
Submitted by
Tobias Höller

Submitted at
Institute of Networks
and Security

Supervisor
Univ.-Prof. Priv.-Doz.
DI Dr. Rene Mayrhofer

August 2017

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Automatic Updates for
IoT devices exemplified
by OpenWRT

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Abstract

The era of the Internet of Things is on the horizon and the security of these
devices is a problem of ever growing importance. A key piece to solving this
issue is an update process that allows vendors to automatically update their
IoT devices. Different update implementations were analysed to find the most
promising approach to take towards that goal. The suggested solution is then
also implemented as a proof-of-concept on a router running OpenWRT. This
thesis is designed as a roadmap to help developers, who are trying to bring
automatic updates to their device, to find the best update procedure for their
situation and implement it on their specific platform.

iii

Kurzfassung

Durch den aktuellen Siegeszug des ”Internet of Things”, wird die Sicherheit
von entsprechenden Geräten zu einem immer größeren Problem. Die Frage
wie man solche Geräte zuverlässig mit Aktualisierungen versorgen kann, ist
eines der wesentlichen Probleme, das in diesem Zusammenhang gelöst werden
muss. Unterschiedliche Implementierungen von Updates wurden untersucht,
um einen möglichst vielversprechenden Ansatz für IoT Geräte zu finden. Die
vorgeschlagene Lösung wird darüber hinaus testweise auf einem OpenWRT
Router implementiert. Diese Arbeit soll IoT Entwicklern, die ihre Geräte mit
automatischen Updates versorgen wollen, als Hilfestellung dienen, den für sie
besten Lösungsansatz zu finden und umzusetzen.

v

Contents

Abstract iii

1. Introduction 1
1.1. Why autoupdates ? . 1

1.1.1. Case Study: The Mirai Botnet 2
1.1.2. Case Study: The attack on Telekom routers 2

1.2. Why are there no automatic updates yet ? 4

2. Technical Background 7
2.1. Introduction to OpenWRT . 7

2.1.1. Memory Layout of OpenWRT 8
2.2. Introduction to U-Boot . 9

2.2.1. Boot process . 10
2.2.2. Other U-Boot features 11

2.3. Automatic Updates . 12
2.3.1. Update trigger . 13
2.3.2. Update mechanism . 13
2.3.3. Recovery scheme . 14
2.3.4. Requirements . 16

3. State of the Art 19
3.1. Common update processes . 19

3.1.1. Windows Update . 19
3.1.2. Linux package managers 20
3.1.3. Android Updates . 23
3.1.4. Android App Store . 26

3.2. Update processes for OpenWRT 27
3.2.1. Manual Update . 27
3.2.2. Gluon Updater . 29

vii

Contents

3.2.3. Turris Omnia Updater 31
3.2.4. Linksys Autoupdates . 34

4. Hardware 37
4.1. TP Link Archer C7 . 37

4.1.1. Hardware Overview . 37
4.1.2. Observations . 38

4.2. Zyxel NBG6716 . 39
4.2.1. Hardware Overview . 39
4.2.2. Observations . 40
4.2.3. Partition Layout . 41

4.3. Linksys WRT1200AC . 42
4.3.1. Hardware Overview . 42
4.3.2. Observations . 43

5. Strategy selection 45
5.1. Desired Update process . 45

5.1.1. Update trigger . 45
5.1.2. Update mechanism . 46
5.1.3. Recovery scheme . 49

6. PoC on Zyxel NBG6716 51
6.1. Sysupgrade Script . 51
6.2. Unlock U-Boot . 56

6.2.1. Gain Write Permissions on U-Boot Environment 56
6.2.2. Work around zloader . 58

6.3. Enable Dual-Boot . 60
6.3.1. Investigate Linksys WRT1200AC Setup 60
6.3.2. Implementing Dual Boot on the Zyxel NBG6716 61

6.4. Enable Recovery . 63
6.4.1. Switch to alternative firmware at next boot 64
6.4.2. Only switch to alternative firmware if there is an error . 65
6.4.3. Restore U-Boot environment 67

6.5. Securing the update process . 68
6.6. Summary . 68

viii

Contents

7. Future work 71
7.1. Prepare build environment . 71
7.2. Test produced images . 72
7.3. Prevent user disruption . 72
7.4. Create minimal recovery partition 73
7.5. Track necessary recoveries . 74
7.6. Bring update procedure to more devices 74

8. Conclusion 77

Bibliography 79

A. U-Boot Environments 81

B. Relevant OpenWRT Scripts 87

ix

Specification

The goal of this thesis is to find a way to automatically update OpenWRT
routers in a way that is robust and can be applied in many scenarios. The
solution should not require major modifications of the OpenWRT source code
and remain compatible with the development principles of the project.

xi

1. Introduction

1.1. Why autoupdates ?

Usually software is updated to either fix problems in the current version or
provide additional features. Embedded devices generally have a very limited
software to support their function and almost never need additional features.
So would it not be easier and cheaper to test the software thoroughly to detect
and resolve errors before they inconvenience users ?

One of the most important things about software development is, that there is
nothing like a perfect program. While a software can in theory mathematically
be proven to be free of bugs, in practice such a proof is almost impossible to
obtain, unless the program is simplistic or the invested resources are enormous.
Fortunately the tasks for software in embedded devices are often limited to
simple applications. That along with the fact that it is easy to predict how
users will use the device makes it easier to test all scenarios relevant to potential
customers. Therefore one could argue that most embedded devices do not need
automatic updates, because they do not need updates at all.

But the current trend to add networking capabilities to these devices changes
the game completely. Devices with a full network stack require more complex
operating systems and have to rely on a multitude of libraries. All of these
components are possible error sources and the networking interface makes it
easier for attackers to detect and exploit existing vulnerabilities. Devices using
an internet connection are often referred to as IoT (Internet of Things) devices
and are getting more and more popular. Unfortunately may manufacturers and
vendors of such devices do not believe that they are responsible for the security
of their devices, which is turning the vision of an internet of things more and
more into the security nightmare of an internet of insecure things.

1

1. Introduction

1.1.1. Case Study: The Mirai Botnet

The distributed denial-of-service (DDOS) attacks performed by botnets con-
sisting mainly of IoT devices in late 2016 (while this thesis was being worked
on) show what happens when devices are connected to the internet without
any regard for security. The Mirai malware responsible for accumulating hun-
dreds of thousands of IoT devices into botnets does not even require any
complex exploits, it works by simply searching the Internet for possible targets
(mainly IP surveillance cameras, routers and DVRs) and tries a list of default
passwords[3].

The developers of these devices made a simple mistake by forgetting that users
do not change default passwords unless they have to. And from their perspective
this does make sense, because they will rarely need the password so keeping
the one already printed on the device is much safer than changing it to a new
one that is very likely to be forgotten. This simple oversight enabled Mirai to
create a botnet which launched the most powerful DDOS attack in history in
November of 2016 [12]. The effects may have been local and concentrated to
the US, but rendering sites like Amazon, PayPal, Netflix or Twitter unavailable
is no small feat for a single attack. Considering the fact that the number of
IoT devices connected to the internet has been climbing continuously for the
last few years, their lacking security may very well become a threat to the
infrastructure of the Internet as we know it today.

1.1.2. Case Study: The attack on Telekom routers

Another just as interesting security incident took place in November 2016,
which temporarily disabled more than 900 thousand routers operated by the
”Deutsche Telekom” in Germany. The attack was noticed when numerous
customers complained because their internet connection was not working. It
turned out that an attack was going on that was using parts of the source code
of the Mirai malware but instead of guessing passwords, it used a known vulner-
ability for a remote management protocol known as CPE WAN Management
Protocol (CWMP). The Telekom managed to stop this attack by modifying
their infrastructure to no longer forward any packages destined for port 7547,
which is the port the CWMP protocol was listening on. [15] [16]

2

1.1. Why autoupdates ?

Thanks to the fact that the person responsible for this attack has been caught
we do know a lot about the intentions of the attacker as well as what happened
in detail. First of all the attack was not supposed to damage the Deutsche
Telekom, as a matter of fact it was not intended to impact users at all, it just
tried to add their routers to a botnet without them noticing. It turns out that
the vulnerability used for this attack only affected devices based on Linux and
the Telekom routers in question were using a custom operating system by the
Arcadyan Technology Corporation, so the exploit was not supposed to work on
them. But the malware was not configured to check if the target device was
running Linux, it simply tried the exploit on every device listening on port
7547 and that caused the problems. Apparently the affected routers do have
another error in their software that causes them to slow down and crash if
multiple connections to the CWMP port are established. And because a lot
of other routers had been attacked successfully and were trying to add new
devices to the botnet, there were a lot of active connections to that port on
every device. [15] [16]

The first and possibly most frightening lesson to learn from this attack: If it
had not disrupted so many Telekom customers by accident, this attack may
have gone unnoticed for much longer affecting many more devices. In addition
to that we learn that some routers, devices that are definitely supposed to be
connected to the internet, are extremely vulnerable to attacks, if scanning the
same port multiple times is enough to effectively disable them. And of course
we see that even though the vulnerability in the protocol was known and a
fix available most vendors were either incapable or unwilling to patch their
vulnerable devices. If they had, this attack would have never have had such a
massive impact.

Lastly it seems important to point out that this attack was executed by a single
individual, who had been contracted to launch a DDOS attack on a company.
In order to execute that attack he needed a botnet, so he modified a publicly
available version of Mirai to use a recently reported vulnerability in routers
based on Linux and let it loose. The effort for this attack was low, the promised
payment only 10.000e. A world where every hacker can create his own botnet
of IoT devices in a matter of days for any purpose should be enough to raise
concern for this topic.

But this case revealed another even more frightening perspective. What would

3

1. Introduction

happen if a group of hackers invested more time and effort into finding ways to
permanently disable routers instead of taking control over them. Just imagine
if millions of routers worldwide are destroyed within days. Especially in times
where more and more devices need to be connected to the internet in order to
work properly, the damage and disruption caused by such an attack could be
enormous.

1.2. Why are there no automatic updates yet ?

The previous section should have made a convincing argument why an update
strategy for routers and IoT devices is important. But devices like routers do
already have an update strategy, many vendors regularly release new firmware
versions for their devices, which increase the stability of the software and fix
known vulnerabilities like the one used in the attack on the Telekom. So why
is there still a problem ?

The simple answer is that these updates are only published on the vendors
website and nobody checks a website regularly for a new firmware version. And
even if users would know about it, the majority of them does not care about
security updates, they want their device to work and if it does not, they throw
it out and buy another one. So like many other things in security, updates have
to happen transparently to the user, otherwise they will not happen at all and
the updates published by vendors are merely placebos so they can say they
have done everything in their power by publishing a new firmware, even if they
know that 99% of their devices will never receive it.

So if updates for routers are already available, why are they not downloaded and
installed automatically ? In theory it sounds easy to regularly run a program
that checks for new firmware versions and installs them, but in practice there
are quite a few pitfalls that need to be considered.

The most likely reason why this does not happen is a simple economic consid-
eration: What can a vendor gain by automatically updating his devices and
what does he risk ? If the only danger consists of the device being added to
a botnet without interrupting normal operation, most customers will never
notice the lack of security. The victims would be the targets attacked by the

4

1.2. Why are there no automatic updates yet ?

botnet, but these are usually companies and no relevant stakeholder group for
a router vendor. So providing automatic updates would not provide relevant
economic gains, which reasonable explains why companies do not want to put
any effort into the topic.

In the wake of the recent attacks through Mirai botnets, some politicians are
considering policies to make vendors of IoT devices liable for the damage their
devices cause as parts of botnets, if they were not properly secured. Until
either such regulations are passed or attackers start disturbing routers normal
operation, the motivation to improve the security of these devices will remain
low.

On the other hand automatic updates can be the source for a multitude of
problems. Most updates require a reboot, which temporarily prevents users
from using the device. In addition to that every update carries the risk that
something unexpected goes wrong, like a new library no longer supporting an
old method, hardware being no longer supported by an updated driver, new
bugs introduced through updates, power outages during the update or write
errors while writing the update to the flash memory.

This long list of potential problems, which can all translate into economic
disadvantages, along with the short list of benefits provided by automatic
updates makes it easier to understand why most devices do not receive updates
automatically yet. And exactly this is the point this paper is trying to change
by decreasing the risks associated with automatic updates.

The goal of this thesis is to come up with an update procedure that includes
a recovery scheme, which automatically reverts to a working firmware if the
update has caused any kind of trouble. This should severely decrease the risks
associated with automatic updates and thereby increase the willingness of
vendors to implement them on their devices.

The suggested update procedure will not only be discussed in theory but also
implemented on a router as a proof of concept. OpenWRT was chosen as a
platform because it is an open source and well established software for routers
and routers again are the most established embedded device with networking
capabilities. They were around before the term IoT device was invented and
are usually not counted as such, but the technical similarities cannot be denied,

5

1. Introduction

especially since OpenWRT has also been used on several other IoT systems like
IP cameras.

Hopefully the work done for this thesis will support any developer trying to
bring automatic updates to their IoT device and ideally be the basis for a
community effort to bring automatic updates to devices running OpenWRT.

6

2. Technical Background

This chapter will give a quick introduction into the software discussed in this
thesis as well as a definition of how ”Automatic Updates” and associated terms
are defined in the context of this thesis.

2.1. Introduction to OpenWRT

OpenWRT was originally based on a firmware released by Linksys for their
WRT54G routers. This firmware contained software licensed under the GPL,
which forced Linksys to release the source code for their router. Due to this
several developers were able to add and modify features of the original firmware.
[11]

About a year later the OpenWRT project was officially founded, with the goal
of providing a free Linux distribution for embedded devices in general, but there
is a clear focus on single owner/home office devices like the original WRT54G.
The development continued over several years bringing multiple new versions
of OpenWRT with many new features. By requesting the source code from
other vendors, which also used GPL licensed source code in their products,
the project was able to improve and extend the number of available features
and supported devices. The current table of hardware 1 lists more than 600
supported devices and at the time of writing this paper (March 2017) the
included package manager(opkg) served 4438 different packages. Furthermore
there are several other projects that either follow the development of OpenWRT
or forked form it at some point in time. [13]

These facts along with the fact that several vendors are selling devices which
are shipped with more or less customized versions of OpenWRT demonstrate

1https://wiki.openwrt.org/toh/start

7

2. Technical Background

how successful this open source project has been over the last years. The
most important thing to understand about OpenWRT is that it does not try
to be the same system for every user. It is much easier to describe it as a
skeleton system, which initially only includes the bare minimum necessary for a
working operating system. Everything else needed by the user, must be added.
This approach allows for maximum versatility and makes it easy for users to
optimize a system according to their needs. As a downside such an approach
deters beginners and inexperienced users. This is the main reason why several
projects are based on OpenWRT but try to make installation and usage easier
by equipping their systems with reasonable defaults that meet the requirements
of the majority of users as well as improving the graphical user interfaces.

It should be mentioned at this point that during the work on this thesis, a new
fork named LEDE (Linux Embedded Development Environment) was created,
after the OpenWRT project had seen very little progress for a significant amount
of time. This fork gathered a majority of active OpenWRT developers and
progressed significantly compared to the original project. In the first months of
2017 however, it was announced that the two projects would merge again, using
the LEDE source code for their merged project but keeping the OpenWRT
name. This paper will operate under the assumption that the merge is successful
under the announced terms and make no further distinctions between LEDE
and OpenWRT. [5]

2.1.1. Memory Layout of OpenWRT

To gain a more detailed understanding of the challenge, that updating Open-
WRT presents, it is necessary to understand the usual layout of OpenWRT2.
This layout is designed towards stability, recoverability and memory efficiency:

By taking a closer look at layer 2 of figure 2.1 it becomes clear that OpenWRT
depends on a bootloader to be initialized as well as several optional partitions
specific to the individual system it is running on. For the scope of this paper
these hardware specific partitions will be ignored.

2https://wiki.openwrt.org/doc/techref/flash.layout

8

2.2. Introduction to U-Boot

Figure 2.1.: Default Flash Layout for OpenWrt
Layer 0 raw flash
Layer 1 OpenWrt firmware partition

Layer 2
Linux Kernel

Layer 3

bootloader
partition(s)

optional
SoC

specific
partitions

optional
SoC

specific
partitions

rootfs
Mounted on “/”, OverlayFS with /overlay

SquashFS: /dev/root
Mounted on /rom

JFFS2: rootfs_data
Mounted on /overlay

The main information to be taken from here is that the firmware for OpenWRT
generally consists of three distinct parts: The Linux Kernel, a SquashFS root
partition and and a JFFS2 rootfs data partition. Note that SquashFS is a
compressed read-only filesystem designed to make use of every single available
bit. Thanks to this highly efficient storage mechanism the entire Firmware can
be fit into as little as 4 Megabytes. The Linux Kernel is sometimes included
in the SquashFS partition or otherwise written directly to the raw flash in a
compressed form. The OverlayFS (which does not necessarily have to be JFFS2,
there are also others like UbiFS for example) is used only to store changes
made by the user, which are often limited to a few configuration files.

2.2. Introduction to U-Boot

U-Boot is a project to develop a universal bootloader running on multiple differ-
ent architectures and is commonly used on embedded systems. Its development
is closely related to Linux. Not only are some parts of the code taken from the
Linux Project, but it is a declared priority of the project to support booting
the Linux kernel from U-Boot. The project itself was started in 1999 with the
first release of 8xxROM by Magnus Damm and called itself PPCBOOT for
the first years. In the years 2000 until 2002 there was extensive development
until in 2002 the last version of PPCBoot (2.0.0) was released. At this point
the project was renamed into ”Das U-Boot” and has been developed under this
name since than. [7]

Just like OpenWRT U-Boot is highly customizable both during compile time
and runtime and can therefore easily be adapted to a new hardware platform.
This fact in combination with its tight connection to the Linux kernel explains

9

2. Technical Background

why many routers make use of U-Boot to start their operating system. So
while OpenWRT does not run exclusively on routers using U-Boot, it is a very
common combination.

The main reason for the runtime configurability lies in the fact that U-Boot
by default splits the system and the configuration into two different partitions.
The system partition is usually referred to as ”u-boot” partition, while the
configuration partition is called ”u-boot-env” or ”env” being short for U-Boot
environment. This environment works like a key-value store, where users can
customize the bootloader by adding new key-value pairs, changing existing
values or removing a key entirely.

