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A B S T R A C T

In this Master Thesis, we propose a novel sensor-enhanced keystroke
dynamics authentication system for mobile devices. In Chapter 1, we
describe biometric systems and how soft biometrics can be used to
authenticate users. A comparison of biometric features sets the frame
for our approach. In Chapter 2, we describe how keystroke dynamics
can enhance password authentication and what types of sensors in
mobile devices complement them best. In Chapter 3 we summarize
related approaches and describe the lessons we learned.

Part two documents our authentication system called PhonyKey-
board. In Chapter 4, we describe the theoretical concepts of our ap-
proach independent of implementation decisions. Chapter 5 docu-
ments the implementation and how we added biometrics to the Google
Keyboard. We also introduce an example client. Furthermore, we inte-
grated it into the CORMORANT framework. In Chapter 6 we evalu-
ate the system with real-life data and conclude that sensor-enhanced
authentication reaches an EER of 10.44 %, although not using sensors
only increases it by 0.44 %. Chapter 7 summarizes the thesis and gives
an outlook.

Z U S A M M E N FA S S U N G

In dieser Masterarbeit schlagen wir eine neuartige Tastaturanschlagdy-
namik-Authentifizierung vor, die durch Sensordaten verbessert wird.
In Kapitel 1 beschreiben wir Biometriesysteme und wie schwache Bio-
metrie Benutzer authentifizieren kann. Ein Vergleich biometrischer
Merkmale bildet den Rahmen für unseren Ansatz. In Kapitel 2 be-
schreiben wir, wie Tastaturanschlagdynamik die Passwortauthentifi-
zierung verbessert und welche Arten von Sensoren in Mobilgeräten
sie am besten ergänzen. In Kapitel 3 fassen wir verwandte Ansätze
zusammen und beschreiben, was wir daraus lernten.

Teil zwei dokumentiert unser Authentifizierungssystem namens Pho-
nyKeyboard. In Kapitel 4 beschreiben wir die theoretischen Konzepte
unseres Ansatzes unabhängig von Implementierungsentscheidungen.
Kapitel 5 dokumentiert die Implementierung und wie wir Biometrie
zur Google-Tastatur hinzugefügt haben. Wir stellen auch einen Bei-
spielclient vor. Zudem integrierten wir die App in das CORMORANT-
Framework. In Kapitel 6 evaluieren wir das System mit Echtdaten
und schlussfolgern, dass durch Sensordaten verbesserte Authentifi-
zierung eine EER von 10,44 % erreicht, wohingegen keine Sensoren zu
benutzen sie nur um 0,44 % erhöht. Kapitel 7 fasst die Arbeit zusam-
men und gibt einen Ausblick.
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Part I

T H E S C I E N C E O F K E Y S T R O K E D Y N A M I C S
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1
I N T R O D U C T I O N

Over the time, biometrics evolved from a special application for high
security areas to a technology that is available for the masses and
used by everyone. Some years ago, fingerprint readers were only
built-in to business laptops, while today they are integrated also into
consumer models. Just in the last few years, manufacturers started
including fingerprint sensors into mainstream mobile devices. Other
options, like face or voice recognition, are also available on smart
phones. However, although these technologies enhance security quite
well, they are often cumbersome to use: while the built-in camera
is still trying to recognize a user’s face and performing a liveliness
check, they have already entered a Personal Identification Number
(PIN) and started to use the phone. If one just wants to check new mail
or look something up, these small delays interrupt the workflow and
disturb the user. In the end, biometric authentication will be disabled
and the phone is susceptible to shoulder surfing and unauthorized
access again.

But there is a solution to this problem. A whole group of biometrics For more
information about
the general topic of
soft biometrics, the
interested reader
may consult
[Kap14].

is mostly unknown to the public: Soft biometrics (also called behavioral
cues or implicit authentication [Sto11]) cannot determine who a person
is (identification), but merely who a person is not (authentication).
Nevertheless, it has its applications as an addition and replacement
for hard biometrics. The huge advantage of these authentication meth-
ods is that they neither need any action nor cooperation from the user.
They do their work in the background – unnoticed, without the need
of any additional equipment – but nonetheless enhance security of
the whole system. These biometric methods don’t require advanced
processing (as e. g. fingerprint readers need for extracting minutiae
from images), they are low-cost and easy to implement [Tas+14]. The
promise is enhanced security without impacting usability. In a sur-
vey, 60 % of the respondents wished this very thing: easier forms of
mobile authentication [Ali+12]. In this chapter, we talk about what
biometrics is, motivate to use keystroke dynamics as biometric fea-
tures and state the scope and goal of this thesis.

1.1 biometrics

The word “biometrics” originates from the two Greek terms bios (life)
and metricos (measure) [Amb05]. Biometric systems are pattern recog-
nition systems. They recognize people by their physiological and
behavioral characteristics. The foundation therefore is a human fea-

3
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Figure 1: Detailed data flow of a biometric system with the four main mod-
ules: data collection, signal processing, decision and data storage
[Amb05]

ture that fulfills certain properties for secure identification (searching
persons with matching features in a database – 1 : n) or verification
(matching a certain person to given features – 1 : 1). Biometrics also
is one of the few technologies that allows negative recognition, where
it recognizes if a person is someone who they deny being.

1.1.1 Components

Every biometric system follows a certain basic structure indepen-
dent of chosen features and security. Figure 1 shows the way of data
through an exemplary system. Its base are four modules [Amb05]:
The Data Collection unit captures one instance (a sample) of the real-
world representation of a biometric feature through some kind of
sensor. Signal Processing is the most important part of the system: the
sample data is separated from noise and the information that is rele-
vant for comparing this specific biometric is extracted (Feature Extrac-
tion). Through Pattern Matching, the current sample data is compared
with previously enrolled templates and a score for how well they
match is calculated. The Decision unit then decides upon this value
whether the sample belongs to a valid user or an impostor is trying
to access the system. In consequence, the request is accepted or re-
jected. Finally, in Data Storage, the information most significant for a
specific user is stored securely in form of templates. These templates
are relatively simple representations of the data that was originally
captured by the sensor, but they contain the most important bits for
authentication.
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1.1 biometrics 5

1.1.2 Soft Biometrics

As mentioned in the introduction, strong biometrics such as finger-
prints or the iris are broadly adopted in technical systems. Neverthe-
less, they are still actively developed further, because the methods
are good but not perfect. Biometric verification only works when two
significant criteria are met: the captured features are gathered from a
real person at the time of verification and they match with stored tem-
plates. Various circumstances have influence on these criteria, such as The NIST found that

no data of acceptable
quality can be
extracted from the
fingerprints of 2 %
of the US-American
population [JDN04]

noisy data (e. g. through broken sensors or swollen fingers), unfavor-
able environments or non-universal features (ones that not every per-
son has). Sensors can also be tricked, for example by using portrait
photos for facial recognition or silicone molds of fingerprints.

To mitigate these issues, it is increasingly common to add “soft”
features that are gathered along the way when capturing the actual
biometric data, such as body height, gait, tattoos, etc. In authentica-
tion, this data can be used [Amb05]

• to filter the template database and remove irrelevant ones when
matching the strong biometrics,

• to combine both types of features, which improves recognition
performance and security or

• stand-alone in situations where otherwise no biometric security
is present at all.

The most important property of soft features is that they can be used
for implicit authentication, which means that the user doesn’t have to
actively do anything in the process. It takes place while they perform
their daily activities. Strong biometrics, in contrast, only perform ex-
plicit authentication, where users have to interrupt their work flow to
execute the data collection task before they can proceed.

1.1.3 Mobile Devices

With the increasing popularity of smart phones and tablets, many re-
searchers asked whether the proven biometric systems can also be
used in mobile environments. These devices create unique challenges
and opportunities and require new approaches to the same old prob-
lems. The most important factors are limited resources (e. g. Central
Processing Unit (CPU) power and memory size) and a limited sensor
set. Detailed considerations regarding resources are explained in Sec-
tion 4.3 (Statistical Classification). As to sensors, in contrast to ded-
icated or computer-based biometric authentication systems, special
equipment such as a fingerprint reader cannot be simply attached
to a mobile device. Therefore, implementers have to work with the
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6 introduction

feature classification eer [%] ip type

Fingerprint
[AB14]

Vaulted Fingerprint
Verification

7.5 yes explicit

Hand Gesture
[JOT12]

Dynamic Time Warp-
ing

0.87 no explicit

Keystroke Dynam-
ics [ZDJ12]

New Distance Metrica

+ outlier removal
0.84 no implicit

Signature [Ira+14] Neural Network 6.9 yes explicit /
implicitb

Voice [BCR12] Vector Quantization 0.83 no explicitc

Face [Bor+11] Fusion of Beta Wavelet,
Facial Curves Shaped
Analysis and Iterative
Closest Point

1.6 yes explicitd

Iris [LLC14]e matching recon-
structed signal

FAR:
0.01 %,
FRR:
0.69 %

? ?

a Distances between samples are calculated by combining Manhattan and Maha-
lanobis distance.

b The type depends on the situation, whether a signature is requested just for authen-
tication purposes or it is required anyway, e. g. for signing a contract.

c Voice recognition in general can also be implicit, but the cited paper uses a challenge-
based approach.

d The authors used a dataset with explicitly captured images, although facial recogni-
tion can also be performed in the background during everyday usage.

e Unfortunately, we had no access to the paper’s fulltext. The given properties are
cited from [AAM15].

Table 1: The most common biometric features available on mobile devices
with selected approaches and their performance [AAM15]. IP = Im-
postor Patterns
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1.2 motivation 7

Figure 2: Heat map of the amount of dirt on an opened keyboard. Yellow
areas represent peak dirt locations [Tar07]

hardware that is already available. Then again, several devices, for ex-
ample microphones, cameras and accelerometers, can be expected in
nearly every smart phone. Table 1 summarizes the most common bio-
metrics that can be used on mobile devices, selected classification al-
gorithms and the Equal Error Rates (EERs) that can be achieved when
using them. They were not tested on mobile devices, however. It’s
also stated whether the selected method needs impostor patterns (ti-
tled “IP”; examples of templates for users that mustn’t be granted
access in addition to templates for the valid user) and if it is an im-
plicit or an explicit authentication approach.

1.2 motivation

The way someone types on a keyboard, for example when entering
one’s password, is one kind of soft biometric feature that allows de-
tecting whether the person sitting in front of a computer is a legiti-
mate user or an impostor. One just has to look at one’s own keyboard,
which probably wasn’t cleaned for an extended period. The residue
that accumulates on the surface of each key (and over the time, the
plastic of the key caps themselves) has certain shiny spots, where fin-
gers often hit the key, while other keys don’t. Figure 2 shows the heat
map of dirt distribution Targonski [Tar07] painted while cleaning it.
He also noticed that dirt between the keys is more present around
often-used keys. It’s also visible that e. g. the F5 function key is more
heavily used than the other ones, which are almost residue-free.

With the advent of mobile phones, the concept of keyboard au-
thentication was ported to a mobile environment, beginning with the
physical keypad text inputs and advancing to touch inputs on smart
phones in recent years. These new input methods, however, provide
far more data about a key press than mere timing between the key-
strokes. Touch screens are able to detect the angle, size and pressure
of a finger, even multiple ones at the same time. Also, smart phones
contain a vast array of sensors that measure their surroundings and
provide an endless stream of data about the device’s orientation in
space. In contrast to computers, there are no courses on how to write
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8 introduction

quickly on touch keyboards and there is no standardized touch-typing
system. Therefore, every smart phone user teaches himself an individ-
ual way to input text quickly. These unique features of mobile devices,
however, are in large part still not taken into account, likely because
smart phones are relatively new in comparison to regular keyboards.

Back in the 19th century, the telegraph was the dominant form of
written long-distance communication. It was observed that telegraph
operators, who sent messages all day, were able to identify who of
their colleagues was transmitting by listening to their typing rhythm.
During World War II, the Fist of the Sender, a method for tracking an
operator by identifying the rhythm, pace and syncopation of the tele-
graph keys, was used to follow troop movements. In the 1980s, stud-
ies were conducted by the National Science Foundation (NSF) and the
NIST in the USA, which established that typing patterns are character-
istic for each person [BW12]. Shaffer [Sha78] described in 1978 that
typing is a motor programmed skill, meaning that an individual’sEvery hand

movement is divided
into fine and gross
motor movements.
While the former’s

signals can be
stopped until they

arrive in the frontal
lobe, the latter are

executed via the
extrapyramidal

system and cannot.
Further reading may

start on [Wik16].

way of typing is developed by a person over time. Therefore, how
someone types cannot be shared, lost or forgotten. Since the move-
ments are organized before they are executed, they are of a ballistic
nature, which means that they are semi-autonomous and, once they
are initiated, cannot be stopped [Sal86]. Both of these properties make
keystroke dynamics a suitable soft biometric. Another typical exam-
ple for a motor programmed skill is gait, which is an active research
area for biometric recognition as well. It is possible for humans to
recognize a person’s gender just by their way of walking [Joh75]. If
they know them, they can also determine their precise identity. The
same principle can be transferred to automatic recognition.

1.3 scope

Banerjee and Woodard [BW12] write that the European Standard
EN 50133-1 [CEN96] requires access control systems to have a False
Rejection Rate (FRR) of 1 % and an even lower False Acceptance Rate
(FAR) of 0.001 %. For a relation with real-world biometric applica-
tions: with iris authentication, which is considered one of the most
secure biometric features today, FARs of 0,000001 % and FRRs of vir-
tually 0 % are easily achievable [Dau03]. Since the introduction of
the Fingerprint Application Programming Interface (API) in Android
6.0, Google requires hardware manufacturers that want to integrate
fingerprint readers into their devices to have FARs of 6 0.002 % and
are strongly recommended FRRs of < 10 % [Goo15a]. The best algo-
rithms analyzed by Banerjee and Woodard managed to achieve FARs

and FRRs of about 0.1 %, which is very good for a soft biometric sys-
tem but still doesn’t fulfill the requirements for secure biometrics in
Europe. These algorithms operate on standard keyboards and often
(especially and inherently when using machine learning approaches)
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1.3 scope 9

they use impostor patterns to train classification. However, in a real-
world implementation, people cannot ask random strangers on the
street to enter their password, just to get negative samples. There-
fore, the question we want to answer in this thesis is: is it possible to
substitute impostor patterns with the additional data mobile devices
provide while still maintaining a level of security higher than that of
already existing statistical methods? We try to find the best combina-
tion of touch properties and sensor measurements by capturing usage
data from different persons on smart phones in a small user study. It
consists of four users providing data over several weeks. We then eval-
uate different options for the most effective combination of features.
More details about the setup and the reasons for why there isn’t a
large amount of participants can be found in Section 6.1 (User Study).
Of course, we don’t try to fulfill the criteria of the European Standard
with our proposal, simply because soft biometrics are not suitable for
high-security environments, as we already mentioned earlier.
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2
K E Y B O A R D A U T H E N T I C AT I O N

Keyboard authentication systems have the same basic structure as
any other biometric system. They require persons to enroll users, cre-
ate templates and authenticate them. As already described in Sec-
tion 1.1.2 (Soft Biometrics), such systems can be used in different com-
binations with strong biometrics. An often used approach, which we
also implement, is a two-stage authentication phase: There is a pre-
authentication secret that any legitimate user has to provide (in our
case, a valid password) to be considered for the second stage, where
biometric authentication takes place. Therefore, as with most soft bio-
metric systems, keyboard authentication is not used stand-alone. In
this chapter, we describe the general process, which features can be
taken for biometric authentication and what types of classifiers can
be used.

2.1 big picture

Any biometric authentication system is divided into an enrollment and
an authentication phase. Figure 3 shows the way a user has to take
through a keyboard dynamics-based authentication system to get a
decision on whether they are granted access or not. In the enrollment
phase, they enter their password multiple times to allow the system
to build a classifier from the features that are extracted from the indi-
vidual key presses. Depending on the variance of these features and
the used classification algorithm, the number of times a password has
to be entered before the enrollment phase is finished varies. Nonethe-
less, this number cannot be arbitrarily high, because developers of

Figure 3: The flow chart of a keystroke dynamics-based authentication sys-
tem [Tas+14]

11
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12 keyboard authentication

such systems have to consider that users get annoyed when they are
bothered with tedious tasks for too long. Araújo et al. [Ara+05] found
the maximum acceptable number to be ten.

The classifier is the core part of the authentication system, it de-
termines whether an authentication attempt matches the previously
built template. There is a vast amount of research on how such an
algorithm can be built, ranging from simple statistical methods to
advanced machine learning approaches. The biometric performance
measures of the whole system, like FAR and FRR, depend mainly on
the quality of the classifier. Examples of different systems are given
in Chapter 3 (related work), where also performance metrics are
stated.

In the authentication phase, the user first has to enter a valid (the
previously enrolled) password, otherwise they are rejected as an im-
postor immediately. After that, the keystroke data that was captured
during the authentication attempt is fed into the classifier, which cal-
culates a similarity score, derives a binary decision or any other value
that indicates whether the given data belongs to the legitimate user.
Only if this final decision is positive, the user is granted access.

The described process can be applied to static or dynamic analysis
[MR00]. For static analysis, fixed texts (in most cases, passwords) are
used to authenticate users. The same pattern can be used for every at-
tempt and therefore, a high recognition performance is possible. For
dynamic analysis, the user’s behavior is monitored throughout usage
of the device and for every text input. This method has the advan-
tage that it’s possible to detect a change of users, for example, when
the valid user takes a break and forgets to lock their PC. Although
no password input is necessary, the biometric system notices the dif-
ferent typing pattern and can e. g. lock the computer automatically.
The big disadvantage of this approach is that it’s far more difficult to
build effective and reliable classifiers that work with any text input
of any length.

