
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Joel Klimont, BSc
11923613

Submission
Institute of
Networks and Security

Thesis Supervisor
Assoz. Univ.-Prof. DI Mag. Dr.
Michael Sonntag

February 2024

Design and
Implementation of a
Data Recording System
for Court-Admissible
Forensic Evidence

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

https://jku.at/

Abstract

Critical infrastructure often goes unnoticed in everyday life. This is because we take electric-
ity,water, andheating for granted these days. However, to ensure the stable operation of such
utility services, regular inspections are required. Currently, these inspections aremostly per-
formedbyhumans,whowalk through the supply shafts andmanually check for damages. The
INFRASPEC project aims to automate parts of these tedious inspections. The goal is to create
a robot that can assist the inspectors, by creating a detailed 3D map of the environment and
detecting changes across scans from different inspections. In this master’s thesis, a system
is developed that can collect information about the robot’s operational status and store that
information in a ”forensic data package”. Security measures should ensure that bad actors
cannot change data in the package without detection. The package also acts as a way to verify
that an inspection has taken place and that it was performed correctly. To build such a foren-
sic data package, YubiKeys and hash-chains are used. Each forensic data collection device has
a YubiKey with a public-private key pair on it, which can be used to sign data, which guaran-
tees the authenticity of themeasurement. To ensure the integrity of the data, hash-chains are
used. After the inspection is finished, the private keys on the YubiKeys are overwritten, and
no new data can be added to the project, as the keys for signing new data entries are gone.

Users might want to further process and analyze the recorded data. As possibly vast amounts
of data have been collected, users might want to offload the processing task into the cloud.
However, as the data packages can contain confidential information about critical infrastruc-
ture, the cloud provider should not be able to gain access to the data. To still be able to pro-
cess the data in the cloud, a demonstrator application has been developed that processes the
forensic data in the cloud using the Intel Secure Guard Extension (SGX) technology.

ii

Kurzfassung

Kritische Infrastrukturen bleiben im Alltag oft unbemerkt. Das liegt daran, dass wir Strom,
Wasser undHeizung heutzutage als selbstverständlich ansehen. Umden stabilen Betrieb sol-
cher Versorgungsdienste zu gewährleisten, sind jedoch regelmäßige Inspektionen erforder-
lich. Derzeitwerden diese Inspektionenmeist vonMenschendurchgeführt, die durch die Ver-
sorgungsschächte gehen undmanuell auf Schäden prüfen. Das Projekt INFRASPEC will einen
Teil dieser mühsamen Inspektionen automatisieren. Ziel ist es, einen Roboter zu entwickeln,
der die Inspektoren unterstützt, indem er eine detaillierte 3D-Karte der Umgebung erstellt
und Veränderungen in den Scans verschiedener Inspektionen erkennt. In dieserMasterarbeit
wird ein System entwickelt, das Informationen über den Betriebszustand des Roboters sam-
meln und in einem ”forensischen Datenpaket” speichern kann. Sicherheitsmaßnahmen sol-
len sicherstellen, dass böswillige Akteure die Daten in diesem Paket nicht unbemerkt verän-
dern können. Das Paket dient auch dazu, zu überprüfen, ob eine Inspektion stattgefunden hat
und ob sie korrekt durchgeführt wurde. Um ein solches forensisches Datenpaket zu erstellen,
werden YubiKeys und Hash-Chains verwendet. Jedes Gerät zur forensischen Datenerfassung
verfügt über einen YubiKey mit einem öffentlich-privaten Schlüsselpaar, mit dem Daten si-
gniert werden können, was die Authentizität der Messung garantiert. Um die Integrität der
Daten zu gewährleisten, werden Hash-Chains verwendet. Nach Abschluss der Prüfung wer-
den die privaten Schlüssel auf den YubiKeys überschrieben, und es können keine neuenDaten
zum Projekt hinzugefügt werden, da die Schlüssel zum Signieren neuer Dateneinträge nicht
mehr vorhanden sind.

Die Nutzer möchten die aufgezeichneten Daten möglicherweise weiterverarbeiten und ana-
lysieren. Da möglicherweise große Datenmengen gesammelt wurden, möchten die Nutzer
die Verarbeitungsaufgaben möglicherweise in die Cloud verlagern. Da die Datenpakete je-
doch vertrauliche Informationen über kritische Infrastrukturen enthalten können, sollte der
Cloud-Anbieter nicht in der Lage sein, auf die Daten zuzugreifen. Um die Daten dennoch in
der Cloud verarbeiten zu können, wurde eine Demonstrationsanwendung entwickelt, die die
forensischen Daten in der Cloud unter Verwendung der Intel Secure Guard Extension (SGX)
Technologie verarbeitet.

iii

Acknowledgement

I would like to thankmy thesis supervisor, Dr. Michael Sonntag for givingme the unique op-
portunity towork on this project.Without his support, this researchwouldnot have beenpos-
sible. My thanks also goes to the entire INFRASPEC team, especially Stephan Schraml from
AIT (Austrian Institute of Technology), who did a great job in coordinating all the efforts of
the different institutions that worked on the project. I would also like to thank all the staff
at INS (Institute of Networks and Security) for the supportive working environment and the
infrastructure they provided. Finally, I would like to thank my parents, who gave me the op-
portunity to study at the JKU and supported me during that whole time.

iv

Eidesstattliche Erklärung/ Affidavit

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

I declare in lieu of oath that I have written this master thesis independently and without out-
side help, that I have not used any sources or aids other than those indicated, and that I have
marked the passages taken verbatim or in spirit as such.