2.2.1. Boot process

The main task of any bootloader is to initialize the hardware, do some prepara-
tion work and then trigger the start of the operating system. The initialisation
part will be ignored for this work, but the commands needed to boot the Linux
kernel as well as the arguments that are passed, will be important. First U-Boot
only executes code from RAM so the kernel of the operating system must first
be loaded into RAM, before it can be executed. This can be done in many
different ways. It is possible to load it from the flash directly using either ”cp”
if its NOR flash, or ”nand read” if its NAND flash. There are also options
available to load an image from a memory card or via USB, if they use a file
format supported by U-Boot. Often supported file systems are FAT32 and
EXT2, but specific vendors may choose to include support for alternative file
systems. If the filesystem is supported by U-Boot it is also possible to load a
file from a file system on the flash chip, instead of a direct access. And lastly
for recovery reasons it is also possible to load files from a remote location using
TFTP, which is especially handy for recovery purposes. [6]

No matter how the kernel is loaded, once it has been loaded it is necessary to
start running that kernel. The best way to do this is the ”bootm” command,
which actually triggers a series of commands that verifies and uncompresses the
kernel and relocates initrd and the flat devices tree. Optionally U-Boot can be
compiled to also execute certain OS specific tasks before continuing execution
at the uncompressed kernel using the ”go” command. [6]

10

2.2. Introduction to U-Boot

Every U-Boot environment contains a key called ”bootcmd” (could of course be
customized to have a different name), which holds the command to be executed
when trying to boot. During a normal startup U-boot waits for few seconds
to give the user a chance to interrupt the boot process, before the startup is
continued by executing the contents of the ”bootcmd” value.

2.2.2. Other U-Boot features

U-Boot does provide a few other features relevant for this thesis. Those that
are used or mentioned in later chapters shall be introduced at this point.

U-Boot command line

As just mentioned in the previous chapter, U-Boot provides a way to interrupt
the boot process, exactly before the contents of the ”bootcmd” key are executed.
This interrupt can either be an arbitrary signal via the serial interface of a
device, or a specific password. If the interrupt is successful, U-Boot provides a
command-line interface to the user (the U-Boot command line).

The description in section 2.2.1 mentioned several commands, all of those can
be executed manually on the command line. In addition there are many other
commands available mainly to debug errors by obtaining information about
the system, recover from a broken operating system or change the U-Boot
environment. More detailed information on the available commands can be
obtained from the U-Boot documentation.[6]

Pass kernel command line arguments

As already mentioned U-Boot was mainly designed to boot Linux kernels,
so it does not come as a surprise that this bootloader also supports passing
additional information about the system to the kernel. By default the contents
of the ”bootargs” key in the U-Boot Environment are passed on as kernel
arguments. While this feature is not always used in current implementations,
there are several scenarios where this feature is essential in order to successfully
boot Linux on a device.

11

2. Technical Background

U-Boot TFTP recovery

As already mentioned there are commands available to use the U-Boot CLI
in order to recover from a broken operating system, failing to complete the
boot process. But as this requires a serial interface and a trained user and is a
generally cumbersome procedure, there was need for a more trivial recovery
option.

The recovery is usually triggered by pressing or holding a hardware button
available on the device (details are platform specific) during the boot process.
If this button is pressed, U-Boot connects to a TFTP server, whose address
is specified in the U-Boot environment and downloads a new image file. The
correct file is identified by criteria also specified in the U-Boot environment
and then written to the flash, starting at the address where the kernel would
normally be loaded. If the image was written correctly, a subsequent boot
process should be successful again.

This solution does not require a serial interface or manually entering commands,
it is sufficient to download the correct image, prepare the TFTP server and
push the button.

2.3. Automatic Updates

Generally the concept of automatic updates (and system updates in general) is
well known on many software platforms. It is common on most operating systems
for servers, personal computers (Microsoft Windows, MacOS, Linux, BSD, ...)
or mobile devices and the necessity of these updates is widely acknowledged.
Depending on the individual requirements and available hardware the details
of the update processes do differ in multiple ways. In order to give an easier
overview over existing solutions, their requirements, strengths and weaknesses,
they will be grouped according to three criteria.

12

2.3. Automatic Updates

2.3.1. Update trigger

The first criterion refers to the way updates are triggered. This can happen
manually, requiring a user to manually check for, download and install updates.
This constitutes the most basic but also least favourable approach, as it puts all
responsibility on the user of a device and also demands a constant maintenance
effort.

An improvement over this approach can be reached by choosing a semi automatic
update strategy, that automatically checks for updates and only requires user
permission/interaction in order to install the update. This reduces the effort
and responsibility on the user side significantly, but it still requires manual
effort. This works best for devices where users want to have more control over
the running software, like personal computers or mobile phones, not so much
for IoT devices, where users mostly do not care about the software as long as
it works.

Figure 2.2.: Update Triggers

Semi
Automatic

AutomaticManual

The preferable way of updating is fully automatic and transparent to the user.
Generally it is safe to say that most major software systems are striving towards
offering an automatic update trigger.

2.3.2. Update mechanism

For the case of this paper only two different update approaches will be distin-
guished. The first approach imitates the installation process. So an update is
basically just deleting the old operating system and replacing it with the new

13

2. Technical Background

one. This does not require a special update routine, but instead relies on the
installation mechanism, which is also required to initially install an operation
system on a device. Generally such an approach is best used when system and
user data are strictly separated. This prevents data while upgrading to a new
firmware.

Figure 2.3.: Update mechanism

Install new
image

Apply change
list

The other commonly used approach to updating a system works at a much
smaller scale. Rather than updating the entire system at once, small pieces of
the system are updated, whenever necessary. This reduces the update overhead,
allows rolling out updates faster and makes it easier to update applications and
operating system with the same update scheme. Another key benefit of this
way is that it avoids restarting the system during the update process. Instead
of being forced to restart the system for every update, restarts can be limited
to those updates, where a reboot is necessary.

2.3.3. Recovery scheme

For the scope of this paper recovery schemes are limited to resolving errors
caused by the updates rolled out through an automatic update system or
through problems during the update process. Recovery from any other errors
like hardware failures or user interaction are explicitly ignored, as they would
introduce an additional layer of complexity.

A working recovery scheme requires error detection as well as a way to invert
the changes made by the update mechanism. Given this close link it is quite

14

2.3. Automatic Updates

obvious that the choice of an update mechanism strongly impacts the choice
of the corresponding recovery scheme. Nonetheless a way was found to group
recovery schemes in three different ways, depending on how they track and
revert the changes made by the update mechanism. How they detect errors and
how the recovery is triggered, was not considered for this categorization.

The easiest solution retains a copy of the original files, avoiding the need to
track changes at all. This can either be achieved by making a snapshot of the
current system before an update or by copying the relevant files to another
location before the update. An update can simply be reverted by replacing
the updated files with the original ones. While this approach requires a lot of
memory it allows restoring the system even if it was damaged to a point where
any internal recovery mechanism fails.

Figure 2.4.: Recovery Schemes

Changelog ManualSnapshot

A more memory efficient alternative is to keep a change log describing which
changes have been applied to the system. This usually only works with a
change list based update mechanism that enables a system to revert individual
updates, if an error is encountered. The saved memory however means that
the original files are not stored locally and must be downloaded again, which
causes problems if the components needed for networking have been broken by
an update. As the individual changes on a change list often have dependencies
and requirements, correct reversion of such changes is a far more complex task,
requiring dedicated logic that too must not be affected by a faulty update and
is prone to bugs added by implementation.

Opposite to the update trigger and mechanism, there is no actual need for
an update process to incorporate a recovery strategy. Some update processes
chose to not implement one and instead rely on users to manually resolve issues

15

2. Technical Background

introduced through updates. This choice is usually made when the user base
is experienced or the update process is so stable that errors through updates
happen rarely.

Ultimately it should be pointed out that a recovery scheme is further compli-
cated by the fact, that it is often very hard to identify the cause of an error. So
recovery mechanisms should not only be evaluated by how they revert changes,
but also by how they determine that an error has occurred during the update
process.

2.3.4. Requirements

Unfortunately the established update processes cannot simply be applied to
routers and most other IoT (Internet of Things) products. For one the user
interface for most devices is minimal or hidden, because common users have
no reason to access it. They simply want their device to work without needing
any effort on their part. This dismisses all manual and semi automatic update
triggers, because they require user interactions for selecting and installing
updates.

As updates usually interrupt the functionality of a system for a brief time
span, possible user dissatisfaction through unexpected down times is another
potential problem. If the user should remain unaware of both the software
inside the embedded device as well as its update procedure, the automatic
update trigger should also validate if a user is using the device right now or
likely to use it in the near future.

For the choice of the update mechanism it is important to keep in mind that the
hardware of IoT devices is often a tight fit to the requirements of the intended
job. This cost optimizing strategy leaves no room for extra storage or memory
capabilities, which would be needed in order to implement a complex recovery
scheme.

For the recovery strategy the most critical issue is the lacking capability to
output error messages, which makes is impossible for most users to distinguish
between hardware and software failures. This might lead to automatic updates
accidentally breaking a lot of devices at once, possibly causing their owners to
conceive them as broken.

16

2.3. Automatic Updates

To prevent this a recovery scheme has to be able to automatically recover
from any kind of error possibly introduced by an automatic update. Assuming
that updates modify all parts of the operating system including the core
components the scheme has to work even if the system fails to boot or cannot
connect to a network any longer. Furthermore the recovery process must also
be transparent to the user, so both triggering and recovering must happen
without user intervention.

Therefore this thesis will search for ways to update OpenWRT systems, which
meet the following criteria:

• The updates trigger should be fully automatic
• There should be a non-manual recovery scheme in place
• The user’s work should never be interrupted by the update process.
• The found solution should work on a significant percentage of the devices

running with OpenWRT
• The update process should be properly secured

17

3. State of the Art

The chapter will take a look at different automatic update procedures used
by established operating systems. These will be analysed in regard to their
strengths and weaknesses and the environment they are running in. The goal
is to gain an overview over the components of successful update procedures
in order to inspire possible solutions for OpenWRT. As the goal of this paper
is a fully automatic update process, the presented implementations have been
limited to a selected few, which were found to be most interesting for the given
topic.

After taking a look at update processes in general, a more detailed look will be
taken at currently available update mechanisms for OpenWRT.

3.1. Common update processes

3.1.1. Windows Update

The most common operating system for personal computers naturally offers one
of the most used update systems. Unfortunately there is not much documenta-
tion available on how exactly Microsoft has implemented their update process,
so information could only be obtained by observing the system. Therefore the
description of the update process will seem rather vague, compared to others.

Windows Updates can trigger automatically, even giving users permission to
select a preferred time, when updates should be installed, to avoid disturbing
users while they are working. Furthermore if a user is working while updates
are installed and the installation process requires actions, that would disrupt
any other running process, the user is given the chance to delay the update
to a more suitable time. The combination of these two features minimizes

19

3. State of the Art

user dissatisfaction through badly timed updates and is therefore a very useful
implementation of an update trigger.

As Microsoft Windows is a relatively large operating system, it would not be
feasible to reinstall the entire system for every update. Therefore it makes
sense that Microsoft has chosen a change list based update mechanism, which
updates a system through many small changes. An interesting observation
that should be mentioned in this context, is the development of the Microsoft
update process over the last years. In the past it was quite common to install
multiple small updates at once, each of them solving a single issue. This of
course enabled users to very selectively decide, which of the many available
updates they would like to install. In practice this has lead to an increasingly
fragmented code base, with an almost unlimited amount of possible update
levels, depending on which updates were installed and which were not. In order
to reduce this fragmentation and make managing updates easier, Microsoft has
chosen to bundle most updates into one monthly update. This lesson should be
considered by anyone implementing an update process with a change list based
mechanism.

Errors while installing updates are to be expected, especially if an operating
system is running on so many different hardware configurations as Microsoft
Windows. In the past there have been cases, when Windows Updates have
caused the problems they were supposed to prevent. Microsoft does keep a list
of which changes have been applied by an update. This allows either automatic
reversion of an update, if the error is detected by the system during update
configuration or manual recovery through de-installing an update if the error
is not detected automatically. If the system fails to boot and cannot fix itself
through automatic reversion of the update, the operating system does install a
recovery partition along with the main system, that can be booted instead. It
can either be used to try and recover automatically by restoring core system
components or provide an interface for manual recovery for advanced users.

3.1.2. Linux package managers

This section will take a look at yum-cron and cron-apt, two applications
designed to automatically trigger updates for common linux distributions.
Simply spoken they only call the manual update trigger regularly and positively

20

3.1. Common update processes

Figure 3.1.: Common Update Processes

Semi
Automatic AutomaticManual

Update Trigger

Change list Manual
Keep changed

files

Apply change
list Install new OS

Update Process

APT/Yum-cronWindowsSLES-Update

Android
OTA

Google
Play
Store

Recovery scheme

21

3. State of the Art

confirm all requested user inputs. Initially this sounds like a very risky solution,
but if the software repositories used by the package manager are carefully
maintained, the danger is minimal compared to the dangers posed by outdated
software. Especially common distributions do put a lot of effort into making
sure that their packages are compatible and their package managers support
many features that prevent unexpected side effects.

Before continuing with the used update scheme it should be pointed out, that
some Linux distributions use a rolling release, while others rely on a fixed-release
model. Rolling releases get all their updates via package managers, while fixed
releases make one major version jump every now and then and only provide
security and small feature updates through package managers. This section
will only take a look at how package managers work, ignoring the solution used
for switching between fixed releases.

The used update mechanism is already given away in the title and another
good example for the Unix philosophy to do one thing and do it well. Since
there is no central developer responsible for all parts of the system, every part
receives updates from its own developer team. Once the update is published,
anyone can take the newest version of the software and create a package from
it. A software repository provides a searchable list of packages which can be
downloaded. As there can be complex dependencies between different packages,
some effort is needed to ensure that all packages provided by a repository
remain compatible to each other. The reliability of a package based update
process mainly depends on the quality of the chosen package repository.

The error recovery scheme in this case relies on the versioning of the pro-
vided packages. If the upgrade of a package causes errors the user can simply
downgrade to an older version to avoid the issue. Unfortunately there is no
mechanism in place to automatically do this, in case an error is encountered.
This is again due to the fact that there are complex dependencies between
packages and a single update may cause a multitude of changes to other pack-
ages. This along with the fact that it is difficult to detect a faulty package is
the main reason why the recovery scheme requires a user to take action.

22

3.1. Common update processes

SLES with yast

An individual look will be dedicated to the update process implemented for
SUSE’s Linux Enterprise Server. The yast tool allows for easy configuration
of automatic updates through a GUI. Additionally it provides options for the
update interval, licence agreements, how to handle interactive updates (requiring
user input) and filters determining which packages should be updated. This
grants more fine grained control over which updates should be installed, than
provided by the other solutions.

The other even more interesting feature about the SLES update procedure is
their recovery option via LVM snapshots. Instead of keeping a change list, every
update is preceded by taking a snapshot of every possibly changed volume.
After a successful update the snapshot is deleted. If the update encounters any
kind of error, the previous system can easily be restored. The advantage of
this scheme is that the system can be restored to it’s original state, even if the
failed update prevents the system from booting.

3.1.3. Android Updates

The Android operating system is possibly the most interesting case study for
the topic of this thesis. Just like OpenWRT Android is an open source operating
system, which must be customized for every device. Additionally the system
itself is free to use and always sold alongside the corresponding hardware. So
this software is generally distributed by hardware vendors, which rely on and
use the operating system, but do not have their core business focus on the
software development.

Finally it should be pointed out that there are multiple similarities in the par-
tition layout of Android and OpenWRT. In general Android uses the following
partitions:

1. boot: Contains the linux kernel and a minimal root filesystem. It is
responsible for mounting partitions and initializing the system located
on the system partition.

2. system: Contains Android system applications and is generally mounted
read-only. Should only be changed through an over-the-air (OTA) update.

23

3. State of the Art

3. vendor: Contains all aplications that are not generally shipped with
Android but have been added by the vendor responsible for customizing
Android to the individual device. Should only be changed through an
OTA update.

4. userdata: Stores all applications installed by the user as well as all the
data created by those applications. The content of this partition should
not be updated through an OTA update, but by an App Store, most
commonly Google Play.

5. cache: Memory area used for holding temporary data. Also used for
storing OTA update packages.

6. recovery: Contains an alternative linux system with another kernel and
the binaries needed to modify and update the other partitions.

7. misc: Stores process information about actions taken by the recovery
system, in case the device experiences a shutdown during an update
process.

After this it should be quite obvious that there are strong similarities between
OpenWRT’s SquashFS root file system and Android’s system and vendor
partition. Both of them are mounted read-only and only modified during a
system update, therefore they both only hold data and applications that are
an integral part of the system and cannot be removed easily. An equal degree
of similarity can be found between OpenWRT’s rootfs-data and Android’s
userdata partition. Both of them are used for storing all user triggered changes
to the operating system and cannot be updated in the same way as the rest of
the system. [1]

The following two sections will take a closer look, how Android updates both
the system and the userdata partitions and most importantly what experiences
can be drawn from another operating system that has many similarities with
OpenWRT but is far more widespread.

Android OTA

An Android over-the-air (OTA) update is used to update the system and vendor
partitions of a device. It can either deliver security fixes, new features or move
the device to a new major version of the operating system. The search and
download for such an update usually happens automatically, afterwards however

24

3.1. Common update processes

the user is prompted to install the update. The update is then moved to the
cache partition before the device reboots into recovery mode in order to be able
to write the system and vendor partitions. Once the recovery system has been
booted, it finds the update located in the cache partition, verifies the update
cryptographically and then updates the boot, vendor and system partitions
according to the update instructions. During this entire process, information
is written to the misc partition in order to be able to continue/revert the
update process in case of an unexpected shutdown. If the recovery partition
should also be updated by the OTA, the new contents of the recovery partitions
are stored on the system partition. Once the update has been completed, the
device reboots again. If the system detects during the startup process, that the
contents of the recovery partition do not match the expected contents, stored
on the system partition (in case recovery was updated by the update), the new
recovery is flashed to the recovery partition. Once the device has successfully
rebooted, the update process is complete. [1]

At this point is seems interesting to compare the described update process
against the requirements laid out in section 2.3.4. The update process is properly
secured, because the update is cryptographically verified, before it is installed.
Usually it is even verified twice, once by the system before prompting the
user to update and once again by the recovery before the update is installed.
The update process does work on all customizations of Android, unless the
customization broke the update process. The user is never interrupted, because
he is prompted for permission, before starting the update process. Thanks to
the misc partition the recovery is able to continue if an update is interrupted,
but if the update itself is faulty there is no mechanism in place to restore a
working operating system. The update trigger is only semi automatic, but the
user prompt prevents user disruption and for a device that is directly used by
its owner, has an extensive and commonly used UI and is generally expected
to accept incoming calls and messages, it can be argued that a semi automatic
update trigger is more user friendly.

So except for some weaknesses in the automatic recovery area, it seems that
Android does have a very stable update mechanism. Its only weakness lies in
the fact that an update that prevents the system from being booted, cannot be
reverted automatically. This puts some responsibility on the update providers,
but that is of course also true for the updates provided by Microsoft or Linux
package repositories. An important difference however lies in the fact that every

25

3. State of the Art

update has to be customized to every hardware platform, which makes it easier
to test an update but also multiplies the workload by the number of devices.