2.2 features

In comparison to touch screens, the features that can be extracted
from typing on keyboards are limited, but it is nevertheless enough
to perform usable authentication. Figure 4 shows the most common
parameters of keystrokes, all based on latencies. The reason is that
timing information is the easiest set of features to gather from any
keyboard. A digraph is the Press-to-Press time (PP) between one and
the consecutive key, while a trigraph spans three keys instead of two.
The Release-to-Press time (RP) is also called the flight time, because
the fingers are hovering over the keys. On the contrary, the Key Hold
Time (HT) is also called dwell time [BW12]. Scientists already ana-
lyzed user behavior and the parameters of keystrokes that give the
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2.2 features 13

KD KU

PP Latency or
Digraph

Trigraph

RR Latency

FT or
RP Latency HT

KU: Key up/release
KD: Key down/press
FT : Flight time
HT: Hold/dwell time
PP : Press-press
RR: Release-release
RP: Release-press

Figure 4: Keystroke timing information [BW12]

best results for biometric authentication. Bergadano, Gunetti, and Pi-
cardi [BGP02] found that using trigraphs yielded better results than
digraphs or any other n-graph, while Robinson et al. [Rob+98] con-
cluded that the HTs are much more important than the inter-key times
(Flight Time (FT), PP, Release-to-Release time (RR)). That said, this
doesn’t seem to be an universal truth, because e. g. Maiorana et al.
[Mai+11] found that PP and HT in digraphs work best in their sce-
nario. Because the approach in this thesis is based on their findings,
we chose these features as well.

2.2.1 Mobile Features

For mobile devices, there is additional information about every touch
that can be taken into account. The pressure of each key press could al-
ready be captured on special keyboards. Saevanee and Bhattarakosol
[SB09] found that just by using the pressure of a finger on the screen
a very high accuracy could be achieved. Notwithstanding, on capaci-
tive touch screens that aren’t pressure sensitive in themselves, it is a
virtual value derived from the finger size. This behavior is described
in the Android Open Source Project (AOSP) documentation [Goo14c].
Information about the finger size was added to the classification e. g.
by Tasia et al. [Tas+14], although it was not as effective as the pressure
feature. In addition, some touch screens calculate the touch orientation,
which expresses the angle of the finger on a screen. A feature avail-
able on any touch device is the 2D position on the pressed key (e. g.
near the left upper corner), which amongst other things depends on
the hand the user is holding the device in and the used finger(s).

2.2.2 Sensors

During our initial research, we found that there already is a consid-
erable amount of work done on keyboard authentication on mobile
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14 keyboard authentication

devices using touch features including pressure, but there was no
publication on exploiting the unique properties mobile devices pro-
vide: sensors that capture the environment a device is in. Our idea
was that users have certain habits of holding their devices when they
enter their password. One person may hold a phone in the right
hand while typing with the left index finger, while another one might
hold it in both hands, typing with the thumbs. Originating from that
thought we wanted to enhance the current authentication data with
sensor information, which in turn may result in better recognition
performance. The Android platform distinguishes between motion,
environmental and position sensors [Goo12]. Table 11 in the appen-
dix shows an overview on all available sensors with typical use cases.
We were interested in the relative change of positioning in space a
phone experiences while the user types, because they might use their
device in different positions (e. g. standing, sitting, lying in bed, . . . ).
This kind of data can only be provided by the motion category, be-
cause of which we focused solely on it.

The accelerometer measures the acceleration in space (in m/s2) that
is applied to the device – inherently including gravity. Therefore, we
also used the gravity sensor that is derived from acceleration and in-
dicates just the gravitational force. The exact opposite is the linear ac-
celeration sensor that filters gravity from accelerometer readings. Even
though all three sensors deliver similar data, we included all of them
in our work to see whether ground orientation, acceleration or a com-
bination of both deliver the most discriminant features. The rotation
vector sensor represents the orientation of a device as an axis around
which it is rotated in a certain angle. The X axis is the vector prod-
uct Y × Z and points approximately West, the Y axis is tangential
to the ground and points toward the geomagnetic North pole while
the Z axis points toward the sky and is perpendicular to the ground.
Finally, we used the gyroscope, which is both available in a calibrated
and an uncalibrated version. It measures the rate of rotation (in rad/s)
around a device’s axes. Gyroscopes have a tendency to drift over time,
which means that they yield different motion results than other sen-
sors such as the accelerometer do. This is automatically corrected by
the Android system, but developers can also access the uncalibrated
gyroscope. It has the disadvantage of not being completely true to re-
ality but has the advantage of providing data with less abrupt jumps
introduced by calibration, meaning more smooth and reliable mea-
surements. We included both versions in our study to evaluate which
type works best for biometric authentication.

2.3 classification

The core of good biometric authentication systems is the classifier
generated by a specific classification algorithm. It takes the pattern
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2.3 classification 15

recorded in the current authentication attempt and matches it to a
class of patterns that were recorded previously and belong together –
in our case the password entries of the user who owns the device. If
the pattern similarity to a class is above a certain threshold, the classi-
fier assumes that the class matches. There are numerous approaches
to solve this problem with a varying level of complexity, but all the
solutions can be categorized into five categories [KAK11]. We anno-
tate the reasons for or against using them in our approach shortly,
while an in-depth explanation is given in Section 4.3 (Statistical Clas-
sification).

2.3.1 Statistical Methods

For statistical methods, measures such as mean, standard deviation
and variance, geometric, Manhattan or Euclidean distances in combi-
nation with k-nearest neighbor approaches are used to find a match-
ing class for a pattern (e. g. searching the template with the mini-
mum mean distance). The most commonly used properties of key-
strokes for classification are latency and duration, often also taking
digraphs into account. If there are multiple properties to consider,
distances are calculated by treating a key press as a vector of num-
bers. This is the base for k-nearest neighbor approaches, where the
most fitting enrollment templates are searched for, easily incorporat-
ing any distance measure into a simple, understandable and effective
classifier. There also have been attempts to calculate a covariance ma-
trix of keystroke latencies to measure the consistency of a user’s typ-
ing signature. More sophisticated methods use Hidden Markov Mod-
els (HMMs) to classify the feature subsets of authentication attempts.
As Chang, Tsai, and Lin [CTL12] point out, statistical methods are
very resource-efficient and are therefore best suitable for low-power
and low-resource mobile devices, even when multiple methods are
combined. This advantage can be used without any disadvantages in
recognition performance – in a comparison, the best statistical system
had an EER of 0.5 % in contrast to 0.43 % for the best (Support Vector
Machine (SVM)-based) pattern recognition system [BW12]. Therefore,
this was the way to go in our thesis.

2.3.2 Neural Networks

Instead of simply executing a sequential set of instructions given by
the developer, neural networks explore different hypotheses by them-
selves and learn the best way to find the most suitable solution to a
problem. Similar to the human brain, they build artificial neural path-
ways through which data flows between processing units (neurons).
Neural networks are considered by some to have the greatest poten-
tial in biometric classification, but they can be very complex and slow
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to train. Algorithms such as Deep Learning, which gained popularity
in the last years, need vast amounts of processing power to generate
satisfactory results. Linear Perceptrons are one of the easier methods
to be used for classifying keystroke data. Two separate digraph sets
enhance prediction in Back Propagation Neural Networks (BPNNs),
while multi-layer neural networks use the time intervals between key
presses as features. It’s also possible to combine different neural net-
works for better performance. However, apart from being a rather
slow method both during training and evaluation, this approach has
a huge disadvantage: it needs positive as well as negative samples
for training, which means that in addition to patterns of the legiti-
mate user, it also needs patterns of impostors. This may be alright
in academic work or multi-user systems (if every user has the same
password), but this is unfeasible in a single-user mobile environment.
This is the reason why we abandoned neural networks as possible
classification algorithms.

2.3.3 Pattern Recognition and Learning

Pattern recognition is the discipline of finding patterns in data and
categorizing it into a number of distinct classes. Because the task of a
classifier in biometrics comes down to just this, many scientists used
and enhanced pattern recognition algorithms to get the best perfor-
mance for their keyboard authentication system. For example, key-
stroke duration can be used in a Bayes classifier in combination with
Fisher’s Linear Discriminant (FLD), which finds a linear combination
of features that is either typical for or defines the separation between
classes. Implementers also work with Bayes decision rules, a K-means
algorithm or a Potential function. Another pattern recognition tech-
nique that proved to work quite well is inductive learning. Keystroke
patterns can be represented as a time series, so it was proposed to
use the Wold decomposition theorem to decompose the input into
predictable and unpredictable components. Techniques like Boosting
and Random Forests are used for quite some time already as they
show good prediction capabilities, although they need very much pro-
cessing power, just as Deep Learning. Another promising technology
in this category are SVMs. They show a remarkable performance, and
while most pattern recognition techniques require impostor patterns
– just as neural networks do – Schölkopf et al. [Sch+01] first described
a single-class SVM that determines whether a sample is similar to a
template set or not. Therefore, single-class SVMs might also work in
the scenario described in our thesis. Nevertheless, we focus on sim-
pler statistical approaches and leave this topic open for investigation.
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2.3.4 Hybrid Techniques

Since all the aforementioned classification methods have their unique
advantages and disadvantages, it is more and more common for sci-
entists to combine multiple algorithms, so that the weaknesses are
compensated. For example, machine learning approaches are often
combined with pattern recognition techniques or statistical methods.
Different algorithms can be combined either by chaining their outputs
so that the next stage works on processed data, or their individual re-
sults can be fused, therefore creating an enhanced score.

Search heuristics, such as genetic algorithms, are often used to find
optimal solutions for the algorithms’ parameters. They work that well
for any kind of algorithm optimization, because they can easily han-
dle large databases, provide multiple solutions and can handle var-
ious kinds of problems, even non-parametrical ones. Genetic algo-
rithms deliver a good performance especially when used with SVMs.
To present a pure evaluation on how sensor data improves recogni-
tion performance, we forgo using hybrid techniques and save this
area for future research.
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R E L AT E D W O R K

Keyboard authentication has a long history (see Section 1.2 (Motiva-
tion)) and therefore, many approaches have already been discussed.
Bringing this concept to mobile devices is a more recent development,
which is a reason why this area is not as broadly studied. In this
chapter, we give a broad overview over the available systems and
how they perform. We don’t focus just on mobile security but also
add “traditional” authentication systems to provide a more thorough
overview on what is possible and where the differences and special
considerations are for mobile usage. The reports are categorized into
three sections based on the input device they work on, and sorted by
publication date.

3.1 computer keyboards

Keystroke authentication on computer keyboards already exists for
a comparably long time and is rather well studied. Many of the ap-
proaches show promising results.

3.1.1 “Computer-Access Authentication with Neural Network Based Key-
stroke Identity Verification" [Lin97]

Lin created a neural network-based approach for authenticating users
on computer keyboards. He initially planned to use hold time and
flight time as the features used for classification. During evaluation,
he found that users often press the next key while the previous hasn’t
been released yet, which caused problems with his method of com-
puting differences. Therefore, he used digraphs as second time fea-
ture. He built a three-layered (input I, hidden H and output O) back-
propagation neural network. As convergence criterion, the Root-Mean-
Square Error (RMSE) was set to a threshold of 0.07. Weight modifica-
tion was based on error back-propagation and gradient descent. The
training set for the classifier was built using three password inputs
by each user. From that manually created data, a number of counter-
examples were generated by multiplying the values with random
data and scaling it by a factor of ten to 0.2. The final set of weights
output by the neural network was stored encrypted along with the
associated password.

For evaluation, the most efficient number of hidden nodes H was
H = (I +O)/2, because it had a sufficient recognition performance
and allowed online training in less than one second. The system was
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then tested by 90 valid and 61 invalid users. In the first attempt,
performance was not optimal and it was discovered that a consid-
erable amount of output weights were near the selected threshold.
This caused the author to lower the RMSE threshold to 0.03 and re-
training the network. The final evaluation results showed a FAR of 0 %
and a FRR of 1.1 %. On a side note, it was also found during the exper-
iments, that typing skill affected the performance of the system: Im-
postors were allowed to watch valid users input their passwords and
imitate them. In this case, FARs were > 0 %. If the valid user was typ-
ing proficient (more than 90 words per minute), FARs were five times
higher for typing proficient impostors respectively three times higher
for non-typing proficient impostors than they were if the valid user
was not typing proficient. Unfortunately, the authors don’t state any
reason for that in their publication. A possible explanation could be
that people with good typing skills have more similar and smoother
rhythms, while the others press keys in a unique, untrained way that
is the most efficient for the individual person.

3.1.2 “User authentication through typing biometrics features" [Ara+05]

Araújo et al. first combined a total of four keystroke metrics for bio-
metric authentication using a statistical classifier. For that purpose, in
addition to the typed key code, mean µ and standard deviation δ for
digraph, hold time and flight time were calculated and saved as tem-
plate. If the number of features between enrollment and authentica-
tion didn’t match (e. g. because a user sometimes used the Caps Lock
key instead of pressing Shift multiple times), the attempt was denied
immediately. During their study, they found – as already proposed
by others – that although a certain amount of enrollment templates
is necessary, more than ten template inputs annoy users. This was
therefore the number of templates selected for authentication. The
threshold for successful authentication was dynamically obtained us-
ing the standard deviation, because it was observed that features with
higher deviations needed lower thresholds and features with lower
deviations needed higher ones. They also implemented an adaption
mechanism, where the new sample replaced the oldest one on suc-
cessful authentication to adapt to changes over time and refine the
acceptance threshold.

For their evaluation, 30 users participated on three computers with
two different keyboard layouts. They were asked to authenticate them-
selves as legitimate users between 15 and 20 times (including en-
rollment inputs). Then, they were requested to authenticate on other
users’ accounts by telling them the correct password, which was done
between 80 and 120 times per person. Finally, the participants were
allowed to observe others while they entered their passwords and im-
itate them afterwards. This was done between 12 and 20 times per
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person. All of the tasks were distributed over a certain time span and
never done all in one session. The analysis showed that the best per-
formance was achieved by using all three metrics at once, resulting in
a FAR of 1.89 % and a FRR of 1.45 %. When people were allowed to ob-
serve password inputs, the FAR rose to 3.66 %. It was found that pass-
words with capital letters increased difficulty for impostors, while
changing the password to a given string significantly increased FRR

to 17.26 % for legitimate users. They had implemented a two-trial au-
thentication, where users had a second chance to successfully login
if the biometric data didn’t match. If this mechanism wasn’t used,
FRR increased to 11.57 %. The adaption mechanism decreased both
FAR and FRR, but if it also considered impostor patterns to refresh the
templates, FAR increased significantly to 9.4 %.

3.2 cell phone keyboards

Authenticating users by their typing rhythm works quite well for com-
puter keyboards, so the question arises on whether those methods
are also applicable to mobile phones. Many of the research papers
worked with cell phones where Java Micro Edition (J2ME) applica-
tions were installed. Smart phones or even phones with touch screens
weren’t common at the time.

3.2.1 “Advanced user authentication for mobile devices" [CF07]

Clarke and Furnell proposed a keyboard authentication mechanism
for traditional cell phones, where users were authenticated during
input of telephone numbers, PINs and text messages. They evaluated
three different neural networks to compare their performance. The
first was a Feed-Forward Multi-Layered Perceptron (FF-MLP), a Best
Case Neural Network that took the best performance rate for each
user across all configurations and a Gradual Training Algorithm (GTA)
that evaluated recognition performance per user at certain training
intervals and reset network parameters according to the user’s best
performance. Feature-wise, they used just one single metric, the flight
time for telephone number and PIN input and the hold time for text
message input. Analyzing free text generally is a dynamic analysis
problem that is comparably difficult to solve. Therefore, they reduced
it to static analysis by authenticating just keystrokes of two to six of
the most recurrent characters in texts (‘e’, ‘t’, ‘a’, ‘o’, ‘n’ and ‘i’). Each
user therefore had five different neural networks, each responding to
a different number of common characters, which were dynamically
selected depending on the input text. The disadvantage of this ap-
proach was that it had to be assumed that every text message contains
at least two of these characters.
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In the evaluation, 30 users had to enter 30 telephone numbers, PINs

and six-digit text messages each, whereas 2/3 of the data was used for
training and 1/3 for performance calculation, where the participants
acted as impostors. The best algorithm, with an EER of 5 % for tele-
phone numbers, turned out to be the Best Case Neural Network. Un-
fortunately, because of the large number of iterative tests necessary, it
cannot be used practically. The GTA performed second-best, with an
EER of 9 and 8 % for PIN and telephone numbers, while the FF-MLP

could only achieve 16 and 13 %. Authentication using text messages
proved to be more difficult. Results worsened with shorter input texts,
because less discriminative data was available. GTA and FF-MLP clas-
sified with an EER of 19 respectively 21 %. Because of the bad perfor-
mance, the authors proposed a biometric framework, where users are
continually asked to authenticate again throughout the day. Negative
recognition results don’t end in a lockout but a gradual readjustment
of access levels and more or less rigid monitoring of user activity.

