
will have less carriers than the used onces, or there are more carrier
files available then all compartments should get an equal amount of
carrier files. This distribution is the same as in the initialization pro-
cess. In the case that there are fewer carrier files, the unequal distri-
bution could be accepted (recommended option) or carrier files from
the used compartment would have to be reassigned to unused com-
partments. This could be a problem if used compartments are heavy
occupied by payload files and no free carriers are available.

5.9 payload directories

DHFS currently only supports to store payload files, no payload di-
rectories. Some users might also want to be able to store payload files
in payload directories to have a clean hierarchical structure (directory
tree). This could be done by extending the payload file name in the
index to a payload file path. It would be performance wise desirable
that payload files of the same directory would be adjacent in the in-
dex or at least near.

5.10 redundancy

File slacks of carrier files could be overwritten by append operations
of processes that are unaware of DHFS. So there is a need for pro-
tection in case some file slacks are overwritten. One solution is to
introduce redundancy.
There are (al least) three levels on which redundancy could be imple-
mented: Compartments, payload files and file slack fragments.
Each compartment could be stored redundantly e.g. three times. This
implies to increase the fixed number of compartment also by a factor
three. Alternatively when a payload file is written it would not just
be written once but three times. This would use more index entries.
The index processing would have to be adjusted by e.g. appending
a short string to the payload file name indicating which redundant
file it belongs to. Another way would be to create (exact) duplicates of
the payload fragments. This could be problematic because the frag-
ment size depends on the available file slack size. Fragment dupli-
cates would have to be exact duplicates with the same size, otherwise
the used HMAC would detect changes and deny the use of changed
data. Therefore the fragment layer can not be recommended due to in-
efficient use of space. The other two layers (compartment and payload
files) would not have a problem with the HMAC check. The payload
file level redundancy is preferable because redundancy is only cre-

5.11 payload file compression 107

ated if it is needed, at the time it is needed (at payload file storage),
not before. Compartment redundancy would also redundantly store
unused (unallocated) data multiple times and consequently waste
space, that could be used otherwise.

5.11 payload file compression

Index data is currently stored compressed. An optional compression
for payload fragments or files could be implemented almost identi-
cally to the index fragment compression. This may help to solve slack
space issues and reduce the load on a redundancy concept.

6
S U M M A RY A N D C O N C L U S I O N

6.1 summary

Files are stored in blocks. Those blocks are not always completely
used. In this thesis this space (file slack) is used to hide data. Hiding
files (Steganography) improves the chances that an adversary remains
unaware that data is stored at all. Additionally a Plausible Deniabil-
ity construction with a fixed number of compartments is used and of
course the data is encrypted (AES-256-CTR with HMAC) as well. A
detailed rationale of the Deniable Hidden File System for design and
encryption decisions is given that shows how its challenges are met.
The result is a proof-of-concept implementation of a file slack file sys-
tem with a security emphasis. Moreover an Android app concept and
user interface for DHFS is presented. Furthermore the design and par-
ticularly the encryption are reviewed in an security analysis.

6.2 conclusion

This thesis proves that a file system based on file slacks is indeed
possible and practical. It offers up to several GBytes of space. DHFS
offers strong encryption in addition to a chance that an inspector will
overlook that there is data hidden.
Even if it should come to a confrontation e.g. in a court proceeding
the user can surrender some mildly compromising data and plausibly
deny possessing more data than what was provided. While full coop-
eration is perceived by the inspector, secret data will remain private.
Private means that the confidentiality and integrity of the hidden data
is guaranteed by the encryption system. A proposed security analysis
gave no indication of security holes being present.
In order to improve availability the introduction of redundancy can
be recommended. However, availability can not be guaranteed pre-
suming an inspector has physical access to the device.
Future research could aim at bringing a file slack file system into a
release stadium, providing more features, implementations for more
platforms, improving performance and usability. Then integration in
a secure Android firmware could be achieved.

109

Part V

A P P E N D I X

A
A D D I T I O N A L M AT E R I A L

a.1 simple use case and test

Figure 23: Simple Use Case of DHFS

113

114 additional material

Listing 8: Verbose debugging output of the test case depicted in Figure 23

useing the image file fat32test.img

127 Files found with slacks

--- Compartment 1:

index carrier path: /word documents/bar.docx

offers 478 summedCarrierSlackspace (nett) 473

index carrier path: /libfuse-master/LIB/cuse_lowlevel.c

offers 401 summedCarrierSlackspace (nett) 869

--- Compartment 2:

index carrier path: /libfuse-master/LIB/FUSE.C

offers 424 summedCarrierSlackspace (nett) 419

index carrier path: /added

offers 507 summedCarrierSlackspace (nett) 921

--- Compartment 3:

index carrier path: /libfuse-master/UTIL/fusermount.c

offers 141 summedCarrierSlackspace (nett) 136

index carrier path: /libfuse-master/LIB/FUSE_I.H

offers 427 summedCarrierSlackspace (nett) 558

index carrier path: /Tor exit node/Peham-ISP_und_die_

Anonymisierung_seiner_Kunden.pdf

offers 99 summedCarrierSlackspace (nett) 652

index carrier path: /libfuse-master/LIB/mount_util.h

offers 301 summedCarrierSlackspace (nett) 948

--- Compartment 4:

index carrier path: /WEBSITE/WISSEN/CONTENT/E16607/E16332/E

257286/E257772/employee_groups_wiss257774/employees258536/

SabrinaWeigl_ger.jpg

offers 291 summedCarrierSlackspace (nett) 286

index carrier path: /sample.txt

offers 506 summedCarrierSlackspace (nett) 787

--- Compartment 5:

index carrier path: /libfuse-master/DOC/KERNEL.TXT

offers 247 summedCarrierSlackspace (nett) 242

index carrier path: /Tor exit node/Hoermanseder-Konfiguration_und
_Betrieb_eines_Tor_Servers.pdf

offers 428 summedCarrierSlackspace (nett) 665

index carrier path: /New Textdocument.txt

offers 507 summedCarrierSlackspace (nett) 1167

--- Compartment 6:

index carrier path: /word documents/U.docx

offers 478 summedCarrierSlackspace (nett) 473

index carrier path: /libfuse-master/INCLUDE/FUSE_OPT.H

offers 131 summedCarrierSlackspace (nett) 599

index carrier path: /ECLIPSE/ECLIPSE.INI

offers 53 summedCarrierSlackspace (nett) 647

index carrier path: /libfuse-master/UTIL/mount.fuse.c

offers 21 summedCarrierSlackspace (nett) 663

index carrier path: /WEBSITE/WISSEN/CONTENT/E16607/E16332/JKU-

Banner-forschen_ger.jpg

offers 23 summedCarrierSlackspace (nett) 681

index carrier path: /ROOTDIR2/SUBDIR5/unsuspicious File.html

offers 465 summedCarrierSlackspace (nett) 1141

--- Compartment 7:

index carrier path: /libfuse-master/AUTHORS

offers 464 summedCarrierSlackspace (nett) 459

A.1 simple use case and test 115

index carrier path: /libfuse-master/LIB/fuse_signals.c

offers 240 summedCarrierSlackspace (nett) 694

index carrier path: /libfuse-master/LIB/fuse_lowlevel.c

offers 55 summedCarrierSlackspace (nett) 744

index carrier path: /libfuse-master/EXAMPLE/FIOC.H

offers 169 summedCarrierSlackspace (nett) 908

--- Compartment 8:

index carrier path: /libfuse-master/DOC/.gitignore

offers 487 summedCarrierSlackspace (nett) 482

index carrier path: /WEBSITE/ZONA/CONTENT/index.html

offers 134 summedCarrierSlackspace (nett) 611

index carrier path: /libfuse-master/EXAMPLE/Makefile.am

offers 56 summedCarrierSlackspace (nett) 662

index carrier path: /libfuse-master/INCLUDE/cuse_lowlevel.h

offers 499 summedCarrierSlackspace (nett) 1156

carrier space available 478 of file /word documents/bar.docx

cSVFragmentlen: 690

write checksum 1896714378 with len 324 to carrier bar.docx

neededspace 332 of fragment_/New Long Directory/Neues

Textdokument.txt::0:0:0: >/PODCAST/Aerger und

Selbsterkenntnis.m4a::0:0:0: >/WEBSITE/newsfeed.xml.html

::0:0:0: >/WEBSITE/WISSEN/CONTENT/E16607/E16332/E16044/

employee_groups_wiss108511/employees119729/MS_688.JPG::0:0:0:

>/WEBSITE/ZONA/CONTENT/E41510/employee_groups_wiss104378/

employees297320/100Zahnrad2.jpg::0:0:0: >/libfuse-master/.

gitignore::0:0:0: >/libfuse-master/README.MD::0:0:0: >/

libfuse-master/DOC/Makefile.am::0:0:0: >/libfuse-master/

EXAMPLE/FSEL.C::0:0:0: >/libfuse-master/EXAMPLE/NULL.C

::0:0:0: >/libfuse-master/LIB/BUFFER.C::0:0:0: >/libfuse-

master/LIB/FUSE_MT.C::0:0:0: >/libfuse-master/LIB/mount_bsd.c

::0:0:0: >/libfuse-master/TEST/TEST.C::0:0:0: >_

carrier space available 401 of file /libfuse-master/LIB/cuse_

lowlevel.c cSVFragmentlen: 0

carrier space available 424 of file /libfuse-master/LIB/FUSE.C

cSVFragmentlen: 762

write checksum 3090469600 with len 361 to carrier FUSE.C

neededspace 369 of fragment_/ROOTDIR1/SUBDIR2/NOTE.TXT

::0:0:0: >/ECLIPSE/.eclipseproduct::0:0:0: >/Tor exit node/

Bergauer-Strafrechtliche_Aspekte_der_Providerhaftung.pdf

::0:0:0: >/WEBSITE/content.html::0:0:0: >/WEBSITE/WISSEN/

CONTENT/E16607/E16332/E16044/employee_groups_wiss16041/

employees136345/GeorgZenz_ger.png::0:0:0: >/WEBSITE/WISSEN/

CONTENT/E16607/E16332/E257286/E257772/employee_groups_wiss

257774/employees258537/GeorgZenz_ger.png::0:0:0: >/WEBSITE/

ZONA/CONTENT/E41510/employee_groups_wiss195896/employees

279316/Unbenannt.png::0:0:0: >/libfuse-master/README.NFS

::0:0:0: >/libfuse-master/DOC/mount.fuse.8::0:0:0: >/libfuse-

master/EXAMPLE/fselclient.c::0:0:0: >/libfuse-master/LIB/FUSE
_OPT.C::0:0:0: >/libfuse-master/LIB/mount_util.c::0:0:0: >/