And this leads to the most problematic thing about Android OTA updates. They
are hardly provided in practice. By taking a look at the current distribution of
Android Versions it becomes clear that most vendors simply do not take the
effort to update their devices for their entire lifetime. At the time this paper
was written, Android 7.0 had been released for more than 10 months, yet less
than 10% of devices had been upgraded to the newest version and more than
20% of running Android devices are still running versions that are more than 3
year old. [2]

So even a working update procedure does not ensure that updates will be
provided, especially if these updates have to be customized to every hardware
platform individually. While this paper will not strive to provide an answer
to this dilemma, it certainly in an important lesson one can learn from the
Android ecosystem, because IoT devices based on OpenWRT will also need
their updates customized to their specific platform.

3.1.4. Android App Store

As already mentioned in the Android partition table, the userdata partition is
not updated via Android OTA updates. Instead an app store, most commonly
Google Play takes over that job. In essence it works very similarly to a Linux
package repository, providing users with an easy interface to download, install
and update applications suited for their operating system. However due to the
lacking update support from hardware vendors selling devices running Google’s
Android, an interesting transition took place.

Over time more and more parts of the Android system, especially security
critcal parts in bad need of regular updates, were extracted into applications,
that could be updated via Google Play. Considering the fact that Google Play
is installed at a vast majority of Android devices, this seems like a reasonable
step and allows Google to provide some security updates centrally, without
needing access to the system partition. On the other hand this decision cripples
the separation of system and user data.

26

3.2. Update processes for OpenWRT

This step demonstrates that the company behind the development of Android
has a strong interest to keep their system secure and up to date, but the
hardware vendors that depend on that very system to sell their devices, do
not share that interest. The reasons for these diverging interests would be
interesting to study, but are not within the scope of this thesis. Relevant is
only the lesson that updates will only be delivered if the party responsible
for providing them, does have an interest in the security and quality of the
software in question. Especially with the internet of things on the horizon, this
lesson should be kept in mind.

3.2. Update processes for OpenWRT

After taking a close look at many established update processes, the focus will
now be shifted towards already existing OpenWRT update processes. As already
explained OpenWRT is a highly configurable system that is used in a multitude
of different contexts and environments by users with different proficiencies.

This results in different groups having different requirements towards an up-
date solution. This section will quickly cover existing solutions, identify the
additional/alternative design goals they aim for, examine their advantages and
disadvantages and maybe redirect some readers to other projects which are
more tailored to their needs.

3.2.1. Manual Update

Background information

The default update mechanism for OpenWRT is a simple manual update, which
can be triggered via the command line or the web interface. However even
at this trivial stage there are two different distinctions in regard to updates
that should be kept apart, depending on which parts of the file system they
concern.

27

3. State of the Art

OPKG-How it works

The already existing package manager is capable of both finding and installing
updates for already installed packages. So at least this part of the system
could easily be updated with a cron job similar to the Linux package managers
already discussed in section 3.1.2. In theory such a package approach (like it
is common for Linux Desktop Environments) could be extended to provide a
reasonable automatic update solution. Unfortunately there are reasons why
this update mechanism is not taken generally.

As already pointed out in chapter 2.1.1 most implementations of OpenWRT do
use a dual layered root file system, with a read-only base and an overlay used
to store modifications made by the user. This means that updating anything
stored on the read-only filesystem in the conventional way would cause the
updated version to be written to the overlay. While this would work as expected,
it would also quickly use up the available space in the overlay partition. An
update process based on this idea is investigated in section 3.2.3.

Sysupgrade-How it works

Of course OpenWRT does ship with a way to upgrade the SquashFS filesystem.
This method is referred to as ”sysupgrade”, which basically is a complete
reinstall of the entire firmware. Every time an update is shipped to the customer,
the provider of the update builds a new firmware image, complete with both a
kernel and a new SquashFS root partition. The sysupgrade utility is capable of
transferring files from the old overlay partition to the new one.

The sysupgrade process first copies the parts of the overlay intended to be carried
over into its volatile memory. Afterwards it creates new a ram-based filesystem,
copies the currently running firmware there, kills all running processes and
switches to that new temporary filesystem. Once the switch has been completed
the flash memory is overwritten with the new image. If any files have been
selected to be carried over, they are copied to the new overlay. Once the final
step is completed an automatic reboot is triggered and the system reboots into
the new firmware.

28

3.2. Update processes for OpenWRT

Review

Both OPKG and sysupgrade work on almost every device running with Open-
WRT. They rely on a user to manually trigger an update and use different
update mechanisms to update different partitions. For opkg there is some kind
of a recovery scheme available, because OpenWRT does have a failsafe mode,
where the overlay partition is simply not mounted, allowing a user to reboot a
device and fix a faulty package.

For the sysupgrade part however, there is no such thing. Generally a sysupgrade
will not touch the boot loader partition, so advanced users might be able to
make use of U-Boot’s TFTP recovery to restore a device after a failed update,
but this is usually beyond an average user’s capabilities. This means that this
update process also relies on users to make sure that no unexpected interruption
occurs while the changes are written to the flash.

Summing up it could be argued that opkg and sysupgrade are tools that offer
decent update mechanisms, but the manual update trigger and recovery scheme
makes them a poor choice for an update procedure.

3.2.2. Gluon Updater

Background Information

Gluon is a framework which is used to build specialized OpenWRT firmwares for
wireless mesh nodes. It is developed and maintained by the Freifunk community,
which tries to provide an open wireless internet access to everyone. Different
Freifunk communities are generally limited to a single city or district and
mostly consist of technically advanced users, which allowed them to include an
automatic update function that would not be suited for many other cases, but
works nicely for them. [4]

How it works

In simple terms the Gluon autoupdater consists of a few lua and shell scripts
run by a cronjob. Through these scripts a configurable server is queried in

29

3. State of the Art

a configurable interval for available updates. If an update is available, it is
downloaded, verified and installed via the integrated sysupgrade command. In
order to prevent some of the issues introduced through automatic updates, a
few other configuration options are available. The first one allows the user to
specify a priority, which defines the maximum number of days that may pass
between the release of an update and its installation. The individual nodes
will decide at random at which point in the time between the release and the
specified priority the update will occur. This ensures that a faulty update can
only break a limited amount of nodes instead of the entire mesh. Secondly there
is a parameter to decide at which time the update should be run, which can be
specified to the hour. The minute to download and install the new image is
randomized to distribute the load on the download server. [4]

Review

The major disadvantage of this approach is that the individual Freifunk com-
munities all use their own modified versions of OpenWRT with Gluon, meaning
that every community has to run its own server to build and distribute the
updates, which is only feasibly if you are running a significant number of
nodes.

Apart from this however, this approach meets many of the requirements specified
in section 2.3.4: It is applied automatically once an update has been released
to the update server, it updates at a time where it is reasonable to assume that
no users are currently needing the device, the downloaded image is signed with
a signature that can be verified and since this approach is using the default
sysupgrade logic in the end it can be extended to almost every device running
OpenWRT.

The only requirement completely ignored by this solution is the automatic
recovery and that makes sense when you think about the context the Gluon
autoupdater is used in. These updates are for nodes in a mesh managed by
experienced users, that are able to distinguish between a software failure caused
by a faulty update and a hardware breakdown. Additionally these advanced
users would have no troubles to restore a working state on a device, even if
the firmware was completely broken. The time delay in rolling out the update
ensures that one faulty firmware version is not rolled out to the entire mesh at

30

3.2. Update processes for OpenWRT

once but at a much slower rate allowing for timely intervention by the users
monitoring the nodes of the mesh. Therefore the developers of Gluon had no
reason to worry about an automatic recovery mechanism, they can handle the
recovery manually if necessary.

3.2.3. Turris Omnia Updater

Background Information

The Turris Omnia is a single owner/home office router developed by the CZ.NIC.
It provides a device with open hardware and open software based on OpenWRT.
[8]

One of the selling points for this device is the fact that it receives automatic up-
dates. This project is especially interesting because their open source approach
does not only reveal how they finally implemented their update procedure,
but also documents what other attempts of theirs met failure. Before looking
into the update mechanism in more detail however, it is important to glance
at the hardware specifications of the device in question. The most important
bullet points are 8GB of flash memory, up to two GB of RAM and a 1.6GHz
dual-core ARM CPU. This hardware is many times more potent than the one
usually found in this class of devices. Keep in mind, OpenWRT is designed to
run on devices with as little as 4MB of flash memory and has already been run
successfully with only 2MB. So it is only natural that a firmware compiled for
hardware as potent as this, does not need the default memory layout.

In addition to this the Turris Omnia project defined slightly different criteria
for their update solution.

• Upgrade/downgrade of packages
• Addition and removal of packages
• Major version updates
• Preservation of configuration
• Recovery from power loss during upgrades

The need to not only upgrade but also downgrade packages seems reasonable
in order to resolve partially broken updates. Notable is the requirement to add
and remove software on the client device through automatic updates, which

31

3. State of the Art

Figure 3.2.: OpenWRT Update Processes

Semi
Automatic AutomaticManual

Update Trigger

Change list Manual
Keep changed

files

Apply change
list Install new OS

Update Process

Recovery scheme

OpenWRTTurris Omnia Gluon UpdaterLinksys Updater

32

3.2. Update processes for OpenWRT

means that no consent of the user is required. This is certainly interesting to
push new features to the devices at a later point in time or remove functions
that have proven to be a security vulnerability, but many users may not be
comfortable with another person having so much power over their devices.
Of course the open nature of the system allows every user to restrict these
updates, if he does not like them. Lastly there is no goal about not interrupting
working users, but similar to the Gluon updater, the time of the update can be
configured so that the odds of an interruption are minimal. [17]

How it works

Originally the Turris Omnia team tried to implement a solution similar to the
one envisioned in chapter 3.2.1 by implementing a series of scripts around the
package manager opkg, in order to update the device. Thanks to the relatively
huge amount of flash memory available there was never any need for a read-
only root file system, so every part of the system can be updated individually.
Furthermore there is enough storage available to duplicate all critical parts of
the system on the flash memory before updating them, so that the system is
still able to recover itself, even if a power loss occurs during an update.

As already stated in chapter 3.2.1 however, opkg is currently only used to
install additional packages or update selectd packages. When the Turris Omnia
team tried to use it as the foundation of their update strategy they encountered
a series of problems with the dependency resolution and installation order of
packages. Some of these are due to the fact that opkg like most software written
for OpenWRT has a reduced feature set in order to reduce the application’s
size and resource consumption. Others however are simply bugs that were not
encountered before, because opkg is generally not used in this way. [17]

Ultimately it was decided to abandon opkg for this project and it was replaced
with a new updater solution, they call ”Updater-ng”. This new solution consists
of a mixture of lua scripts and c programs, which access the same repositories
and databases as opkg, but provide many new features not offered by opkg.
[17]

33

3. State of the Art

Review

While updater-ng is a solution developed for one specific hardware platform,
all components are open source and available to the public and there is no
argument against porting this updater solution to other platforms. There is
even a good chance that the team from Turris Omnia would support such an
action, if only to increase the user base of their update solution. Of course
this is only feasibly for devices that have enough flash memory integrated
to be able to afford dismissing the default memory layout of OpenWRT. In
practice this might be interesting for expensive embedded devices that can
afford the increased hardware costs in order to gain a flexible and reliable
update mechanism. For all common devices, which have very limited flash space
available, this approach cannot be used directly.

3.2.4. Linksys Autoupdates

Background Information

The last update process analysed in this chapter is a vendor solution developed
by Linksys. It is not offered for all devices, but it is designed to be used by
private home users, so it is no surprise that it meets most of the requirements
laid out in section 2.3.4. Unfortunately it is not open source and not very well
documented, so many technical details were not available to the author.

How it works

From a user perspective, it is very convenient to set everything up. First one
has to create a Linksys cloud account, while being connected to the wireless
network created by the router. This automatically associates the device with
the account. Then it is sufficient to simply select a checkbox in the web interface
of the cloud service in order to have the device updated automatically. [10]

While there are no technical details about the system provided, an investigation
of the files and partitions does give an insight into how the system most likely
functions. There is not much use in investigating the update trigger, since the

34

3.2. Update processes for OpenWRT

device has to be connected to the cloud account and that cloud account can
manage the device, it is obvious that the update can also be pushed by the
vendor to the devices, instead of making the devices check for an update. This
provides a fully automatic update trigger, but little can be said about how it
works in detail. In order to find out about the chosen update mechanism and
recovery scheme, it is most enlightening to take a look at the flash partition
layout:

mtdparts=mtdparts=armada-nand:2048K(uboot)ro, 256K(u_env),
256K(s_env), 1m@9m(devinfo), 40m@10m(kernel), 34m@16m(rootfs),
40m@50m(alt_kernel), 34m@56m(alt_rootfs), 80m@10m(ubifs),
@90m(syscfg)

There are a couple of things that attract attention. The first thing of course is
the fact, that there are two kernel and two rootfs partitions, indicating that
there are always two versions of the firmware installed. This would allow the
system to update one firmware and fall back to the alternative one, in case
an error is encountered during the boot process. This also hints at the fact
that Linksys has chosen an update mechanism that installs an entirely new
firmware, possibly based on OpenWRT’s sysupgrade mechanism.

Next it is worth noting that there is only one overlay file system using ubifs
(an enhanced version of JFFS2), meaning that while the entire system data is
rewritten by updates, all user changes remain untouched.

The syscfg partition is also using the ubifs file system and appears to be used
to store configurations and some update-related information. This partition is
mounted inside the /tmp directory (which is unusual considering that /tmp is
usually a volatile ramdisk in OpenWRT). Taking a look at the folder shows
files like files-to-keep.conf or detected hosts history along with a sysconfig.dat
file, which appears to contain all settings made through the web interface. Why
these changes are stored there and not on the overlay file system or if these are
just backups in case errors occur with the original overlay is unknown.

So it seems a reasonable assumption that the update process is triggered by
the cloud server, causing the download of a new firmware. Afterwards this
firmware is flashed to the currently inactive system and then the system reboots
into the alternate now up-to-date firmware. Unfortunately it is not clear if

35

3. State of the Art

and under which circumstances the system is capable of recovering. Ordinarily
one would expect that, if the system encounters an error during the startup
process, the alternative firmware is booted on the next try. But the author was
unable to find any mechanism inside the bootloader that would enable such a
behaviour.

Review

As already stated Linksys has provided the most end user friendly update
solution for OpenWRT. It triggers automatically as soon as the account has
been set up and linked with the device and the corresponding checkbox has been
selected. It would be preferable if enabled updates were the default, rather than
requiring users to make that setting on their own. In addition the requirement
to pair a device with an account does bring about a multitude of privacy
concerns, especially when the information flowing between device and cloud
seems to contain more than just updates and technical information (remember
the detected hosts history).

For the update mechanism it is possible that Linksys uses a modified sysupgrade
routine, but it is just as likely that the update is written to the flash in some
other way (For example by using mtd or dd directly).

The recovery scheme appears to be implemented by keeping the entire running
system untouched and just changing the system that will be booted next time.
Surprisingly no mechanism could be detected that would ensure that the system
reboots into the old firmware if starting the new firmware fails in any way. This
may be because this function is hidden inside binaries that were not analysed
or because there simply is no such mechanism in place.

36

4. Hardware

For the research done in this paper, three different devices were analysed and
evaluated. All three devices could be found on the table of supported hardware
of the OpenWRT project and were deemed interesting devices for different
reasons. This chapter will give a quick overview of the hardware capabilities
and the software configuration of these devices. This part is relevant to the
overall research mainly for two reasons. First it was a clearly stated goal, that
the chosen update mechanism should work on a majority of OpenWRT systems,
so it is necessary to take a look at some commonly used ones. Secondly it
gives a nice impression of the quirks and inconsistencies one encounters when
working with the hard- and software of embedded devices. When trying to find a
generic update process understanding and working around those inconsistencies
consumes a lot of time and leads to unexpected difficulties.

4.1. TP Link Archer C7

The first device is a quite commonly chosen device for people using OpenWRT.
The TP Link Archer C7 comes with capable hardware for a reasonable price.

4.1.1. Hardware Overview

There are two different hardware revisions available for this device, that come
with slightly different hardware capabilities. For this paper we are going to
focus only on the second revision, as it is the one available for testing.

Table 4.1 shows that the memory of this device is limited to 16MB, but it
should be pointed out, that the first revision was limited to only 8MB, so the

37

4. Hardware

Table 4.1.: Hardware Overview
Attribute TP-Link Archer C7 v2
Architecture MIPS32 (Mips74Kc)
System on a chip (Soc) QCA9558-AT4A
Flash Chip Winbond W25Q128FV
Flash capacity 16MB
RAM 128MB
Bootloader U-Boot
Price Estimate ∼80e

device was actually designed to also work with half of its available flash memory.

4.1.2. Observations

Bootloader

The first interesting fact about this device is the way its bootloader is used,
because it deviates from the suggested U-Boot setup. Usually it is recommended
to have one partition holding the compiled bootloader (usually called u-boot)
and a second partition to hold all configurable parameters of the bootloader
(usually called u-boot-env). This prevents configuration changes from damaging
the bootloader itself, because even in case the configuration of the U-Boot
is broken, there is still a minimal backup configuration compiled into the
bootloader to enable recovery. For this device however, TP-Link has chosen
to remove the u-boot-env partition entirely and instead included all their
configuration changes into the backup configuration. This may save some flash
memory, but it also is a major obstacle for any recovery scheme requiring access
to the bootloader, because every configuration change would require rewriting
the entire bootloader, bricking the device in case of a failure.

Another problematic issue that should be mentioned at this point is the fact,
that the version of U-Boot used on this device is not very up to date. It is a
modified version of U-Boot 1.1.4, which was released in 2005 and according to

38

4.2. Zyxel NBG6716

Table 4.2.: Hardware Overview
Attribute Zyxel NGB6716
Architecture MIPS32 (Mips74Kc)
System on a chip (Soc) QCA9558-AT4A Rev 2

Flash Chip Macronix MX25L128 +
Hynix H27U2G8F2CTR-BC

Flash capacity 16MB + 128MB
RAM 256MB
Bootloader U-Boot
Price Estimate ∼100e

the buildinfo last build in 2013. A closer look at the source code reveals that TP-
Link has added some custom modifications to the bootloader and even applied
some patches included in later versions of U-Boot, but they never released
their own changes, so they could be included in future versions. Therefore it is
not feasible to upgrade the bootloader to a newer version, so whatever update
process is chosen, it must be compatible with the oldest versions of U-Boot
still in use.

4.2. Zyxel NBG6716

The second and most used test device was Zyxel’s NBG6716 router. It is more
expensive than the first device and comes with quite a few hardly understandable
inconsistencies, but these inconsistencies along with its hardware capabilities
made this device an ideal candidate for implementing an update prototype.

4.2.1. Hardware Overview

The highlight of this system is without a doubt the fact, that it contains two
different flash chips, which even use different technologies, as one is based on
NOR gates and the other on NAND. That in combination with the high storage
capacity of more than 128MB made it easy to run tests without risking bricking
the device.

39

4. Hardware

4.2.2. Observations

Bootloader

The first important observation to make is that Zyxel has made more intense
modifications to the U-Boot, than it was the case for the other vendors in
question. Instead of the normal bootloader, a so called zloader (which seems to
be a Zyxel specific implementation) is called by the bootloader and overrides the
default console. The only observed advantage of this zloader is that it prevents
users from entering the U-Boot command line interface without the correct
debugging password. That along with the fact that the u-boot-env partition is
mounted read-only, prevents users from changing the bootloaders configuration.
Again this increases the difficulty for any update solution needing access to the
bootloader.