3.2.2 “User authentication using keystroke dynamics for cellular phones"
[Cam+09]

Campisi et al. investigated a keyboard authentication mechanism for
traditional cell phones that works with text-based password inputs.
Numeric inputs were at that time already rather well described, mean-
while it lacked scientific research regarding textual inputs on the key-
pad of cell phones. The different layout, key shape and response
to pressure make findings for traditional keyboards not applicable.
Also, in contrast to numerical inputs, texts need multiple key presses
per letter. For classification, they used a statistical classifier working
with hold time, digraph, flight time and RR latency. From these col-
lected keystroke properties, mean and standard deviation were cal-
culated and used as templates. To perform experiments with user-
dependent score normalization, an acquisition distance measure was
calculated between all enrollment templates. For authentication, the
metrics were captured again and the dissimilarity distances calcu-
lated, which were used to generate a global distance by summing
them up. Only if this distance was below a certain threshold, the
user was authenticated successfully. Normalization was found to be
helpful, because the number of keystrokes directly affects the dis-
similarity distances. They proposed two different kinds of normal-
ization, a user-independent and a user-dependent one. The simpler,
user-independent normalization was just dividing the distance by the
number of keystrokes. The user-dependent normalization involved
dividing by the variability of the enrollment templates. In the evalu-
ation, they also compared these methods to traditional score normal-
ization methods, such as min-max normalization and double sigmoid
score normalization.
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The authors specified six passwords with ten characters each, whose
letters were equally distributed both over the keys on the keypad and
over the number of keystrokes (between one and four) required for
the specific character. 30 users then were asked to enter each pass-
word ten times on a Nokia 6680 mobile phone. For evaluation, each
set of inputs was split into an enrollment set for the first ten inputs
and the authentication set for the rest. It was confirmed that the num-
ber of enrollment templates significantly improves recognition per-
formance. It started from an EER of 27.02 % for five templates and
improved to 16.21 % for ten templates using user-independent nor-
malization. Therefore, it was recommended not to use less than six
training samples. When they evaluated their system using the user-
dependent normalization method, they could again improve recogni-
tion performance to an EER of 14.46 % for ten enrollment samples. Us-
ing score normalization approaches nonetheless didn’t significantly
enhance performance any further. In summary, while user-dependent
normalization is an easy method of normalizing data, it proves to be
quite effective. On a final side note, it was also found that the pass-
word length improves EER with an increasing number of characters.

3.2.3 “Keystroke dynamics authentication for mobile phones" [Mai+11]

Two years after their previous paper [Cam+09] on this topic, Maio-
rana et al. investigated further on the topic of text input authentica-
tion on mobile phones. While the evaluation setup was the same as
in the previous paper, they employed a new statistical method and
tested different refinements. They proposed a classifier that works in
scenarios where the number of enrollment templates is low – as it
is in real life. As the captured features, they once again used hold
time, digraph, flight time and RR latency. The enrolled acquisitions
then were compared pairwise and a distance was calculated. After
that, it was normalized with respect to password length. As distance
metrics, they compared the performance of Manhattan and Euclidean
distance. Finally, they proposed four different metrics to characterize
keystroke variability of each user:

• mean value of distances to nearest or farthest neighbors,

• of all distances and

• of the distance to the “template keystroke dynamics”, which is
the acquisition that has the minimum average distance to all
others.

They also considered different criteria to select the templates for au-
thentication out of all acquisitions. Minimum Distance (MDIST), Greedy
Maximum Match Scores (GMMS) and two different clustering algo-
rithms, Agglomerative Complete Link Clustering (DEND) and fuzzy
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C-means clustering, were used. MDIST, which selects the templates
representative for a user, and GMMS, however, were modified by the
authors to maximize distances between acquisitions. The rationale
was that the authentication process works better with templates that
carry distinctive information instead of those which reinforce already
estimated statistics. Finally, for authentication, the captured data was
added to the set of attempts, recalculating the values and finding the
distance of the authentication data to the enrollment data. These val-
ues then were compared to a threshold for the final decision.

Evaluation took place again on a Nokia 6680 mobile phone, using
six passwords with ten characters each. 40 users entered the pass-
words 20 times during four sessions, with pauses of ten minutes
between each session. They had five training attempts before actual
enrollment began. Afterwards, the first ten acquisitions were used
as enrollment template and the remaining for evaluation. From that
data, the best combination of the different authentication metrics was
found. First, the pairwise distance metrics were evaluated, which re-
sulted in using Manhattan distances, because EER was 14.72 % instead
of 19.68 % for Euclidean distance. Then, the different authentication
metrics were evaluated, also considering a Bayes Classifier as well
as SVMs and Principal Component Analysis (PCA). However, none of
the results could top the mean distance statistics, which was used for
the remaining experiments. After this, the best combination of key-
stroke properties was evaluated, resulting in the use of a combination
of digraph and hold time. Then they compared the newly proposed
approach to their previous one, where user-dependent metrics were
used. In the end, the new algorithm performed better for limited en-
rollment sets < 10 and had the same performance for greater numbers.
Finally, it was tested whether template selection approaches improve
authentication. From 12 randomly selected acquisitions per user, a
number of templates were selected. It was found that the fuzzy C-
means algorithm performed best for 6 7 templates, while MDIST and
DEND performed best for > 7 templates. That said, it was noted that
performance of the fuzzy C-means algorithm strongly depends on
the chosen exponential weights, and – because of its fuzzy nature
– generally produces varying results. In summary, the best EER that
could be reached by combining the optimum set of methods (mean
statistics, 10 templates and PP and HT measurements) was 13.59 %.

3.3 touch screens

Although Personal Digital Assistants (PDAs) with touch screens were
already known in the early 2000s, smart phones only got popular
with the release of the first iPhone by Apple in 2007. Therefore, ana-
lyzing users’ input behavior on non-physical keys is a relatively new
field of study.
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Figure 5: The input UI for graphical passwords [CTL12]

3.3.1 “Authenticating User Using Keystroke Dynamics and Finger Pres-
sure" [SB09]

In the advent of the first iPhone and touch screen mobile phones,
Saevanee and Bhattarakosol studied the effectiveness of pressure as a
measure for authenticating users. They used a laptop touch pad and
divided it into 12 sections to simulate a telephone number pad. From
the touch data they extracted hold time, flight time and pressure.
They found that the pressure of a finger on the selected touch pad
model was represented as multiple values over the touch area, hence
they used the mean value of each touch. All the values were captured
during sweeps every 20 ms. The captured metrics were concatenated
into one vector and fed into a Probabilistic Neural Network (PNN),
which is similar to k-nearest neighbor approaches.

For evaluation, ten participants each entered their phone numbers
with ten digits for a total of 30 times in one session. Then, different
combinations of the three captured features were tested by splitting
the data into 2⁄3 training and 1⁄3 evaluation set. They showed that hold
time and flight time were bad features both by themselves and in com-
bination. The pressure feature alone and in combination with hold
time achieved the best EER of 1 %.

3.3.2 “A graphical-based password keystroke dynamic authentication sys-
tem for touch screen handheld mobile devices" [CTL12]

The password space of the usual PINs on mobile devices in relation
to textual passwords on computers is relatively small and they aren’t
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as memorable. Chang, Tsai, and Lin proposed a graphical password
that broadens the password space and improves security. In addition,
they implemented keystroke authentication by analyzing timing and
pressure information. Such a system usually has problems with recog-
nition when users switch between different phones from time to time,
because of the different size and layouts of keypads. In their approach,
the password input always has the same physical size so that accu-
racy is not affected. Because of its graphical nature, users don’t have
to remember all the images, but a meaningful interpretation instead.
The system asks users in the setup process to provide their favorite
image, which was then scaled to 50 mm× 60 mm and cut into 30 tiles
with a length of 10 mm. After that, the user chooses three to six tiles
in a certain order. The User Interface (UI) is depicted in Figure 5. The
selected squares and their order then represent the graphical pass-
word. In the background, the system also captures hold time, flight
time and digraph as well as pressure for each tile selection. The en-
rollment phase requires five training samples. For authentication, the
user again selects the same tiles in the same order, which they have to
do a certain amount of times to be authenticated successfully. Then,
the mean and standard deviation of the features are calculated, as
well as the distance to the training samples. Based on a threshold, a
decision is made.

100 users took part in evaluation, all of them frequent mobile users.
They could freely choose their image and had to provide ten samples.
The first five were collected in one session at the same time, while
the remaining five were collected over a time span of five weeks on
two different phone models. They had different screen sizes on pur-
pose, so that it could be shown that size doesn’t affect recognition
performance. Ten people then were given the graphical passwords of
all 100 participants and had to enter them five times. Evaluation then
resulted in an EER of 12.2 % when only using timing information and
6.9 % when combining it with pressure data. It was noted that this
method works without having to use any impostor data for training
the classifier. The algorithm is suitable also for low-power mobile de-
vices, because classifier building as well as authentication finish in
between 1 to 4 ms on average.

3.3.3 “Two novel biometric features in keystroke dynamics authentication
systems for touch screen devices" [Tas+14]

Two years after their research [CTL12] on graphical passwords, Ta-
sia et al. tried to further enhance and modify their approach, this
time relying on the more traditional PIN authentication. In addition
to pressure, they also added the finger size as another discriminant
feature. Size was chosen because not every person uses the same fin-
ger(s) to input their PINs on mobile devices, and while some use the
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Figure 6: The input UI for biometrically enhanced PINs [Tas+14]

fingertip, others use their finger pulp to press on the screen. Also,
every individual has different finger thicknesses. For enrollment and
authentication, users were presented a 12-button keypad UI with ten
digits, one button to re-enter the input and one for submitting the
entered PIN, as depicted in Figure 6. Users were asked to enter their
PINs five times in a row to be successfully authenticated. The first five
input attempts were also used for classifier building. As in their last
paper, hold time, flight time and digraph were selected as the relevant
timing features. A classifier then was created by calculating mean and
mean absolute deviation for all features. For authentication, the aver-
age distance between each element of the features was calculated and
a decision was made based on a certain threshold.

Before the experiment, all participants were required to familiarize
with the mobile device and perform basic operations. The experiment
then took place in a classroom, where 100 persons separately had
to enter two samples per week of their own PIN with freely chosen
length over a period of five weeks. This was done to remove day-to-
day typing variability. The first five samples were then used for the
enrollment phase, while the remaining five ones were used for au-
thentication and determining FRR. Then, ten randomly selected users
were given the PINs of all 100 participants, which they had to enter
five times each to produce impostor samples. During the study, it
was discovered that most of the people used their right index finger

[ August 1, 2016 at 22:43 – classicthesis Version 0.95 “Bear with Me" ]



28 related work

to input the PIN (49 participants), followed by the right thumb (26

participants) and the other thumb, index or middle finger. Evaluation
showed that the combination of time features with pressure was most
effective and resulted in an EER of 8.4 %, while using all features at
once only reached an EER of 10 %. The authors related this result to
the security level being high in this mode, causing the FRR to increase.
They finally noted that their authentication method is very fast and
therefore suitable for mobile use. Enrollment and authentication at-
tempts could be processed in 9 and 3 ms, respectively, even for the
longest 8-digit PINs.

3.4 summary

From all the approaches shown above, we could learn valuable lessons
for implementing our own system. The first obvious thing is the selec-
tion of features. While there were some experiments in the early days,
the timing information extracted from the key presses is pretty much
fixed to a subset of HT, PP (digraph), RP and RR in later papers, because
they proved to work very well. Regarding recognition performance,
statistical methods cannot be considered inferior to other approaches
such as machine learning, although they have a wider spread of EERs.
This can also be related to the fact that they allow authentication with-
out impostor patterns. Static thresholds for matching templates were
found to be bad for performance in the one paper, while they seemed
to be alright in the next. In general, it depends on the concrete ap-
proach and evaluation helps to find these weaknesses. It’s good to
work with algorithms that adapt to the data and normalization of
features regarding text length is considered a minimum standard.

A very important factor is the number of acquisitions that are
used as templates for later authentication. Of course, performance
improves with each additional template, but users don’t have an infi-
nite amount of patience before they want to use a system for its true
purpose. Also, in enrollment mode, the system has to assume that ev-
ery additional sample comes from valid users, while the probability
for impostors trying to gain access rises over time.

Especially for mobile applications, data gathered from the key-
strokes doesn’t seem to be portable, which results in users having to
re-enroll for every device they use. If mobility should be maximized,
implementers have to take care of these variances and offer standard-
ized input methods. This, however, bereaves systems of features that
distinguish a certain device from all others and potentially gives away
performance. Having said that, it was shown that not only keyboards
can be used as biometric bearers and the same concepts are also appli-
cable to more graphical approaches such as images or patterns. This
would be an interesting field of study for the future, as it strongly
emphasizes the multimedial character of smart phones.
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Finally, a major observation we made is that none of the studies
worked with real-world usage data. In all cases, people were invited
to a laboratory environment where they entered their password mul-
tiple times. Some authors spread the studies over several days, but
we strongly believe that this doesn’t depict real user behavior in any
way, because they aren’t familiar with neither the environment nor
the devices. Of course, this is the standard procedure in science, as
participants can be monitored and controlled closely. However, we
want to study the performance of using sensor data in real use cases
that capture the different environments in which mobile devices are
used. Therefore, we capture real-world data for our evaluation.
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4
C O N C E P T

To create an executable application, one obviously has to choose a
programming language and a platform to run it on. We implemented
our project in Java on the Android platform because we already had
previous experience with both and there are free development tools
available. This means that some descriptions in this part are Android-
specific and might not apply in the same way to other operating sys-
tems. The basic concept – building a classifier from captured sen-
sor data – nevertheless is the same regardless of any implementation
details. Therefore, in this chapter we describe the universal funda-
mentals of our approach to keystroke authentication in a general and
abstract matter. It contains a description of the used features, names
properties and assumptions regarding the sensor hardware and mod-
els the statistical classification process used in this thesis.

4.1 features

Before we began implementing our project, we thought about the
features we wanted to extract from the keystrokes. This would very
much influence recognition performance, especially if a very discrim-
inant feature was left out. However, it’s not feasible to capture every
possible metric from the individual key presses because of perfor-
mance considerations and space constraints. Therefore, we decided
to include the timing features that were deemed most useful by the
reviewed papers: PP (digraph) and HT (dwell time). In addition to
that, we add properties of the finger touch itself:

• X and Y coordinates of the touch center relative to the touched
key’s upper left edge,

• size of the area where the finger touches the screen,

• angular orientation (vertical orientation equals to zero) of the
touch,

• and normalized physical pressure on the screen.

Finally, we add sensor data as a novelty in our approach. All the
sensors in the motion category described in Section 2.2.2 (Sensors)
are considered as features, because analyzing the usefulness of each
sensor’s measurements is an important topic of this thesis. These are
accelerometer, gravity, linear acceleration, rotation vector, gyroscope
and uncalibrated gyroscope. Depending on the platform and hard-
ware, not all the sensors might be available, but every device we did
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feature dimensions N elements K

Digraph 1 k − 1

Dwell Time 1 k

Touch Center 2 k

Size 1 k

Orientation 1 k

Pressure 1 k

Accelerometer 3 k

Gravity 3 k

Linear Acceleration 3 k

Rotation Vector 3 k

Gyroscope 3 k

Uncalibrated Gyroscope 3 k

Table 2: The feature set ∆ used in this thesis for keystroke authentication
with their dimensions and the number of values

our user study on contains them. Table 2 shows a summary of the
used features, represented as the set ∆ and the numerical properties
that will be important subsequently. The number of dimensions de-
scribes how many values one measurement consists of. For example,
pressure is only a single value for each key press, while the accelerom-
eter delivers axes in 3D space. The number of elements relative to the
K keystrokes describes how many values can be derived thereof. For
example, a digraph is a relative number between two key presses. As
the first one has no predecessor, it can only be calculated starting from
the second one. All the other features are absolute measurements and
are therefore available for every single keystroke.

4.2 sensor data

In Section 2.2.2 (Sensors), we describe the sensors that are available
on mobile devices and which of them we use as features in our thesis.
For practical approaches and evaluation accuracy, it is important to
know about the limitations of these sensors, especially about the res-
olution of measurements and timing. If a gyroscope can only detect
rotations above several degrees, it will not be able to capture the fine
movements a person makes when shifting a finger from one key to
the next. Then again, if it actually has these capabilities but only per-
forms measurements every second, multiple keystrokes have to share
the same data, making them indistinguishable. Typical inter-key tim-
ings on traditional keyboards lie around 100 to 300 ms for letters and
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hardware freq . res . stddev sensors

Accelerometer 100 Hz
200 Hz

12 bits
16 bits

0.05 m/s2 Accelerometer,
Gravity, Linear
Acceleration, Rota-
tion Vector

Magnetometer 10 Hz
50 Hz

0.6µT
0.2µT

0.5µT Rotation Vector

Gyroscope 100 Hz
200 Hz

12 bits
16 bits

10−7rad2/s2

Hz (Uncalibrated) Gy-
roscope, Rotation
Vector, Gravity,
Linear Accelera-
tion

Table 3: Hardware used for gathering the sensor data in this thesis with their
measurement frequency, resolution and standard deviation. Bold
font indicates Musts while normal font indicates Shoulds.

up to 600 ms for special keys such as numbers [CBT99]. This is differ-
ent for mobile phone keyboards, because they often have secondary
keys assigned. That requires the user to touch the key for a prolonged
time. In our study’s data, mean inter-key timings are around 300 ms
for letters and around 1000 ms for special keys.

Android is the relevant platform for this project, therefore Google’s
Android 6.0 Compatibility Definition Document [Goo15a] is the refer-
ence for these questions. It defines the specifications a hardware man-
ufacturer has to follow for sensors built-in to Android devices. In gen-
eral, all Android sensors should report an event time in nanoseconds
with a maximum synchronization error (to the CPU clock) of 100 ms.
New measurements must be reported within 100ms+2 · sampling rate
when the CPU is active. Sensors with a continuous operation mode
(which all we used herein support) must have a maximum jitter in
periodic data of 3 %. This means that captured sensor data might not
have been measured at exactly the same time a key event is fired.