libfuse-master/UTIL/.gitignore::0:0:0: >_

carrier space available 507 of file /added cSVFragmentlen: 0

carrier space available 141 of file /libfuse-master/UTIL/

fusermount.c cSVFragmentlen: 58

116 additional material

write checksum 2336604096 with len 52 to carrier fusermount.c

neededspace 60 of fragment_/ECLIPSE/artifacts.xml::0:0:0: >/

WEBSITE/im.html::0:0:0: >_

carrier space available 427 of file /libfuse-master/LIB/FUSE_I.H

cSVFragmentlen: 432

write checksum 2675982989 with len 242 to carrier FUSE_I.H

neededspace 250 of fragment_/WEBSITE/WISSEN/CONTENT/E16607/E

16332/E16044/employee_groups_wiss16041/employees172829/

SabrinaWeigl_ger.jpg::0:0:0: >/WEBSITE/ZONA/MS_9178.html

::0:0:0: >/WEBSITE/ZONA/CONTENT/E41656/index.html::0:0:0: >/

libfuse-master/configure.ac::0:0:0: >/libfuse-master/DOC/

IMAGES/490px-FUSE_structure.svg.png::0:0:0: >/libfuse-master/

EXAMPLE/FUSEXMP.C::0:0:0: >/libfuse-master/INCLUDE/FUSE.H

::0:0:0: >/libfuse-master/LIB/fuse_session.c::0:0:0: >_

carrier space available 99 of file /Tor exit node/Peham-ISP_und_

die_Anonymisierung_seiner_Kunden.pdf cSVFragmentlen: 0

carrier space available 301 of file /libfuse-master/LIB/mount_

util.h cSVFragmentlen: 0

carrier space available 291 of file /WEBSITE/WISSEN/CONTENT/E

16607/E16332/E257286/E257772/employee_groups_wiss257774/

employees258536/SabrinaWeigl_ger.jpg cSVFragmentlen: 423

write checksum 3456944037 with len 243 to carrier SabrinaWeigl_

ger.jpg neededspace 251 of fragment_/ECLIPSE/ECLIPSE.EXE

::0:0:0: >/Tor exit node/Mayrhofer.M-Anonymisierung_im_Web _

und_Grundrechte.pdf::0:0:0: >/WEBSITE/MS_6.html::0:0:0: >/

WEBSITE/WISSEN/CONTENT/E16607/E16332/E16055/JKU-Banner-

forschen_ger.jpg::0:0:0: >/WEBSITE/ZONA/CONTENT/e41510.html

::0:0:0: >/libfuse-master/COPYING::0:0:0: >/libfuse-master/

DOC/Doxyfile::0:0:0: >/libfuse-master/EXAMPLE/.gitignore

::0:0:0: >/libfuse-master/EXAMPLE/fusexmp_fh.c::0:0:0: >_

carrier space available 506 of file /sample.txt cSVFragmentlen:

134

write checksum 3722112691 with len 91 to carrier sample.txt

neededspace 99 of fragment_/libfuse-master/INCLUDE/fuse_

common.h::0:0:0: >/libfuse-master/LIB/MODULES/ICONV.C::0:0:0:

>/libfuse-master/UTIL/init_script::0:0:0: >_

carrier space available 247 of file /libfuse-master/DOC/KERNEL.

TXT cSVFragmentlen: 263

write checksum 2331923815 with len 182 to carrier KERNEL.TXT

neededspace 190 of fragment_/adddir/Another long file.txt

::0:0:0: >/Tor exit node/Mayrhofer.R-Anonym_im_Internet_

mittels_Tor.pdf::0:0:0: >/WEBSITE/MS_10393.html::0:0:0: >/

WEBSITE/WISSEN/CONTENT/E16607/E16332/E16099/E16086/fodok_6_

eng.jpg::0:0:0: >/WEBSITE/ZONA/CONTENT/imprint.html::0:0:0:

>_

carrier space available 428 of file /Tor exit node/Hoermanseder-

Konfiguration_und_Betrieb_eines_Tor_Servers.pdf

cSVFragmentlen: 452

write checksum 3225083542 with len 202 to carrier Hoermanseder-

Konfiguration_und_Betrieb_eines_Tor_Servers.pdf neededspace

210 of fragment_/word documents/Hengstberger Martin 0755731.

docx::0:0:0: >/libfuse-master/fuse3.pc.in::0:0:0: >/libfuse-

master/DOC/fusermount.1::0:0:0: >/libfuse-master/EXAMPLE/

CUSEXMP.C::0:0:0: >/libfuse-master/EXAMPLE/fuse_lo-plus.c

::0:0:0: >/libfuse-master/INCLUDE/fuse_kernel.h::0:0:0: >/

libfuse-master/LIB/fuse_loop.c::0:0:0: >/libfuse-master/LIB/

A.1 simple use case and test 117

fuse_versionscript::0:0:0: >/libfuse-master/LIB/MODULES/

SUBDIR.C::0:0:0: >/libfuse-master/UTIL/Makefile.am::0:0:0: >_

carrier space available 507 of file /New Textdocument.txt

cSVFragmentlen: 0

carrier space available 478 of file /word documents/U.docx

cSVFragmentlen: 553

write checksum 201692076 with len 261 to carrier U.docx

neededspace 269 of fragment_/adddir/Neues Textdokument.txt

::0:0:0: >/ECLIPSE/ECLIPSEC.EXE::0:0:0: >/WEBSITE/WINIE/

content.html::0:0:0: >/WEBSITE/WISSEN/CONTENT/E16607/E16332/E

16099/E16086/fodok_6_ger.jpg::0:0:0: >/word documents/foo.

docx::0:0:0: >/libfuse-master/MAKECONF.SH::0:0:0: >/libfuse-

master/DOC/how-fuse-works::0:0:0: >/libfuse-master/EXAMPLE/

FIOC.C::0:0:0: >/libfuse-master/EXAMPLE/HELLO.C::0:0:0: >/

libfuse-master/INCLUDE/fuse_lowlevel.h::0:0:0: >/libfuse-

master/LIB/fuse_loop_mt.c::0:0:0: >/libfuse-master/LIB/HELPER

.C::0:0:0: >/libfuse-master/TEST/.gitignore::0:0:0: >_

carrier space available 131 of file /libfuse-master/INCLUDE/FUSE_

OPT.H cSVFragmentlen: 0

carrier space available 53 of file /ECLIPSE/ECLIPSE.INI

cSVFragmentlen: 0

carrier space available 21 of file /libfuse-master/UTIL/mount.

fuse.c cSVFragmentlen: 0

carrier space available 23 of file /WEBSITE/WISSEN/CONTENT/E

16607/E16332/JKU-Banner-forschen_ger.jpg cSVFragmentlen: 0

carrier space available 465 of file /ROOTDIR2/SUBDIR5/

unsuspicious File.html cSVFragmentlen: 0

carrier space available 464 of file /libfuse-master/AUTHORS

cSVFragmentlen: 512

write checksum 1206031124 with len 270 to carrier AUTHORS

neededspace 278 of fragment_/ECLIPSE/README/readme_eclipse.

html::0:0:0: >/Tor exit node/Sonntag-Registrierung_bei_der_

RTR-Statistik.pdf::0:0:0: >/WEBSITE/WISSEN/CONTENT/small_Foto
_Kooperationen_Keplergeb_ger.jpg::0:0:0: >/WEBSITE/WISSEN/