Another thing worth noticing is that the kernel is not stored on raw flash as
a separate partition, as suggested by the default memory layout described
in section 2.1.1. Instead the kernel is stored in a compressed form inside the
already compressed JFFS2 file system. Instead of loading the kernel directly
from flash, the following command is used to make U-Boot search through the
entire flash and all recognized file systems for the specified file. If the file is
found, it is copied the given address in RAM.

fsload 80400000 /boot/vmlinux.lzma.uImage

When trying to install two different firmware version along each other, the
kernel was always loaded from the first of the two possible file systems. When
trying to work around this issue by giving different names to the different
kernels, an interesting issue was encountered. The only file path from which
the bootloader was able to load a file was the default kernel location. For every
other path, the command spent a long time searching through the entire flash
before reporting a failure. The suspected reason for this lies in the fact that
the bootloader was modified to be able to locate the kernel more quickly than
it usually would, but in return the generic functionality of the used U-Boot
command was limited to a special use case. This issue might have been one of
the reasons for not using the second rootfs partition.

40

4.2. Zyxel NBG6716

4.2.3. Partition Layout

The reasoning behind the partition layout of this device is still a miracle at the
time of writing this thesis. The first flash chip contains four partitions: u-boot,
env, RFdata and nbu. The purpose of the first two partitions is clear, the third
partition probably contains some SoC specific information, but the fourth is
completely empty. This means that 3712KB of 4096KB are not used by design,
which is an unusual waste of memory for a router.

But things get even more confusing, when the focus is shifted towards the
second flash chip, which offers 128MB of memory. This second flash is divided
into 8 partitions: rootfs data, romd, header, rootfs, header1, rootfs1, bu1 and
bu2. Of those 8 partitions, only two were found to be actively used during
the analysis of the vendor firmware. These two were rootfs data, which acts
as a JFFS2 overlay file system and rootfs, which also uses JFFS2 format, but
is mounted read-only, like a SquashFS filesystem usually would. The header
partition contains a few bytes of data detailing the currently installed firmware
version, but it can be deleted without causing any disruptions, so it appears
that this partition is not needed. All other partitions are completely empty and
not mounted into the system making sure that they cannot be used by any
applications. All functions and applications shipped along with the firmware
were tested to see, if any of them would make use of the extra partitions, but
none of them did, so they truly remain unused.

One weird design decision that should be pointed out at this point is the fact,
that Zyxel choose a ridiculously small size for the rootfs data partition. It is
limited to only 2MB, which means that users running an unmodified stock
firmware run into out of memory issues after using up just 2MB of flash storage,
even if there are about 100MB of memory available and unused.

Another point worth noticing at this point is that the rootfs uses a JFFS2
filesystem, rather than a SquashFS. This is because SquashFS requires an
additional layer like mtdblock to make the flash device look like a block device
to the operating system. Since this layer does not offer bad block correction, it
is necessary to either wrap the SquashFS in another file system like JFFS2 or
UbiFS or as done in this case, use the other file system directly.

The unused partition gives the impression, that the firmware was originally

41

4. Hardware

Table 4.3.: Hardware Overview
Attribute Linksys WRT1200AC
Architecture ARM (ARMv7)
System on a chip (Soc) Marvell Armada 385 88F6820
Flash Chip Spansion S70FL01GS
Flash capacity 128MB
RAM 512MB
Bootloader U-Boot
Price Estimate ∼120e

designed to support an update process similar to the one implemented by
Linksys, considering the doubled header and firmware partitions. For some
reason however this feature was cut from the released firmware without reverting
the changes in the partition layout. This discovery makes this device the most
interesting one for implementing a new update process similar to the one
pursued by Linksys, because the partition layout is already prepared for it.

4.3. Linksys WRT1200AC

The final device used for testing in this paper will be a Linksys device that is
already shipped with a working automatic update process discussed in section
3.2.4. Generally it can be said that this system is the most expensive one, but
it was also found to have the most consistent setup.

4.3.1. Hardware Overview

At first glance this system differs from the others in two things: It uses only
a NAND flash and relies on a different CPU architecture. Historically ARM
based routers are not the standard, but they are likely to get more common,
as ARM platforms are generally used more frequently thanks to other device
types like mobile phones.

42

4.3. Linksys WRT1200AC

4.3.2. Observations

Many observations about this device were already discussed in section 3.2.4
and as already stated, this device makes fewer odd design choices, than other
systems. Worth pointing out seems the fact, that UBI is used here as a layer
between the operating system and the flash, which allows using SquashFS for
the root file system, even on a nand partition.

Confusing is the chosen overlapping partition setup, which contradicts the
normal OpenWRT partition layout. Instead of having distinct partitions for
kernel and filesystem, as one would expect after seeing the default layout (Fig:
2.1), the rootfs partitions lie inside their corresponding kernel partitions and
both kernel partitions lie inside a ubifs partition.

Another confusing observation lies in the fact, that the bootloader passes JFFS2
as file system type to the Linux kernel, even though the root file system is then
mounted as SquashFS. This may be because the SquashFS is inside an UbiFS
and UbiFS is technologically similar to JFFS2, but it does not make it easier
to understand the system setup.

43

5. Strategy selection

After investigating other update processes and the available hardware, it is
time to think about how an update strategy with the required features (see
section 2.3.4) could look like in theory, before trying to implement this solution
on the available devices.

5.1. Desired Update process

5.1.1. Update trigger

This is the most obvious point, as the goal for this thesis was explicitly to
search for an update process with an automatic update trigger. Nevertheless it
seems reasonable at this point to consider a semi automatic update trigger as
an alternative.

This would require a proper user interface and notification system to interact
with the user in order to obtain permission to update. It would reduce the risk
of user dissatisfaction through unexpected updates, reduce the risk of power
outages or other unexpected shutdowns during the update process and make
it easier for users to notice, if an update has caused a problem. In theory the
interface for a semi automatic solution could be implemented with a modified
captive portal, that relays users website calls towards a static page, that informs
them, that a new update for their router is available. This would have to be
modified to prevent IoT devices or web applications other than browsers from
being blocked by this update portal. And even than users without access to the
router would still be notified about an available update, effectively introducing
a new source of user dissatisfaction. Summing up a semi-automatic update

45

5. Strategy selection

trigger might be an interesting alternative for routers in certain scenarios, but a
more general IoT update process will definitely require a fully automatic one.

That the update process is started without any user interaction does not mean
however, that an update may take place at any given time. Independent of the
chosen update mechanism, updates will require a reboot of either the entire
device or at least certain services, interrupting current work. In order to prevent
this the update time should by default lie during night hours, where the chances
of user activity are lower. Even better would be a solution where the device
itself analyses if it is being used and only triggers the update, if it is not. A
low effort solution would be a script that uses tools like bmon or iftop to check
the currently used bandwidth on all network interfaces and if it is low enough
(indicating that no device is actively using the network right now) the update
happens.

5.1.2. Update mechanism

Selecting the best update mechanism was possibly the hardest decision to
be made while working on this thesis. For a long time the question was left
unanswered instead researching both options trying to find a distinctive reason
to prefer one solution over the other. Therefore this section will detail how
both solutions could work in theory and afterwards explain, which one was
ultimately chosen over the other.

Apply change list

The first strategy is inspired by the the updater-ng discussed in section 3.2.3.
As already mentioned their update mechanism cannot be easily transferred to
other devices, unless they offer similarly capable hardware, especially in regards
to flash capacity. One of the key requirements towards an update solution for
this paper, is the need to be able to support a majority of OpenWRT devices
and the majority of these devices has only between 4MB and 16MB of flash
storage available.

So the first question to ask is if there is a reasonable way to adopt the updater-
ng to a system with as little as 8MB of memory. The first idea that comes into

46

5.1. Desired Update process

mind, would be to deviate from the default flash layout by using a read-write
root filesystem, rather than storing all updates on the overlay partition. In
principle a default OpenWRT installation takes up between 2 and 4 MB of flash
memory excluding the overlay filesystem. However switching to a read-write
file system (jffs2 or ubifs to name commonly chosen options) increases the
space requirements by 20-30%[14]. Considering the possible benefits gained by
automatic updates, this would seem like a reasonable trade-off. The only other
disadvantage of a read-write file system lies in the problem that OpenWRT
usually allows users to boot into a failsafe mode, in which the overlay partition
is not mounted. This feature would be lost, but as this mode can only be
triggered manually, it is not useful for the desired recovery scheme and most
users lack the skill to use such a feature anyway.

Another potential issue that should be considered lies in the fact that the
normally used filesystems supporting write operations like JFFS2 and UbiFS
are compressed. So even if the size of a file is known, package managers like
OPKG or updater-ng would not know how much space the file will finally
occupy on the flash chip. A non compressed filesystem would roughly double
the flash size requirements leaving to few possible target devices. This means
that the exact memory requirements of an update are only known after applying
it. This can of course be mitigated by having space reserved for updates and
installing updates on a test device first, measuring their memory requirements,
but in environments with very tight memory, this lack of certainty will be a
source of trouble.

Install new OS

The alternative strategy makes use of the already established procedure to
manually upgrade firmware and is mainly inspired by the Gluon and Linksys
solutions. This way the maintainer only has to release a single file, if he wants
to release a new firmware and the update can easily be installed manually, if
automatic updates have been disabled. One important disadvantage to keep in
mind at this point lies in the fact that some users will modify the configuration
and even install additional packages. These packages can be persisted through
updates, but their continued functionality is not guaranteed and even if it
were, they would never be updated through this mechanism. These issues could

47

5. Strategy selection

maybe be resolved by using a package based updater additionally, similarly
to how it is done by Android. Generally it can be said that this mechanism
needs much less discussion than the other one, as it is already established and
both Linksys and the Gluon project have proven that it can also be used in
combination with an automatic update trigger.

Chosen mechanism

After reviewing both available options and looking at their advantages and
disadvantages there was one perspective that lead to a decision. The possible
recovery schemes depend greatly on how the update mechanism works, so the
decision made at this points also effects the decisions made at the next section,
where the goal will be to find a non-manual recovery scheme.

It must be expected at all times that an update is either faulty or not installed
correctly for unknown reasons, like manual shutdowns or power outages. To
guarantee automatic continued operation even under such circumstances, an-
other operating system that is known to work must remain untouched by the
update process. In chapter 3 several systems were mentioned, that rely on
update mechanisms with change lists. And while they are often capable of
recovering from certain errors, the only feasible way to guarantee recovery is
through a recovery partition, as used by Microsoft Windows. This removes one
key advantage of the change list mechanism, namely the fact that it would not
require any support from the boot loader but could entirely be handled and
configured inside OpenWRT.

Additionally it should be kept in mind that the number of read-write cycles
for flash chips is limited compared to other memory devices. Therefore it does
make sense to bundle changes into a few major updates instead of continuous
small updates, as it reduces the amount of required erase operations on the
chip.

These two points along with the fact that the established manual update
procedure is already well established has lead to the conclusion that a mechanism
that updates by installing a new OS will be easier to implement and work more
reliable in most scenarios.

48

5.1. Desired Update process

5.1.3. Recovery scheme

This part of the update process can be considered optional in general but
as already argued it is vital for routers and IoT devices. One key aspect has
already been mentioned in the previous section: The only way to guarantee
recovery even after key components of the updated system have been damaged,
is to keep an alternative system in place that is not touched by the update
and can be used to recover the main system (will be referred to as recovery
partition in the future).

Doing this requires some degree of communication between the OS and the
bootloader. If the bootloader can notice that its default boot command fails
to successfully boot an image, it can switch to an alternative boot command
that targets the recovery partition. This recovery partition can automatically
download the last version of the OS known to work on the device, install it and
trigger a reboot again.

Generally if an embedded device has stopped working, the only interaction one
can expect from almost every user is to turn it off and on again, which would (if
the failed boot was detected by the bootloader) start the recovery partition. But
the user, lacking a proper user interface, would be unable to distinguish between
a second boot failure and a working recovery needing time to download a new
image. Even worse a broken internet connection could prevent the recovery
from working at all. To prevent all this, there is one preferable alternative to a
recovery partition, if the flash capacity allows it. Use a copy of the operating
system instead. This means that there are always two working versions of the
operating system installed on the device. Every update the running system
deletes the other one and replaces it with the newest version, before triggering
a reboot into the other firmware. If it is successful, the new version continues
to run until the next update, if not the old system is booted again and the
system returns to its working state without needing time or internet access.

49

6. PoC on Zyxel NBG6716

After it has been settled how the update process should work, the only thing left
is to implement it in practice. Amongst the three available hardware platforms,
the Zyxel NGB6716 was chosen to serve as platform for the implementation
of a proof-of-concept. It was chosen over the Linksys WRT1200 because that
device already has a working autoupdate solution, that has strong similarities
with the suggested update procedure and the goal is to demonstrate how
automatic updates can be brought to a new platform. The TP Link Archer
C7 was dismissed because it comes with a very old boot loader version and
even though the sources are released under the GPL, reassembling the firmware
from these sources was much harder than with Zyxel’s sources.

While this chapter mostly documents the work done on only one device, many
of the findings can be applied to other devices as well and the chapter is
structured in a way that readers can use it as a blueprint to try and bring this
update process to any other device as well.

6.1. Sysupgrade Script

Before diving into the details of implementing the update process, the avail-
able functionality of the already established manual upgrade process must be
revisited. It has already been discussed on a superficial level in chapter 3, but
now a more technical analysis of this piece of software is required.

Generally spoken the sysupgrade program is a shell script, that takes many
different arguments as input. These inputs can be split into two different
categories, one for creating backups and one for doing upgrades.

51

6. PoC on Zyxel NBG6716

Listing 6.1: Help text of Sysupgrade script

Usage: $0 [<upgrade-option>...] <image file or URL>
$0 [-q] [-i] <backup-command> <file>

upgrade-option:
-d <delay> add a delay before rebooting
-f <config> restore configuration from .tar.gz (file or url)
-i interactive mode
-c attempt to preserve all changed files in /etc/
-n do not save configuration over reflash
-T | --test

Verify image and config .tar.gz but do not actually
flash.

-F | --force
Flash image even if image checks fail, this is

dangerous!
-q less verbose
-v more verbose
-h | --help display this help

backup-command:
-b | --create-backup <file>

create .tar.gz of files specified in sysupgrade.conf
then exit. Does not flash an image. If file is ’-’,
i.e. stdout, verbosity is set to 0 (i.e. quiet).

-r | --restore-backup <file>
restore a .tar.gz created with sysupgrade -b
then exit. Does not flash an image. If file is ’-’,
the archive is read from stdin.

-l | --list-backup
list the files that would be backed up when calling
sysupgrade -b. Does not create a backup file.

All functions connected to backups are more relevant to the recovery scheme,
than to the actual update mechanism and the other options only allow deciding
how much of the configuration should be carried over and how much output
and user interaction the upgrade process should provide. Far more interesting
at this point is the control flow of this utility when carrying out its tasks

52

6.1. Sysupgrade Script

along with the technical details how it is able to provide a common upgrade
mechanism for all hardware platforms supported by OpenWRT.

This is not achieved by customizing the sysupgrade script for every platform, as
one might expect, but instead by implementing a generic upgrade function, that
uses functions implemented in platform.sh, to handle platform specific tasks
and settings. Figure 6.1 shows that a method called ”platform pre upgrade” is
executed before the ”do upgrade” method. Even before that a check is made if
the current platform is supported at all, but as listed above, this check can be
ignored by calling sysupgrade with the ”–force” option.

The upgrade method itself is worth taking a look at, mainly because it is
simpler than one would expect:

Listing 6.2: do upgrade methods

1 default_do_upgrade() {
2 sync
3 if ["$SAVE_CONFIG" -eq 1]; then
4 get_image "$1" "$2" | mtd $MTD_CONFIG_ARGS -j "$CONF_TAR"

write - "${PART_NAME:-image}"
5 else
6 get_image "$1" "$2" | mtd write - "${PART_NAME:-image}" #
7 fi
8 }
9

10 do_upgrade() {
11 if type ’platform_do_upgrade’ >/dev/null 2>/dev/null; then
12 platform_do_upgrade "$ARGV"
13 else
14 default_do_upgrade "$ARGV"
15 fi
16

17 if ["$SAVE_CONFIG" -eq 1] && type ’platform_copy_config’
>/dev/null 2>/dev/null; then

18 platform_copy_config
19 fi
20

21 v "Upgrade completed"
22 [-n "$DELAY"] && sleep "$DELAY"

53

6. PoC on Zyxel NBG6716

Figure 6.1.: Sysupgrade flow diagram

S
ta

rt

Parse Options

Print help text

-h or neither backup
nor upgrade called

Print error message

Backup option along
with image called

Save overlay?

Save Overlay Save UCI conf

Yes No

NAND ?

Run Nand Upgrade Process
according to nand.sh
(For UbiFS systems)

Yes

Option:
Conf Backup List ?

Print list of conf files to
 be backed up

Yes

No

Option:
Conf Backup ?

No

Back up conf files6

Yes

Option:
Conf Restore ?

Restore conf files

No

Is platform
 supported ?

Print error message

No

Is image valid ?

Yes

No

Print error message

No

Platform pre upgrade
Switch to ramfs and

call do_upgrade

54

6.1. Sysupgrade Script

23 ask_bool 1 "Reboot" && {
24 v "Rebooting system..."
25 reboot -f
26 sleep 5
27 echo b 2>/dev/null >/proc/sysrq-trigger
28 }
29 }

In the default case the image is simply loaded into RAM, then written directly
to the flash using the Linux mtd utility. If a platform specific implementation
exists, this implementation is called instead. Considering the many different
platforms supported by OpenWRT, it is quite surprising that the majority of
boards does not require any platform specific modifications. To give a rough
estimate, ”platform.sh” lists more than 180 supported boards and only about
30 of them do not use the default do upgrade method. So it should come as
no surprise that none of the devices analysed for this paper, despite their
differences, requires a custom upgrade procedure.

Careful readers may have noticed that there is one alternative upgrade path,
that has not been discussed so far, namely the one for nand devices, that relies
on it’s own set of scripts found in ”nand.sh”. A quick investigation reveals that
the name is slightly missleading, as these functions are not designed to update
any device using a NAND flash chip, but only devices running UBI on it. As
already mentioned UBI is a relatively new technology and apparently there
have been some issues integrating it into the ordinary sysupgrade procedure.
That is at least indicated by the fact, that the path for updating such devices
diverges from the main update path before even verifying that the current
platform is supported.

The main lesson learned from this investigation is, that the sysupgrade utility
provides support for a multitude of platforms, thanks to hooks and optional
platform specific methods it can easily be modified to handle tasks differently
and should be able to meet all requirements towards an upgrade mechanism. On
the other hand however for the majority of devices it would suffice to support
only the default upgrade implementation, so for the requirements of this paper
it would be sufficient to find a method compatible with all devices using the
”default do upgrade” method.