For the hardware used in this thesis, we summarize measurement
frequency, resolution and their standard deviation as well as which
sensors use it in Table 3. These are the minimum standards we can
expect when collecting data for the evaluation. The statements in
the Compatibility Definition Document begin with a word marking
how strictly the requirements have to be followed. “MUST” defines
an absolute requirement and is written in bold font in the table.
“SHOULD” defines requirements that may be ignored in specific situ-
ations after careful consideration and is written in normal font in the
table. These definitions follow the Request for Comments (RFC) stan-
dards. When using sensors, Android lets the developer also specify a
sampling rate in form of a maximum sensor delay. It tells the system
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the maximum time an app is willing to wait for new data. Typically,
the operating system sends events more often, but it might use the
whole time slot if resources are sparse. This delay should therefore be
set to the maximum feasible value to save power. We decided to use
the predefined delay SENSOR_DELAY_GAME, which defaults to 20 ms or
50 Hz. Thus, using the inter-key timings described above, a minimum
of 15 measurements between pressing and releasing a key for the av-
erage keystroke can be expected. This is enough for our purpose.

4.3 statistical classification

As already described in Section 2.3 (Classification), one of the most
important aspects of any biometric system is the classification process,
which matches samples to the templates stored in the database. In this
section, we describe the reasons for why we focused on statistical
methods in our approach. We step-by-step build the authentication
system, starting from the used distance metrics over the variability
calculations for the templates and finally arriving at the authentica-
tion score. While this chapter presents the algorithms used in our
thesis, Section 6.3 (Applying the Classifier) describes which of them
work the best and should therefore be preferred. If not noted other-
wise, all given formulas originate from [Mai+11].

4.3.1 Why Statistics?

When researching papers to use for our biometric authentication ap-
proach, we came across several methods that achieve better or worse
biometric performances. In Section 2.3 (Classification) we already an-
notated the various algorithm types with reasons for or against using
them, but this section elaborates in more detail on that matter.Most current mobile

devices use Li-Ion
batteries, which at

the moment provide
the best size/capacity

tradeoff.

Mobile devices have to carry their own power source for location-
independent usage. Energy capacity of the built-in batteries is natu-
rally limited because of the tight space constraints. To maximize bat-
tery runtime, very efficient components such as CPUs with deep sleep
states are used. They are, however, optimized for energy usage and
not processing performance. For software running on these mobile
devices, it is of utmost importance that they have to consider power
usage and mind resource constraints to keep users satisfied with
their experience. For keystroke authentication, this means that some
approaches such as machine learning – which are rather resource-
demanding – either cannot be used or have to be done outside the
device (“in the cloud”). When password data leaves the local envi-
ronment, security considerations come to mind and have to be han-
dled carefully. We want to focus on improving authentication meth-
ods and don’t want to complicate matters, therefore we excluded any
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approaches that can’t efficiently be handled on a local device with the
available resources.

Another reason for excluding algorithms was the suitability for
single-user environments. Pattern recognition techniques usually need
multiple classes of patterns from which they can select the most sim-
ilar to a given template. If authentication in contrast to identification
is desired, only one class will be stored in such an environment – that
of the legitimate user. Therefore, the most similar one will always be
the same. Unlike some pattern recognition approaches that might be
able to calculate the similarity of a single pattern to a given template,
neural networks don’t have this capability. There are other methods
which are specifically designed for this task.

Combining the implications of both considerations, we came to the
conclusion that statistical approaches best fit our requirements: they
consist of simple mathematical formulas that can be calculated on
mobile devices quickly and efficiently. Also, they can be effortlessly
tailored to use cases with a single user’s data for authentication. Maio-
rana et al. [Mai+11] already proposed and evaluated methods for an
environment very similar to ours and they could achieve a good per-
formance with an EER of 13.59 %, so we decided that we would base
our approach on their findings.

4.3.2 Distance Scores

The distance scores work with the captured data on the most funda-
mental level. They take single values of the individual features and
describe how far away they are in the feature space. A lower similar-
ity score indicates that two given samples’ features are near to each
other and the user’s environment was similar.

For all the following descriptions we define fδu,e as the vector of the
individual features δ ∈ ∆ that were captured from user u in the e-th
acquisition. To visualize the structure of this object, Figure 7 shows
an exemplary feature vector for one user with δ features and E en-
rollment acquisitions (samples). Every acquisition consists of K N-
dimensional values fδu,e. Every one of these corresponds to exactly
one key press. The value for K and the number of dimensions is
shown in Table 2. A comprehensive summary of the notation used
in this thesis can be found in Appendix B (notation).

The distances D(·, ·) used in this thesis are either one of the two
most common geometrical distances: Manhattan (city block, taxicab)
and (Squared) Euclidean distance. They are calculated pairwise be-
tween two feature vectors fδu,e and fδu,i. Because the text length is
freely chosen by the user, they are normalized by sample set size. The
analyzed related work also suggests strongly to do so for increased
recognition performance.
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fu – User Feature Vector

...

f1u – Feature 1

...

fδu – Feature δ

...

fδu,1 – Acquisition 1

...fδu,1(1) fδu,1(2) fδu,1(k)

fδu,e – Acquisition e

...fδu,e(1) fδu,e(2) fδu,e(k)

f1u,1 – Acquisition 1

...f1u,1(1) f1u,1(2) f1u,1(k)

f1u,e – Acquisition e

...f1u,e(1) f1u,e(2) f1u,e(k)

Figure 7: The feature vector fu in a graphical form, showing its individ-
ual features δ and their acquisitions fδu,e, which consist of N-
dimensional values fδu,e.
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• Manhattan distance DM(fδu,e, fδu,i)

DM(fδu,e, fδu,i) =
1

K

K∑
k=1

∣∣fδu,e(k) − f
δ
u,i(k)

∣∣ (1)

• Squared Euclidean distance DE(fδu,e, fδu,i)

DE(fδu,e, fδu,i) =
1

K

K∑
k=1

(
fδu,e(k) − f

δ
u,i(k)

)2
(2)

4.3.3 Keystroke Variability

The inter-acquisition distances are then used for calculating the key-
stroke variability VARδu of the user u, which results in a single rep-
resentative number per feature δ. In Section 6.3 (Applying the Classi-
fier), we evaluate the best of the following four metrics, which should
then be used in a real-world application.

• Mean value of the distance of one acquisition to its nearest neigh-
bor, MINδu

MINδu =
1

E

E∑
e=1

E

min
i=1;i 6=e

D(fδu,e, fδu,i) (3)

• Mean value of the distance of one acquisition to its farthest
neighbor, MAXδu

MAXδu =
1

E

E∑
e=1

E
max
i=1;i 6=e

D(fδu,e, fδu,i) (4)

• Mean value of all distances between all acquisitions, MEANδu

MEANδu =
1

E

E∑
e=1

1

E− 1

E∑
i=1;i 6=e

D(fδu,e, fδu,i) (5)

• Mean value of all distances of all acquisitions to the template
keystroke dynamics fδu,tu with index I(fδu,tu) = tu, which has the
minimum average distance to all others for this feature, TEMPδu

tu = I
(
min

[
meanEe,i=1;e 6=iD(fδu,e, fδu,i)

])
(6)

TEMPδu =
1

E

E∑
e=1;e 6=tu

D(fδu,e, fδu,tu) (7)
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4.3.4 Template Selection

As argued in Section 2.1 (Big Picture), the enrollment phase cannot be
arbitrarily long and the set of templates for authentication has to be
fixed at some point. Nevertheless, there is a possibility that the whole
set of enrollment templates doesn’t yield the same recognition per-
formance as selecting a subset of the most discriminating examples,
which describe the user’s behavior the best. Also, restricting the tem-
plate set size results in a higher system performance, because fewer
comparisons have to be made and less data has to be stored. We
therefore include different template selection approaches that find
these representative samples T by clustering all enrollment acquisi-
tions and selecting the most significant ones, which are later used
for authentication. This is an already very well-researched process
and there are good algorithms, because cluster analysis is an own
subtopic of statistics.

Algorithm 1 The MDIST algorithm
Initialize ∆, K, E, DK×K, AvgDK, TE
for all δ ∈ ∆ do . Calculate pairwise distance scores

for m,n← 1..K do
Dm,n ← D(fδu,m, fδu,n)

end for
end for
for k← 1..K do
AvgDk ← mean Dk

end for
for e← 1..E do . Choose E acquisitions
Te ← I(minKi=eAvgDi) . min⇒ MDIST-MIN, max⇒

MDIST-MAX
end for
return T

Algorithm 2 The GMMS algorithm
Initialize ∆, K, E, DK×K, TE
for all δ ∈ ∆ do . Calculate pairwise distance scores

for m,n← 1..K do
Dm,n ← D(fδu,m, fδu,n)

end for
end for
for e← 1..E do . Choose E acquisitions
Te ← I(min

∑K
i=eDi) . min⇒ GMMS-MIN, max⇒

GMMS-MAX
end for
return T
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The first two algorithms we test are MDIST [URJ04], depicted in Al-
gorithm 1, and GMMS [Li+08], depicted in Algorithm 2. With MDIST,
the N samples are sorted according to their average distance to the
others, whereafter E templates with the minimum distance are se-
lected as representative for the user. GMMS minimizes the distance
between a set of E templates and the other (N− E) not selected en-
rollment acquisitions. The rationale behind both algorithms is that
there are a number of samples which have maximum similarity and
are therefore considered typical. However, Maiorana et al. [Mai+11]
proposed modifications to both algorithms, where they don’t select
the most similar samples but the most dissimilar instead. They ar-
gued that it might be beneficial to have templates which represent a
broad spectrum of possible behavior. To distinguish both types, we
call them MDIST-MIN and MDIST-MAX, respectively GMMS-MIN
and GMMS-MAX. Both algorithms deliver deterministic results.

Algorithm 3 The DEND algorithm
Initialize ∆, K, E, DK×K, DEND, CE, TE
for all δ ∈ ∆ do . Calculate pairwise distance scores

for m,n← 1..K do
Dm,n ← D(fδu,m, fδu,n)

end for
end for
DEND← Dendrogram(D)
for e← 1..E do . Cut dendrogram at E clusters
C← Cut(DEND,E)

end for
for e← 1..E do . Select template leaves

if Leaves(Ce) = 1 then
Te ← Ce

else if Leaves(Ce) = 2 then
Te ← random Ce,1..2

else
Te ← mean Ce,1..n

end if
end for
return T

Algorithm 4 The fuzzy C-means clustering algorithm
Initialize E, CE, TE
C← FuzzyCMeans(fu,E,D(·, ·))
for e← 1..E do . Select template sample from cluster
Te ← minCe,1..n

end for
return T
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Figure 8: A dendrogram of enrollment acquisitions. On top is the distance
between the nodes, the numbers on the right mark the individual
enrollments 1 to 10 as leaves.

The second two algorithms we test are DEND [URJ04], depicted in
Algorithm 3, and fuzzy C-means clustering [Bez81], depicted in Al-
gorithm 4. DEND uses agglomerative complete link-clustering to cre-
ate a dendrogram (thereof the name), which is a type of tree. It has
the individual samples as its leaves and inner nodes group two chil-
dren at a time with minimum distance to each other. The root finally
groups the two most distant sub-clusters. This results in the leftmost
nodes having the greatest similarity to each other, while the rightmost
nodes group samples the farthest away. An example extracted from
data collected during evaluation is shown in Figure 8. We create the
dendrogram by using an external library [BD15], while the template
selection is executed as described by the authors. Unfortunately, they
didn’t mention how the dendrogram has to be pruned to extract ex-
actly K templates. We therefore descend to a level in the tree with at
least K nodes and select the rightmost, most distant ones. This con-
forms with the suggestions by Maiorana et al. [Mai+11] to select the
most dissimilar samples. However, it has the disadvantage of poten-
tially preferring outliers. If a selected node is no leaf but it contains
exactly two leaves, the template leaf is selected randomly by specifica-
tion. This leads to non-deterministic outputs. In bigger sub-trees, the
leaf with the minimum distance to all others in this node is selected.

Fuzzy C-means clustering originates from data mining and works,
similar to SVMs, by dividing an n-dimensional feature space in a way
such that the different clusters are separated as well as possible. In
contrast to older K-means clustering, its fuzzy properties allow fea-
tures to be in more than one class with a certain probability. Unfortu-
nately, as with DEND, this adds randomness and the algorithm’s out-
put is non-deterministic. It selects E clusters from which the template
samples are chosen. These are the ones with the smallest average dis-
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tance to all others in the cluster. For our implementation we use an
external library [Apa16].

4.3.5 Authentication

After the distances between all enrollment acquisitions are calculated
and the best templates are selected, authentication can take place for
every successive sample. Therefore, the distance of the new feature
vector fδũ captured from the user to be authenticated ũ relative to
the template variability is calculated. Finally, a decision can be made
whether the current acquisition belongs to the valid user or an im-
postor. This is done by comparing the calculated score to a threshold,
which has to be determined according to the system’s desired secu-
rity. A common way is to use a threshold such that the EER is reached
[Gri08], resulting in an evenly spread FAR and FRR. For high-security
environments such as banking applications, the threshold can be set
to a value where the FAR is 0.01 %, while for low-security environ-
ments such as website logins, it can be set to a value where the FRR is
0.01 %. This means that for ten thousand access attempts, either one
impostor or one valid user is classified wrong. Of course, as the met-
rics are inversely proportional, the number of valid users that cannot
or impostors that can access the system also vastly increases.

Which authentication metric AUTHũ to use depends on the vari-
ability metric that was calculated for the templates. Of course, they
can also be combined to enhance authentication performance, but it
has to be considered that resource usage increases as well. In this
thesis, we evaluate the performance of single metrics.

MINũ =
1

||∆||

∑
δ∈∆

minEe=1D(fδu,e, fδũ,e)

MINδu
(8)

MAXũ =
1

||∆||

∑
δ∈∆

maxEe=1D(fδu,e, fδũ,e)

MAXδu
(9)

MEANũ =
1

||∆||

∑
δ∈∆

∑E
e=1D(fδu,e, fδũ,e)

MEANδu
(10)

TEMPũ =
1

||∆||

∑
δ∈∆

D(fδu,tu , fδũ,e)

TEMPδu
(11)
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5
I M P L E M E N TAT I O N

After deciding about the features that should be used in our approach
and the various authentication methods that promise good results,
we had to implement it so we could gather data and evaluate it. This
project, however, shouldn’t only be a means to an end but serve a true
purpose instead. We therefore not only propose an exemplary API for
apps to use, but also integrate it into the CORMORANT framework
[Hin+15], which provides continuous, transparent, extensible, risk-
aware and cross-device authentication utilizing multiple biometrics.
In this chapter, we discuss the general project structure and design
decisions, propose the Biometrics Manager API, describe the statistical
classifier implemented in the project and show the example client
that was also used for capturing data in the user study. Finally, we
talk about the few changes we had to implement for CORMORANT
integration and mention some potential security pitfalls.

5.1 project structure

There are many keyboards available for Android devices, which might
relate to the fact that custom keyboards are supported since version
1.5, released in 2009 (in contrast to Apple’s iOS, which introduced
support with iOS 8 in 2014). A variety of them is also open-source,
including the AOSP default keyboard (also known as Google Keyboard),
which ships with every pure Android installation. We therefore didn’t In the Android

source code, the
Google Keyboard is
internally called
LatinIME and can
be downloaded from
the Android git
repository [Goo14b].
This web server
holds the complete
Android source code.

see a need for creating our own keyboard and extended an existing
one instead. This made it possible for us to focus purely on the bio-
metrics aspect. By selecting the AOSP keyboard, we also gained the ad-
vantage of giving users and study participants a keyboard they know
and are accustomed to. When beginning implementation, version 4.4
was the latest one, while at the time of writing this thesis, version 7.0
is soon to be released. The differences apart from cosmetic changes
are minor and version 4.4 still is the second-most used platform af-
ter Android 5 with 30.1 % distribution [Goo16a], so it still is a valid
choice.

5.1.1 Hooking the Keyboard

Setting up the build environment to successfully create a binary of La-
tinIME from source involved using an Ubuntu Virtual Machine (VM)
to build the native library libjni_latinime responsible for gesture
typing. After that, we investigated the keyboard’s functionality and

45
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[is allowed?]

MainKeyboardView
opens keyboard

touch event

BiometricsPolicy

BiometricsManager

processMotionEvent

[is password?]

PointerTracker

Figure 9: The classes and methods involved in capturing and processing key-
board events for biometric authentication

the classes we had to modify to add biometric authentication func-
tionality. We were looking for places in the code where key press and
release events were handled so that we could derive the wanted fea-
tures from them. We identified LatinIME to be the main entry class,
which we renamed to PhonyKeyboard according to our project name.
It contains the typical Android lifecycle methods like onCreate() and
onDestroy(). The keys shown on the keyboard aren’t individual ob-
jects but merely drawn on the MainKeyboardView. This object han-
dles touch events and forwards them to a PointerTracker, which
is created for each finger that simultaneously touches the screen. It
handles all interactions with the keyboard keys, including updat-
ing key states (unpressed, pressed, . . . ), detecting gestures and sec-
ondary key input. For us, the most important method in this class
is processMotionEvent(), which receives all data about a key event
needed for hooking the input flow. This method has a parameter of
type MotionEvent [Goo09], which is a standard Android class describ-
ing movements of fingers, mice, trackballs, etc. According to the set
action, PointerTracker either calls onDownEvent() or onUpEvent(). Af-
ter finding the concerned key using the event’s coordinates, the key-
board input is finally handled by our BiometricsManager. To avoid
spying on the user, any keystrokes are filtered before they are han-
dled by the biometrics module: first, it is checked whether the current
input field has a password type and second, a BiometricsPolicy can
apply more advanced techniques (e. g. only allowing certain apps) for
ensuring user privacy. The implementation given in our project only
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allows authentication in the built-in example client. This flow is also
depicted in Figure 9.