CONTENT/E16607/E16332/E16219/forschen1a_eng.jpg::0:0:0: >/

WEBSITE/ZONA/CONTENT/MS_9172.html::0:0:0: >/libfuse-master/

Makefile.am::0:0:0: >/libfuse-master/EXAMPLE/HELLO_LL.C

::0:0:0: >/libfuse-master/LIB/Makefile.am::0:0:0: >/libfuse-

master/TEST/Makefile::0:0:0: >/libfuse-master/UTIL/udev.rules

::0:0:0: >_

carrier space available 240 of file /libfuse-master/LIB/fuse_

signals.c cSVFragmentlen: 0

carrier space available 55 of file /libfuse-master/LIB/fuse_

lowlevel.c cSVFragmentlen: 0

carrier space available 169 of file /libfuse-master/EXAMPLE/FIOC.

H cSVFragmentlen: 0

carrier space available 487 of file /libfuse-master/DOC/.

gitignore cSVFragmentlen: 622

write checksum 1401573861 with len 337 to carrier .gitignore

neededspace 345 of fragment_/New Long Directory/Another long

file.txt::0:0:0: >/PODCAST/argumentieren.m4a::0:0:0: >/Tor

exit node/Tischlinger-Schwierigkeiten_bei_der_Strafverfolgung
_durch_Anonymisierung.pdf::0:0:0: >/WEBSITE/WISSEN/CONTENT/E

16607/E16332/E16219/forschen1a_ger.jpg::0:0:0: >/WEBSITE/ZONA

/CONTENT/MS_9227.html::0:0:0: >/word documents/J.docx::0:0:0:

>/libfuse-master/NEWS::0:0:0: >/libfuse-master/DOC/MAINPAGE.

118 additional material

DOX::0:0:0: >/libfuse-master/EXAMPLE/fioclient.c::0:0:0: >/

libfuse-master/INCLUDE/Makefile.am::0:0:0: >/libfuse-master/

LIB/fuse_misc.h::0:0:0: >/libfuse-master/LIB/MOUNT.C::0:0:0:

>/libfuse-master/TEST/stracedecode.c::0:0:0: >_

carrier space available 134 of file /WEBSITE/ZONA/CONTENT/index.

html cSVFragmentlen: 0

carrier space available 56 of file /libfuse-master/EXAMPLE/

Makefile.am cSVFragmentlen: 0

carrier space available 499 of file /libfuse-master/INCLUDE/cuse_

lowlevel.h cSVFragmentlen: 0

compressed frag. length: 324

uncompressed frag. length: 690

read 1896714378 bar.docx read len 324 len parameter324_/New Long

Directory/Neues Textdokument.txt::0:0:0: >/PODCAST/Aerger und

Selbsterkenntnis.m4a::0:0:0: >/WEBSITE/newsfeed.xml.html

::0:0:0: >/WEBSITE/WISSEN/CONTENT/E16607/E16332/E16044/

employee_groups_wiss108511/employees119729/MS_688.JPG::0:0:0:

>/WEBSITE/ZONA/CONTENT/E41510/employee_groups_wiss104378/

employees297320/100Zahnrad2.jpg::0:0:0: >/libfuse-master/.

gitignore::0:0:0: >/libfuse-master/README.MD::0:0:0: >/

libfuse-master/DOC/Makefile.am::0:0:0: >/libfuse-master/

EXAMPLE/FSEL.C::0:0:0: >/libfuse-master/EXAMPLE/NULL.C

::0:0:0: >/libfuse-master/LIB/BUFFER.C::0:0:0: >/libfuse-

master/LIB/FUSE_MT.C::0:0:0: >/libfuse-master/LIB/mount_bsd.c

::0:0:0: >/libfuse-master/TEST/TEST.C::0:0:0: >_Cnr 1

CRC match!

read into compartment1 /New Long Directory/Neues Textdokument.txt

::0:0:0: from bar.docx

read into compartment1 /PODCAST/Aerger und Selbsterkenntnis.m4a

::0:0:0: from bar.docx

read into compartment1 /WEBSITE/newsfeed.xml.html::0:0:0:

from bar.docx

read into compartment1 /WEBSITE/WISSEN/CONTENT/E16607/E16332/E

16044/employee_groups_wiss108511/employees119729/MS_688.JPG

::0:0:0: from bar.docx

read into compartment1 /WEBSITE/ZONA/CONTENT/E41510/employee_

groups_wiss104378/employees297320/100Zahnrad2.jpg::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/.gitignore::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/README.MD::0:0:0: from

bar.docx

read into compartment1 /libfuse-master/DOC/Makefile.am::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/EXAMPLE/FSEL.C::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/EXAMPLE/NULL.C::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/LIB/BUFFER.C::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/LIB/FUSE_MT.C::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/LIB/mount_bsd.c::0:0:0:

from bar.docx

read into compartment1 /libfuse-master/TEST/TEST.C::0:0:0:

from bar.docx

A.2 dhfs class structure 119

Payload file: C:\Dropbox\uni\BachelorArbeit\workspace\fat32-lib\

LoremIpsum.txt 574

carrier file has 490 available

writting CRC 2894306100 of length=453

payload write to LoremIpsum.txt part#1 to carrier /New Long

Directory/Neues Textdokument.txt

carrier file has 143 available

writting CRC 900908554 of length=106

payload write to LoremIpsum.txt part#2 to carrier /PODCAST/Aerger

und Selbsterkenntnis.m4a

carrier file has 484 available

writting CRC 1726646595 of length=15

payload write to LoremIpsum.txt part#3 to carrier /WEBSITE/

newsfeed.xml.html

payloadlist (compartment 1):

Name: LoremIpsum.txt len: 574 parts: 3

HMAC: ojtcw/3ha347ZXrjnQ+0CBStomTfb46Fb/V0KSaBrMA=

HMAC OK

HMAC: iF2AROeiascXMuRSpwI9ULziI9QzTw4VjetW4A15QT8=

HMAC OK

HMAC: NGFr2tclkC0YOocXepUEnxMiEmoFHrnXQ6BjMqfTvcg=

HMAC OK

original length:574 payloadbinary length:574

in and out binary EQUAL!