55

6. PoC on Zyxel NBG6716

6.2. Unlock U-Boot

As discussed in section 5.1.3 the chosen recovery scheme requires communication
between the bootloader and OpenWRT. Usually such communication is handled
via a U-Boot environment that can be modified by both the bootloader and the
operating system. Unfortunately Zyxel has chosen to write-protect this area,
a design choice made by many other vendors as well. For some devices the
environment partition has even been removed entirely. Therefore a precondition
for implementing the suggested upgrade process is gaining write permissions to
the u-boot environment.

6.2.1. Gain Write Permissions on U-Boot Environment

Usually write protection is implemented with a single command on the kernel
command line, defining the partition layout on the flash chip. This parameter
is passed by U-Boot to the linux kernel and to no surprise can be configured
within the U-Boot environment. This snippet from the environment of the
NBG6716 shows how boot the ”u-boot”, ”env” and ”RFdata” partitions are
protected by the ”readonly” parameter.

readonly=ro
setmtdparts=setenv mtdparts

mtdparts=spi0.0:${ldr_psize}(u-boot)${readonly},
${env_psize}(env)${readonly}, ${rfdat_psize}(RFdata)${readonly},
-(nbu)\; ath79-nand:${rfsdat_psize}(rootfs_data),
${romd_psize}(romd), ${hdr_psize}(header), ${rfs_psize}(rootfs),
${hdr1_psize}(header1), ${rfs1_psize}(rootfs1),
${bu1_psize}(bu1),-(bu2)

This of course means that this write protection is only active after the operating
system has been booted, so it is possible to use a serial connection in order to
gain access to the U-Boot command line and remove the readonly flag. While
this solution works nicely for development, it is no practicable approach for
ordinary users, creating a dilemma: The only way to gain write access from
OpenWRT to the U-Boot environment is by changing a value within that very
U-Boot environment from OpenWRT.

56

6.2. Unlock U-Boot

Fortunately there is a way to work around this problem. In section 4.2.2 a
whole subsection was dedicated to the fact that the chosen partition layout
for this device is quite questionable and it is not the only platform where the
bootloader passes a useless partition layout. The OpenWRT community could
have tried to gain access to bootloaders of all these devices and change the
memory layout passed to the kernel, but this would have required a major
effort and made the installation of an alternative firmware much harder. So
instead they chose to put a hardcoded partition layout into the kernel, ignoring
the information provided by the bootloader.

This means that it is possible to prepare an alternative firmware, which grants
OpenWRT write access to the locked partitions. And because this is already
done for many platforms, it is supported by the OpenWRT toolchain.

Listing 6.3: From /target/linux/ar71xx/Makefile

zcn1523h_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 6208k(rootfs), 1472k(kernel),
64k(configure)ro, 64k(mfg)ro, 64k(art)ro, 7680k@0x50000(firmware)

mynet_n600_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 64k(devdata)ro, 64k(devconf)ro,
15872k(firmware), 64k(radiocfg)ro

mynet_rext_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
7808k(firmware), 64k(nvram)ro, 64k(ART)ro

zyx_nbg6716_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(env)ro,
64k(RFdata)ro, -(nbu);ar934x-nfc:2048k(zyxel_rfsd), 2048k(romd),
1024k(header), 2048k(kernel), -(ubi)

qihoo_c301_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env), 64k(devdata), 64k(devconf), 15744k(firmware),
64k(warm_start), 64k(action_image_config),
64k(radiocfg)ro;spi0.1:15360k(upgrade2), 1024k(privatedata)

Listing 6.3 shows a snippet taken from an OpenWRT Makefile, which contains
the hardcoded flash layout, that is usually used for this device along with a
few others. Simply deleting the letters ”ro” twice is enough to build an image
with write access to the previously locked partitions.

Once the modified firmware has been installed, the environment can be easily
changed and once the readonly flag has been removed from the env partition,

57

6. PoC on Zyxel NBG6716

even the old firmware using the flash layout information provided by the
bootloader has write permissions to the U-Boot environment.

6.2.2. Work around zloader

As already mentioned in chapter 4.2.2 Zyxel has gone beyong ordinary U-Boot
modifications by implementing a custom binary blob referred to as zloader.
While the source code for the modifications of U-Boot is public under the
GPL, the sources of the zloader are not published, so its features and purposes
can only be guessed based on observation. On the surface it only replaces the
ordinary U-Boot command line with a custom one that provides a limited set
of features, allowing only to continue the boot process, recover via tftp, show
status information or enter a debug mode (which is password protected).

All of these feature are also provided by U-Boot itself, so this zloader does not
provide any new functions. One could argue that it provides more convenient
commands for mainstream users, but given the fact that mainstream users are
very unlikely to solder pins to the serial connection in order to use it, that
argument does not satisfy. Another theory that came to mind was that the
zloader is used to validate the installed firmware and make sure that only
firmwares released by Zyxel are booted. This theory was supported by the fact
that the zloaders for different devices were not equal, but it turned out they can
be switched between devices without any errors, so that theory seems wrong.
Whatever the purpose of this zloader is, U-Boot still runs the ordinary U-Boot
boot command specified in the environment, so it does not limit or change any
functionality.

For the development process however, the missing access to the U-Boot com-
mand line turns out to be a massive limitation, as it renders testing of U-Boot
commands much more tedious than it has to be. Fortunately it turned out that
the sources provided by Zyxel include an option to build the bootloader without
the zloader, granting direct access to the command line. Afterwards it was
necessary to build a modified firmware again, that removed write protection
for the ”u-boot” partition. Then it was easy to replace the original bootloader
with the new one without the zloader. In order to simplify the development
process this alternative bootloader was installed, but as this is a risky operation

58

6.2. Unlock U-Boot

(a failure while switching the bootloader may render the device unusable) the
suggested update process must work with the stock bootloader.

U-Boot chainloading

Given the fact that multiple issues were encountered with U-Boot, starting
from outdated versions over vendor specific patches until custom injections like
the zloader, the idea of chainloading the bootloader was investigated. Ideally
this would leave the original bootlader and environment untouched and place a
second bootloader instead of the old firmware kernel. This way there would be
no risk of rendering the device unusable by damaging the bootloader and the
version, features and bugs of the original bootloader would be irrelevant, as
well as the write protection or lack of the original environment.

Unfortunately however U-Boot does not make any statements on chain loading,
in practice there are some people doing it successfully and others reporting
errors. The overall take away seems to be that it is possible to chainload the
same U-Boot multiple times without errors, for different versions however the
chances decrease the more different the versions are. In addition to that the
command to load another U-Boot is different from the command to load a
linux kernel, so even if it worked, it would require modifications to the original
U-Boot’s environment, which limits its usability.

Is is possible to do U-Boot chain loading on the NBG6716 if the same bootloader
is used twice, it was even possible to chainload a version without zloader, but
the attempt to load a newer U-Boot version failed (Note: It should be pointed
out at this point, that no excessive effort was made to get it to work. Given
the versatility of U-Boot it is probably possible to build a version, which can
be chain loaded).

The idea was abandoned at this point, as it requires access to the U-Boot
environment and does not allow an easy version upgrade. As long as U-Boot
does not implement some features to extend their chain loading support, it is
not recommended to use this approach to gain access to the bootloader.

59

6. PoC on Zyxel NBG6716

6.3. Enable Dual-Boot

In order to implement the solution suggested in chapter 5.1.3 it is necessary to
configure U-Boot to run two alternative systems. This allows booting a recovery
partition in case the default system is broken or running two parallel systems
entirely in order to allow easy switching between them. Given the fact that the
partition layout already seems to support the second case, it was chosen for
implementation.

6.3.1. Investigate Linksys WRT1200AC Setup

Before trying to support dual booting on the Zyxel device is makes sense to
take a look at the hardware platform that already supports dual booting, the
Linksys WRT1200AC.

Listing 6.4: U-Boot Environment parameters for Dual Boot

bootcmd=run altnandboot
nandboot=setenv bootargs console=ttyS0,115200 root=/dev/mtdblock5 ro

rootdelay=1 rootfstype=jffs2 earlyprintk $mtdparts;nand read
$defaultLoadAddr $priKernAddr $priKernSize; bootm
$defaultLoadAddr

altnandboot=setenv bootargs console=ttyS0,115200 root=/dev/mtdblock7
ro rootdelay=1 rootfstype=jffs2 earlyprintk $mtdparts;nand read
$defaultLoadAddr $altKernAddr $altKernSize; bootm
$defaultLoadAddr

mtdparts=mtdparts=armada-nand:2048K(uboot)ro, 256K(u_env),
256K(s_env), 1m@9m(devinfo), 40m@10m(kernel), 34m@16m(rootfs),
40m@50m(alt_kernel), 34m@56m(alt_rootfs), 80m@10m(ubifs),
-@90m(syscfg)

defaultLoadAddr=0x2000000
priKernAddr=0x0a00000
priKernSize=0x0600000
altKernAddr=0x3200000
altKernSize=0x0600000

60

6.3. Enable Dual-Boot

Listing 6.4 shows the parts of the U-Boot environment responsible for the
dual boot support. This setup allows switching between operating systems by
toggling the bootcmd value between ”run nandboot” and ”run altnandboot”.
Most interesting for the work on the Zyxel router are the differences between
those two boot commands.

The bootargs they pass to the Linux kernel are almost identical, only the
partition of the rootfs changes, which makes sense, since the two systems have
to use different root partitions. Then they both load the Linux kernel from
different flash locations to the same memory segment in RAM before continuing
with the bootm command to start the boot process.

This shows that U-Boot can be modified to support booting two different
versions of OpenWRT without need for any special U-Boot features or cus-
tomizations.

6.3.2. Implementing Dual Boot on the Zyxel NBG6716

Considering the lessons learned in the previous section and the partition layout
of the Zyxel device it seems rather easy to install a second system and boot
in in parallel. At first a second version of the firmware was installed on the
partition mtd9, which had been completely empty in the original firmware.

Listing 6.5: Zyxel U-Boot Environment parameters

loadaddr=80400000
readonly=ro
setmtdparts=setenv mtdparts

mtdparts=spi0.0:${ldr_psize}(u-boot)${readonly},
${env_psize}(env)${readonly}, ${rfdat_psize}(RFdata)${readonly},
-(nbu)\; ath79-nand:${rfsdat_psize}(rootfs_data),
${romd_psize}(romd), ${hdr_psize}(header), ${rfs_psize}(rootfs),
${hdr1_psize}(header1), ${rfs1_psize}(rootfs1),
${bu1_psize}(bu1),-(bu2)

flashargs=setenv bootargs board=NBG6716 root=/dev/mtdblock7
rootfstype=jffs2 noinitrd ${bootmode} ${zld_ver}

addtty=setenv bootargs ${bootargs} console=ttyS0,${baudrate}
addmtd=setenv bootargs ${bootargs} ${mtdparts}

61

6. PoC on Zyxel NBG6716

boot_flash=run setmtdparts flashargs addtty addmtd;fsload
${loadaddr} /boot/vmlinux.lzma.uImage;bootm ${loadaddr}

bootcmd=run boot_flash

The first attempt to boot this firmware was made by altering the flashargs
value to use a different root partition. The kernel load parameters were not
changed because the fsload command does not accept any input about where
to start searching. So the first attempt failed because fsload still loaded the
kernel from the original file system instead of the alternative one.

In order to fix this problem it was necessary to change to fsload command to
make it load the kernel from the correct file system. But the only argument
supported by this command is the location where the loaded file should be stored
in RAM and the name of the file. So the next attempt was to slightly modify
the second firmware by renaming its kernel file to ”vmlinux alt.lzma.uImage”.
In theory this should have enabled U-Boot to find the alternative kernel stored
on the alternative file system. Unfortunately however this did not work as
expected, because the fsload command failed to load the alternative kernel.

Some experimentation showed that the fsload command fails whenever it is
called with any other arguments than the ones specified in the original U-Boot
environment. The reason for this can probably be found in one of the patches
written by Zyxel for their device, called:
”008-zyxel improve performace for fsload command.patch”.
The exact functionality of this patch was not investigated, but nevertheless
a reasonable assumption can be made, why it would be causing problems:
Usually loading files from a JFFS2 partition would pose a performance problem,
because JFFS2 requires loading and scanning the entire file system before
it can be searched. The patch speeds up that process but at the cost of not
really searching the entire file system. Instead the patch implements a custom
method that loads the kernel by analysing JFFS2 nodes and file system specific
summaries. Even without a closer investigation this implementation seems like
a hack that apparently fails as soon as a single input changes.

Since fixing the fsload command would require modifying the U-Boot, which is
not practicable for the majority of users, alternative ways to load the kernel
from memory were needed. Fortunately the U-Boot provided by Zyxel does
support an alternative method by directly reading from the flash memory. A

62

6.4. Enable Recovery

second helpful fact was that Zyxel defined header partitions for each rootfs
partitions. Both header partitions are unused by the operating system and
conveniently sized to store a kernel file. So for the next attempt the kernel
image was written to that header partition using the dd command. Now finally
the alternative systems kernel could be loaded and the boot process completed
without issue.

Listing 6.6: Zyxel U-Boot Environment modifications

flashargs2=setenv bootargs board=NBG6716 root=/dev/mtdblock9
rootfstype=jffs2 noinitrd

loadKernel2=nand read 0x80400000 0x2300000 0x100000
boot_flash2=run setmtdparts flashargs2 addtty addmtd

loadKernel2;bootm ${loadaddr}
bootcmd=run boot_flash2

Listing 6.6 shows all modifications necessary to the U-Boot environment in
order to support the dual boot process. At this point only a single variable
must be changed in order to switch between booting the original firmware or
the alternative one.

6.4. Enable Recovery

Now that it is possible to boot two different systems on the device, it is necessary
to define an update procedure that enables the device to recover from any error
caused by the update process. This starts with errors during the download
resulting in a damaged image file, continues with write errors while installing
the new image and ends with external disruption like power outages during
the update. Furthermore every update carries the risk of introducing new
unexpected errors. The verification of the downloaded image will be postponed
to section 6.5 because from a recovery perspective it does not matter why the
content of the flash is faulty.

Assuming that our update process only touches the U-Boot environment and
either the rootfs or the rootfs1 partition, the possible errors caused through an
update can be grouped in these scenarios:

63

6. PoC on Zyxel NBG6716

1. The system encounters an error during the boot process. System does
not boot any longer.

2. The system boots successfully but key functions like networking or remote
access do not work.

3. The system boots successfully but side packages like ad-blockers do no
longer work.

4. The U-Boot Environment is invalid and U-Boot is forced to use its default
environment.

Without a serial connection to the device in order to read the bootlog, even
an experienced user would be unable to differentiate those scenarios from a
hardware failure. But as already described in section 5.1.3 there is one user
interaction we can expect even from unskilled users: Turning the device off and
on again.

The suggested recovery scheme always works by switching back to the previ-
ously installed system, so it only supports the scenarios 1-3, so these will be
investigated first:

6.4.1. Switch to alternative firmware at next boot

In order to switch between the original and the alternative firmware a single
variable in the U-Boot environment must be changed. In order to support
scenario 1 where the system attempts to boot the new firmware, but fails
during the boot process, a very simple trick is used. The boot command is
extended to automatically toggle the firmware run at next boot. This way if
the boot fails the next boot is guaranteed to run the previous working version
again. Listing 6.7 shows the changes needed in the U-Boot environment in
order to implement this behaviour.

Listing 6.7: Zyxel U-Boot with recovery
boot_flash=setenv bootcmd boot_flash2;saveenv;run setmtdparts

flashargs addtty addmtd;fsload ${loadaddr}
/boot/vmlinux.lzma.uImage;bootm ${loadaddr}

boot_flash2=setenv bootcmd boot_flash;saveenv;run setmtdparts
flashargs2 addtty addmtd loadKernel2;bootm ${loadaddr}

bootcmd=run boot_flash

64

6.4. Enable Recovery

This solution however still has the disadvantage that every reboot switches
between firmwares, even if there was no error. So this approach still needs to
be refined.

6.4.2. Only switch to alternative firmware if there is an error

If the router runs for long periods of time the solution suggested in the previous
section can already be used. If the device is rebooted regularly, for example by
a central switch used to turn off power over night, it would cause the device to
always return to the older firmware, even if there is nothing wrong with the
current one.

This issue can easily be avoided by defining a script that is run after the boot
process has been completed. This script checks that key functions of the system
are running as expected and updates the boot command again if this is the case.
This supports recovery scenarios 1 and 2 but by only checking key components
the automatic recovery now ignores the third recovery scenario where only
side packages do no longer function. This decision was made because the two
goals of recovering from any possible problem and not recovering if there is no
problem are conflicting and every solution will be a compromise between them.
For the prototype implemented for this paper, a very simple startup script was
created that only checks if an internet connection can be established and if the
user can still access the device via ssh and http.

Listing 6.8: Startup Script to check recovery status
1 #!/bin/sh
2

3 checkErrorCode()
4 {
5 local _retVal=""
6 if [[$1 -eq "0"]]; then
7 _retVal=1
8 else
9 _retVal=0

10 fi
11 echo $_retVal
12 }

65

6. PoC on Zyxel NBG6716

13

14 #give system time to set up
15 sleep 5m
16

17 #Check if System is online
18 wget -q --tries=10 --timeout=20 --spider http://google.com
19 isOnline=$(checkErrorCode $?)
20 #Check if webserver is running
21 ps | grep uhttpd | grep -v grep
22 httpRunning=$(checkErrorCode $?)
23 #Check if ssh server is running
24 ps | grep dropbear | grep -v grep
25 sshRunning=$(checkErrorCode $?)
26

27 currentBootCmd=$(fw_printenv -n bootcmd)
28

29 if $currentBootCmd EQUALS "run boot_flash"; then
30 newBootCmd="run boot_flash2";
31 else
32 newBootCmd="run boot_flash";
33 fi
34

35 if [[$sshRunning -eq 1]] && [[$httpRunning -eq 1]] && [[
$isOnline -eq 1]]; then

36 echo "Startup successful, switching boot command to
$newBootCmd"

37 fw_setenv bootcmd $newBootCmd
38 else
39 echo "System Startup failed, going for Reboot"
40 reboot
41 fi

This decision to keep the script this simple was made on the assumption that
most users only need the basic functions of this device. Should this assumption
turn out to be invalid, this script can easily be extended to validate the function
of other parts of the system. Actually it is expected that this script would be
extended massively if this recovery scheme is used by a larger audience, but for
the prototyping phase it was found to be sufficient.

66

6.4. Enable Recovery

6.4.3. Restore U-Boot environment

The last scenario involves problems caused through an invalid U-Boot environ-
ment. Considering the fact that the suggested solution requires regular write
operations on the environment, it must be considered that the environment
might be corrupted at times through an invalid write operation. In this case
U-Boot returns to its default environment, which runs the boot flash command.
This is the main reason why the original boot flash command was not modified
to load the kernel the same way as boot flash2, because it would prevent the
default environment from booting successfully.