5.1.2 Biometrics Classes

As soon as we were able to capture the low-level information about
keystrokes, we built our biometric subsystem around it. Class dia-
grams for the classes mentioned in this subsection can be found in Ap-
pendix C. First, we implemented a general abstract BiometricsManager
class that is the base for all operations on the biometric data. The class
hierarchy is depicted in Figure 26. It automatically captures sensor
data and provides it to derived classes. If sensors are not available in
a specific device, they are automatically hidden from the classifiers.
It also acts as a central instance for receiving environment informa-
tion by them, for example getting the input field’s current text and
determining the screen orientation. The latter is important to know,
because different sets of templates are loaded depending on whether
the device is used in landscape or portrait mode. Otherwise, no reli-
able authentication would be possible when orientation changes. The Intents are

Android’s way of
communication
between different
components or even
apps. They represent
an app’s “intent to
do something”.
Examples are
opening another
Activity (dialog) or
sending an eMail
using a mail app.

most important role visible to other apps is the intent-based API it
provides, which is described in Section 5.2 (Biometrics Manager API).
The class is implemented as a singleton, which emphasizes its central
role and guarantees that any keyboard component can access it at any
time.

Two classes derive from the abstract Biometrics Manager: Biometrics-
Logger was only used during development. It is a simple wrapper
and logs all keyboard events to a Comma Separated Values (CSV) file.
Using this class we could get a first impression of how the data re-
ceived from the keyboard looks like and whether capturing sensor
data works. After we could be sure that the hooks in the keyboard
don’t miss any keystroke events, we started building the second class,
BiometricsManagerImpl. This one is used for production code and
has the capability of loading different classifier classes that are finally
used for calculating an authentication score. Apart from forwarding
keystroke events and score calculation requests to the classifier, it
manages an SQLite database to store data in, which is described in
Section 5.1.3 (Database). The classifiers are also given a biometric con-
text, which describes the context in which authentication should take
place. More information about that can be found in Section 5.2 (Bio-
metrics Manager API).

The information about keystrokes delivered by the keyboard con-
tains many details that aren’t necessary for biometric authentication,
but those that matter are scattered over several objects. We therefore
implemented the BiometricsEntry, which contains the necessary in-
formation about a keystroke which is forwarded to the classifier. Fig-
ure 10 shows its class diagram. The object contains the unique pointer
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Figure 10: The BiometricsEntry class that holds all information about a key-
stroke

ID, which identifies a specific finger if multiple ones touch the screen
at the same time. This is necessary to associate different keystroke
events with the respective keys if a user types so fast that multiple
ones are pressed at the same time. It contains

• the event type, which is either down or up,

• the time stamp in milliseconds at which the event occurred,

• the textual representation and the numeric code of the key,

• the X and Y coordinates of the touch center relative to the upper
left corner of the key,

• size, pressure and orientation of the finger on the screen and

• a list of all sensor measurements that were current at the event
time.

The entry is forwarded to the Classifier, which again is an ab-
stract class to allow maximum flexibility. Its hierarchy is depicted
in Figure 27. After the keyboard is opened in a password field, the
classifier reads all previous templates from the database, calculates
the variability metric described in Section 4.3.3 (Keystroke Variabil-
ity) and decides whether the new sample will be an enrollment or
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an authentication acquisition depending on whether template selec-
tion has been done. Then, all measurements contained in the entries
are collected as keys are pressed. If the backspace key is pressed and
password input continues before the text field is empty, the current ac-
quisition is invalidated, because a fluent typing process isn’t guaran-
teed anymore and timings will be messed up. This also occurs when
the keyboard is closed during input. When the password was entered
completely and the user submits it, a score according to the selected
authentication metric described in Section 4.3.5 (Authentication) is
calculated. Note that neither the Biometrics Manager nor the classi-
fier know the password for security reasons. The client app signals
that it was correct by sending the BIOMETRICS_GET_SCORE intent, be-
cause otherwise there would be no need for biometric authentication.
This intent causes the classifier to associate the captured data with
the legitimate user if the score is below the threshold (otherwise, it
is rejected), and for example save it to the database as a new tem-
plate acquisition. More details on the concrete implementations are
described in Section 5.3 (Classifier).

Figure 11 shows a summary of the two main actors’ lifecycle dur-
ing biometric keystroke authentication. It begins when the keyboard
is opened and onCreate() is called. The diagram shows the meth-
ods that are executed when the password is entered and a score is
requested. Finally, onDestroy() is called when the keyboard is de-
stroyed by the system. Note that this lifecycle usually spans multiple
text inputs, as the keyboard isn’t reinitialized with every text field. It
might even be in an active state for a prolonged time, depending on
the system’s memory usage.

The last major part of the PhonyKeyboard app is the example client
called Input Study. In short, it consists of a main dialog for launching
either a test password input, where the keyboard works in normal
authentication mode, or a study data input, using which we gathered
the data in our study. This mode doesn’t perform authentication and
only stores the collected acquisitions. More details about this example
app can be found in Section 5.4 (Example Client).

5.1.3 Database

As previously described, BiometricsManagerImpl provides database
access for the classifier implementations. Using it, they can store
their templates and other management information that has to persist
between authentication attempts. The Biometrics Manager doesn’t
force any structural requirements on the classifiers, but it works with
Android’s standard concept of contracts instead. These are classes
that contain Structured Query Language (SQL) statements along with
methods for managing tables and updating existing data when a new
version of the data structures is available. Normally, this process of
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BiometricsManager

onCreate

Classifier

onCreate

init

onStartInputView onStartInput

loop

onKeyDown onKeyEvent

onKeyUp onKeyEvent

onFinishInputView onFinishInput

if password was correct

getScore getScore

onDestroy onDestroy

Figure 11: The lifecycle of BiometricsManager and Classifier when the
keyboard is opened, a password is entered, authentication takes
place and it is closed again.
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ContractVersions

contract INT
version INT

Contexts

_id INT
context TEXT

CaptureClassifierData

_id INT
timestamp INT
screen_orientation INT
inputmethod INT
situation INT
key TEXT
key_downdown TEXT
key_downup TEXT
position TEXT
size TEXT
orientation TEXT
pressure TEXT
...sensor TEXT

StatisticalClassifierData

_id INT
context INT
screen_orientation INT
key_downdown TEXT
key_downup TEXT
position TEXT
size TEXT
orientation TEXT
pressure TEXT
...sensor TEXT

StatisticalClassifierTemplates

_id INT
context INT
screen_orientation INT
data_id INT
score REAL

StatisticalClassifierTemplateStatus

_id INT
context INT
screen_orientation INT

1

1

n

1 n1

n

1

Figure 12: A complete overview of the database tables used in the PhonyKey-
board project including classifier data tables.
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// Set a custom biometrics context

EditText password =(EditText)findViewById(R.id.editTextPassword);

password.setPrivateImeOptions("at.jku.fim.phonykeyboard.
biometricsContext=at.jku.fim.inputstudy.sample");

// Password was entered and is correct, request biometric score

Intent scoreIntent = new Intent("at.jku.fim.phonykeyboard.
BIOMETRICS_GET_SCORE");

// Low-security environment, use minimum security threshold

scoreIntent.putExtra("at.jku.fim.phonykeyboard.
BIOMETRICS_SECURITY_LEVEL", 1);

sendOrderedBroadcast(scoreIntent, null, (context, intent) → {

if (!intent.getAction().equals("at.jku.fim.phonykeyboard.
BIOMETRICS_GET_SCORE")) {

return;

}

if (getResultCode() == RESULT_OK) {

int result = getResultExtras(true).getInt("at.jku.fim.
phonykeyboard.BIOMETRICS_RESULT");

if (result > 0) {

completeAuthentication();

}

}

});

// Password has changed, clear data

Intent clearIntent = new Intent("at.jku.fim.phonykeyboard.
BIOMETRICS_CLEAR_DATA");

sendBroadcast(clearIntent);

Listing 1: An example code snippet showing the usage of the Biometrics
Manager API

calling the respective methods in the right situations is automated
by Android, but there is no add-on concept that dynamically adds
or removes additional contracts. Therefore, a BiometricsDbHelper

models this process by keeping track of the currently stored clas-
sifiers and their database versions. This metadata is stored in the
ContractVersions table, while biometric contexts are assigned a per-
manent unique ID that is saved in Contexts. These are the only two
types of information the Biometrics Manager has to persist. Each clas-
sifier has at least one table in addition to that. The complete database
structure is depicted in Figure 12, while the contents of the classifier
tables are explained in Section 5.3 (Classifier).

5.2 biometrics manager api

The keyboard is a self-contained app and needs a way of communi-
cating the authentication workflow to the app that’s using it. There-
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Figure 13: The range of values the score can have, starting from negative
numbers for error states to positive numbers for high, medium
and low-security environments.

fore, we propose the Biometrics Manager API, an intent-based com-
munication channel between the client and the keyboard. The inter-
face is purposely kept simple to ensure developers can easily inte-
grate it into their existing apps without major changes. An exam-
ple code snipped can be seen in Listing 1. It consists of two intents,
BIOMETRICS_GET_SCORE to receive the calculated score after checking
the password and BIOMETRICS_CLEAR_DATA to reset the templates and
data stored in the database when the password changes. This is nec-
essary, because if the new password has a different length than the
old one, authentication will fail permanently, because the templates
don’t match anymore.
BIOMETRICS_GET_SCORE has to be implemented by the client as an

Android ordered broadcast, which means that it expects a result. After
requesting the score from the classifier, the Biometrics Manager maps
it to an authentication result in an extra field named BIOMETRICS_RESULT.
Authentication is successful if the score is greater than zero. The in-
tent result also contains a code which defines if the request was ex-
ecuted successfully. There are three states where this is not the case,
all resulting in a negative score. Figure 13 shows the range of values.

−1 The set of templates isn’t complete yet. The classifier is running
in enrollment mode and needs more data for a decision.

−2 An error occurred while capturing the biometric data during typ-
ing. This normally occurs when the user presses the backspace
key in the middle of entering the password and doesn’t com-
pletely delete it or if they close and reopen the keyboard while
typing. This destroys the typing flow. In rare cases this can also
occur when the user enters the password in a way they nor-
mally don’t, for example by using the symbol keyboard for spe-
cial characters instead of using the secondary keys. This results
in a wrong keystroke count.
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−3 Before requesting a score, the BiometricsPolicy is checked whether
biometric functionality is enabled. If the score has this value, the
client knows that using biometric authentication was denied by
the policy.

To ensure maximum flexibility, clients can specify a security level, which
means that the classifier accepts or rejects the user depending on
the individual security requirements. To satisfy these varying require-
ments, an extra field named BIOMETRICS_SECURITY_LEVEL can be given
as a number between zero for maximum and one for minimum secu-
rity. The default if not stated is 0.5, which corresponds to a threshold
that matches the EER. The security level is mapped to the Receiver Op-
erating Characteristic (ROC) curve as described in Section 4.3.5 (Au-
thentication). As it is given with every authentication request, it can
also vary every time.

In general, customizing the behavior of a keyboard can also occur
using private IME options in Android. This is a key-value pair in a
string that gets set as a property of the text field. For PhonyKeyboard,
client apps can set a biometric context using the biometricsContext

variable that states the context authentication takes place in. If it’s not
stated, a default context is created by using the app’s unique package
name. The purpose is to create different biometric profiles for every
password the user has, so that no acquisitions of different length or
properties pollute the data set. If an app fails to acknowledge this
in situations where multiple different passwords have to be entered,
capturing errors (score = -2) will occur frequently. Another use case is
multiple apps sharing the same account data. It might be desired to
keep enrollment times short and avoid having to re-enroll the user in
every app. Using the same biometric context, the keystroke templates
can be shared between them. In most cases, however, it will not be
necessary to define a custom context.

5.3 classifier

The base for all classifiers is the abstract class Classifier. It contains
several utility methods and inner classes for helping implementations
with their data management. Noteworthy is the inner class Active-

BiometricsEntries, which stores BiometricsEntry objects for later use.
This is important, because the user might touch the screen with mul-
tiple fingers at the same time. Therefore, it is critical to associate the
correct key presses with their releases. This class makes manual man-
agement unnecessary. Provided the current pointer ID, it finds match-
ing entries and removes them from memory as soon as they aren’t
used anymore.
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5.3.1 StatisticalClassifier

We implemented two different classifiers. The first, more important
one is StatisticalClassifier, which implements authentication as
described in Chapter 4 (concept). When starting input in a pass- Note that this

subsection doesn’t
mention the final
decision on which
distance, variability
and authentication
metrics to use. This
information can be
found in Section 6.3
(Applying the
Classifier).

word field, it loads the currently stored templates from the Statistical-
ClassifierData table in the database. If the current environment,
characterized by the biometric context and the screen orientation, is
contained in the StatisticalClassifierTemplateStatus table, the
template selection process has already completed and the classifier
starts in authentication mode, where only the selected templates as
referenced in StatisticalClassifierTemplates are loaded. The data-
base structure is shown in Figure 12. If there still are templates to
be captured, it starts in enrollment mode, which causes all previous
acquisitions to be loaded. After this is done, the keystroke variability
VARδu is calculated immediately according to the formulas given in
Section 4.3.3 (Keystroke Variability).

After initialization has finished, the user enters their password.
With each keystroke, it is checked first if the captured data should
be invalidated because the input is partially deleted or the keyboard
closed and re-opened in the meantime. Else, if it already is invalid
and the input field is now empty, the previously saved data is deleted
and authentication can successfully restart. For each keystroke, a new
value is added to every feature after the key was released. Key hold
time and digraph are stored as relative numbers between the times of
the according events. Position, size, orientation and pressure are stored
as absolute values for the release event. This ensures that if the finger
is repositioned after touching the screen, only the final state is consid-
ered. The sensor measurements are stored as the difference between
the values at the time of key press and release. The reason is that it’s
irrelevant what the absolute position of the device in space was at the
time the password was entered, but the relative change in positioning
is significant. This should be similar every time, independent of how
the device is held.

When input is finished, the authentication score AUTHũ is calculated
according to the formulas given in Section 4.3.5 (Authentication). Dur-
ing this process, it is also verified whether the number of keystrokes
and feature values matches that of the saved templates. After the
client app has checked the correctness of the password, the Biomet-
rics Manager requests the score from the classifier. According to the
given security level, it can determine whether the authentication at-
tempt belongs to the valid user. This is important, because the cap-
tured data is stored in the database when authentication is successful
to be able to re-evaluate the selected templates. Otherwise, the user’s
data would be polluted with impostor patterns and recognition per-
formance might suffer. In our current implementation, the template
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45.5|60.0;53.5|33.25;55.5|44.5;53.0|60.0;4.5|56.0;22.25|51.0

Listing 2: The value of the 2-dimensional (X, Y) position field in the database
for a password with six characters.

set is fixed after enrollment has finished, but the foundations for dy-
namic template selection are set.

Finally, the enrollment data, or the authentication data if the cal-
culated score is below the given security level’s threshold, is saved
to the database. Each of the features is mapped to the database col-
umns in a CSV format, separating each keystroke’s values with “;”. If
they are N-dimensional (N > 1), the individual dimensions are again
separated with “|”. Using this syntax, biometric data for passwords
of arbitrary length and features with arbitrarily dimensioned values
can be stored. An example for this syntax is shown in Listing 2. If
the classifier is in enrollment or authentication mode, no further ac-
tions have to be performed. If, however, by adding this sample the
required minimum number of acquisitions is reached and therefore,
enrollment is completed, template selection is executed. During this
process, the samples are filtered for most discriminant acquisitions
so that the required number of templates T is reached. A reference to
these is stored in the StatisticalClassifierTemplates table in the
database and an entry indicating that template selection has been per-
formed is added to the StatisticalClassifierTemplateStatus table.
Through this action, the classifier switches to authentication mode.

5.3.2 CaptureClassifier

As with the BiometricsLogger for testing, we also needed a “dummy”
classifier that supports us with collecting data for the evaluation. The
CaptureClassifier fulfills these requirements. While keystroke vari-
ability calculation, authentication and template selection aren’t imple-
mented here, keystrokes are processed with the same logic as in the
statistical classifier. This means that the same feature values are saved
in an internal data structure.

When the Biometrics Manager requests a score, the acquisition is
saved to the database in table CaptureClassifierData. It has the
same structure as the data store of the statistical classifier, but there
are additional fields: the time stamp at which the sample was collected
allows to draw conclusions about the time distribution of participants’
inputs. By adding the keys pressed, we could observe which keys the
inputs were generated with (e. g. secondary key vs. symbol keyboard).
As we didn’t reset this array when the input field was cleared, we
could also find out how often the participants had to restart typing
because they made an error. Finally, after each password input they
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had to fill out a short questionnaire about the participant’s environ-
ment, i. e. input method and situation. The answers were also saved
along with the rest of the data. More information about this question-
naire can be found in Section 6.1.1 (Interaction).