Payload file: C:\Dropbox\uni\BachelorArbeit\workspace\fat32-lib\

MAC.txt 259

carrier file has 22 available

carrier file has 204 available

writting CRC 467222172 of length=167

payload write to MAC.txt part#1 to carrier /WEBSITE/ZONA/CONTENT/

E41510/employee_groups_wiss104378/employees297320/100Zahnrad

2.jpg

carrier file has 487 available

writting CRC 1689367499 of length=92

payload write to MAC.txt part#2 to carrier /libfuse-master/.

gitignore

payloadlist (compartment 1):

Name: LoremIpsum.txt len: 574 parts: 3

Name: MAC.txt len: 259 parts: 2

HMAC: V58LvKRLmRGFrASvi/bjz8LJNL90zT4h9zaQxyZ6ziE=

HMAC OK

HMAC: SlCJNZeXverl0ZN9SYHuus67PiqWr5OF+hB90EJjQI8=

HMAC OK

original length:259 payloadbinary length:259

in and out binary EQUAL! �
a.2 dhfs class structure

1
2

0
a

d
d

i
t

i
o

n
a

l
m

a
t

e
r

i
a

l

Figure 24: DHFS Class Structure

B I B L I O G R A P H Y

[1] Tom Ritter Alex Balducci, Sean Devlin. Open Crypto Audit
Project TrueCrypt, 2015. URL http://opencryptoaudit.org/

reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf. Online; ac-
cessed May-2016.

[2] Ross Anderson, Roger Needham, and Adi Shamir. The Stegano-
graphic File System. In Information Hiding, volume 1525

of Lecture Notes in Computer Science, pages 73–82. Springer
Berlin Heidelberg, 1998. ISBN 978-3-540-65386-8. doi:
10.1007/3-540-49380-8_6. URL http://dx.doi.org/10.1007/

3-540-49380-8_6.

[3] Mihir Bellare and Chanathip Namprempre. Authenticated En-
cryption: Relations among Notions and Analysis of the Generic
Composition Paradigm, pages 531–545. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2000. ISBN 978-3-540-44448-0. doi:
10.1007/3-540-44448-3_41. URL http://dx.doi.org/10.1007/

3-540-44448-3_41.

[4] Mathieu Blondel and Zephaniah E. Loss-Cutler-Hull. Wikipedi-
aFS, 2015. URL https://sourceforge.net/projects/

wikipediafs/. Online; accessed November-2015.

[5] M. Borowski and M. Lesniewicz. Modern usage of old one-time
pad. In Communications and Information Systems Conference (MCC),
2012 Military, pages 1–5, Oct 2012.

[6] Neil Coffey. Removing the 128-bit key restriction in Java,
2012. URL http://www.javamex.com/tutorials/cryptography/

unrestricted_policy_files.shtml. Online; accessed April-
2016.

[7] Jean-Daniel Dodin. Device Major and Minor Num-
bers, 2009. URL http://www.tldp.org/HOWTO/

Partition-Mass-Storage-Definitions-Naming-HOWTO/x183.

html. Online; accessed May-2016.

[8] Morris Dworkin. NIST SP-800-38A Recommendation for Block
Cipher Modes of Operation, 2001. URL http://csrc.nist.gov/

publications/nistpubs/800-38a/sp800-38a.pdf. Online; ac-
cessed April-2016.

[9] Morris Dworkin. NIST SP-800-38D Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC, 2007. URL http://csrc.nist.gov/publications/

nistpubs/800-38D/SP-800-38D.pdf. Online; accessed April-
2016.

121

http://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
http://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
http://dx.doi.org/10.1007/3-540-49380-8_6
http://dx.doi.org/10.1007/3-540-49380-8_6
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
https://sourceforge.net/projects/wikipediafs/
https://sourceforge.net/projects/wikipediafs/
http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
http://www.tldp.org/HOWTO/Partition-Mass-Storage-Definitions-Naming-HOWTO/x183.html
http://www.tldp.org/HOWTO/Partition-Mass-Storage-Definitions-Naming-HOWTO/x183.html
http://www.tldp.org/HOWTO/Partition-Mass-Storage-Definitions-Naming-HOWTO/x183.html
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

122 bibliography

[10] Matthias Treydte "Waldheinz" et al. FAT32 Driver Java Library.
URL https://android.googlesource.com/platform/external/

fat32lib/. Online; accessed March-2016.

[11] Milan Broz et al. Cryptsetup/LUKS/Dm-Crypt, 2011. URL
https://gitlab.com/cryptsetup/cryptsetup/. Online; ac-
cessed May-2016.

[12] B. Kaliski for the Internet Engineering Task Force. PKCS #5:
Password-Based Cryptography Specification Version 2.0, 2000.
URL https://tools.ietf.org/html/rfc2898. Online; accessed
April-2016.

[13] OWASP Foundation. Guide to Cryptography, 2015. URL https:

//www.owasp.org/index.php/Guide_to_Cryptography. Online;
accessed April-2016.

[14] TrueCrypt Foundation. TrueCrypt - Encryption for the masses,
2014. URL http://truecrypt.sourceforge.net/. Online; ac-
cessed Feb-2016.

[15] Google. Android Security 2014 Year in Review, . URL
https://static.googleusercontent.com/media/source.

android.com/de//security/reports/Google_Android_

Security_2014_Report_Final.pdf. Online; accessed June-
2016.

[16] Google. Android JOBB Development Tool, . URL http:

//developer.android.com/tools/help/jobb.html. Online; ac-
cessed March-2016.

[17] Google. Preview Android N for Developers, . URL https://

developer.android.com/preview/api-overview.html. Online;
accessed June-2016.

[18] Google. Content Providers Storage Access Framework,
2013. URL https://developer.android.com/guide/topics/

providers/document-provider.html. Online; accessed June-
2016.