Therefore a corrupt U-Boot environment would not prevent the Zyxel device
from booting. But it does prevent ever switching to the other system again,
unless the Environment is restored. To make sure the environment is restored
if necessary, a slight change to the startup script is necessary.

Listing 6.9: Extend Statup Script to check U-Boot Env

1 #Check if U-Boot environment is OK
2 if [[$currentBootCmd -eq "Warning: Bad CRC, using default

environment"]]
3 mtd -r write /var/recovery/u_boot_env.backup mtd1
4 else
5 #Do Nothing
6 fi

This check validates that the current boot command could be read from the
environment. If the check fails a new valid environment is flashed to mtd1 to
restore dual boot support for further updates.

At this point there is one obvious scenario where the recovery scheme still fails.
If the U-Boot environment is damaged by the update (for example by a power
loss during the write operation) and the firmware installed on the default rootfs
partition fails to boot for any reason, the implemented recovery strategy fails.
So far no solution has been found that would allow recovery from such an event,
it would require more testing and experience to see if this theoretical scenario
might ever happen in practice.

67

6. PoC on Zyxel NBG6716

6.5. Securing the update process

The last question to be discussed in detail refers to the security of the update
procedure. Given the fact that the goal is to increase security by rolling out
updates automatically, the entire endeavour would become useless if attackers
could use the update mechanism to make the device install illegal updates.
Note: As the OpenWRT project does not publish regular updates to their
firmwares and testing security required the capability to simulate an attack, a
simple webserver was set up to test delivering updates to clients.

In this context security refers mainly to integrity, not so much to privacy and
availability. Considering the fact that Zyxel does package openssl and ”wget-ssl”
with their firmware the first prototype simply downloaded the new firmware
via a SSL secured http connection. To verify the download a separate request
was made to get the expected hash of the downloaded file. Only if those match
the image is written to the flash and the hash is used again to verify that the
write process was successful before rebooting into the new partition.

This solution has the disadvantage that it relies on SSL, which is not available
on all devices because it requires a significant amount of memory. The following
alternative, inspired by OPKG, does not require encryption but still ensures
that no attacker can inject his own updates. Every update is digitally signed by
the provider of the firmware and the matching public key is packaged with the
firmware. Therefore even if the image is downloaded insecurely, as long as the
digital signature verification passes, the update is valid. Of course this also has
its drawbacks because a lot of information about the device and the software
running on it are disclosed to an attacker inspecting the network traffic.

6.6. Summary

At the end of this section it is time to remember the requirements define at
the beginning in section 2.3.4. The fully automatic update trigger was not
discussed indivdually in this chaper, because a simple cronjob to run a script
to find, download and install the newest firmware version was not found to
be interesting enough. Interested users can find the version used during the
development process in the appendix.

68

6.6. Summary

Most of the implementation work focused on the essential feature of the sug-
gested update procedure, the non-manual recovery scheme. The implementation
of this scheme was also the main limiting factor to the number of devices sup-
ported by the suggested update procedure. It is limited to devices with enough
space to hold two distinct OpenWRT systems and use U-Boot as bootloader.
This may limit the number of devices more than intended, but it still supports
a reasonable percentage of devices, so this requirement was fulfilled as well.

The integrity of the update process was also discussed in this chapter, for the
device in question even a rather privacy friendly solution was found, which
certainly meets the security requirement. This leaves only one requirement
that was not addressed during implementation, namely that a user’s work
should never be interrupted by the update process. This does not mean that
the suggested update procedure is incapable of fulfilling this requirement, it
just means that the time did not suffice to implement it during the prototyping
phase for this paper.

Ultimately it can be said that the successful implementation of the prototype
proves that the suggested update process has the potential to safely and
automatically upgrade embedded devices based on U-Boot and OpenWRT.

69

7. Future work

The final chapter of this thesis will discuss future work left to be done in order
to make the suggested update procedure usable for a wider public. In addition
to that some functions will be suggested to refine the presented prototype.

7.1. Prepare build environment

A task that was explicitly not part of this thesis, but is vital in order to
provide automatic updates, is a build environment that automatically builds
new firmware images based on the current master version of the OpenWRT
repository and publishes them. Preferable this should be done by the OpenWRT
project itself but in the past the project has not been very active in this
regard. The most current firmware version for the Zyxel NBG6716 available for
download was more than a year old at the time this was written. It should be
pointed out however that the LEDE project, which is about to remerge with
the OpenWRT project is building firmware updates more regularly, so there is
a good chance that this situation will improve in the future.

Another possible improvement that should be discussed at this point is the
attempt to make the builds of OpenWRT reproducible [9]. This would enable
anyone to set up his own build environment and validate that the firmware
provided by the update server is created from the unmodified sources published
by the OpenWRT project. Such a feature would massively improve the trust
into delivered updates and even allow users to verify the validity of an image
by comparing it to images build by other update providers. While there is
significant effort being put into this topic, the current reproducible jenkins
build does not even create a single reproducible firmware yet, so this topic still
requires a lot of work before it can be used.

71

7. Future work

7.2. Test produced images

Another strategy to prevent errors caused by updates would be to automatically
test the firmware images, before they are released publicly. This could be
achieved by having one test device for every supported device type that is
updated before all others. Afterwards the features of the test device could be
tested automatically from a central test instance. The following list gives a
short list of possible tests:

• Check if the device can still be reached via HTTP and SSH.
• Check if the device could still establish an internet connection via all

supported methods (DHCP, VPN, LTE, ...).
• Check if a client can still connect to the wireless network and that the

performance of the wireless network has not decreased.
• Check that all expected services are running.

Naturally that list was mainly inspired by routers and would need some spec-
ification towards the individual firmware under test. But it would certainly
increase the reliability of an image for the majority of users, which hardly
deviates from the suggested configuration. Finally it would effectively prevent
errors like the scenario described in the last paragraph of section 6.4.3, because
the odds of the boot process failing due to unusual configuration changes made
by a user are minimal.

7.3. Prevent user disruption

As already discussed in section 2.3.4, the update process should not trigger,
while a user is using the device. In theory it should be trivial for an embedded
device to determine, if it is being used or not, but the example of a router proves
the opposite. Of course there are trivial attempts to test this, like checking
if there are any active DHCP leases or network interfaces. But in most cases
such solutions will never report an unused system, because there is always at
least one device in a house, like a phone or a printer, that is not turned off and
therefore keeps an active network connection.

72

7.4. Create minimal recovery partition

A more promising idea would be to measure network traffic and active connec-
tions instead of active network devices. This has the downside that even devices
not currently in use do create a certain amount of network traffic through
features like network discovery and some devices are managed through the
cloud or receive push notifications and therefore keep a TCP connection open
permanently. Looking at all these possible ways to detect user activity and
the potential issues linked with all of them, one has to accept that this topic
requires more work and effort in order to provide a reasonable prototype.

Independent of how user activity is checked the goal of preventing user disruption
must never be able to permanently prevent an update. So if a device is busy for
too long, the update should eventually be triggered, even if it means disrupting
the user.

7.4. Create minimal recovery partition

The prototype presented in the previous chapter used two distinct partitions
to store the same firmware twice on one device. But many devices currently
supported by OpenWRT do not have the necessary flash size to store the full
operating system twice. For these cases it is necessary to prepare a recovery par-
tition, which automatically downloads and reinstalls the last working firmware
version.

Such a firmware should be stripped of every functionality not required for
its task. It needs to connect to the internet in order to download a working
firmware version, but other things, even basic functionality for a router like
WLAN or a DHCP server are not necessary for this image.

OpenWRT has been ported successfully to devices with as little as 2MB of
memory and this should be seen as an upper limit for a recovery partition. If
the size can be contained to this degree the recovery partition should fit on
every OpenWRT device with at least 8MB of available flash memory. Devices
with less memory will not be supported by the suggested update procedure
unless a more memory efficient recovery scheme is found.

For this paper some alternative ideas like extending U-Boot with IP/TCP
capabilities to download the image directly or creating a U-Boot standalone

73

7. Future work

application to handle the recovery were investigated and dismissed as infeasible.
The only possible option to extend the recovery scheme to devices with less
than 8MB of flash memory would be using an external storage like a USB stick
or a SD card. If the router provides the needed interface and U-Boot has been
compiled with the commands necessary to access that storage, it could be used
to restore the firmware directly within U-Boot.

7.5. Track necessary recoveries

Another feature still missing the the prototype is tracking of successful and
failed updates. The prototype is capable of recovering from a failed update,
but that would not stop him from retrying the update again. If the update
failed due to a non reproducible error, this is a correct behaviour, but if the
update itself is faulty it would be installed and recovered during every update
cycle until a newer update is released.

That alone would be acceptable, especially if the updates are optimized to not
disrupt a user’s work. But tracking recoveries is also relevant for the provider
of an update. If a new firmware is published and more than 90% of the devices
downloading it revert the update right after applying it, the update is faulty. To
enable providers of firmware updates to quickly respond to problems caused by
a new update, a feedback mechanism about an update is necessary, preferably
one that identifies a device as well as its current firmware version and any
firmware versions that were reverted by that device. This feature could easily
be extended to provide more useful information, like the distribution of running
firmware versions or how many devices are already running at the newest
firmware and how long it usually takes until an update has been delivered to
all target devices.

7.6. Bring update procedure to more devices

The final and most obvious future work is porting the suggested update pro-
cedure to more hardware platforms and see if any unexpected difficulties are

74

7.6. Bring update procedure to more devices

encountered there. Just by thinking about the two other devices analysed in
the hardware chapter a few possible issues come to mind:

The TP-Link Archer C7 does not have a U-Boot environment by default, so a
modified image containing an environment must be flashed in order to fix this.
But there is no guarantee that the U-Boot installed on that device does support
an environment at all, since it is not needed in general. If that should be the
case, this device could not support the suggested update procedure without
building and installing a new bootloader, which is an action that carries the
risk of bricking the device.

The Linksys device already supports a similar update mechanism, so the
implementation will meet less problems there. But it should be considered that
the chosen partition layout is slightly confusing with partition within partitions
and it would take some time to determine how to best install a new firmware
without risking any damage to the file system.

75

8. Conclusion

The defined goal of this thesis was to suggest a solution how to provide automatic
updates to embedded devices owned by home users. The chapters on the state
of the art and hardware should provide an insight into the already established
update procedures, their strengths and weaknesses as well as the environment
they are targeting.

For developers of embedded devices, who intend to provide automatic updates
to their product, this paper should provide a good starting point to take a look
at existing solutions in order to find, which one is best suited for their specific
use case. Should they find that their strategy selection is similar to the one
presented in chapter 5 the implementation steps outlined in chapter 6 are a
good starting point.

Beyond that there is the hope that the community behind OpenWRT will be
able to base a community driven automatic update process on the suggested
solution. It was demonstrated that in theory a vast majority of OpenWRT
routers could be supported by the suggested solution and if a process is started
that leads to all these devices receiving updates automatically, it would be a
huge success for this paper and the security of thousands of devices.

77

Bibliography

[1] Open Handset Alliance. OTA Updates. url: https://source.android.
com/devices/tech/ota/ (visited on 06/19/2017) (cit. on pp. 24, 25).

[2] Open Handset Alliance. Platform Versions. url: https://developer.
android.com/about/dashboards/index.html (visited on 06/19/2017)
(cit. on p. 26).

[3] Dima Bekerman Ben Herzberg and Igal Zeifman. Breaking Down Mi-
rai: An IoT DDoS Botnet Analysis. url: https://www.incapsula.
com/blog/malware-analysis-mirai-ddos-botnet.html (visited on
07/29/2017) (cit. on p. 2).

[4] Freifunk Community. Freifunk Firmware Gluon. url: https://wiki.
freifunk.net/Freifunk_Firmware_Gluon (visited on 04/01/2017) (cit.
on pp. 29, 30).

[5] John Crispin. openwrt and lede - remerge proposal V3. url: http://
lists.infradead.org/pipermail/lede-dev/2017-May/007771.html
(visited on 07/30/2017) (cit. on p. 8).

[6] Wolfgang Denk. U-Boot Manual. url: https://www.denx.de/wiki/
DULG/Manual (visited on 07/13/2017) (cit. on pp. 10, 11).

[7] Wolfgang Denk. U-Bootdoc History. url: http://www.denx.de/wiki/
view/U-Bootdoc/History (visited on 03/08/2017) (cit. on p. 9).

[8] Bedřich Košata. Turris Omnia - Opensource SOHO router. url: https://
archive.fosdem.org/2016/schedule/event/turrisopensourcerouter
(visited on 04/02/2017) (cit. on p. 31).

[9] Holger Levson et al. OpenWRT - Reproducible Wireless Freedom ? url:
https://tests.reproducible-builds.org/openwrt/openwrt.html
(visited on 07/26/2017) (cit. on p. 71).

79

https://source.android.com/devices/tech/ota/
https://source.android.com/devices/tech/ota/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://wiki.freifunk.net/Freifunk_Firmware_Gluon
https://wiki.freifunk.net/Freifunk_Firmware_Gluon
http://lists.infradead.org/pipermail/lede-dev/2017-May/007771.html
http://lists.infradead.org/pipermail/lede-dev/2017-May/007771.html
https://www.denx.de/wiki/DULG/Manual
https://www.denx.de/wiki/DULG/Manual
http://www.denx.de/wiki/view/U-Bootdoc/History
http://www.denx.de/wiki/view/U-Bootdoc/History
https://archive.fosdem.org/2016/schedule/event/turrisopensourcerouter
https://archive.fosdem.org/2016/schedule/event/turrisopensourcerouter
https://tests.reproducible-builds.org/openwrt/openwrt.html

Bibliography

[10] Linksys. Creating a Linksys cloud account. url: https://www.linksys.
com/us/support-article?articleNum=143662 (visited on 07/30/2017)
(cit. on p. 34).

[11] Heather J. Meeker. Open Source and the Legend of Linksys. 2005. url:
http : / / www . linuxinsider . com / story / 43996 . html (visited on
03/08/2017) (cit. on p. 7).

[12] Allison Nixon, John Costello, and Z Wilkholm. An after-action analysis
of the mirai botnet attacks on dyn. url: https://www.flashpoint-
intel . com / blog / cybercrime / action - analysis - mirai - botnet -
attacks-dyn/ (visited on 07/29/2017) (cit. on p. 2).

[13] OpenWRT. About OpenWRT. url: https://wiki.openwrt.org/about
(visited on 03/08/2017) (cit. on p. 7).

[14] OpenWRT. Filesystems. url: https : / / wiki . openwrt . org / doc /
techref/filesystems (visited on 06/21/2017) (cit. on p. 47).

[15] Ralf. Were 900k Deutsche Telekom routers compromised by Mirai? url:
https : / / comsecuris . com / blog / posts / were _ 900k _ deutsche _
telekom_routers_compromised_by_mirai/ (visited on 07/29/2017)
(cit. on pp. 2, 3).

[16] Thomas Reinhold. Nachlese zum “Hackerangriff” auf das Telekom-Netz:
Analyse und Implikationen. url: https://cyber-peace.org/2016/12/
02/nachlese-zum-hackerangriff-auf-das-telekom-netz-analyse-
und-implikationen/ (visited on 07/29/2017) (cit. on pp. 2, 3).

[17] Michal Vaner. Automatic updates on the Turris routers. url: http :
//openwrtsummit.org/slides/automatic-updates.pdf (visited on
03/20/2017) (cit. on p. 33).

chap

80

https://www.linksys.com/us/support-article?articleNum=143662
https://www.linksys.com/us/support-article?articleNum=143662
http://www.linuxinsider.com/story/43996.html
https://www.flashpoint-intel.com/blog/cybercrime/action-analysis-mirai-botnet-attacks-dyn/
https://www.flashpoint-intel.com/blog/cybercrime/action-analysis-mirai-botnet-attacks-dyn/
https://www.flashpoint-intel.com/blog/cybercrime/action-analysis-mirai-botnet-attacks-dyn/
https://wiki.openwrt.org/about
https://wiki.openwrt.org/doc/techref/filesystems
https://wiki.openwrt.org/doc/techref/filesystems
https://comsecuris.com/blog/posts/were_900k_deutsche_telekom_routers_compromised_by_mirai/
https://comsecuris.com/blog/posts/were_900k_deutsche_telekom_routers_compromised_by_mirai/
https://cyber-peace.org/2016/12/02/nachlese-zum-hackerangriff-auf-das-telekom-netz-analyse-und-implikationen/
https://cyber-peace.org/2016/12/02/nachlese-zum-hackerangriff-auf-das-telekom-netz-analyse-und-implikationen/
https://cyber-peace.org/2016/12/02/nachlese-zum-hackerangriff-auf-das-telekom-netz-analyse-und-implikationen/
http://openwrtsummit.org/slides/automatic-updates.pdf
http://openwrtsummit.org/slides/automatic-updates.pdf

Appendix A.