Ort, Datum/ Place, date Unterschrift/ Signature

v

Contents

Abstract ii

Kurzfassung iii

Acknowledgement iv

Eidesstattliche Erklärung/ Affidavit v

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Approach . 2

1.2.1 Collecting Forensic Evidence . 2
1.2.2 Storing Forensic Evidence . 2
1.2.3 Securely Processing Forensic Data in the Cloud 2

2 SystemDesign 4
2.1 Outline . 4
2.2 System under Examination . 4

2.2.1 Use-Cases . 8
2.3 INFRASPEC - Components . 8

2.3.1 Robot . 10
2.3.2 Vz-400i (Laser Scanner) . 10
2.3.3 Robot Arm . 11
2.3.4 IR-Camera . 12
2.3.5 ROS2 (Robot Operating System) . 12
2.3.6 Base-Station . 13

2.4 Forensic Evidence Collection System . 14
2.4.1 Components . 14
2.4.2 Interaction between Components . 19

2.5 Preservation of Forensic Evidence . 20
2.5.1 Security Requirements . 20
2.5.2 YubiKeys . 21
2.5.3 Signing Service . 21

vi

Contents vii

2.5.4 Forensic Base-Station . 23
2.5.5 Setup . 28
2.5.6 Data Verification . 31
2.5.7 Data Storage . 42

2.6 Test . 47
2.6.1 Observations . 49

3 Data Collection 51
3.1 Forensic Readiness of Data . 51
3.2 Data Sources . 51

3.2.1 CAN Bus . 52
3.2.2 ROS2Messages . 52
3.2.3 Network . 55

3.3 Collection Methods . 56
3.3.1 CAN Bus . 56
3.3.2 ROS2Message Collector . 60
3.3.3 Network Traffic Collector . 63

3.4 Visualization of Data . 64

4 Data Processing 65
4.1 Outline . 65
4.2 SGX - Software Guard Extensions . 65

4.2.1 Use Cases . 67
4.3 Confidential Computing . 69

4.3.1 Definitions . 69
4.3.2 Hardware vs Software TEEs . 69
4.3.3 CCC Threat Model . 70

4.4 SGX Enclaves . 71
4.4.1 Example Application . 72
4.4.2 O-Calls and E-Calls . 73

4.5 SGX Attestation . 74
4.5.1 Local-Attestation . 76
4.5.2 Remote-Attestation . 76

4.6 SGX Security . 77
4.6.1 Memory Limits . 77
4.6.2 Exploits and Vulnerabilities . 78

4.7 SGX Frameworks . 79
4.7.1 Intel SGX . 79
4.7.2 Asylo . 80
4.7.3 Openenclave . 80

Contents viii

4.7.4 Mystikos . 80
4.7.5 Edgeless RT . 81
4.7.6 EGo . 82

4.8 Processing Forensic Data in the Cloud . 83
4.8.1 Security Requirements . 83
4.8.2 Implementation . 84
4.8.3 Running the Demonstrator . 97

5 Conclusion and Outlook 101
5.1 Forensic Data Collection and Storage . 101
5.2 Confidential Computing . 102

5.2.1 SGX . 102
5.3 Further Work . 103

5.3.1 Solving the Key Deletion Problem using SGX 103

Bibliography 105

Appendix A sgx_default_qcnl.conf File 110

Chapter 1

Introduction

1.1 Motivation

Underneath the streets and buildings of cities, a large network of supply shafts is located.
While we walk above them daily, we usually don’t notice their existence. However, should a
problemoccur inoneof those shafts,wewouldobserve it immediately.Wedependon theelec-
tricity, water, gas, etc. that runs through those long and narrow corridors underground, and
thus ensuring their proper function is an important task to the companies that are respon-
sible for their operation. Regular inspection and maintenance are required to ensure the safe
operation of the supply shafts. Otherwise, interruptions in the utility service could occur, or
the leaking of dangerous substances could damage the surrounding environment. Currently,
inspections are done by humans, that walk through the shafts and check for damages. For ex-
ample, this includes damage to the supply lines (e.g. water or other substances leaking) and
alsodamage to the shaft itself (structural integrityof thebuilding). Thegoal of the INFRASPEC
project is to support human inspectors andmake the inspections faster andmore efficient. By
using a robot to drive through the supply shafts, the project aims to create a very detailed 3D
map of the environment. These 3D maps can then automatically be compared to previously
recorded versions and changes to the environment are shown to the inspectors. The software
is also able to detect someanomalies automatically, such as sintering in the cement, and show
them to the inspectors. Additionally, the robot also has an armwith various sensors at its dis-
posal, as well as some other hazardous substance sensors, for example for gas detection.

The work performed in this master’s thesis is part of the INFRASPEC project. The goal is to
pack all the data collectedby the robot, aswell as other components in the INFRASPEC system,
into a ”forensic data package”. This package should be unchangeable without detection and
serve as proof that an inspection was done correctly, as it may be required by law that these
inspections take place. Also, if there are damages to the supply line, the forensic package can
serve as proof, that the robot did, or did not, cause those damages and whether it performed
the inspection correctly or not.

1

1 Introduction 2

1.2 Objectives and Approach

1.2.1 Collecting Forensic Evidence

The collection of the forensic evidence itself should occur without any intrusive changes to
the whole system. For example, the robot uses a CAN bus to communicate with its motors
and sensors. The data that is sent over the CAN bus should be recorded and included in the
forensic data package. The recording of the data, should not have any impact on the operation
of the robot or require any change in the robot’s software. To fulfill these requirements, the
forensic component on the robot has a USB2CAN device attached to it, which is connected to
the CAN bus and records all received messages. The robot also uses ROS2 (robot operating
system) to communicate via Ethernet with its various other components, like the 3D camera
or the robot’s arm. The forensic component on the robot can be configured to listen to certain
ROS topics and record the publishedmessages of the robot’s components.