5.4 example client

To test the classifier and demonstrate an example for using the Bio-
metrics Manager API, we implemented an Android app called Input
Study. Both the keyboard and the Graphical User Interface (GUI) are
packaged in the same file, but the project is configured such that both
components get their own icon in the Android launcher. Opening
it, the MainActivity is shown, which serves as the main menu for
selecting the operation mode. Screenshots of the example client are
depicted in Figure 14. Both operation

modes are provided
by the same activity.
The functionality is
determined by a flag
isCaptureMode

that is set when
opening it.

If Test authentication is selected, the statistical classifier is loaded
in the keyboard and a random password in the format /\d\w{4}\d/
(digit – 4-character word – digit) is generated. This is a typical scheme
used by many real passwords. To increase realism even more, the
word is selected from a German dictionary, so that users can enter
it as fluently as possible. If the password is entered correctly, Input
Study uses the Biometrics Manager API to receive the biometric au-
thentication result and displays it in a dialog to the user.

If Capture test data is selected, the capture classifier is loaded in the
keyboard and study mode is started. In this mode, a specific pass-
word identical for all participants has to be entered. We chose it to be
2lira7, because it has insightful spacial properties: the first digit is on
the other end of the keyboard than the first two letters, which is also
true for the last two letters and the last digit. This forces users to span
wider distances across the screen, which increases keystroke latencies.
Also, the keys are distributed between the left and right side of the
screen, which might tempt participants to use both hands to input
the password. As soon as the first authentication attempt was suc-
cessfully completed in this mode, the user is automatically enrolled
in the study. This means that they get a progress bar tracking the num-
ber of acquisitions. Also, they get notifications to enter the password
in regular intervals. Every time they enter it, they are shown a ques-
tionnaire with two questions regarding their current environment. As
soon as the authentication was completed 100 times, the study auto-
matically ends. More details regarding the study layout can be found
in Section 6.1 (User Study). In the activity’s menu, there is an item to
send the data that has been captured at that point to the authors. This
is implemented as a simple CSV dump of the CaptureClassifierData

database table, which gets attached to an eMail that is sent via the
devices default mail app.
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(a) Main Activity (b) Test authentication

(c) Input study with open menu (d) Questionnaire after study input

Figure 14: Screenshots of the example client showing the main activity with
its mode selection menu, the two different modes and one of the
questions that are asked after the password was entered in study
mode.
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5.5 cormorant integration

Providing a new API for one app, which has to be implemented in
every other app that wants to use it, hinders distribution of this one
app, because the benefits have to exceed the cost of implementation.
The CORMORANT framework [Hin+15] combines various biometric
approaches and even spans multiple devices, which means that there
are huge benefits for security-conscious developers that want to make
their app more secure. Supporting this framework is easy for a bio-
metric authentication app, because of which we decided to integrate
our system into CORMORANT.

After including the cormorantapi library, there were just two mi-
nor adjustments to make to our project. The first was to declare a
new permission in the AndroidManifest for signaling CORMORANT
that this app contains an authentication plugin. Also, we had to de-
clare the service used for communication between framework and
app. Different properties define its behavior, whereby the most im-
portant ones are

• pluginType, which tells CORMORANT whether the service pro-
vides risk assessment or confidence-based authentication func-
tionality,

• and implicit, which is a flag indicating whether authentica-
tion is performed implicitly in the background or explicitly by
requesting the user to perform some action.

The final additions in this file are depicted in Listing 3.
Secondly, we had to implement the AbstractConfidenceService,

which is called when the framework requests biometric scores. The
method needed for that is onDataUpdateRequest, which in our case
simply forwards the last calculated score from the Biometrics Man-
ager. The returned value needs not be interpretable outside the spe-
cific authentication plugin and normalization is automatically done
by the framework, which means that there is no customization re-
quired by the developer. In addition to pulling the score, pushing is
also supported. Therefore, the service has to be bound and publish-

ConfidenceUpdate called. The service’s code can be found in List-
ing 4.

5.6 security

Today, in any software, security is a topic during development that
shouldn’t be neglected. This is even more true for programs that
promise protection, because otherwise the user gets a false sense of
security. We therefore describe some attack vectors that could be used
for exploiting our app. This is by no means a detailed security analy-
sis. Antivirus scanners,

which are regarded
to be essential for
Windows systems
today, are regularly
found to introduce
vulnerabilities that
wouldn’t exist in

“unprotected”
operating systems.
For example, in
December 2015, a
vulnerability was
found that allows
circumventing
malicious code
protection enforced
by Windows
[Met15].
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Communication via the Biometrics Manager API takes place using
implicit broadcast intents. Because of their nature, any app can receive,
execute and alter them. This means that a malicious app could for ex-
ample intercept the score request by the client and accept any authen-
tication attempt. By specifying the class name the intent should be
sent to and therefore converting it to an implicit intent, this problem
can be prevented.

Sharing the same biometric context can be useful if multiple apps
share the same login data (e. g. the Facebook and Messenger apps). This,
however, also opens the system to manipulation. If a malicious app
uses the same context as the one it wants to gain access to, it can
feed the classifier with the templates of an impostor or even delete
the template set, resulting in completely disabled biometric authen-
tication. For apps that don’t specify a custom context, this could be
mitigated by forbidding the use of custom contexts that match the
package name of another app. For others, this is an inherent issue of
sharing biometric data and should be considered when depending
on it.

All relevant pieces of information, such as keystroke templates, au-
thentication metadata and so on, are stored in an unencrypted SQLite
database on the device memory. Normally, access permissions protect
this file stored in the app’s private directory. However, if root access
is granted or the memory is read physically, attackers can modify this
database, inject rouge templates matching an impostor, model artifi-
cial keystrokes or reset the data and force enrollment mode, where no
security is provided. There could also be the possibility of using the
collected templates to infer the typed keys, even if this information
isn’t saved. This could be prevented by moving the database to a se-
cure location, as noted in Section 7.2.2 (Android’s Trusted Execution
Environment).
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E X P E R I M E N T S

The most important work when proposing novel scientific methods
is evaluating their usefulness. This is needed on the one hand for the
authors themselves to find out whether their approach is an advance-
ment to the previous ones, and on the other hand for the scientific
community and interested readers to verify the results by recreat-
ing the experiments. We have investigated various metrics and algo-
rithms that might be able to give good results, but the final choice of
which combination to use can only be made after evaluating them. In
this chapter, we describe our user study layout and procedure and de-
liver insight into the captured data. We apply the classifier to the data
and find out which metrics should be used in a real-world system
and which EER can be expected. Finally, we determine the classifica-
tion thresholds for different security needs, calculate how the mobile
devices battery life is influenced by capturing sensor data while us-
ing the keyboard and show how the accuracy of the measurements
influences the final authentication result.

6.1 user study

To be able to evaluate the best parameters for our classifier, we need
a vast amount of data of different users. Variations in device usage
over time and getting used to entering the password predefined by us
meant we had to carry out the study over a prolonged period. Also,
as different people handle their device in unique ways, we had to
acquire multiple participants. Finally, we wanted to find out whether
the templates gathered on one device can be taken to others, which
would require only a single enrollment phase per user instead of per
user and device. Therefore, we added a control group.

It was an utmost concern for us to gather real-life usage data from
our participants. Normally, studies are carried out in laboratories,
where people are assigned a predefined setup in which experiments
take place. They are closely controlled and monitored to ensure that
as much usable data as possible is gathered in a short time. While this
method is convenient, it has the disadvantage of not being true to life.
People use their mobile phones in different places and environments,
they walk or lie down when they type, use left, right or both hands,
and so on. If we brought people to the laboratory for one or more
sessions of intense password-typing, we wouldn’t get nearly as much
insight into their behavior than if we studied the users “in the wild”.
Also, time and effort increase this way, because of which we had to

61
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(a) Input method (b) Situation

Figure 15: Screenshots of the example client showing the two questions with
their answers that are asked after the password was entered in
study mode.

restrict our set of participants to a small number. We were aware of
the difficulties with this decision and that errors might occur – which
did. But in the end, the effort payed off and we can present results
that mirror users’ reality.

6.1.1 Interaction

For our evaluation, we add a capture mode to our example client, as
described in Section 5.3.2 (CaptureClassifier). A progress bar shows
the participants how many inputs they already contributed and how
far away they are from the target. After each successful password en-
try, two questions are shown, which help us unveil possible connec-
tions in the data: Holding hand and typing finger (combined to the
input method) as well as situation. Using the answers we can investi-
gate whether the hand the device is held in or the finger that is used
for typing influence the measurements. By asking for the situation,
we can see if the position the user is in (lying, standing, moving by
tramway, . . . ) shows up in the data. The user interface for these ques-
tions and the possible predefined answers can be seen in Figure 15.
To speed up the process for the participants, answers are given and
cannot be entered manually.
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As soon as a user has entered the first password in the capture
mode, they are notified to enter it again in regular intervals until
the needed amount is reached. To get samples of a user’s activities
throughout the day, notifications are shown every 5 hours, while they
are suppressed between midnight and 7 AM to avoid annoying par-
ticipants. This results in an average of 3 samples per day. Also, if
users interact with their device in a period of 30 minutes before a
new notification would appear, they get notified immediately. If a no-
tification was dismissed without entering the password, it reappears
every time the participant uses the device. This increases chances of
getting as many acquisitions as possible in a shorter time frame. If
no notifications would be shown, users might forget to enter data or
spread the samples unevenly throughout the study period.

6.1.2 Participants

We selected a total of four participants for our study, three of whom
(P1, P3 and P4) owned the same smart phone, a LG Nexus 4. The other
one (P2) was added to the control group to see whether templates can
be shared between devices. He used a Samsung Galaxy S4. All partici-
pants were right-handed. Everyone got sent a copy of the app, which
they had to install on their devices. They got an introduction about
what to do and how the app works. They were reminded to treat the
input notification like they would a text message: pay attention to it
as soon as they can, but don’t act if it’s inconvenient at the time. Also,
they were told to send intermediary results about once a week, in
case data would be lost (e. g. because of theft or malfunctions). The
task was to collect at least 100 complete samples, resulting in a total
of 400 acquisitions.

6.2 captured data

When we first got results back from our participants, we noticed that
all the collected sensor measurements were zero. Investigating this
issue, we found that there was a bug with collecting sensor data in the
Biometrics Manager, which provided the same measurements over
and over again. Therefore, we had to do a second study phase with
the corrected app. For this phase, we also added the questionnaire at
the end of each input, because the already captured data suggested
that there might be connections to the input environment.

6.2.1 Remarks

During the study, none of the participants entered their password
in landscape mode. The following experiments are therefore solely
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done on portrait mode data. We don’t expect that the results would
be much different.

Looking at the raw CSV files, we noticed that for the data captured
on the Nexus 4, the uncalibrated gyroscope and rotation vector sen-
sors sometimes didn’t deliver data, which resulted in empty columns.
We didn’t find another bug in the app, so we suspect a problem in the
device firmware. A reboot fixed the issue every time, but the affected
participants were asked to capture more data so we could ensure that
100 complete, working samples were available for each.

After getting the first data of P2, we wondered why he had two
additional keystrokes per sample compared to the other participants.
At first, we thought that somehow the enter key would be captured as
well, but as we talked to him, we discovered that he was used to typ-
ing numbers on the symbol keyboard instead of using the secondary
keys. All the others didn’t, so we asked him to use secondary keys
from that point on to get comparable data.

Comparing the data captured on the two different phones, we dis-
covered the difference the built-in hardware makes. For example, on
the Nexus 4, the touch size is a discrete instead of a continuous value
and has only coarse increments. It seems that finger orientation isn’t
captured, as the value is always zero. On the Galaxy S4, the pres-
sure value is always one, which makes this feature non-discriminant.
Touch size is captured more exactly, although orientation also isn’t
available. This means that the finger orientation effectively isn’t evalu-
able in our scenario.

6.2.2 Insight

Before we apply the classifier and decide which features and metrics
to use, we want to look at the unprocessed data delivered by the par-
ticipants and analyze it. First of all, its interesting to know about the
morale of the participants. They weren’t monitored, so they weren’t
forced to follow the notifications and input the password. Figure 16a
shows that this concern proved to be real. Especially P2 entered al-
most 20 samples on one day and generally had a very bursty behav-
ior. In June, it is visible for P1 that he had difficulties with the bug
that prevented some sensors to be captured. Therefore, he had to en-
ter many more passwords (a total of 162) to get the required number
of complete samples than the rest of the participants. For P4, there is
a long flat line visible where the phone was being repaired and he
could therefore not provide any acquisitions. In general, P3 and P4

were following the study guidelines best. Figure 16b shows that the
collected samples are distributed rather evenly throughout the day.
Only P2 seems to have preferred times after breakfast at 8 AM and
before dinner at 4 PM. There is a lack of data, however, in the af-
ternoon between 1 and 3 PM. Combining both observations, we can
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Figure 16: Timeline of the amount of samples that have been collected by
the participants at a certain date (16a), and hourly distribution at
which they were captured (16b).
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sitting standing lying walking moving

right thumb 120 50 38 16 2

left thumb 8 4 11 2 0

both thumbs 81 18 6 2 15

left finger 3 3 0 0 0

right finger 3 0 11 0 0

other 3 0 0 0 0

Table 4: Number of samples for the input methods and situations that were
asked in the participant questionnaire

draw the conclusion for evaluation, that the variability of the acquisi-
tions over time varies between the participants.

Another aspect worth having a look at is the collected data itself:
it often helps to visualize information, because humans themselves
are very good pattern matchers. Figure 17 shows the distribution of
hold times and digraph per user for each character. The digraph plot
begins only at the second character, because it is a relative metric
between two keys. While both figures seem chaotic at the first sight,
they quickly reveal properties of each participant’s typing pattern.
For example, P1 and P4 show relatively consistent typing patterns at
the lower end of the scale, meaning that they typed rather quickly
and didn’t stay long on one key. P2 was consistently slower than the
other participants and also had the most extreme outliers. P4 has
two larger clusters for the “l” and the “r” as well as the “7” key.
Unsurprisingly, it can be seen that using the secondary keys results in
longer hold times. What’s interesting, however, is that P2 had longer
hold times for the first letter than for the secondary number key. Also,
both graphs show overall similar timing distributions. In general, a
psychological study on these findings might bring up reasons for this
behavior.

The captured sensor data is difficult to visualize, because it’s in 3D
space. We therefore only plot the measurements for the letter “i”, as
can be seen in Figure 18. Most of the values for this sensor are cen-
tered around zero, although there are some measurements scattered
over the X and Y axes, while the Z distribution is rather small. This
means that the phone isn’t moved much in height, but there is a dis-
tinct clockwise rotation. This, we suppose, is the result of the “i” key
being to the upper left of the previous “l” key. Graphs for the rest of
the sensors can be found in Figure 28 in Appendix E.

Before evaluation, we want to know whether the metadata partic-
ipants marked their acquisitions with (input method and situation)
also are visible as different categories in captured data. As it can be
seen in Figure 19, with the numbers listed in Table 4, most of the pass-
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Figure 17: The distribution of hold times (17a) and digraph (17b) in millisec-
onds over the password characters per user
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all participants (unitless)
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Figure 19: Answers of the study participants regarding the situation they
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using thumb (RT, LT, BT), right hand using left finger and vice
versa (RL, LR) or other)
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Figure 20: Comparison of the rotation vector measurements (unitless) when
using the right hand (20a) or both hands (20b) to type while sit-
ting
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word samples were input using the thumb of the right hand (297) or
while sitting (292). This isn’t surprising, because all the participants
are right-handed and people normally don’t move while using their
devices. Only a total of 47 samples were collected while walking or
moving (e. g. cycling, going by tramway,. . . ). It’s also obvious from
the graph that the second-most used input method is holding the
device in both hands while typing with the thumbs (137 samples), ex-
cept when lying down, where the different methods are more evenly
spread. This is probably because people regularly change positions
to avoid over-straining an arm. We have the most data for the right
hand and both hands while sitting, so we plotted them for compari-
son in Figure 20. It can be seen that sensor data really varies between
input methods. Z axis distribution is far less while using both thumbs
and also on the other axes, movement is less than when holding the
phone just in one hand. This is logical, since the device has double
the stabilization when it’s held in both hands.

6.3 applying the classifier

For faster development and greater processing power, we ported the
essential classes from an Android app to a standard Java program.
This was generally not difficult, because Android uses many classes
that are also available in Java distributions, but we had to re-imple-
ment the database functionality that would normally be provided by
the framework. In the desktop implementation, databases are only
held in memory so we can assure that no data from previous runs al-
ters evaluation results. The main class for the program is Statistical-
ClassifierEvaluation, which provides a command line interface so
that different functionality can be called without altering the code.
It is able to calculate the scores for single users, perform parameter
evaluation or plot graphs of the raw data that are featured in this
thesis.

Most of the work happens in optimization mode using the Statistical-
ClassifierOptimizer class. It takes every parameter of the classifier
and iterates through the complete range of possible values while
keeping all others fixed. This is done in cooperation with a Evaluation-

Params class, which holds all settings for the different aspects of the
classifier. The parameters we optimize are the

• used distance function D(·, ·) (either DM(·, ·) or DE(·, ·)) (two
values),

• used variability VARδu and authentication metricAUTHũ, which
consist of the two associated metrics MINδu and MINũ, MAXδu
and MAXũ, MEANδu and MEANũ, and TEMPδu and TEMPũ
(four values),
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D(· , ·) eer

Manhattan 10.94 %

Squared Euclidean 10.44 %

Table 5: EER of the two distance metrics

• acquisition set size for how many enrollment samples have to
be collected before template selection is performed (98 values),

• template selection algorithm used to select the best templates
(seven values),

• size of the template set that is used in authentication (nine val-
ues) and finally

• sensors that are used in the classifier (64 values).