U-Boot Environments

TP Link Archer C7

As already stated in section 4.1, this device does not come with a real U-
Boot environment, the parameters are hardcoded into the U-Boot binary image.
Instead of manually extracting the information from the binary, the information
provided by the OpenWRT community (see https://wiki.openwrt.org/toh/tp-
link/tl-wdr7500) was used:

bootargs=console=ttyS0,115200 root=31:02 rootfstype=jffs2
init=/sbin/init mtdparts=ath-nor0:256k(u-boot) ,64k(u-boot-env),
6336k(rootfs), 1408k(uImage), 64k(mib0),64k(ART) bootcmd=bootm
0x9f020000 bootdelay=1 baudrate=115200

ethaddr=0xba:0xbe:0xfa:0xce:0x08:0x41
ipaddr=192.168.1.111 serverip=192.168.1.100
dir=
lu=tftp 0x80060000 ${dir}u-boot.bin&&erase 0x9f000000

+$filesize&&cp.b $fileaddr 0x9f000000 $filesize
lf=tftp 0x80060000 ${dir}ap135${bc}-jffs2&&erase 0x9f050000

+0x630000&&cp.b $fileaddr 0x9f050000 $filesize
lk=tftp 0x80060000 ${dir}vmlinux${bc}.lzma.uImage&&erase 0x9f680000

+$filesize&&cp.b $fileaddr 0x9f680000 $filesize
stdin=serial
stdout=serial
stderr=serial
ethact=eth0

81

Appendix A. U-Boot Environments

Zyxel NBG6716

baudrate= 115200
ipaddr=192.168.1.1
serverip=192.168.1.33
uboot_env_ver=1.5
img_prefix=nbg6716-
loadaddr=80400000
readonly=ro
setmtdparts=setenv mtdparts

mtdparts=spi0.0:${ldr_psize}(u-boot)${readonly},
${env_psize}(env)${readonly}, ${rfdat_psize}(RFdata)${readonly},
-(nbu)\; ath79-nand:${rfsdat_psize}(rootfs_data),
${romd_psize}(romd), ${hdr_psize}(header), ${rfs_psize}(rootfs),
${hdr1_psize}(header1), ${rfs1_psize}(rootfs1),
${bu1_psize}(bu1), -(bu2)

flashargs=setenv bootargs board=NBG6716 root=/dev/mtdblock7
rootfstype=jffs2 noinitrd ${bootmode} ${zld_ver}

addtty=setenv bootargs ${bootargs} console=ttyS0,${baudrate}
addmtd=setenv bootargs ${bootargs} ${mtdparts}
boot_flash=run setmtdparts flashargs addtty addmtd;fsload

${loadaddr} /boot/vmlinux.lzma.uImage;bootm ${loadaddr}
bootcmd=run boot_flash
ldr_paddr=0x9f000000
ldr_psize=0x40000
env_paddr=0x9f040000
env_psize=0x10000
rfdat_paddr=0x9f050000
rfdat_psize=0x10000
rfsdat_paddr=0
rfsdat_psize=0x200000
romd_paddr=0x200000
romd_psize=0x200000
hdr_paddr=0x400000
hdr_psize=0x100000
rfs_paddr=0x500000
rfs_psize=0x1E00000
hdr1_paddr=0x2300000
hdr1_psize=0x100000

82

rfs1_paddr=0x2400000
rfs1_psize=0x1E00000
bu1_paddr=0x4200000
bu1_psize=0x200000
lu=tftp ${loadaddr} ${dir}u-boot.bin;zflash erase ${ldr_paddr}

${ldr_psize};zflash write ${fileaddr} ${ldr_paddr} ${filesize}
lf=tftp ${loadaddr} ${dir}${img_prefix}rootfs.jffs2;nand erase

${rfs_paddr} ${rootfs_psize};nand write ${fileaddr} ${rfs_paddr}
${filesize}

hostname=NBG6716
countrycode=E1
ethaddr=E8:37:7A:7A:20:B8
serialnum=S150A41002908

Linksys WRT1200AC

CASset=max
MALLOC_len=5
MPmode=SMP
SMT-2D=NGVIF2202CF8X01
altFwSize=0x2800000
altKernAddr=0x3200000
altKernSize=0x0600000
altnandboot=setenv bootargs console=ttyS0,115200 root=/dev/mtdblock7

ro rootdelay=1 rootfstype=jffs2 earlyprintk $mtdparts;nand read
$defaultLoadAddr $altKernAddr $altKernSize; bootm
$defaultLoadAddr

autoload=no
baudrate=115200
boot_order=hd_scr usb_scr mmc_scr hd_img usb_img mmc_img pxe net_img

net_scr
bootargs_dflt=$console $nandEcc $mtdparts $bootargs_root

nfsroot=$serverip:$rootpath ip=$ipaddr:$serverip$bootargs_end
$mvNetConfig video=dovefb:lcd0:$lcd0_params
clcd.lcd0_enable=$lcd0_enable clcd.lcd_panel=$lcd_panel

bootargs_end=:10.4.50.254:255.255.255.0:Armada38x:eth0:none
bootargs_root=root=/dev/nfs rw

83

Appendix A. U-Boot Environments

bootcmd_auto=stage_boot $boot_order
bootcmd_fdt=tftpboot 0x2000000 $image_name;tftpboot $fdtaddr

$fdtfile;setenv bootargs $console $nandEcc $mtdparts
$bootargs_root nfsroot=$serverip:$rootpath
ip=$ipaddr:$serverip$bootargs_end $mvNetConfig
video=dovefb:lcd0:$lcd0_params clcd.lcd0_enable=$lcd0_enable
clcd.lcd_panel=$lcd_panel; bootz 0x2000000 - $fdtaddr;

bootcmd_fdt_boot=tftpboot 0x2000000 $image_name; setenv bootargs
$console $nandEcc $mtdparts $bootargs_root
nfsroot=$serverip:$rootpath ip=$ipaddr:$serverip$bootargs_end
$mvNetConfig video=dovefb:lcd0:$lcd0_params
clcd.lcd0_enable=$lcd0_enable clcd.lcd_panel=$lcd_panel; bootz
0x2000000 - $fdtaddr;

bootcmd_fdt_edit=tftpboot $fdtaddr $fdtfile; fdt addr $fdtaddr;
setenv bootcmd $bootcmd_fdt_boot

bootcmd_lgcy=tftpboot 0x2000000 $image_name; setenv bootargs
$bootargs_dflt; bootm 0x2000000;

bootdelay=3
cacheShare=no
console=console=ttyS0,115200
defaultLoadAddr=0x2000000
device_partition=0:1
disaMvPnp=no
eeeEnable=no
enaClockGating=no
enaCpuStream=no
enaFPU=yes
enaMonExt=no
enaWrAllo=no
eth1addr=00:50:43:00:08:01
eth1mtu=1500
eth2addr=00:50:43:00:00:01
eth2mtu=1500
eth3addr=00:50:43:08:00:00
eth3mtu=1500
ethact=egiga0
ethaddr=C0:56:27:B8:D2:B9
ethmtu=1500
ethprime=egiga0

84

fdt_addr=2040000
fdt_skip_update=no
fdtaddr=0x1000000
fdtfile=armada-38x-modular.dtb
firmwareName=caiman.img
flash_alt_image=tftpboot $defaultLoadAddr $firmwareName && nand

erase $altKernAddr $altFwSize && nand write $defaultLoadAddr
$altKernAddr $filesize

flash_pri_image=tftpboot $defaultLoadAddr $firmwareName && nand
erase $priKernAddr $priFwSize && nand write $defaultLoadAddr
$priKernAddr $filesize

ide_path=/
image_name=uImage
initrd_name=uInitrd
ipaddr=192.168.1.1
kernel_addr_r=2080000
lcd0_enable=0
lcd0_params=640x480-16@60
lcd_panel=0
loadaddr=0x02000000
loads_echo=0
mtddevname=uboot
mtddevnum=0
mtdids=nand0=armada-nand
mtdparts=mtdparts=armada-nand:2048K(uboot)ro,256K(u_env),256K(s_env),1m@9m(devinfo),40m@10m(kernel),34m@16m(rootfs),40m@50m(alt_kernel),34m@56m(alt_rootfs),80m@10m(ubifs),-@90m(syscfg)
mvNetConfig=mv_net_config=4,(00:50:43:11:11:11,0:1:2:3),mtu=1500
mv_pon_addr=00:50:43:01:00:00
nandEcc=nfcConfig=4bitecc
nandboot=setenv bootargs console=ttyS0,115200 root=/dev/mtdblock5 ro

rootdelay=1 rootfstype=jffs2 earlyprintk $mtdparts;nand read
$defaultLoadAddr $priKernAddr $priKernSize; bootm
$defaultLoadAddr

netbsd_en=no
netmask=255.255.255.0
netretry=no
partition=nand0,0
pcieTune=no
pexMode=RC
priFwSize=0x2800000

85

Appendix A. U-Boot Environments

priKernAddr=0x0a00000
priKernSize=0x0600000
pxe_files_load=:default.arm-armadaxp-db:default.arm-armadaxp:default.arm
pxefile_addr_r=3100000
ramdisk_addr_r=2880000
rootpath=/srv/nfs/
sata_delay_reset=0
sata_dma_mode=yes
script_addr_r=3000000
script_name=boot.scr
serverip=192.168.1.254
standalone=fsload 0x2000000 $image_name;setenv bootargs $console

$nandEcc $mtdparts root=/dev/mtdblock0 rw
ip=$ipaddr:$serverip$bootargs_end; bootm 0x2000000;

stderr=serial
stdin=serial
stdout=serial
update_both_images=tftpboot $defaultLoadAddr $firmwareName && nand

erase $priKernAddr $priFwSize && nand erase $altKernAddr
$altFwSize && nand write $defaultLoadAddr $priKernAddr $filesize
&& nand write $defaultLoadAddr $altKernAddr $filesize

usb0Mode=host
usbActive=0
usbType=2
vxworks_en=no
yuk_ethaddr=00:00:00:EE:51:81
bootcmd=run altnandboot
boot_part_ready=3
boot_part=2
auto_recovery=yes

86

Appendix B.

Relevant OpenWRT Scripts

Contents of nand.sh

In Figure 6.1 a reference is made to nand.sh, its content are only summarized,
so it is provided here to complete the description of possible update paths.

Listing B.1: /package/system/procd/files/nand.sh
1 #!/bin/sh
2 # Copyright (C) 2014 OpenWrt.org
3 #
4

5 . /lib/functions.sh
6

7 # ’kernel’ partition on NAND contains the kernel
8 CI_KERNPART="kernel"
9

10 # ’ubi’ partition on NAND contains UBI
11 CI_UBIPART="ubi"
12

13 ubi_mknod() {
14 local dir="$1"
15 local dev="/dev/$(basename $dir)"
16

17 [-e "$dev"] && return 0
18

19 local devid="$(cat $dir/dev)"
20 local major="${devid%%:*}"

87

Appendix B. Relevant OpenWRT Scripts

21 local minor="${devid##*:}"
22 mknod "$dev" c $major $minor
23 }
24

25 nand_find_volume() {
26 local ubidevdir ubivoldir
27 ubidevdir="/sys/devices/virtual/ubi/$1"
28 [! -d "$ubidevdir"] && return 1
29 for ubivoldir in $ubidevdir/${1}_*; do
30 [! -d "$ubivoldir"] && continue
31 if ["$(cat $ubivoldir/name)" = "$2"]; then
32 basename $ubivoldir
33 ubi_mknod "$ubivoldir"
34 return 0
35 fi
36 done
37 }
38

39 nand_find_ubi() {
40 local ubidevdir ubidev mtdnum
41 mtdnum="$(find_mtd_index $1)"
42 [! "$mtdnum"] && return 1
43 for ubidevdir in /sys/devices/virtual/ubi/ubi*; do
44 [! -d "$ubidevdir"] && continue
45 cmtdnum="$(cat $ubidevdir/mtd_num)"
46 [! "$mtdnum"] && continue
47 if ["$mtdnum" = "$cmtdnum"]; then
48 ubidev=$(basename $ubidevdir)
49 ubi_mknod "$ubidevdir"
50 echo $ubidev
51 return 0
52 fi
53 done
54 }
55

56 nand_get_magic_long() {
57 dd if="$1" skip=$2 bs=4 count=1 2>/dev/null | hexdump -v -n 4 -e

’1/1 "%02x"’
58 }

88

59

60 get_magic_long_tar() {
61 (tar xf $1 $2 -O | dd bs=4 count=1 | hexdump -v -n 4 -e ’1/1

"%02x"’) 2> /dev/null
62 }
63

64 identify_magic() {
65 local magic=$1
66 case "$magic" in
67 "55424923")
68 echo "ubi"
69 ;;
70 "31181006")
71 echo "ubifs"
72 ;;
73 "68737173")
74 echo "squashfs"
75 ;;
76 "d00dfeed")
77 echo "fit"
78 ;;
79 "4349"*)
80 echo "combined"
81 ;;
82 *)
83 echo "unknown $magic"
84 ;;
85 esac
86 }
87

88

89 identify() {
90 identify_magic $(nand_get_magic_long "$1" "${2:-0}")
91 }
92

93 identify_tar() {
94 identify_magic $(get_magic_long_tar "$1" "$2")
95 }
96

89

Appendix B. Relevant OpenWRT Scripts

97 nand_restore_config() {
98 sync
99 local ubidev=$(nand_find_ubi $CI_UBIPART)

100 local ubivol="$(nand_find_volume $ubidev rootfs_data)"
101 [! "$ubivol"] &&
102 ubivol="$(nand_find_volume $ubidev rootfs)"
103 mkdir /tmp/new_root
104 if ! mount -t ubifs /dev/$ubivol /tmp/new_root; then
105 echo "mounting ubifs $ubivol failed"
106 rmdir /tmp/new_root
107 return 1
108 fi
109 mv "$1" "/tmp/new_root/sysupgrade.tgz"
110 umount /tmp/new_root
111 sync
112 rmdir /tmp/new_root
113 }
114

115 nand_upgrade_prepare_ubi() {
116 local rootfs_length="$1"
117 local rootfs_type="$2"
118 local has_kernel="${3:-0}"
119 local has_env="${4:-0}"
120

121 local mtdnum="$(find_mtd_index "$CI_UBIPART")"
122 if [! "$mtdnum"]; then
123 echo "cannot find ubi mtd partition $CI_UBIPART"
124 return 1
125 fi
126

127 local ubidev="$(nand_find_ubi "$CI_UBIPART")"
128 if [! "$ubidev"]; then
129 ubiattach -m "$mtdnum"
130 sync
131 ubidev="$(nand_find_ubi "$CI_UBIPART")"
132 fi
133

134 if [! "$ubidev"]; then
135 ubiformat /dev/mtd$mtdnum -y

90

136 ubiattach -m "$mtdnum"
137 sync
138 ubidev="$(nand_find_ubi "$CI_UBIPART")"
139 ["$has_env" -gt 0] && {
140 ubimkvol /dev/$ubidev -n 0 -N ubootenv -s 1MiB
141 ubimkvol /dev/$ubidev -n 1 -N ubootenv2 -s 1MiB
142 }
143 fi
144

145 local kern_ubivol="$(nand_find_volume $ubidev kernel)"
146 local root_ubivol="$(nand_find_volume $ubidev rootfs)"
147 local data_ubivol="$(nand_find_volume $ubidev rootfs_data)"
148

149 # remove ubiblock device of rootfs
150 local root_ubiblk="ubiblock${root_ubivol:3}"
151 if ["$root_ubivol" -a -e "/dev/$root_ubiblk"]; then
152 echo "removing $root_ubiblk"
153 if ! ubiblock -r /dev/$root_ubivol; then
154 echo "cannot remove $root_ubiblk"
155 return 1;
156 fi
157 fi
158

159 # kill volumes
160 ["$kern_ubivol"] && ubirmvol /dev/$ubidev -N kernel || true
161 ["$root_ubivol"] && ubirmvol /dev/$ubidev -N rootfs || true
162 ["$data_ubivol"] && ubirmvol /dev/$ubidev -N rootfs_data || true
163

164 # update kernel
165 if ["$has_kernel" = "1"]; then
166 if ! ubimkvol /dev/$ubidev -N kernel -s $kernel_length; then
167 echo "cannot create kernel volume"
168 return 1;
169 fi
170 fi
171

172 # update rootfs
173 local root_size_param
174 if ["$rootfs_type" = "ubifs"]; then

91

Appendix B. Relevant OpenWRT Scripts

175 root_size_param="-m"
176 else
177 root_size_param="-s $rootfs_length"
178 fi
179 if ! ubimkvol /dev/$ubidev -N rootfs $root_size_param; then
180 echo "cannot create rootfs volume"
181 return 1;
182 fi
183

184 # create rootfs_data for non-ubifs rootfs
185 if ["$rootfs_type" != "ubifs"]; then
186 if ! ubimkvol /dev/$ubidev -N rootfs_data -m; then
187 echo "cannot initialize rootfs_data volume"
188 return 1
189 fi
190 fi
191 sync
192 return 0
193 }
194

195 nand_do_upgrade_success() {
196 local conf_tar="/tmp/sysupgrade.tgz"
197

198 sync
199 [-f "$conf_tar"] && nand_restore_config "$conf_tar"
200 echo "sysupgrade successful"
201 reboot -f
202 }
203

204 # Flash the UBI image to MTD partition
205 nand_upgrade_ubinized() {
206 local ubi_file="$1"
207 local mtdnum="$(find_mtd_index "$CI_UBIPART")"
208

209 [! "$mtdnum"] && {
210 CI_UBIPART="rootfs"
211 mtdnum="$(find_mtd_index "$CI_UBIPART")"
212 }
213

92

214 if [! "$mtdnum"]; then
215 echo "cannot find mtd device $CI_UBIPART"
216 reboot -f
217 fi
218

219 local mtddev="/dev/mtd${mtdnum}"
220 ubidetach -p "${mtddev}" || true
221 sync
222 ubiformat "${mtddev}" -y -f "${ubi_file}"
223 ubiattach -p "${mtddev}"
224 nand_do_upgrade_success
225 }
226

227 # Write the UBIFS image to UBI volume
228 nand_upgrade_ubifs() {
229 local rootfs_length=‘(cat $1 | wc -c) 2> /dev/null‘
230

231 nand_upgrade_prepare_ubi "$rootfs_length" "ubifs" "0" "0"
232

233 local ubidev="$(nand_find_ubi "$CI_UBIPART")"
234 local root_ubivol="$(nand_find_volume $ubidev rootfs)"
235 ubiupdatevol /dev/$root_ubivol -s $rootfs_length $1
236

237 nand_do_upgrade_success
238 }
239

240 nand_upgrade_tar() {
241 local tar_file="$1"
242 local board_name="$(cat /tmp/sysinfo/board_name)"
243 local kernel_mtd="$(find_mtd_index $CI_KERNPART)"
244

245 local kernel_length=‘(tar xf $tar_file
sysupgrade-$board_name/kernel -O | wc -c) 2> /dev/null‘

246 local rootfs_length=‘(tar xf $tar_file
sysupgrade-$board_name/root -O | wc -c) 2> /dev/null‘

247

248 local rootfs_type="$(identify_tar "$tar_file"
sysupgrade-$board_name/root)"

249

93

Appendix B. Relevant OpenWRT Scripts

250 local has_kernel=1
251 local has_env=0
252

253 ["$kernel_length" != 0 -a -n "$kernel_mtd"] && {
254 tar xf $tar_file sysupgrade-$board_name/kernel -O | mtd write

- $CI_KERNPART
255 }
256 ["$kernel_length" = 0 -o ! -z "$kernel_mtd"] && has_kernel=0
257

258 nand_upgrade_prepare_ubi "$rootfs_length" "$rootfs_type"
"$has_kernel" "$has_env"

259

260 local ubidev="$(nand_find_ubi "$CI_UBIPART")"
261 ["$has_kernel" = "1"] && {
262 local kern_ubivol="$(nand_find_volume $ubidev kernel)"
263 tar xf $tar_file sysupgrade-$board_name/kernel -O | \
264 ubiupdatevol /dev/$kern_ubivol -s $kernel_length -
265 }
266

267 local root_ubivol="$(nand_find_volume $ubidev rootfs)"
268 tar xf $tar_file sysupgrade-$board_name/root -O | \
269 ubiupdatevol /dev/$root_ubivol -s $rootfs_length -
270

271 nand_do_upgrade_success
272 }
273

274 # Recognize type of passed file and start the upgrade process
275 nand_do_upgrade_stage2() {
276 local file_type=$(identify $1)
277

278 [! "$(find_mtd_index "$CI_UBIPART")"] && CI_UBIPART="rootfs"
279

280 case "$file_type" in
281 "ubi") nand_upgrade_ubinized $1;;
282 "ubifs") nand_upgrade_ubifs $1;;
283 *) nand_upgrade_tar $1;;
284 esac
285 }
286

94

287 nand_upgrade_stage2() {
288 [$1 = "nand"] && {
289 [-f "$2"] && {
290 touch /tmp/sysupgrade
291

292 killall -9 telnetd
293 killall -9 dropbear
294 killall -9 ash
295

296 kill_remaining TERM
297 sleep 3
298 kill_remaining KILL
299

300 sleep 1
301

302 if [-n "$(rootfs_type)"]; then
303 v "Switching to ramdisk..."
304 run_ramfs ". /lib/functions.sh; include /lib/upgrade;

nand_do_upgrade_stage2 $2"
305 else
306 nand_do_upgrade_stage2 $2
307 fi
308 return 0
309 }
310 echo "Nand upgrade failed"
311 exit 1
312 }
313 }
314

315 nand_upgrade_stage1() {
316 [-f /tmp/sysupgrade-nand-path] && {
317 path="$(cat /tmp/sysupgrade-nand-path)"
318 ["$SAVE_CONFIG" != 1 -a -f "$CONF_TAR"] &&
319 rm $CONF_TAR
320

321 ubus call system nandupgrade "{\"path\": \"$path\" }"
322 exit 0
323 }
324 }

95

Appendix B. Relevant OpenWRT Scripts

325 append sysupgrade_pre_upgrade nand_upgrade_stage1
326

327 # Check if passed file is a valid one for NAND sysupgrade. Currently
it accepts

328 # 3 types of files:
329 # 1) UBI - should contain an ubinized image, header is checked for

the proper
330 # MAGIC
331 # 2) UBIFS - should contain UBIFS partition that will replace

"rootfs" volume,
332 # header is checked for the proper MAGIC
333 # 3) TAR - archive has to include "sysupgrade-BOARD" directory with

a non-empty
334 # "CONTROL" file (at this point its content isn’t verified)
335 #
336 # You usually want to call this function in platform_check_image.
337 #
338 # $(1): board name, used in case of passing TAR file
339 # $(2): file to be checked
340 nand_do_platform_check() {
341 local board_name="$1"
342 local tar_file="$2"
343 local control_length=‘(tar xf $tar_file

sysupgrade-$board_name/CONTROL -O | wc -c) 2> /dev/null‘
344 local file_type="$(identify $2)"
345

346 ["$control_length" = 0 -a "$file_type" != "ubi" -a "$file_type"
!= "ubifs"] && {

347 echo "Invalid sysupgrade file."
348 return 1
349 }
350

351 echo -n $2 > /tmp/sysupgrade-nand-path
352 cp /sbin/upgraded /tmp/
353

354 return 0
355 }
356

357 # Start NAND upgrade process

96

358 #
359 # $(1): file to be used for upgrade
360 nand_do_upgrade() {
361 echo -n $1 > /tmp/sysupgrade-nand-path
362 cp /sbin/upgraded /tmp/
363 nand_upgrade_stage1
364 }

Hardcoded memory layout

In section 6.2.1 a fragment taken from the Makefile in /target/linux/ar71xx is
showed to describe how a custom image can be produced, which grants write
access to the U-Boot environment. The entire file is too large to be included
here, but a complete list of all devices using a hardcoded environment might
be interesting.