[19] Google. Android API 23 Reference, 2015. URL http://

developer.android.com/reference/. Online; accessed Nov-
2015.

[20] K. Gopalan. Audio steganography using bit modification. In
Multimedia and Expo, 2003. ICME ’03. Proceedings. 2003 Interna-
tional Conference, volume 1, pages I–629–32 vol.1, July 2003. doi:
10.1109/ICME.2003.1220996.

[21] "Guillaume". A glimpse of ext4 filesystem-level
encryption. URL http://blog.quarkslab.com/

a-glimpse-of-ext4-filesystem-level-encryption.html.
Online; accessed June-2016.

https://android.googlesource.com/platform/external/fat32lib/
https://android.googlesource.com/platform/external/fat32lib/
https://gitlab.com/cryptsetup/cryptsetup/
https://tools.ietf.org/html/rfc2898
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.owasp.org/index.php/Guide_to_Cryptography
http://truecrypt.sourceforge.net/
https://static.googleusercontent.com/media/source.android.com/de//security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/de//security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/de//security/reports/Google_Android_Security_2014_Report_Final.pdf
http://developer.android.com/tools/help/jobb.html
http://developer.android.com/tools/help/jobb.html
https://developer.android.com/preview/api-overview.html
https://developer.android.com/preview/api-overview.html
https://developer.android.com/guide/topics/providers/document-provider.html
https://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/reference/
http://developer.android.com/reference/
http://blog.quarkslab.com/a-glimpse-of-ext4-filesystem-level-encryption.html
http://blog.quarkslab.com/a-glimpse-of-ext4-filesystem-level-encryption.html

bibliography 123

[22] Robert Hackett. Most Common Passwords Found in the Hacked
LinkedIn Data, 2016. URL http://fortune.com/2016/05/18/

linkedin-breach-passwords-most-common/. Online; accessed
June-2016.

[23] Michael Sthultz Hal Berghel, David Hoelzer. Data Hid-
ing Tactics for Windows and Unix File Systems, May
2006. URL http://www.berghel.net/publications/data_

hiding/data_hiding.php. Online; accessed May-2016.

[24] Dave Hansen. GMail Filesystem over FUSE, 2015. URL http:

//sr71.net/projects/gmailfs/. Online; accessed November-
2015.

[25] Tyler Hicks and Dustin Kirkland. eCryptfs - The enterprise
cryptographic filesystem for Linux, 2012. URL http://ecryptfs.

org/. Online; accessed May-2016.

[26] The IEEE and The Open Group. The Open Group Base Spec-
ifications Issue 7, 2013. URL http://pubs.opengroup.org/

onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_

276. Online; accessed May-2016.

[27] Devyn C Johnson. FUSE, 2014. URL http://www.linux.org/

threads/fuse.6211/. Online; accessed May-2016.

[28] Hans Kratz. Stackoverflow article "how do i set
extended user attributes on android files?", 2013.
URL http://stackoverflow.com/questions/17784158/

how-do-i-set-extended-user-attributes-on-android-files.
Online; accessed Nov-2015.

[29] Thorsten Leemhuis. Mein Geheimnis, dein Geheim-
nis - Verschlüsselungsfunktion des Linux-Dateisystems
Ext4, May 2015. URL http://www.heise.de/ct/ausgabe/

2015-20-Verschluesselungsfunktion-des-Linux-Dateisystems-Ext4-2793204.

html. Online; accessed May-2016.

[30] Florin Malita. FTP File System, 2015. URL http://ftpfs.

sourceforge.net/. Online; accessed November-2015.

[31] Andrew D. McDonald and Markus G. Kuhn. StegFS: A Stegano-
graphic File System for Linux. In Andreas Pfitzmann, editor,
Information Hiding, volume 1768 of Lecture Notes in Computer Sci-
ence, pages 463–477. Springer Berlin Heidelberg, 2000. ISBN 978-
3-540-67182-4. doi: 10.1007/10719724_32. URL http://dx.doi.

org/10.1007/10719724_32.

[32] Nick Mead. TrueCrypt 7.2 Free open-source disk encryption
software. URL http://screenshots.en.sftcdn.net/en/scrn/

34000/34872/truecrypt-16.jpg. Online; accessed May-2016.

[33] Mühlbacher. Betriebssysteme - Grundlagen. Trauner Verlag, Linz,
March 2011. ISBN 978-3-85499-843-3.

http://fortune.com/2016/05/18/linkedin-breach-passwords-most-common/
http://fortune.com/2016/05/18/linkedin-breach-passwords-most-common/
http://www.berghel.net/publications/data_hiding/data_hiding.php
http://www.berghel.net/publications/data_hiding/data_hiding.php
http://sr71.net/projects/gmailfs/
http://sr71.net/projects/gmailfs/
http://ecryptfs.org/
http://ecryptfs.org/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_276
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_276
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_276
http://www.linux.org/threads/fuse.6211/
http://www.linux.org/threads/fuse.6211/
http://stackoverflow.com/questions/17784158/how-do-i-set-extended-user-attributes-on-android-files
http://stackoverflow.com/questions/17784158/how-do-i-set-extended-user-attributes-on-android-files
http://www.heise.de/ct/ausgabe/2015-20-Verschluesselungsfunktion-des-Linux-Dateisystems-Ext4-2793204.html
http://www.heise.de/ct/ausgabe/2015-20-Verschluesselungsfunktion-des-Linux-Dateisystems-Ext4-2793204.html
http://www.heise.de/ct/ausgabe/2015-20-Verschluesselungsfunktion-des-Linux-Dateisystems-Ext4-2793204.html
http://ftpfs.sourceforge.net/
http://ftpfs.sourceforge.net/
http://dx.doi.org/10.1007/10719724_32
http://dx.doi.org/10.1007/10719724_32
http://screenshots.en.sftcdn.net/en/scrn/34000/34872/truecrypt-16.jpg
http://screenshots.en.sftcdn.net/en/scrn/34000/34872/truecrypt-16.jpg

124 bibliography

[34] Nikratio. SSHFS, 2015. URL https://sourceforge.net/

projects/wikipediafs/. Online; accessed November-2015.