We don’t optimize acquisition and template set size over all possible
values, because having less than two enrollment templates isn’t feasi-
ble. Finding the absolute optimum would be a very time-consuming
task where 2 · 4 · 98 · 7 · 9 · 64 = 3 161 088 combinations would have
to be checked, so we start by using the results from Maiorana et al.
[Mai+11] and iteratively optimize the parameters in the above order,
every time taking the best result, where EER is minimum. If varying
parameters doesn’t have a big influence anymore, we have reached a
minimum. The tables and figures below reflect the performance of the
individual parameters while all others were fixed to the final – best
– selection. In our evaluation, we want to stay true to our promise
and again want to be as realistic as possible. Therefore, the methods
are evaluated by training the classifier using the study acquisitions
in the order they were captured. The training set consists of the first
few samples, while the rest of them is used for testing. We take the
data of each participant as the valid user once, while all others act
as impostors. For the evaluation, we ignore the data of P2 as the con-
trol group, resulting in a total of three valid users with 300 positive
samples and six impostors with 900 negative samples.

6.3.1 Distance Metric

Already the first experiment shows that the results of Maiorana et al.
aren’t directly applicable to our scenario. While they concluded that
the Manhattan distance results in the best EER, in our case, as shown
in Table 5, Squared Euclidean works better with an EER of 10.44 % in-
stead of 10.94 %. It’s a small but noticeable difference.
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VARδu AUTHũ eer

MINδu MINũ 10.44 %

MAXδu MAXũ 15.09 %

MEANδu MEANũ 12.78 %

TEMPδu TEMPũ 12.43 %

Table 6: EER of the four keystroke variability and authentication metrics
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Figure 21: EERs of different acquisition set sizes

6.3.2 Keystroke Variability Metric

For the keystroke variability and authentication metric, we could re-
produce the results of Maiorana et al., where MINδu and MINũ were
the best formulae. This is true as well in our approach, where it out-
performs the other methods by at least 1.99 %, as shown in Table 6.

6.3.3 Acquisition Set Size

The acquisition set size is difficult to absolutely optimize, because, as
we already mentioned in Section 2.1 (Big Picture), users don’t have
an arbitrary amount of time and patience to train the system. We nev-
ertheless want to know how effective the authentication process gets
with increasing enrollment set size. In Figure 21, we show that we
could achieve a minimum EER of 2.37 % when using 99 samples for
enrollment and one last sample in authentication. Of course, this re-
sult could be expected, because the templates then are very well fitted
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Figure 22: EERs of the template selection algorithms at specific template set
sizes

to the user. However, an interesting aspect to note is that while per-
formance stabilizes at about 30 samples and then linearly decreases,
there is a local minimum at the beginning of the graph, which con-
veniently lies at a set size of ten with an EER of 10.44 %. This means
that we can use exactly the maximum feasible number of enrollment
acquisitions in our system and get a good performance.

6.3.4 Template Selection

After we have fixed the acquisition set size, we want to determine
whether template selection is advantageous to performing none, which

template selection eer set size

none 11.32 % 10

MDIST-MIN 10.96 % 7

MDIST-MAX 11.14 % 7, 9

GMMS-MIN 10.53 % 5

GMMS-MAX 10.44 % 6

DEND 11.05 % 9

Fuzzy C-means 10.85 % 9

Table 7: Peak EER of the six different template selection algorithms with the
optimum template set size

[ August 1, 2016 at 22:43 – classicthesis Version 0.95 “Bear with Me" ]



74 experiments

0

0.05

0.1

0.15

0.2

G
yu

R
v

G
yu

R
v

La G
yu

La
R

vL
a

G
yu

R
vL

a
G

r
G

yu
G

r
R

vG
r

G
yu

R
vG

r
La

G
r

G
yu

La
G

r
R

vL
aG

r
G

yu
R

vL
aG

r
A G

yu
A

R
vA

G
yu

R
vA

La
A

G
yu

La
A

R
vL

aA
G

yu
R

vL
aA

G
rA

G
yu

G
rA

R
vG

rA
G

yu
R

vG
rA

La
G

rA
G

yu
La

G
rA

R
vL

aG
rA

G
yu

R
vL

aG
rA

G
y

G
yu

G
y

R
vG

y
G

yu
R

vG
y

La
G

y
G

yu
La

G
y

R
vL

aG
y

G
yu

R
vL

aG
y

G
rG

y
G

yu
G

rG
y

R
vG

rG
y

G
yu

R
vG

rG
y

La
G

rG
y

G
yu

La
G

rG
y

R
vL

aG
rG

y
G

yu
R

vL
aG

rG
y

A
G

y
G

yu
A

G
y

R
vA

G
y

G
yu

R
vA

G
y

La
A

G
y

G
yu

La
A

G
y

R
vL

aA
G

y
G

yu
R

vL
aA

G
y

G
rA

G
y

G
yu

G
rA

G
y

R
vG

rA
G

y
G

yu
R

vG
rA

G
y

La
G

rA
G

y
G

yu
La

G
rA

G
y

R
vL

aG
rA

G
y

G
yu

R
vL

aG
rA

G
y

EE
R

[%
]

Set

EER of Sensor Set

0

0.05

0.1

0.15

0.2

G
yu

R
v

G
yu

R
v

La G
yu

La
R

vL
a

G
yu

R
vL

a
G

r
G

yu
G

r
R

vG
r

G
yu

R
vG

r
La

G
r

G
yu

La
G

r
R

vL
aG

r
G

yu
R

vL
aG

r
A G

yu
A

R
vA

G
yu

R
vA

La
A

G
yu

La
A

R
vL

aA
G

yu
R

vL
aA

G
rA

G
yu

G
rA

R
vG

rA
G

yu
R

vG
rA

La
G

rA
G

yu
La

G
rA

R
vL

aG
rA

G
yu

R
vL

aG
rA

G
y

G
yu

G
y

R
vG

y
G

yu
R

vG
y

La
G

y
G

yu
La

G
y

R
vL

aG
y

G
yu

R
vL

aG
y

G
rG

y
G

yu
G

rG
y

R
vG

rG
y

G
yu

R
vG

rG
y

La
G

rG
y

G
yu

La
G

rG
y

R
vL

aG
rG

y
G

yu
R

vL
aG

rG
y

A
G

y
G

yu
A

G
y

R
vA

G
y

G
yu

R
vA

G
y

La
A

G
y

G
yu

La
A

G
y

R
vL

aA
G

y
G

yu
R

vL
aA

G
y

G
rA

G
y

G
yu

G
rA

G
y

R
vG

rA
G

y
G

yu
R

vG
rA

G
y

La
G

rA
G

y
G

yu
La

G
rA

G
y

R
vL

aG
rA

G
y

G
yu

R
vL

aG
rA

G
y

Figure 23: EERs of different sets of used sensors

already results in EERs of 11.32 %, and how many templates should
be used. We optimize both template set size and selection function in
one go, because different approaches have their optimum at different
sizes. We depict in Figure 22 that for small set sizes up to four the
algorithms aren’t satisfactory, but soon after that, they enhance EERs.
The most promising algorithm is GMMS-MAX, which again is differ-
ent to Maiorana et al., where MDIST-MAX had the best results. In our
system, it is the second-worst, achieving an EER of 11.14 % with seven
or nine templates. Table 7 summarizes the maximum EERs obtainable
with the different selection methods and their optimum set size.

6.3.5 Sensor Selection

The most interesting evaluation for our approach is: which (if any)
set of sensors should be used to improve keystroke dynamics-based
authentication systems? To answer this question, we calculated the
powerset P(∆) of the set of all sensors and evaluated each element
thereof. As can be seen in Figure 23, the more sensors are used in
general, the worse results get. Using all sensors results in an EER of
only 12.47 %, while the best performance is reached by using the ro-
tation vector sensor in combination with the gyroscope. As we already
showed in Figure 18, clusters can also be seen in the rotation vec-
tor visualization and the data in Figure 28c in Appendix E, show-
ing gyroscope measurement distribution, also is widely spread. This
makes clustering easier than if all measurements have similar values.
If the accelerometer is added as a third sensor, the second-best EER

of 10.76 % can be achieved. However, not using any sensors at all al-
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sensor set eer

Rotation Vector, Gravity 10,44 %

Rotation Vector, Gravity, Accelerometer 10,76 %

Rotation Vector, Gravity, Linear Acceleration 10,85 %

Gyroscope 10,86 %

{} 10,88 %

Gravity, Accelerometer, Gyroscope 10,91 %

Rotation Vector 10,96 %

Gravity 10,97 %

Gravity, Accelerometer, Linear Acceleration 10,97 %

Uncalibrated Gyroscope 11,02 %

Table 8: The ten sensor sets with the best performance, sorted by EER

parameter value eer

Distance Squared Euclidean 7.63 %

Variability MIN 7.66 %

Acquisition Set Size 99 1.77 %

Template Selection GMMS-MIN 7.31 %

Template Set Size 5 7.31 %

Sensors Rotation Vector, Gravity 7.66 %

Table 9: Peak EERs of the optimization process when including the control
group

ready results in 10.88 % EER, which is the fifth-best. Table 8 shows the
ten best sensor sets sorted by EER.

We also try commonly used random evaluation, where we ran-
domly sort samples for training and testing and perform evaluation
400 times, so that statistically, every sample was the first once and
we can get a comparison to using the data sequentially. When run
with the same parameters as before, the EER rises to 15.53 %. This is
likely due to the fact that half of the participants entered their sam-
ples in batches after a certain time (compare to Figure 16a), having
less varying data. This results in a high probability of training the
classifier only with similar samples, not taking into account different
environments.
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6.3.6 Control Group

The control group was added to the study for identifying whether
the templates captured during enrollment are portable and can be
synchronized between different devices of varying size. Although we
already conclude in Chapter 3 (related work) that this probably
isn’t the case, we want to test this using our own data. As the Sam-
sung Galaxy S4 used by P2 has a 4.99" screen and the LG Nexus 4

only 4.7", differences in input behavior are expected. We therefore
also add P2 to the optimization process and see how EERs change.
As the best performance we can achieve using the same parameters
as before is 7.66 %, which makes a difference of 2.78 %, it is obvious
that the data has considerable differences that can be used for better
discrimination by the classifier. In Table 9 we state the best EERs that
optimization of the individual parameters could achieve on this data
set. As we already mentioned in Section 6.2.1 (Remarks), there are a
few differences in the data that can be traced to the used hardware.
As conclusion, the enrollment templates might be portable if the de-
vices have similar hardware and screen sizes, but for the general case,
it’s not possible and re-enrollment has to take place on each device.
Otherwise, the templates would get tainted and higher thresholds
would be needed, which in turn enhances FAR.

6.4 conclusion

In summary, we were able to show that touch screen keyboards have
different requirements to biometric authentication systems and the
approaches from physical keyboards cannot be used directly. For in-
cluding sensor data into authentication, the method shown in our
thesis works, but it only improves performance by 0.44 %. This proves
that sensors can help identify valid users better, but it also means that
approaches of including them other than taking the relative value at
the time of key release have to be investigated as well. For example,
Giuffrida et al. [Giu+14] use a sliding window over the sensor mea-
surements of accelerometer and orientation sensor in combination
with statistical methods, which results in an EER of 0.08 %.

If used in real-life systems, the threshold for authentication has to
be set. As mentioned in Section 4.3.5 (Authentication), we discuss
multiple ones for different security needs here. As enabling sensors
during inputs also influences battery life of the device, we give an
estimation on how much this can be. Also, Android requires sensors
to have a certain minimum resolution. We discuss how changing it
can influence authentication results.
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Figure 24: ROC of the statistical classifier proposed in this thesis with thresh-
olds for ZeroFAR, EER and ZeroFRR.

6.4.1 Thresholds

As we described in Section 4.3.5 (Authentication), three thresholds are
normally used, one for high security at 0.01 % FAR, medium security
at the EER and low security at 0.01 % FRR. All of these values can be de-
termined from the ROC, which is depicted for our system in Figure 24.
Unfortunately, we don’t have enough data to calculate these metrics
with sufficient precision, therefore we use the next higher threshold.
The high-security threshold should be set to 0.6, resulting in a FAR of
0.084 %. The medium-security threshold should be set to 1.77, resulting
in an EER of 10.44 % and finally, the low-security threshold should be set
to 133.99, resulting in a FRR of 0.28 %. High and low-security thresh-
old both lie at the points where the first impostor attempt is allowed
or the last valid user attempt is rejected.

6.4.2 Battery Life

We researched the maximum power consumption of the sensors we
found to be most appropriate for our authentication approach de-
fined in the Android Compatibility Definition Document [Goo15a].
By combining it with mobile phone usage data, we can get a rough
estimation on how much additional power is needed. According to
[Mar13], 18- to 20-year olds (the most smart phone-savy age group)
sent and received 3853 text messages per month in 2013. Let’s assume
that for security reasons a password has to be entered beforehand
every time. For the average-complexity password used in our evalua-
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sampling eer

0.001 10.79 %

0.01 10.73 %

0.1 10.70 %

1 10.85 %

Table 10: EER of our system when rounding sensor data to a certain number
of decimal places

tion, participants needed a mean of seven seconds to complete input.
As the rotation vector used in our system combines accelerometer,
magnetometer and gyroscope data, it combines energy usage of all of
them and, per compatibility definition, mustn’t consume more than
4 mW. This results in

3853 · 12
365

· 7s · 4mW ≈ 3547mWs
3600

≈ 1mWh (12)

Assuming a typical Li-Ion battery with 3.7 V and a capacity of 3000 mAh,
the sensors need

1mWh
3700mV

= 0.00027Ah · 1000 = 0.27mAh (13)

The battery therefore discharges at an additional hourly rate of

0.27
3000

mAh = 0.009% (14)

Given the added security and the fact that other user activities like
playing games or simply turning the screen on need more power, this
is negligible.

6.4.3 Data Accuracy

Another interesting topic is how sensor resolution and timing in-
fluences recognition performance. As shown in Section 4.2 (Sensor
Data), Android sensors are allowed a certain tolerance both in re-
porting timing and in measurement accuracy. Killourhy and Maxion
[KM08] studied the influence of reduced clock timing on digraphs.
Windows XP has a clock resolution of 15.625 ms, while the X11 server
under UNIX delivers keystroke time stamps with a 10 ms resolution.
They then compared the Windows XP clock with a high-resolution
clock of 1 ms and multiple derived resolutions between 20 ms and 20

seconds. They showed that while resolutions up to 15 ms only have
marginal influence (4.2 % higher EER), it starts increasing dramatically
after 50 ms.

We replicate this experiment and apply it to sensors by sampling
the data captured by the participants with 0.001, 0.01, 0.1 and whole

[ August 1, 2016 at 22:43 – classicthesis Version 0.95 “Bear with Me" ]



6.4 conclusion 79

unit steps. Then, we calculate the EER again and see whether it in-
creases. Table 10 shows the results. Interestingly, while rounding it to
three positions after decimal point increases the EER by 0.35 %, perfor-
mance gets better when rounding more until it gets worse again in
the most extreme case of whole number rounding. The results don’t
worsen as much as with Killourhy and Maxion, but considering that
using no sensor data at all already achieves an EER of 10.88 %, this is
a huge difference.
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7
S U M M A RY

In this thesis we proposed a novel sensor-enhanced keystroke dynam-
ics authentication system for mobile devices. We summarize the ap-
proach and our findings in this chapter and talk about future work
that could be done to improve it.

7.1 summing up

After giving a general introduction to biometrics in Chapter 1, we
sketched the important components along the way of samples though
the system. We established that soft biometrics are an individual
group and, although they cannot identify but only authenticate users,
security can be enhanced by them. They can filter template databases
for strong biometrics and add additional features to the system for
cases where it is unsure about the decision. Also, it’s possible to use
them stand-alone in situations where strong biometrics are unsuit-
able, for example when no user interaction is feasible. We summa-
rized the types of biometrics that can be used on mobile devices: fin-
gerprint, hand gesture, keystroke dynamics, signature, voice, face and
iris. By analyzing the classification methods, whether they need im-
postor patterns and if authentication can be carried out implicitly, we
put the stated EERs into perspective. Our motivation for the approach
was that already in the 19th century, telegraph operators could iden-
tify colleagues by their typing rhythm and keystroke authentication
systems have subsequently been built for computer keyboards. How-
ever, as there is comparably little research regarding touch keyboards
and even less of them use sensors, which are available on any smart
phone today, we investigated a novel combination of features. Our
goal was to undercut the EER of 13.59 % that was reached by Maio-
rana et al. [Mai+11] using statistical methods, whose approach we
based our work on. It was obvious, however, that we would not fulfill
the criteria of the European Standard EN 50133-1 for secure access
control systems, which mandates a FAR of 0.001 % and a FRR of 1 %,
as soft biometrics generally aren’t designed to be used on their own
in high-security environments.

In Chapter 2 we described how keystroke authentication systems
can enhance password authentication by providing an extra security
layer after the correct password has been entered. We mentioned the
stages such a system has, that enrollment shouldn’t take more than
ten samples to avoid annoying the user [Ara+05] and that analysis
can either be performed in a static or a dynamic way. The difference
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is that static analysis is performed on a pre-specified text while dy-
namic analysis works with any textual inputs. As this is more difficult
and results in worse recognition performance, we focused on static
analysis. After describing the traditional keystroke timing informa-
tion used in most systems – hold time and digraph – we mentioned
features unique to touch screens, for example finger orientation and
size as well as the position on the key. Following that we did an analy-
sis of the sensors available on mobile devices. We found that motion
sensors are best suited for our purpose. Additionally, we investigated
different approaches for classification, starting from statistical meth-
ods and neural networks over pattern recognition and learning to
hybrid techniques. We stated the advantages and disadvantages and
decided to use statistics because of their resource-effectiveness and
ability to work without impostor patterns.