1.2.2 Storing Forensic Evidence

Another objective is the secure storage of the forensic evidence. After the data has been col-
lected by the robot or the other forensic components in the system, the data should be stored
in such a way, that it cannot be modified after the inspection without the changes being de-
tectable. To that end, the forensic system employs two different techniques to guarantee the
authenticity and integrity of thedata. Firstly, each forensic componenthas aYubiKeyattached
to it. The base-station (which is the forensic component collecting all the data), must initial-
ize these keys and generate a public-private key pair on the YubiKey. The public key is saved
in the database and the private key is only stored on the YubiKey itself, where it cannot be
extracted. During the data collection, the forensic components then use their YubiKey to sign
themessages before sending them to the base-station. The base-station can validate the sig-
natures, using the stored public key of the data source. Secondly, to ensure data integrity and
that no data ismissing, hash-chains are being used. Each forensic component updates its re-
spective hash-chain when new data is collected and the base-station maintains a database
of all hash-chain entries, which is used for data validation and thenmerges new data entries
into a ”main-hash-chain’.

1.2.3 Securely Processing Forensic Data in the Cloud

After recording and securely storing the data, the last step is to process and analyze the data.
As sometimes huge amounts of data are collected, users might want to process these data

1 Introduction 3

packages in the cloud. However, some of the collected data is considered confidential and
should not be accessible to other entities (like the cloud provider). For example, some supply
shafts are considered critical infrastructure and their layout should remain confidential. To
sum up, the data should be processed in the cloud, but the cloud provider should not be able
to have access to the data. To accomplish this task, the SGX (secure guard extension) tech-
nology from Intel is used. A prototype has been implemented, which is capable of securely
processing a point cloud, without the cloud provider having access to the data in transit or
while it is in use.

Chapter 2

SystemDesign

2.1 Outline

As mentioned in section 1.2 the goal is to develop a system that is capable of collecting reli-
able forensic evidence for later examination.This automatic evidence collectionhas tohappen
while themonitored system is ”live”. The ”monitored system” is the robot and the individual
components that it carries, which are used to survey the collector shaft, as well as the base-
station. ”Live forensics” refers to the techniqueof collecting forensic data,while the system is
running.[5] This is the opposite of ”static analysis”, where the surveyed system is shut down
while being analyzed. The forensic system needs to be able to capture the data, store it se-
curely, and enable the user to process the data in a secure environment. There are threemain
components to the whole system: data collection service(s), data storage service, and data
processing service.

2.2 System under Examination

To create a system to monitor the application and to collect forensic evidence from the robot
and its components, the area where the system will be used and how it will be used, must
be analyzed first. The system is capable of surveying ”collector shafts”, as seen in Figure 2.1
and Figure 2.2. These ”collector shafts”, or ”supply shafts” are usually underground tun-
nels in which electricity, gas, water, cooling or heating pipes, and other necessary utilities
are connected to buildings. In Figure 2.1 we see a relatively wide and bright supply shaft. In
this shaft, a person can walk without being restricted by the height or the width of the shaft.
Also, the shaft is well-lit, which is important for human workers, and even more so for the
robot. However, the environments in which the human workers and the robot have to oper-
ate aren’t always hospitable. in Figure 2.2 we can see an example of a much narrower supply

4

2 System Design 5

shaft. This shaft is also not as well-lit as the first one, posing a challenge for digital cameras.
Additionally, there is not much space for moving around and tall persons would have a prob-
lem standing up straight. Especially, the width of the shaft and the obstacles near the ground
pose a challenge for the robot. It could easily get stuck on the metal support holding up the
pipes on the right side of the shaft or bump into the utility lines running on both sides.

2 System Design 6

Figure 2.1: Example of a collector shaft.

2 System Design 7

Figure 2.2: Example of a collector shaft.

2 System Design 8

2.2.1 Use-Cases

The shaft seen in Figure 2.1 would be a typical environment where the system could be tested,
evaluated, and eventually deployed in the future. Currently, humans are tasked with survey-
ing and regularly checking these supply shafts. This means manually walking through kilo-
meters of tunnels and checking for potential damage on the supply lines or the shaft itself. As
these supply lines can carry gas or high-voltage electricity, this task is not without its dan-
gers. In the future, the INFRASPEC system could help in these tedious surveys. The goal of the
INFRASPEC project is to create a robot that can create a detailed 3D map of the whole envi-
ronment for automatic andmanual inspection, using its onboard sensors.

Improve Surveying

In the future, the system could be deployed in a tunnel, manually driven around by an opera-
tor, and then the recordeddata couldbeanalyzedandstored for later reference. This allows for
amuchmore fine-grained and partly automatic inspection, compared to the task ofmanually
surveying the shafts. Someparts of the inspectionwill happenautomatically. For example, the
automatic detection of sintering of concrete using AI image analysis, as well as the detection
of changes to the environment. Recordings from the past are compared with new recordings
and even small changes to the environment can be detected and are displayed to the human
inspectors for analysis.

Prove Correct Operation

Together with the forensic part of the system the question of who is at fault in case of damage
to the supply shafts can be resolved quickly. The forensic system records all the commands
the robot has been given and can significantly simplify the reconstruction of accidents. Apart
from the correct operator, the operator can also prove that they did perform the survey, as
regular inspections may be required by law.

2.3 INFRASPEC - Components

The INFRASPEC system consists of multiple different hardware and software components.
In this section, the components for surveying the supply shafts are explained in detail. In
section 2.4 the components and details about the forensic system for data recording are ex-
plained.

2 System Design 9

Figure 2.3: Overview of the robot’s components (for complete system see Figure 2.7).

In Figure 2.3 a schematic overview of the robot’s components and their interactionswith each
other can be seen. The robot has two connections to the control/ base-station. One wireless
connection that the robotuses to transfer its sensordataand that the forensic systemalsouses
andanotherwireless connection for the robot control. Furthermore,multiple sensors, that are
using ROS2 [46], are attached to the robot and connected to its network (see ”Sensors” and
”Switch” in Figure 2.3 for example). Another important part of the robot is the ”CAN bus”.
This bus is used to control the robot’s vehicular components (see ”CAN bus” in Figure 2.3).