Listing B.2: Taken from /target/linux/ar71xx/Makefile

alfa_ap120c_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 13312k(rootfs), 1536k(kernel),
1152k(unknown)ro, 64k(art)ro;spi0.1:-(unknown)

alfa_ap96_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
256k(u-boot-env)ro, 13312k(rootfs), 2048k(kernel),
512k(caldata)ro, 15360k@0x80000(firmware)

alfa_mtdlayout_8M=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
6144k(rootfs), 1600k(kernel), 64k(nvram), 64k(art)ro,
7744k@0x50000(firmware)

alfa_mtdlayout_16M=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 15936k(firmware), 64k(nvram), 64k(art)ro

all0258n_mtdlayout=mtdparts=spi0.0:256k(u-boot), 64k(u-boot-env),
6272k(firmware), 1536k(failsafe), 64k(art)

all0315n_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 256k(u-boot-env),
13568k(firmware), 2048k(failsafe), 256k(art)ro

ap81_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
5120k(rootfs), 2688k(kernel), 64k(art)ro, 7808k@0x50000(firmware)

ap83_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 128k(u-boot-env)ro,
4096k(rootfs), 3648k(kernel), 64k(art)ro, 7744k@0x60000(firmware)

97

Appendix B. Relevant OpenWRT Scripts

ap96_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(u-boot-env)ro,
6144k(rootfs), 1728k(kernel), 64k(art)ro, 7872k@0x40000(firmware)

ap113_mtd_layout=mtdparts=spi0.0:64k(u-boot), 3008k(rootfs),
896k(uImage), 64k(NVRAM), 64k(ART), 3904k@0x10000(firmware)

ap121_mtdlayout_2M=mtdparts=spi0.0:64k(u-boot)ro, 1216k(rootfs),
704k(kernel), 64k(art)ro, 1920k@0x10000(firmware)

ap121_mtdlayout_4M=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 2752k(rootfs), 896k(kernel), 64k(nvram),
64k(art)ro, 3648k@0x50000(firmware)

ap132_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
1408k(kernel), 6400k(rootfs), 64k(art), 7808k@0x50000(firmware)

ap135_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
14528k(rootfs), 1472k(kernel), 64k(art)ro,
16000k@0x50000(firmware)

ap136_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
6336k(rootfs), 1408k(kernel), 64k(mib0), 64k(art)ro,
7744k@0x50000(firmware)

bxu2000n2_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 1408k(kernel), 8448k(rootfs), 6016k(user),
64k(cfg), 64k(oem), 64k(art)ro

cameo_ap81_mtdlayout=mtdparts=spi0.0:128k(u-boot)ro, 64k(config)ro,
3840k(firmware), 64k(art)ro

cameo_ap91_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(nvram)ro,
3712k(firmware), 64k(mac)ro, 64k(art)ro

cameo_ap99_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(nvram)ro,
3520k(firmware), 64k(mac)ro, 192k(lp)ro, 64k(art)ro

cameo_ap121_mtdlayout=mtdparts=spi0.0:64k(u-boot)ro, 64k(art)ro,
64k(mac)ro, 64k(nvram)ro, 192k(language)ro, 3648k(firmware)

cameo_ap121_mtdlayout_8M=mtdparts=spi0.0:64k(u-boot)ro, 64k(art)ro,
64k(mac)ro, 64k(nvram)ro, 256k(language)ro,
7680k@0x80000(firmware)

cameo_ap123_mtdlayout_4M=mtdparts=spi0.0:64k(u-boot)ro,
64k(nvram)ro, 3712k(firmware), 192k(lang)ro, 64k(art)ro

cameo_db120_mtdlayout=mtdparts=spi0.0:64k(uboot)ro, 64k(nvram)ro,
15936k(firmware), 192k(lang)ro, 64k(mac)ro, 64k(art)ro

cameo_db120_mtdlayout_8M=mtdparts=spi0.0:64k(uboot)ro, 64k(nvram)ro,
7872k(firmware), 128k(lang)ro, 64k(art)ro

cap4200ag_mtdlayout=mtdparts=spi0.0:256k(u-boot), 64k(u-boot-env),
320k(custom)ro, 1536k(kernel), 12096k(rootfs), 2048k(failsafe),

98

64k(art), 13632k@0xa0000(firmware)
cpe510_mtdlayout=mtdparts=spi0.0:128k(u-boot)ro,

64k(pation-table)ro, 64k(product-info)ro, 1536k(kernel),
6144k(rootfs), 192k(config)ro, 64k(ART)ro,
7680k@0x40000(firmware)

eap300v2_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env),
320k(custom), 13632k(firmware), 2048k(failsafe), 64k(art)ro

db120_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
6336k(rootfs), 1408k(kernel), 64k(nvram), 64k(art)ro,
7744k@0x50000(firmware)

dgl_5500_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(nvram)ro,
15296k(firmware), 192k(lang)ro, 512k(my-dlink)ro, 64k(mac)ro,
64k(art)ro

dlan_pro_500_wp_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 64k(Config1)ro, 64k(Config2)ro,
7680k@0x70000(firmware), 64k(art)ro

dlan_pro_1200_ac_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 64k(Config1)ro, 64k(Config2)ro,
15872k@0x70000(firmware), 64k(art)ro

cameo_ap94_mtdlayout=mtdparts=spi0.0:256k(uboot)ro, 64k(config)ro,
6208k(firmware), 64k(caldata)ro, 1600k(unknown)ro,
64k@0x7f0000(caldata_copy)

cameo_ap94_mtdlayout_fat=mtdparts=spi0.0:256k(uboot)ro,
64k(config)ro, 7808k(firmware), 64k(caldata)ro,
64k@0x660000(caldata_orig), 6208k@0x50000(firmware_orig)

esr900_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(u-boot-env)ro,
1408k(kernel), 13248k(rootfs), 1024k(manufacture)ro,
64k(backup)ro, 320k(storage)ro, 64k(caldata)ro,
14656k@0x40000(firmware)

esr1750_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(u-boot-env)ro,
1408k(kernel), 13248k(rootfs), 1024k(manufacture)ro,
64k(backup)ro, 320k(storage)ro, 64k(caldata)ro,
14656k@0x40000(firmware)

epg5000_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(u-boot-env)ro,
1408k(kernel), 13248k(rootfs), 1024k(manufacture)ro,
64k(backup)ro, 320k(storage)ro, 64k(caldata)ro,
14656k@0x40000(firmware)

ew-dorin_mtdlayout_4M=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env), 3712k(firmware), 64k(art)

99

Appendix B. Relevant OpenWRT Scripts

ew-dorin_mtdlayout_16M=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env), 16000k(firmware), 64k(art)ro

f9k1115v2_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env),
14464k(rootfs), 1408k(kernel), 64k(nvram)ro, 64k(envram)ro,
64k(art)ro, 15872k@0x50000(firmware)

dlrtdev_mtdlayout=mtdparts=spi0.0:256k(uboot)ro, 64k(config)ro,
6208k(firmware), 64k(caldata)ro, 640k(certs), 960k(unknown)ro,
64k@0x7f0000(caldata_copy)

dlrtdev_mtdlayout_fat=mtdparts=spi0.0:256k(uboot)ro, 64k(config)ro,
7168k(firmware), 640k(certs), 64k(caldata)ro,
64k@0x660000(caldata_orig), 6208k@0x50000(firmware_orig)

dragino2_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 16000k(firmware),
64k(config)ro, 64k(art)ro

dw33d_mtdlayout=mtdparts=spi0.0:256k(u-boot), 64k(u-boot-env)ro,
14528k(rootfs), 1472k(kernel), 64k(art)ro,
16000k@0x50000(firmware);ar934x-nfc:96m(rootfs_data),
32m(backup)ro

hiwifi_hc6361_mtdlayout=mtdparts=spi0.0:64k(u-boot)ro,
64k(bdinfo)ro, 1280k(kernel), 14848k(rootfs), 64k(backup)ro,
64k(art)ro, 16128k@0x20000(firmware)

mr12_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 256k(u-boot-env)ro,
13440k(rootfs), 2304k(kernel), 128k(art)ro,
15744k@0x80000(firmware)

mr16_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 256k(u-boot-env)ro,
13440k(rootfs), 2304k(kernel), 128k(art)ro,
15744k@0x80000(firmware)

pb92_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
2752k(rootfs), 896k(kernel), 64k(nvram), 64k(art)ro,
3648k@0x50000(firmware)

planex_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
7744k(firmware), 128k(art)ro

ubntxm_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
7552k(firmware), 256k(cfg)ro, 64k(EEPROM)ro

uap_pro_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
1536k(kernel), 14208k(rootfs), 256k(cfg)ro, 64k(EEPROM)ro,
15744k@0x50000(firmware)

ubdev_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
7488k(firmware), 64k(certs), 256k(cfg)ro, 64k(EEPROM)ro

whrhpg300n_mtdlayout=mtdparts=spi0.0:248k(u-boot)ro,

100

8k(u-boot-env)ro, 3712k(firmware), 64k(art)ro
wlr8100_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro, 64k(u-boot-env)ro,

1408k(kernel), 14080k(rootfs), 192k(unknown)ro, 64k(art)ro,
384k(unknown2)ro, 15488k@0x40000(firmware)

wpj344_mtdlayout_16M=mtdparts=spi0.0:192k(u-boot)ro,
16128k(firmware), 64k(art)ro

wpj531_mtdlayout_16M=mtdparts=spi0.0:192k(u-boot)ro,
16128k(firmware), 64k(art)ro

wpj558_mtdlayout_16M=mtdparts=spi0.0:192k(u-boot)ro,
16128k(firmware), 64k(art)ro

wndap360_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 1728k(kernel), 6016k(rootfs), 64k(nvram)ro,
64k(art)ro, 7744k@0x50000(firmware)

wnr2200_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(u-boot-env)ro,
7808k(firmware), 64k(art)ro

wnr2000v3_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 3712k(firmware), 64k(art)ro

wnr2000v4_mtdlayout=mtdparts=spi0.0:192k(u-boot)ro,
64k(u-boot-env)ro, 3776k(firmware), 64k(art)ro

r6100_mtdlayout=mtdparts=ar934x-nfc:128k(u-boot)ro, 256k(caldata),
256k(caldata-backup), 512k(config), 512k(pot), 2048k(kernel),
122240k(ubi), 25600k@0x1a0000(firmware), 2048k(language),
3072k(traffic_meter)

wndr4300_mtdlayout=mtdparts=ar934x-nfc:256k(u-boot)ro,
256k(u-boot-env)ro, 256k(caldata), 512k(pot), 2048k(language),
512k(config), 3072k(traffic_meter), 2048k(kernel), 23552k(ubi),
25600k@0x6c0000(firmware), 256k(caldata_backup), -(reserved)

zcn1523h_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 6208k(rootfs), 1472k(kernel),
64k(configure)ro, 64k(mfg)ro, 64k(art)ro, 7680k@0x50000(firmware)

mynet_n600_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
64k(u-boot-env)ro, 64k(devdata)ro, 64k(devconf)ro,
15872k(firmware), 64k(radiocfg)ro

mynet_rext_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,
7808k(firmware), 64k(nvram)ro, 64k(ART)ro

zyx_nbg6716_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro, 64k(env)ro,
64k(RFdata)ro, -(nbu);ar934x-nfc:2048k(zyxel_rfsd), 2048k(romd),
1024k(header), 2048k(kernel), -(ubi)

qihoo_c301_mtdlayout=mtdparts=spi0.0:256k(u-boot)ro,

101

Appendix B. Relevant OpenWRT Scripts

64k(u-boot-env), 64k(devdata), 64k(devconf), 15744k(firmware),
64k(warm_start), 64k(action_image_config),
64k(radiocfg)ro;spi0.1:15360k(upgrade2), 1024k(privatedata)

Update Script

This is the script used for automatic updates during the development process.
It is included only for completeness and is not meant to be used in any real
scenario. It is not even recommended to use this script as a basis for future work,
it serves only as a proof of concept and should be completely reimplemented
for any other use case.

Listing B.3: AutoUpdateScript
1 #!/bin/sh
2

3 cd /etc/updater
4 wget http://192.168.1.17:80/masterarbeit/openwrt/latest.hash
5

6 hashDiff=$(cmp installed.hash latest.hash)
7

8 if [[$hashDiff -eq ""]]
9 then

10 #No update needed
11 exit 0
12 else
13 http://192.168.1.17:80/masterarbeit/openwrt/latest.bin
14 verify=md5sum -c latest.hash
15 case "$verify" in
16 *WARNING*)
17 #TODO Retry download instead of aborting
18 exit 1
19 ;;
20 esac
21

22 #Do Update
23 currentBootCmd=$(fw_printenv -n bootcmd)
24 if $currentBootCmd EQUALS "run boot_flash"; then

102

25 mtd write /etc/updater/latest.bin mtd9
26 newBootCmd="run boot_flash2";
27 else
28 mtd write /etc/updater/latest.bin mtd7
29 newBootCmd="run boot_flash";
30 fi
31 fw_setenv bootcmd $newBootCmd
32 reboot
33 fi

Recovery Script

During chapter 6 the contents of the script run when starting OpenWRT and
used to recovery in case of an error was built up piece by piece. The complete
version is included here. Note: This script is a proof-of-concept and should not
be used for anything but further development.

Listing B.4: AutoRecoveryScript
1 checkErrorCode()
2 {
3 local _retVal=""
4 if [[$1 -eq "0"]]; then
5 _retVal=1
6 else
7 _retVal=0
8 fi
9 echo $_retVal

10 }
11

12 #give system time to set up
13 #sleep 5m
14

15 #Check if System is online
16 wget -q --tries=10 --timeout=20 --spider http://google.com
17 isOnline=$(checkErrorCode $?)
18 #Check if webserver is running
19 ps | grep uhttpd | grep -v grep

103

Appendix B. Relevant OpenWRT Scripts

20 httpRunning=$(checkErrorCode $?)
21 #Check if ssh server is running
22 ps | grep dropbear | grep -v grep
23 sshRunning=$(checkErrorCode $?)
24

25 currentBootCmd=$(fw_printenv -n bootcmd)
26

27 #Check if U-Boot environment is OK
28 if [[$currentBootCmd -eq "Warning: Bad CRC, using default

environment"]]
29 mtd -r write /var/recovery/u_boot_env.backup mtd1
30 else
31 #Do Nothing
32 fi
33

34 if $currentBootCmd EQUALS "run boot_flash"; then
35 newBootCmd="run boot_flash2";
36 else
37 newBootCmd="run boot_flash";
38 fi
39

40 if [[$sshRunning -eq 1]] && [[$httpRunning -eq 1]] && [[
$isOnline -eq 1]]; then

41 echo "Startup successful, switching boot command to
$newBootCmd"

42 #fw_setenv bootcmd $newBootCmd
43 else
44 echo "System Startup failed, going for Reboot"
45 #reboot
46 fi

104

 Curriculum Vitae

PERSONAL INFORMATION Tobias Höller, Bsc

 Jagern 45, 4761 Enzenkirchen, Austria

 +43 688 8157405

 TobiasHoeller@gmx.at

WORK EXPERIENCE

April 2013 – Today Software Engineer
Catalysts Gmbh, Linz, Austria

▪ Development of custom software
▪ Development of Java based web applications

October 2015 – October 2016 Research Assistent
Institute for Networks and Security, Johannes Kepler University, Linz, Austria

▪ Research into security of embedded devices (focus on OpenWRT)
▪ Research into how to securely and automatically update embedded devices

EDUCATION AND TRAINING

September 2010 – January 2014 Bachelor of Science in Computer Science
Johannes Kepler University, Linz, Austria

▪ General studies giving an introduction into every aspect of computer science
▪ Spent one Semester abroad at Oxford Brookes University, GB

Jannuary 2014 – Today Master of Science in Computer Science with main Topic Networks
and Security
Johannes Kepler University, Linz, Austria

▪ Secure Code
▪ System Security
▪ Computer Forensics
▪ Network Management and Security

October 2016 – Today Master of legal and business aspects in technics
Johannes Kepler University, Linz, Austria

▪ Basic Economic and management classes
▪ Basic Law classes
▪ Focus on IT Law (Datenschutzgesetz, E-Government-Gesetz)

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to thesis.jku.at is identical to the
present master‘s thesis.

Date Signature

106