[35] NIST. FIPS197: Advanced Encryption Standard (AES), 2001.
URL http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf. Online; accessed April-2016.

[36] Timothy M. Peters. DEFY: A Deniable File System for Flash
Memory, 2014. URL http://digitalcommons.calpoly.edu/

theses/1230.

[37] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detec-
tion. Proceedings of the IRE, 49(1):228–235, Jan 1961. ISSN 0096-
8390. doi: 10.1109/JRPROC.1961.287814.

[38] Thomas & Erin Ptacek. You Don’t Want XTS, 2015. URL http:

//sockpuppet.org/blog/2014/04/30/you-dont-want-xts/. On-
line; accessed June-2016.

[39] Daniel Ridge. Hiding Data in Slack Space using bmap.
URL https://www.computersecuritystudent.com/FORENSICS/

HIDING/lesson1/index.html. Online; accessed Feb-2016.

[40] Phillip Rogaway. Evaluation of Some Blockcipher Modes of
Operation. Cryptography Research and Evaluation Commit-
tees (CRYPTREC) for the Government of Japan, 2011. URL
http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf.

[41] Josef Scharinger. Cryptography Lecture: Introduction to Cryp-
tography, Spring term 2014. Department of Computational Per-
ception, Johannes Kepler University (JKU) Linz.

[42] Dennis Schirrmacher and Jürgen Schmidt. TeslaCrypt 2.0 de-
cryption, 2016. URL http://heise.de/-3094987. Online; ac-
cessed April-2016.

[43] IEEE Computer Society. Portable Operating System Interface,
2001. URL http://standards.ieee.org/develop/wg/POSIX.

html. Online; accessed Nov-2015.

[44] Jospin Software. Deepsound steganography tool. URL http:

//jpinsoft.net/DeepSound/. Online; accessed Feb-2016.

[45] Syvaidya. Openstego steganography tool, 2007. URL http://

www.openstego.com/. Online; accessed Feb-2016.

[46] Miklos Szeredi. libFUSE - File system in User space, 2001. URL
https://github.com/libfuse/. Online; accessed April-2016.

[47] Theodore T’so. Ext4 File system Development Repsitory
ext2/e2fsprogs.git. URL https://git.kernel.org/cgit/fs/

ext2/e2fsprogs.git/. Online; accessed June-2016.

[48] Wikipedia user "Sven". Structural diagramm of File System
in User Space, 2007. URL https://en.wikipedia.org/wiki/

https://sourceforge.net/projects/wikipediafs/
https://sourceforge.net/projects/wikipediafs/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://digitalcommons.calpoly.edu/theses/1230
http://digitalcommons.calpoly.edu/theses/1230
http://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/
http://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/
https://www.computersecuritystudent.com/FORENSICS/HIDING/lesson1/index.html
https://www.computersecuritystudent.com/FORENSICS/HIDING/lesson1/index.html
http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf
http://heise.de/-3094987
http://standards.ieee.org/develop/wg/POSIX.html
http://standards.ieee.org/develop/wg/POSIX.html
http://jpinsoft.net/DeepSound/
http://jpinsoft.net/DeepSound/
http://www.openstego.com/
http://www.openstego.com/
https://github.com/libfuse/
https://git.kernel.org/cgit/fs/ext2/e2fsprogs.git/
https://git.kernel.org/cgit/fs/ext2/e2fsprogs.git/
https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg
https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg
https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg

bibliography 125

Filesystem_in_Userspace#/media/File:FUSE_structure.svg.
Creative Commons 3.0; Online; accessed May-2016.

[49] In Wikipedia. Cryptography, 2016. URL https://en.wikipedia.

org/wiki/Cryptography. Online; accessed May-2016.

[50] In Wikipedia. Plausible Deniability, 2016. URL https://en.

wikipedia.org/wiki/Plausible_deniability. Online; accessed
May-2016.

[51] In Wikipedia. Steganography, 2016. URL https://en.wikipedia.

org/wiki/Steganography. Online; accessed May-2016.

[52] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu,
and Jiwu Jing. Information Security: 17th International Confer-
ence, ISC 2014, Hong Kong, China, October 12-14, 2014. Proceed-
ings, chapter MobiHydra: Pragmatic and Multi-level Plausibly
Deniable Encryption Storage for Mobile Devices, pages 555–
567. Springer International Publishing, Cham, 2014. ISBN 978-
3-319-13257-0. doi: 10.1007/978-3-319-13257-0_36. URL http:

//dx.doi.org/10.1007/978-3-319-13257-0_36.

[53] ZLib. RFC Gzip Format, 1991. URL http://www.zlib.org/

rfc-gzip.html. Online; accessed Dec-2015.

https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg
https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg
https://en.wikipedia.org/wiki/Filesystem_in_Userspace#/media/File:FUSE_structure.svg
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Plausible_deniability
https://en.wikipedia.org/wiki/Plausible_deniability
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Steganography
http://dx.doi.org/10.1007/978-3-319-13257-0_36
http://dx.doi.org/10.1007/978-3-319-13257-0_36
http://www.zlib.org/rfc-gzip.html
http://www.zlib.org/rfc-gzip.html

Martin Hengstberger
Curriculum Vitae

Personal Data
Born: 1986 in St.Pölten, Austria

Address: Freistädter Straße, 4040 Linz, Austria
Mobile: (0043) 676 6903583
Email: martin@hengstberger.net

Nationality: Austria

Education
2015–2016 Master in Computer Science, Johannes Kepler University, Linz, Focus on Net-

works and Security.
2012–2013 Master in Computer Science, Norwegian University of Science and Technology

NTNU , Trondheim, Norway.
Exchange year (ERASMUS)

2010–2015 Bachelor in Computer Science, Johannes Kepler University, Linz.
2007–2010 Bachelor in Mechatronics, Johannes Kepler University, Linz, incomplete.
2000–2006 General qualification for university entrance, Höhere Technische Bundeslehr-

und Versuchsanstalt (HTL), St.Pölten, Focus on Information Technology.
Deparment for Electronics and Computer-engineering

Experience
Vocational

2014–Present IT Technician, Johannes Kepler University JKU, Linz, Austria.
Maintainance of server infrastructure & services as well as computer laboratories; Security
incident handling; Assesment and roll out of software solutions; Technical supervision of
computer examinations

2013 Internship, Uninett AS - Norwegian research and education network , Trondheim,
Norway.
Development of an IPv6 web application

Freistädter Straße – 4040 Linz, Austria
H (0043) 676 6903583 • B martin@hengstberger.net

2011–2012 Software Developer, Intel Mobile Communication DMCE, Linz, Austria.
Development of technical documentation software.