2 System Design 10

2.3.1 Robot

Themost important part of the system is the robot itself. It can be seen in Figure 2.4, without
any of the other components and sensors mounted on it. The robot was developed by Rosen-
bauer and can navigate the narrow corridors of a supply shaft. In this first iteration of the
project, it is not envisaged that the robot will navigate autonomously. Instead, an operator
will control the robot from a ”base-station”, see section 2.3.6.

Figure 2.4: Robot used to navigate the collector shafts.

2.3.2 Vz-400i (Laser Scanner)

The Vz-400i is a 3D laser scanning system by Riegl.[45] Its features include a scanning range
of up to 800 meters with an accuracy of 5 millimeters. The sensor itself also has a gyroscope
built in,whichmakes it possible tomove the sensor after onemeasurement, then take another
measurement at a different position, and then finally combine the maps using the position
estimates from the gyroscope. Furthermore, the sensor is mobile, as it has a built-in battery,
which can supply the sensor with electricity for up to 1 hour and 40 minutes. The battery can
also be charged while in use, which means that the robot can charge the battery while the
scanner is being used.

2 System Design 11

Figure 2.5: 3D scanner used to map the collector shafts.[45]

2.3.3 Robot Arm

The 3D laser scanner cannot scan everything from its position on the robot. For example,
scanning areas behind a pipe or other objects is not possible. Take the pipes in Figure 2.1 as an
example. The operator might want to inspect an important area behind the pipes (as it could
be damaged etc.). For this purpose, the robot has an arm, on which a sensor can be mounted
to ”look” behind the pipes. The Vz-400i is too heavy and large, and cannot bemounted on the
armdue to itsweight. Instead an ”Azure Kinect DK” 3D camera ismounted on the arm.[3] The
azurekinectDKconsistsof adepthcamera (1MPTime-of-flight), anRGBcamera (12MPCMOS
sensor rolling shutter) and an IMU (3D digital accelerometer and a 3D digital gyroscope).[4]
Using this 3D camera, the operator canmap parts of the collector shaft, that the Vz-400i can-
not see from its position. Currently, the maps created by the Kinect camera are not merged
into the 3D map the Vz-400i creates but are saved separately. This merging might be imple-
mented in follow-up projects.

2 System Design 12

Figure 2.6: The mechanical arm of the robot, where a 3D camera can be mounted for fine-
grained inspection.

2.3.4 IR-Camera

To measure the heat on surfaces, the robot uses a ”Hikvision DS-2TD3017T-3/V Thermo-
graphic Cube Camera”. This camera creates images with a resolution of 640x480 and mea-
sures temperatures in a range of -20°C up to 150°C. Using this camera, the individual supply
lines of the collector shafts can be checked for overheating or damaged insolation.

2.3.5 ROS2 (Robot Operating System)

The robot, the 3D sensor, and the robot’s arm are controlled using the Robot Operating Sys-
tem 2 (ROS 2). ROS is an open-source software framework designed to facilitate the devel-
opment of complex robotic systems. It serves as a collection of tools, libraries, and conven-
tions that help researchers and developers build andmanage robotic applications. ROS2 is an
evolution of the original ROS, aiming to address its limitations and offer improved capabil-
ities. ROS2 enables modular and distributed development, allowing developers to create in-
dependent software components called ”nodes” that can communicate with each other via a

2 System Design 13

messaging system. This communication is based on a publish-subscribemodel, where nodes
publish data on specific topics, and other nodes subscribe to those topics to receive the data
they’re interested in.WithROS2, developers canworkwithmultiple programming languages,
such as C++, Python, and others, making it more accessible to a diverse range of developers.
The framework also includes tools for visualization, debugging, simulation, and testing.[46]

2.3.6 Base-Station

The whole system can be split spatially into two different spheres. The robot, which has been
explained indetail before, and thebase-station. The robot consists of themovingplatform, its
sensors, and its communication equipment. However, the robot is not autonomous andmust
be controlled by an operator at the base-station. The operator can control the robot’s move-
ments from there, see a camera stream, and also see a visualization of incoming data from the
robot’s sensors. Two different communication links exist from the base-station to the robot.
One is the ”control-link” to the robot, and the other is the ”data-link”. The ”control” link
currently uses a wireless connection and is used to navigate the robot. The ”data” link is used
to transfer the data from the sensors to the visualization component of the base-station. In
this way, the 3D maps, thermal information, and more, can be transferred and displayed to
the operator in real time. This information can then be used to decide which areas to survey
next, or if some part of the environment needs to be further examined using the robot’s arm.
The data link is currently planned as a Wi-Fi connection, which poses a challenge, as wire-
less connectionsmight be obstructed by thickwalls in the underground shafts. Because of the
possible bandwidth limitationsof thewireless connection, the forensic component shoulduse
as little bandwidth as possible, so that it does not interfere with the system’s normal opera-
tion. The 3Dmap created by the Vz-400i, as well as the 3Dmap from the Azure Kinect DK, are
already very large and put considerable stress on the wireless link.

2 System Design 14

2.4 Forensic Evidence Collection System

Figure 2.7: System overview including components for forensic data collection.

Until now the system for surveying the collector shafts has been described. Now an add-on
to that system will be explained, which records the data and movements from the robot and
stores them in a forensic record. This forensic record contains all the data that is necessary
to reconstruct the movements and actions of the robot. This data record is cryptographi-
cally signed and timestamped so later modification would be detected. Formore detail on the
forensic data package see section 2.5.6.

2.4.1 Components

Robot Computer

To run the data collection software on the robot side, a computer is mounted onto the robot
(see Figure 2.3, component: ”CAN-Sniff and ROS2-Sniff”). This computer is a Zotac ZBOX C
Series CI547 nano. The required energy is supplied by the robot and it is also attached to the
robot’s network and acts as its gateway to the base-station. This means that all the sensor
data transferred over the network is sent using this component. This is why, apart from its
forensicduties, it also creates anencryptedMACsec [48] tunnel to thebase-station, toprevent
bad actors from sniffing the data.