By analyzing related work in Chapter 3, we learned valuable lessons
for our system’s design. We categorized the papers into the three
types: computer, cell phone and touch screen keyboards. For every
system, recognition performance is given to compare them and get
a feeling for what can be expected. Finally, we summarized our find-
ings:

• hold time and digraph are the most promising timing features,

• static thresholds for all users aren’t bad for performance in all
cases,

• keystroke data isn’t necessarily portable between devices and

• methods used for keystroke authentication can also be applied
to graphical approaches with images and patterns.

Finally, we noticed that studies normally are carried out in laborato-
ries, where captured data will likely differ from usage in real life. We
therefore decided to base our evaluation on real usage data.

As our system was programmed on the Android platform using
Java, we introduced the theoretical concepts behind it in Chapter 4.
We talked about the features we used and how many values can
be extracted from one sample. We stated that we would use the ac-
celerometer, gravity, linear acceleration, rotation vector and calibrated
as well as uncalibrated gyroscope as the sensors used in authentica-
tion. Additionally, we described the minimum requirements Android
imposes on the hardware that captures these sensors’ measurements
and estimated that the accuracy is sufficient. Finally, we introduced
the methods our classification approach uses to

• calculate the distance between samples (Manhattan and Squared
Euclidean distance)

• determine the variability of the acquisitions by calculating the
mean distance to certain other ones (nearest and farthes neigh-
bour, all others or a template keystroke dynamics)
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• select the best templates from enrollment to enhance authenti-
cation (MDIST and GMMS as well as DEND and fuzzy C-means)
and finally

• authenticate users by calculating a single score value taking into
account the variability metrics from before.

For implementation on the Android operating system in Chapter 5,
we listed the modifications to the Google Keyboard to integrate our bio-
metric authentication approach. We introduced the central instance,
the Biometrics Manager, how it collects sensor data and communi-
cates with the classifier. The lifecycle of both classes and the database
structure that holds metadata and the captured acquisitions was de-
picted. We proposed the Biometrics Manager API, that can be used
by client apps to request an authentication result, state a biometric
context for sharing templates between apps and clear data when the
password changes. After that, we documented the inner workings of
the statistical classifier we implemented and how it differs from the
capture classifier later used for collecting data in our user study. We
also showed the example client included in our project and its user in-
terface. Finally, we integrated our approach into the CORMORANT
framework [Hin+15] which integrates multiple biometrics and pro-
vides a central API for client applications to used. Also, we sketched
possible security flaws in our system, like intercepting authentication
requests via the Biometrics Manager API and abusing stored template
information.

In the last Chapter 6 we described the methodical approach to eval-
uating our system. We reiterated the importance for us to use real-
world data in the experiments and that it complicated data acquisi-
tion, because of which we only had four participants in our study.
We mentioned how interaction with the system in study mode works
and that captured input data is enhanced with manually entered in-
put method and situation information. We also added a control group
to evaluate whether the templates are portable between devices. Fur-
thermore, we analyzed properties of the collected raw data and stated
that we had to redo the study because of a bug in providing sensor
data to the classifier. We found that half of the participants followed
instructions to regularly enter the given password badly, resulting in
batches of data. However, we could also show that clusters can be
seen when the input method and situation are taken into account
and that most passwords were entered using either the right or both
hands and typing with the thumbs. After that, we iteratively opti-
mized our system by finding out which combination of the methods
described in the concept works best. By combining the Squared Eu-
clidean distance with minimum variability metric, an acquisition set
size of ten and selecting six templates using the GMMS-MAX algo-
rithm, we could obtain a minimum EER of 10.44 % when using ro-
tation vector and gravity sensor data. However, as using no sensor
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data at all already resulted in an EER of 10.88 %, we concluded that
calculating the relative measurements between key press and release
doesn’t provide enough discriminatory information and further re-
search is needed regarding other methods. We also showed that the
keystroke templates indeed aren’t portable between devices. Finally,
we determine the optimum thresholds in the classifier to be 0.6 for
high-security environments, resulting in a FAR of 0.084 %, 1.77 for
medium-security environments, resulting in an EER of 10.44 % and
133.99 for low-security environments, resulting in a FRR of 0.28 %. By
calculating the power needed for capturing sensor data, we showed
that the influence on battery life is marginal. We also investigated
how accuracy of sensor data affects our recognition performance and
concluded that it worsens EERs by 0.41 % in the worst case, which is
above using no sensor data at all.

7.2 future work

A Master Thesis is naturally time-limited to ensure the student is
finished at some point. Biometric methods, however, are a field of
study where additional work always is possible. If one approach
doesn’t yield the expected result, there are plenty of others to try.
If one feature doesn’t bring the expected success, another one can
be used instead, and so on. This is also true for the thesis on hand.
As we showed in Section 6.3.5 (Sensor Selection), using sensors to
enhance keystroke authentication does enhance performance, but the
way we implemented it isn’t the best. Therefore, primary future work
should focus on different ways of incorporating sensor measurements.
It might be beneficiary to use sliding windows, as Giuffrida et al.
[Giu+14] proposed, or to capture more measurements per keystroke.
As we calculated in Section 4.2 (Sensor Data), an average of 15 values
could be used instead of the single one in this approach.

We currently differentiate template sets according to screen reso-
lution, but there potentially need to be more of them. An example
is when users have different ways of entering the same password in
certain situations, using secondary keys one time and symbol key-
boards another. This changes the amount of keystrokes and isn’t con-
sidered in the current implementation. Any deviation in sample size
is treated as an impostor attack. Of course, adding more template
sets would also result in longer enrollment times and the question
remains, whether new template sets should still be allowed after a
prolonged amount of time, for example, because the user varies their
behavior.

This is also related to a similar problem: in our approach, we did a
one-time feature selection, but it’s possible that user behavior changes
over time. The selection process can be executed offline while no-
body uses the keyboard. Therefore, regular updates of the template
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Figure 25: Comic illustrating the consequences of trying to introduce new
standards because existing ones don’t seem to fit [Mun11]

set could on the one hand improve recognition performance and on
the other hand adapt to behavioral changes over time.

For real-world systems, the keyboard UI would have to be improved
as well. A first-time wizard should introduce the user to the addi-
tional features the keyboard provides and how they can use it. This
could take place similarly to the setup wizard shown after installing
the app. Additionally, there should be biometric settings where the
user can check which apps have data stored and clear it on demand.
An enhanced biometrics policy could ask every time a new app wants
to perform biometric authentication, at least when shared biometric
contexts are used and the templates can potentially be abused.

Another open decision is the API choice. On the one hand, in Sec-
tion 5.2 (Biometrics Manager API), we proposed our own method for
accessing authentication results from client apps. This, however, has
the consequence that potentially few apps will use it, because inte-
gration is an additional effort with little gain. This can also be seen
with additional hardware specific to single device models, such as
secondary screens, or even standards, as Figure 25 illustrates. The
more future-proof decision would therefore be to rely on the COR-
MORANT framework, which by far offers a greater amount of fea-
tures and therefore more incentives to integrate it.

Finally, the system could be ported to other operating systems like
Apple’s iOS and considerations regarding secure template storage
should be made. Both aspects are described below.

7.2.1 Apple iOS

Before the release of iOS 8 in 2014, no custom keyboards could be in-
tegrated to Apple’s mobile devices because of security concerns. As
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this has changed since then, a port would be possible from a purely
practical point of view. Of course, as apps have to be written in Ob-
jective C or Swift there, this would require huge amounts of work.
To make it easier, the base keyboard could again be an open-source
project already designed for the specific operating system, such as
Slidden [BG14].

iOS also offers different sensors than Android, based on accelerom-
eter and gyroscope: in addition to the raw readings, a device motion
fused sensor provides attitude, rotation rate (= rotation vector), accel-
eration (= linear acceleration) and magnetic field data. Another eval-
uation would need to find out whether the data these sensors deliver
is comparable to those in Android.

Sensor update frequency can be defined in iOS up to 100 Hz or
10 ms. This would be high enough, but unfortunately, Apple doesn’t
seem to release information about the individual sensor’s frequency,
resolution and standard deviation. Therefore, a comparison to An-
droid regarding the expected accuracy is not possible.

7.2.2 Android’s Trusted Execution Environment

With Android 6.0, Google added a hardware-backed keystore to the
framework. Using the Android Keystore system, access to a Trusted
Execution Environment (TEE) running on a separate hardware chip
is possible. It prevents unauthorized extraction of key data stored
therein and mitigates unauthorized access [Goo14a]. Unfortunately,
this only works with cryptographic operations, but it could at least
be used to securely encrypt and decrypt the templates in the database
and therefore prevent abuse.

However, in the same version, user-authentication-gated crypto-
graphic keys were added [Goo15b]. This allows accessing securely
stored keys through authentication tokens generated either via PIN,
pattern or password authentication (Gatekeeper component) or via fin-
gerprint (Fingerprint component). Both Gatekeeper and Fingerprint
only send the inputs/samples to a counterpart in the TEE, which se-
curely compares them and generates the token. No secrets ever leave
the secure environment. Unfortunately, this system is not extendable.
In the TEE runs an operating system called Trusty [Goo16b], which
is encapsulated and only communicates via Inter-process Commu-
nication (IPC). Unfortunately, all Trusty programs are developed by
Google, which also builds the environment and cryptographically
signs it with their key. This signature is then verified by the device
bootloader. No third-party programs are supported in the architec-
ture.

In conclusion, Google already included secure biometric key and
template storage for fingerprints. Unfortunately, as long as they don’t
add additional biometrics, we cannot use this conveniently secure
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environment. The decision to deny developer access is understand-
able, as every additional program running in the TEE increases attack
surface and unrestricted access would open the system to malicious
code.
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A P P E N D I X
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A N D R O I D S E N S O R S O V E RV I E W

This appendix contains an overview of the sensors available in An-
droid, whether they are based on hardware and how they are com-
monly used.

sensor type description common uses

Accelerometer Hardware Measures the ac-
celeration force in
m/s2 that is applied
to a device on all
three physical axes
(x, y, and z), in-
cluding the force of
gravity.

Motion detec-
tion (shake,
tilt, etc.).

Ambient
Temperature

Hardware Measures the ambi-
ent room tempera-
ture in degrees Cel-
sius (°C).

Monitoring air
temperatures.

Gravity Software
or Hard-
ware

Measures the force
of gravity in m/s2

that is applied to a
device on all,three
physical axes (x, y,
z).

Motion detec-
tion (shake,
tilt, etc.).

Gyroscope Hardware Measures a device’s
rate of rotation in
rad/s around each
of the three physical
axes (x, y, and z).

Rotation de-
tection (spin,
turn, etc.).

Light Hardware Measures the ambi-
ent light level (illu-
mination) in lx.

Controlling
screen bright-
ness.

91

[ August 1, 2016 at 22:43 – classicthesis Version 0.95 “Bear with Me" ]



92 android sensors overview

sensor type description common uses

Linear Accel-
eration

Software
or Hard-
ware

Measures the ac-
celeration force in
m/s2 that is applied
to a device on all
three physical axes
(x, y, and z), ex-
cluding the force of
gravity.

Monitoring
acceleration
along a single
axis.

Magnetic
Field

Hardware Measures the am-
bient geomagnetic
field for all three
physical axes (x, y,
z) in µT.

Creating a
compass.

Orientation Software Measures degrees of
rotation that a de-
vice makes around
all three physical
axes (x, y, z).

Determining
device posi-
tion.

Pressure Hardware Measures the ambi-
ent air pressure in
hPa or mbar.

Monitoring
air pressure
changes.

Proximity Hardware Measures the prox-
imity of an object
in cm relative to
the view screen of a
device. This sensor
is typically used to
determine whether
a handset is being
held up to a per-
son’s ear.

Phone posi-
tion during a
call.

Relative Hu-
midity

Hardware Measures the rela-
tive ambient humid-
ity in percent (%).

Monitoring
dewpoint,
absolute,
and relative
humidity.
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sensor type description common uses

Rotation Vec-
tor

Software
or Hard-
ware

Measures the orien-
tation of a device by
providing the three
elements of the de-
vice’s rotation vec-
tor.

Motion detec-
tion and rota-
tion detection.

Temperature Hardware Measures the tem-
perature of the
device in degrees
Celsius (°C). Re-
placed with the
Ambient Temperature
sensor in Android
4.0.

Monitoring
temperatures.

Table 11: An overview of all sensors available on the Android platform
[Goo12]
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N O TAT I O N

We use a consistent naming scheme throughout the thesis to ensure
that every formula and algorithm is as understandable as possible.
Through our research we found it helpful to have a concise overview
at all the conventions. The notation here therefore should be consid-
ered as a kind of “dictionary”.

variables

E Number of template acquisitions selected from the enrollment ac-
quisitions

e A template acquisition

K Number of values (keystrokes) of an acquisition, shown in Table 2

k A value (keystroke)

N Number of elements, shown in Table 2

n An element

u A legitimate user

ũ A user to be authenticated

collections

∆ The set of features, shown in Table 2

δ One feature contained in feature set ∆

DN×N Matrix of pairwise distance scores between all acquisitions

fu Feature vector containing all features δ of user u

fδu ,e One acquisition of feature δ for user u

fδu ,e One N-dimensional value (keystroke) in an acquisition of fea-
ture δ

T Set of selected templates

tu Index of the template keystroke dynamics of a feature, which has
the minimum average distance to all others
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functions

D(· , ·) Distance function

DM(· , ·) Manhattan (city block) distance

DE(· , ·) Squared Euclidean distance

I(Ve) Index of element e in vector V

P(∆) Powerset of set ∆

AUTHũ Authentication metric

MAXδu Mean value of the distance of one acquisition to its farthest
neighbor

MAXũ Authentication metric based on MAXδu

MEANδu Mean value of all distances between all acquisitions

MEANũ Authentication metric based on MEANδu

MINδu Mean value of the distance of one acquisition to its nearest
neighbor

MINũ Authentication metric based on MINδu

T EMPδu Mean value of all distances of all acquisitions to the tem-
plate keystroke dynamics with index tu, which has the mini-
mum average distance to all others for this feature

T EMP ũ Authentication metric based on TEMPδu

VARδu Variability metric
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C L A S S D I A G R A M S

This appendix contains the class diagrams of the most interesting
classes in the PhonyKeyboard app. They were too large to be included
in the main text without impeding readability, but they are referenced
in the text where necessary.

Figure 26: The BiometricsManager class hierarchy
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Figure 27: The Classifier class hierarchy
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C O R M O R A N T I N T E G R AT I O N

For integrating our project into the CORMORANT framework, we
had to make a few adjustments to our code. These snippets are in-
cluded in this chapter.

<manifest package="at.jku.fim.phonykeyboard.latin"
xmlns:android="http://schemas.android.com/apk/res/android">
...

<!-- permission declaration -->

<uses-permission android:name="at.usmile.cormorant.
REGISTER_AUTH_PLUGIN" />

...

<!-- service declaration -->

<service

android:name=".biometrics.CormorantAuthenticationService"
android:enabled="true"
android:exported="true"
android:permission="at.usmile.cormorant.permission.

READ_PLUGIN_DATA">
<meta-data

android:name="apiVersion"
android:value="1" />

<meta-data

android:name="pluginType"
android:value="confidence" />

<meta-data

android:name="title"
android:value="PhonyKeyboard" />

<meta-data

android:name="description"
android:value="Sensor−enhanced keystroke dynamics

authentication" />

<meta-data

android:name="implicit"
android:value="true" />

</service>

...

</manifest>

Listing 3: The code snippets added to AndroidManifest.xml for integrating
into the CORMORANT framework

public class CormorantAuthenticationService extends

AbstractConfidenceService {

@Override

protected void onDataUpdateRequest() {

BiometricsManager manager;
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try {

manager = BiometricsManager.getInstance();

} catch (IllegalStateException e) {

manager = null;

}

double score = manager != null ? manager.getScore() :

BiometricsManager.SCORE_CAPTURING_DISABLED;

publishConfidenceUpdate(score);

}

protected void publishConfidenceUpdate(double score) {

publishConfidenceUpdate(this, score);

}

public static void publishConfidenceUpdate(

AbstractConfidenceService service, double score) {

StatusDataConfidence confidence = new StatusDataConfidence

();

if (score < BiometricsManager.SCORE_NOT_ENOUGH_DATA) {

confidence.status(StatusDataConfidence.Status.UNKNOWN);

} else if (score == BiometricsManager.SCORE_NOT_ENOUGH_DATA

) {

confidence.status(StatusDataConfidence.Status.TRAINING);

} else {

confidence.status(StatusDataConfidence.Status.

OPERATIONAL);

}

confidence.confidence(score > 0 ? score : 0);

service.publishConfidenceUpdate(confidence);

}

}

Listing 4: The
new CormorantAuthenticationService used for communication
between the PhonyKeyboard app and CORMORANT
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All graphs regarding the data we collected in our user study, which
we didn’t have any space for in Chapter 6 (experiments), are col-
lected here.
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(a) Accelerometer distribution

Figure 28: Measurements of the accelerometer in m/s2 for the letter “i” from
all participants
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Figure 28: Continued: Measurements of the gravity sensor in m/s2 and the
gyroscope in rad/s for the letter “i” from all participants
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Figure 28: Continued: Measurements of the uncalibrated gyroscope in rad/s
and the linear acceleration sensor in m/s2 for the letter “i” from
all participants
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