<2011 Various Internships.
Miscellaneous

2006–2007 Mandatory Civil Service, Traisen, Austria, Ambulance driver and medic.

Languages
German Mothertongue
English Advanced (CEFR: C1) fluent, working language
Spanish Basic (CEFR: A2) Routine conversations

Norwegian Basic (CEFR: A2) Routine conversations

Interests
- Sport competitions: Triathlon & Marathon
- Mountaineering
- Computer games
- Cooking

Freistädter Straße – 4040 Linz, Austria
H (0043) 676 6903583 • B martin@hengstberger.net

S W O R N D E C L A R AT I O N

I hereby declare under oath that the submitted Master’s Thesis has
been written solely by me without any third-party assistance, infor-
mation other than provided sources or aids have not been used and
those used have been fully documented. Sources for literal, para-
phrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electroni-
cally submitted text document.

Linz, July 2016

Martin Hengstberger

	Dedication
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Listings
	About This and Related Work
	1 Introduction
	1.1 Structure of this Work
	1.2 Problem Definition and Objective
	1.3 Use Case
	1.4 Approach
	1.5 Related Work
	1.5.1 StegFS: Steganographic File System
	1.5.2 DEFY: A Deniable File System For Flash Memory
	1.5.3 MobiHydra: Pragmatic and Multi-level Plausibly Denieable Encryption Storage for Mobile Devices
	1.5.4 OpenStego
	1.5.5 DeepSound
	1.5.6 TrueCrypt
	1.5.7 Bmap
	1.5.8 Comparison DHFS and Related Work

	1.6 Fourth Extended File Ssytem (Ext4)
	1.6.1 Ext4 and its built-in Cryptography Feature
	1.6.2 Comparison of Ext4, Dm-Crypt and Ecryptfs
	1.6.3 Encryption in Android M (6.0)

	1.7 File System in User Space (FUSE)
	1.7.1 Modify Slack space
	1.7.2 Read access
	1.7.3 Write access

	File Systems in Theory
	2 Steganography in File Systems
	2.1 File System Architecture
	2.2 Steganography Strategies
	2.2.1 Hide-out Data Locations by the Example of Hard Disks
	2.2.2 Candidate Hide-out Strategies and Evaluation

	2.3 Candidate Selection of a Hide-out Location
	2.4 Presence of a Steganography Tool

	3 A File Slack File System
	3.1 Terminology
	3.2 File Slack
	3.2.1 Cluster Justification
	3.2.2 Increasing Payload Space
	3.2.3 Carrier Data Suggestions
	3.2.4 Estimation of Payload Space Size
	3.2.5 Calculation of Payload Space Size

	3.3 File Lifecyle
	3.4 Problems of a File Slack File System

	A File Slack File System in Practise
	4 On Implementing a Steganographic file system for Android
	4.1 System Overview
	4.2 Access Methodology
	4.3 FAT32 Driver Changes
	4.4 Design Rationale
	4.4.1 Index Table
	4.4.2 Index Entries
	4.4.3 Checksum
	4.4.4 CRC32 Checksum
	4.4.5 Index Marker
	4.4.6 End of Payload File (EEOF)
	4.4.7 Compartments
	4.4.8 Index Compartment Fragmentation
	4.4.9 Compartment Numbers
	4.4.10 Compression

	4.5 Encryption
	4.5.1 Need for Encryption
	4.5.2 Individual File Encryption
	4.5.3 Entropy for Random Number Generators
	4.5.4 Encrypt-then-MAC vs. MAC-then-Encrypt
	4.5.5 Advanced Encryption Standard
	4.5.6 Counter Mode (CTR)
	4.5.7 DHFS Cryptography System
	4.5.8 HMAC
	4.5.9 JDK Key Length Restriction

	4.6 Memory Layout and Header Data
	4.7 DHFS Initialization
	4.7.1 Index Table Example
	4.7.2 Index Entry Distribution Algorithm
	4.7.3 Carrier File and Index Carrier File Allocation
	4.7.4 Storing Indices into Index Carrier Files

	4.8 DHFS Access
	4.8.1 Coincidential Fuzzy Testing
	4.8.2 Index Search
	4.8.3 Payload File Search
	4.8.4 Payload File Retrieval
	4.8.5 Adding a Payload File
	4.8.6 Example of DHFS State in Memory

	4.9 Accessing Internal and External Memory in Android
	4.9.1 Internal and External Storage
	4.9.2 Permissions for External Storage
	4.9.3 File Access to Internal Storage
	4.9.4 File Access to External Storage
	4.9.5 Free Space and File Deletion

	4.10 Security Analysis
	4.10.1 Index Parameter Manipulations
	4.10.2 Header Parameter Manipulations

	4.11 Potential Abuse
	4.12 Android App Concept

	Future Work, Summary and Conclusion
	5 Future Work
	5.1 Direct Block device access
	5.2 Encryption parameter masking
	5.3 Key Caching
	5.4 Integrity Checks
	5.5 Encryption and HMAC Key decoupling
	5.6 Removing a Payload File
	5.7 In place Payload File editing
	5.8 Balancing DHFS
	5.9 Payload Directories
	5.10 Redundancy
	5.11 Payload file compression

	6 Summary and Conclusion
	6.1 Summary
	6.2 Conclusion

	Appendix
	A Additional Material
	A.1 Simple Use Case and Test
	A.2 DHFS Class Structure

	Bibliography
	Sworn Declaration