2 System Design 15

Base-Station

Figure 2.8: Detailed overview of the base-station components (for complete system see Fig-
ure 2.7).

The base-station component of the forensic system can be seen in Figure 2.8 and Figure 2.7,
as the big blue box labeled ”Base-Station”. This software component runs on its separate
computer and is responsible for verifying and collecting all data, that the other forensic com-

2 System Design 16

ponents send to it. Two different self-developed software components run on it. Firstly the
”preservation of evidence” and secondly the ”network recording”, as can be seen in Fig-
ure 2.7.

The software setup on the base-station uses docker together with docker-compose, to man-
age the docker containers. The docker-compose file starts several different services, which
are necessary to run the forensic system:

RabbitMQ [18]: It is an open-source message broker software that enables communica-
tion and data transfer between different components or systems in a distributed environ-
ment. It uses a message queueing system to ensure asynchronous and reliable message
delivery. RabbitMQ is widely used in various industries, including software development,
microservices architecture, and cloud computing, to enable efficient and decoupled com-
munication between different parts of an application.

PostgreSQL [41]: It is an open-source relational database management system (RDBMS)
that allows users to efficiently store, manage, and retrieve structured data. It is known
for its reliability, data integrity, and extensive features, including support for complex
queries, indexing, and transactions. PostgreSQL is widely used in various applications,
fromwebdevelopment to datawarehousing, due to its robust and extensible nature,mak-
ing it apopular choice for systems that require a robust andeasy-to-usedatabase solution.

Adminer [1]: It is a lightweight, open-source database management tool that provides
a user-friendly web-based interface for managing various database systems, including
MySQL, PostgreSQL, and more. It allows users to perform database tasks such as query-
ing, editing, andmanaging data, tables, and user accounts through a convenient and sim-
ple web interface, eliminating the need for a dedicated database client. This component is
only enabled for debugging purposes and is not included in the productive deployment of
the system.

Redis [17]: It is an open-source, high-performance, in-memory data store that is often
referred to as a ”data structure server”. It is designed for fast data retrieval and storage,
making it well-suited for use cases requiring low-latency access to frequently updated
data, suchas cachingandreal-timeanalytics.Redis is knownfor its supportof variousdata
types, including strings, lists, sets, andmore. It iswidelyused inmodernwebdevelopment
andmicroservices architectures to improve application speed and responsiveness.

Additionally, several services were specially developed for this project:

”netcap”: This service can be seen in Figure 2.7 as ”Network Recording”. This service is
responsible for recording all network activity that is transferred over the ”data link” (WiFi
Connection). The software then pushes that information to the ”webserver” component
(part of ”Preservation of evidence” seen in Figure 2.7). For this component to work, the

2 System Design 17

port on the switch is passing through all data and not only data addressed to the computer
running the forensic software.

”signserv”: This service is part of the ”Preservation of evidence” component seen in Fig-
ure 2.7. It is responsible for accessing the base station’s YubiKey and also for initializing
all YubiKeys during the setup. It listens to amessaging queue on theRabbitMQ component
and verifies and signs data that is put into the queue before saving it to the database.

”webserver”: This component is the heart of the whole forensic application. It receives
data sent to it by the other components, processes them, and stores them in the database.
The user can see live information about the incoming data in the web interface and create
signed exports after all data is collected.

YubiKey

Figure 2.9: YubiKey 4C

A YubiKey is a compact, hardware-based security token designed to enhance the authenti-
cation and access control mechanisms in computer systems. It serves as a multifactor au-
thentication device, generating one-time passwords (OTP) or public-key-based authentica-
tion codes to verify the identity of users and protect against unauthorized access or for sign-
ing data. YubiKeys have gained popularity for their robust security features, ease of use, and
compatibility with a wide range of applications, making them a valuable asset in modern cy-
bersecurity strategies.[62]

2 System Design 18

CANBus Sniffer

Figure 2.10: USB to CAN device from InnoMaker.[29]

To record messages from the CAN bus (see Figure 2.3), a CAN bus reader is attached to the
forensic recordingsystem(see section2.4.1) on the robot.TheCANbus reader is a simple”plug
& play” USB to CAN bus converter. The device can read a CAN bus at a baud rate from 20 kbps
to 1 mpbs.[29] On linux the USB2CAN device can be accessed using¸ ”SocketCAN”.[50] Sock-
etCAN consists ofmultiple open source CAN drivers. Formore information about the CAN bus
and howmessages are read from it, see section 3.3.1.

ROS2Message Collector

As mentioned in section 2.3.5 the robot uses the ROS2 framework to access some of its sen-
sors. The Vz-400i (see section 2.3.2) uses ROS2 to publish its recorded point cloud messages.
Thesemessages alsoneed tobe recordedand included in the forensic datapackage. The”ROS2
Message Collector” is a component directly located on the robot and is running on the same
computer that is also used for all other forensic evidence collection on the robot (see sec-
tion 2.4.1). In the configuration of this component, the user can specify which topics should
be captured. The captured data is then collected and signed, just like the data recorded on the
CAN bus.

2 System Design 19

Network Traffic Collector

The network traffic collector resides on the base-station (see Figure 2.8, component: ”Net-
work Recording”). This component records all the data sent over the network and saves it
directly to the ”preservation of evidence” component.

2.4.2 Interaction between Components

For the individual components to work correctly, some interaction and coordination between
them is necessary. The base-station is the main source of control commands from the user.
Most of the configuration is stored on the base-station. The forensic components query their
respective configuration values from the base-station during their startup. Some settings,
like the IP address of the base-station, must be manually configured at the forensic compo-
nent.

CANBus Sniffer to Base-Station

The CAN bus sniffer is located on the robot and listens to the CAN bus on the robot. The CAN
bus reader (see section 2.4.1) is a USB device that enables a normal PC to read and write to a
CAN bus. As the forensic component does not write anything to the CAN bus, only the reading
feature of the USB2CAN adapter is used. To read the CAN bus the USB2CAN device needs to
know the bitrate of the CAN bus. This configuration value can be set in two places, either as
an environment variable to the robot’s Docker container or as a ”config” value on the base-
station. The base-station has a database table that contains key-value pairs of configuration
parameters. These configurationvalues canbe set in theweb interfaceby theuser andwill take
precedence over the environment variables.When the docker container, inwhich the CANbus
sniffer runs, is started, it queries the current configuration value from the base-station and
then uses that bitrate if the value is set. If it is not set, it will use the value provided by the
environment variable in its container.

The data from theCANbus sniffer is put into aRabbitMQmessage queue running on the robot.
The robot component then processes that data, creates a hash-chain, signs it, and sends it
over to the base-station. This whole process is covered in detail in section 2.5.6.

ROS2Message Collector to Base-Station

The only interaction with the base-station is the command when to start or stop recording
new data. This component is not configured over the base-station, but rather using a ”con-

2 System Design 20

fig.py” file, where the user can specify the topics to record, as well as define callbacks to data
formatters. For more information on ROS2 and the data recording process, see section 3.3.2.

Network Traffic Collector to Base-Station

The network traffic collector is located on the base-station. This component runs in its own
Docker container and gets its configuration directly from the base-station. The traffic snif-
fer checks which network interfaces it can access and then sends that information over to the
base-station. The base-station presents the options to the user and the user can then choose
one of the interfaces that the component should use to record the data. After that, the com-
ponent will start recording the network data and then immediately submit that data to the
base-station.

2.5 Preservation of Forensic Evidence

As explained in section 2.4.1 the most important part of the forensic system on the base-
station is the component responsible for collecting and storing the forensic evidence. It was
mentioned, that the Docker service called ”webserver” handles this task together with the
”signserv” service. Both of these components work together using the RabbitMQ service, as
they have multiple messaging queues for communication between them.

2.5.1 Security Requirements

In [33] several properties are defined such that ”digital evidence” can be considered trust-
worthy. According to their definition, digital evidence consists of the actual data (for exam-
ple a photograph), as well as additional information about the device on which the data was
recorded. Furthermore, theydefine twoproperties thatmusthold for adevice to be considered
”forensically ready”.

The device is physically protected to prevent tampering, and the data record is securely
linked to the device’s identity, status, and relevant parameters, with protection levels tai-
lored to the scenario and data type.

The integrity of the data record remains unaltered since its creation, ensuring that no
modifications have occurred.

To fulfill these requirements, several security precautions are taken. First of all the data
records must be tied to the recording device’s identity. This is ensured using the YubiKeys

2 System Design 21

(see section 2.5.2). The YubiKeys are used to tie the data records generated by a device to that
specific device. This is done using the public and private keys of the hardware token. The pub-
lic key for the device is known to the base-station and the private key is only stored on the
physical YubiKey, from where it cannot be extracted. The YubiKey is then plugged into the
forensic device and the device can use the YubiKey to sign its recorded messages thus tying
the messages to the signatures from one specific YubiKey. To fulfill the second requirement
a hash-chain is created. Every new data record is attached to that hash-chain and the result-
ing hash-chain value is signed by the YubiKey. This way we can ensure that if data is missing
or has it has been modified, these changes can be successfully detected when examining the
data. Subsequently, this also means that we can trust the data if no changes have been made
and the signatures can be verified.

2.5.2 YubiKeys

For the whole forensic system to work, at least two YubiKeys must be used to establish trust
between the components and to create the signatures required for the forensic data package.
The two YubiKeys are displayed in Figure 2.7, as the small blue keys next to the ”CAN-Sniff”
and”ROS2-Sniff” component on the robot and the ”Preservation of evidence” component on
the base-station side. During the setup (see section 2.5.5) the base-station creates a public-
private key pair on each of the YubiKeys and saves the public keys in its database. One YubiKey
is plugged into the forensic component on the robot (”CAN-Sniff” and ”ROS2-Sniff”) so that
it can sign recorded data before transmitting it over to the base-station. This way we can en-
sure, that only data coming from a trusted entity is included in our forensic data package.

Important to note here is, that a private key cannot be extracted froma YubiKey. Aswe gener-
ate the public-private key pair directly on the YubiKey, we only have the public key available
and there is no chance, that the private key could be leaked, as it is securely stored on the Yu-
biKey. The signing on the robot (and base-station) also uses the YubiKey hardware and the
private key is not accessible, even to the person holding the YubiKey. This means the base-
station component can be sure, that the entity signing data with the trusted YubiKey,must be
the one physically holding the YubiKey.

2.5.3 Signing Service

The signing service, or short ”signserv”, is responsible for setting up the YubiKeys and for
signingmessages using the YubiKey, while the system is in its operational state. The different
states of the system are listed in section 2.5.5.

2 System Design 22

Thereasonwhy thesigningservice is its componentandnotdirectly integrated into the”web-
server” component, is purely an implementation necessity and not a specific design choice.
The technical problem is the access of the YubiKey from within the docker container. As a
USB device, the YubiKey cannot easily be accessed from within the container. One possible
solution for this would be to run the docker container with the ”–privileged” flag. According
to the docker documentation, this lifts all restrictions placed on the container by the device
cgroup controller[16]. So essentially, the docker container can do the same as a program di-
rectly running on the host system. It’s easy to see why this flag should be avoided for secu-
rity reasons, as this set of privileges would bemuchmore far-reaching thanwhat is required.
Another way, which is already more restrictive, is to only mount the /dev directory from the
host into the docker container. This works because in Linux ”everything is a file” (and if not,
it must be a process). Under the /dev directory ”special files”, like USB devices are located. For
example, a plugged-in USB camera could be located under /dev/video and programs would
then read or write to that file to receive the video stream or change settings on the camera.
The same applies to the YubiKey. Once it is plugged in, the device can be found under /de-
v/hidraw1 and /dev/hidraw21. These ”hidraw” devices are USB devices, which can be accessed
via the HID (Human Interface Device) protocol.[35] The current solution used in the software
implementation is that the whole /dev folder gets mounted into the docker container. This is
done because it cannot be assured that the YubiKey is always located under /dev/hidraw1 and
/dev/hidraw2. This can be shown with a simple test:

1. Run bash command: ls /dev | grep hidraw
output: hidraw0

2. Plug in the YubiKey

3. Run bash command: ls /dev | grep hidraw
output: hidraw0, hidraw1, hidraw2

4. YubiKey can be accessed using the files /dev/hidraw1 and /dev/hidraw2

At the endof thefirst example, theYubiKey canbeaccessedusing the specialfiles /dev/hidraw1
and /dev/hidraw2. If both of those files weremounted into the docker container, they could be
accessed from inside the container, evenwithout running the container in ”privileged”mode.

1. Run bash command: ls /dev | grep hidraw
output: hidraw0

2. Plug in a generic USB-Keyboard

3. Run bash command: ls /dev | grep hidraw
output: hidraw0, hidraw1

1Numbers may vary depending on other hardware attached to the system.

2 System Design 23

4. Plug in one YubiKey

5. Run bash command: ls /dev | grep hidraw
output: hidraw0, hidraw1, hidraw2, hidraw3

6. YubiKey can be accessed using the files /dev/hidraw2 and /dev/hidraw3

At the end of this second example, the YubiKey can be accessed using the special files /de-
v/hidraw2 and /dev/hidraw3. So if we would statically specify to mount the special files /de-
v/hidraw1 and /dev/hidraw2 in our docker-compose.yaml file, the container would not be able
to access the YubiKey. So if the configuration works or doesn’t work, would depend on the
setup of the host system and thus the solution of statically mounting the hidraw files does
not work well. The ”fallback” option is to directly mount /dev into the docker container. This
is the solution in the current implementation, however, it is still not ideal, as the container
can now access all devices located under /dev.

2.5.4 Forensic Base-Station

General Design

The docker container called ”webserver” is the central service of the whole forensic evidence
collection system. It canbe seen inFigure2.8 in thebluebox labeled”base-station”. It collects
all the data from all the other forensic components and also handles the network recording.
In Figure 2.11 a simple diagram of the data flow in the forensic base-station can be seen. A
more detailed overview including some information about the implementation can be seen in
Figure 2.13.

2 System Design 24

Figure 2.11: Data flow of incoming forensic data on the base-station.

In Figure 2.11 we can see there are essentially three steps necessary so that at the end of this
process the data is stored securely. The first step is to verify the data. This includes a check if
the signatures from the forensic component sending the data are valid and trusted, as well as
a check of the hash-chain (see section 2.5.6). The second step is the securing of the data for
later storage. Thismeans that the base-station updates its hash-chain and also signs the new
hash-chain value using its own YubiKey. After this process, we end upwith a data record, that
is signed by the forensic component which recorded it, is added to the base-stations hash-

2 System Design 25

chain, and is also signed by the base-station. This data record can then be saved into the base-
station’s database.

It is important to keep the security requirements fromsection 2.5.1 inmind. The requirements
laid out there and in [33] boil down to the CIAAN principle:

Confidentiality: This first point can be fulfilled by encrypting the traffic from and to the
forensic components using HTTPS. In the current implementation and the subsequent
tests, HTTPS was not used yet for simplicity. However, it is easily possible to switch to
HTTPS by simply providing self-signed certificates to the web servers and then marking
these certificates as trusted by the clients. An additional layer of encryption is the MAC-
sec network encryption between the robot and the base-station. The data enters the en-
crypted tunnelwhenbeing transferred from the robot to the base station. During thewire-
less transmission, the data is sent encrypted and cannot be read by bad actors listening to
the wireless signals. When arriving at the base-station, the MACsec tunnel is exited and
the data is decrypted again.

Integrity: This requirement is fulfilled by using hash-chains which include all recorded
data. If data is changed or removed the verification process will detect these changes.

Availability: The availability of the forensic system is assured by having a locally con-
trolled network. The whole data recording happens in its network, where the user has to
take precautions to ensure, that no bad actor gains access to the network to run a DoS
(denial of service) attack. Also, after the recording is finished, the forensic data can be
exported into a single SQLite3 database, which can be saved locally on any computer. All
further investigations can be made using that exported data and do not rely on any on-
line service (except the processing in the cloud using SGX, which is described in detail in
chapter 4).

Authenticity: This property is assured by using digital signatures. Each forensic compo-
nent has a physical YubiKey attached. These YubiKeys are initialized by the base-station
and a public and private key pair is generated on the YubiKey itself. The public key is saved
on the base-station and the private key cannot be extracted from the YubiKey. The foren-
sic components thenuse their YubiKey to sign its recorded data.When the data is sent over
to the base-station, it can use the saved public key to verify the sent data.

Non-repudiation:u The hash-chains also provide security against replay attacks (see section 2.5.6).u The hashes attached to each message in combination with the signatures also protect
againstmessage tempering.

2 System Design 26

Figure 2.12: Data flow including implementation details of the robot.

Implementation Overview

Following from the basic design laid out in Figure 2.11, we can derive a concrete implementa-
tionby supplementing each stepwith oneof our components fromsection2.4.1. The incoming
data from the robot (see Figure 2.12) is processed step by step by the components of the base-
station, as can be seen in Figure 2.13.

All base-station components are docker containers, that can be started using a docker-
compose file. When the services are running, the webserver listens on port 80 and new data
can be sent to it. Once new data arrives fromone of the other forensic components (for exam-
ple the one on the robot), the data gets put into a messaging queue of the RabbitMQ service
(see ”Task Queue” in Figure 2.13). The ”signsserv” component (see section 2.5.3) waits for
new messages on the queue and as soon as a new message is published on the queue, starts
processing it. Firstly, it performs the necessary verification of the signatures and the ”sub-
hash-chain” that is attached to the data record. This corresponds to the step ”Verification”
from Figure 2.11. If the verification fails, either because the signatures are invalid or the last
hash-chain record does not match the signed one, an error message is saved to the database
and displayed to the user in the web interface. If the verification is successful the ”main-
hash-chain” of the base-station is updated (see section 2.5.6). This corresponds to the block
”Hash-Chain” inFigure2.13. After thenewhash-chainvaluehasbeencalculated, the signserv
components sign the value using its YubiKey. Additionally, if there is an internet connection,

2 System Design 27

Figure 2.13: Data flow including implementation details on the base-station.

a third-party timestamp is added as an additional signature of the hash-chain. These signing
operations correspond to the block ”Signing” in Figure 2.13. Finally, the resulting data record
is saved into the Postgres database, where it can later be exported for further processing.

In addition to the data records, the forensic components can also send statusmessages to the
webserver. These messages are saved temporarily in a Redis database and get automatically
deleted after a few minutes, or replaced with a newer message. For example, the robot con-
tinually sends a heartbeat message to the base-station, which includes its local system time.
This is useful to check that the robot’s timezone is set to the base-station’s time zone, as
otherwise, the timestamps of the data records won’t match. The status messages also con-
tain important information for the user. For example, it includes howmuch data the forensic
component on the robot has gathered and can be sent to sent to the base-station, as well as
several other metrics.

User Interaction

To use the forensic base-station, a web interface is available to the user. First, the user must
set up a project (see section 2.5.5). Each project needs at least two YubiKeys. One that is con-
stantly plugged into the base-station and one that is plugged into the robot (see blue key
symbols in Figure 2.7). Additional YubiKeys for other data sources can be added if required.
During the setup, public-private key pairs are generated on the YubiKeys. The public key is
then saved in the project’s database at the base-station and the private key remains on the

2 System Design 28

YubiKey, where it cannot be extracted. Then the user is instructed to plug in the robot’s Yu-
biKey on the forensic component that is attached to the robot. After this setup, the project can
be set to ”active”, which tells all forensic components, that they should now start gathering
data for the project. Once theuserfinishes the inspectionof the supply shaft, the user can start
”finalizing” the project. Now the other components start sending their collected data to the
base-station for verification and archiving.

Data Collection

1. The data arrives on an endpoint at the webservers API running on the base-station (see
”Data fromRobot”, Figure 2.13). As soonas thedata arrives it is checked if there is a project
currently accumulatingdata. If no suchproject exists, anHTTP400error is sent back,with
the message ”No project is currently accumulating data”. Otherwise, the data is put into a
RabbitMQ queue for verification.

2. The ”signserv” service listens for incomingmessages on that queue and is responsible for
verification of the incoming data. The verification itself is described in section 2.5.6. If the
verification is successful, the data is saved in the project’s database.

3. During the saving process, the hash-chains on the base-station are updated, and the re-
sulting values are signed by the base-station. For more information on the data storing
process see section 2.5.7

4. Additionally to the verification, every few seconds a 3rd party timestamp is attached to the
data. This is one of themechanics that ensure, that data cannot be changed after it is saved
on the base-station.

2.5.5 Setup

As mentioned in section 2.5.4, the user creates ”projects” on the base-station, which corre-
spond to one inspection. Whenever the user wants to create a new forensic recording, they
first create a project, then initialize it and after the data has been gathered ”finalize” it. After
this process is complete, the user can export the data into a SQLite3 database and archive it.
The correct setup of the project is essential. For ease of use, the whole setup process is de-
scribed in the web interface step by step andmust be followed by the user.

Creation

After the project has been given a name and a description, the software puts the project in
the ”creation” state. Multiple projects can be in this state at once, but no data can be added

2 System Design 29

to the project yet. When clicking on the project page, the user is shown a dialog, that reads
”Initialize Project”, see Figure 2.14. If the button is clicked, the initialization process of the
project will start. Note that, only one project can be in the state ”initialize” at the same time,
to avoid conflicts when plugging in the necessary hardware (namely the YubiKeys).

Figure 2.14: Initialize project

Initialize

Once the project is in the initialization state, it will ask the user to plug in the first YubiKey,
which will be attached to the robot, as can be seen in Figure 2.15. The software waits until the
YubiKey is detected and then displays the next message.

Figure 2.15: Waiting for the robot key

The next message simply informs the user, that the YubiKey was detected and the public-
private key pair is now being generated inside the YubiKey. After the key is created, the public
key is saved in the project’s database.

2 System Design 30

Figure 2.16: The key is being generated

After the robot’s YubiKey is initialized, the user is prompted to remove the YubiKey from the
base-station. Then the user is asked to plug in the base-station’s YubiKey and the process
is repeated. After the base-station’s YubiKey is initialized, the user can choose to add more
trusted forensic components and in turn initialize their YubiKeys.

Active

After the initialization phase, the project is in the ”active” state. In this state, the forensic
components can send their data to the base-station, where it will be displayed to the user.
Additionally, the user can see a small ”stats” window, which displays the number of error
messages, as well as the amount of data the robot has gathered.

Figure 2.17: Project Overview

When theuserdecides that the inspection isfinished, theuser canclickon”AccumulateData”.

2 System Design 31

This will tell all the forensic components to stop gathering new data and send over the col-
lected data. A progress bar is then shown to the user to display how much data has already
been sent over, and howmuch is still missing.

Figure 2.18: Accumulating Data

Finalize

Once all the data has been sent over, the project is automatically set to ”locked”. This means
that no more data can be added to the project and that all forensic components have been
instructed to overwrite their private keys on their YubiKey. To create an export of the data,
the user can simply click on ”Prepare Export” and the project’s data will be converted into a
SQLite3 database. Once this process is completed, the user can click ”Download Export” and
will receive a ZIP file which includes the SQLite3 database and a script to verify the integrity
of the data in the export.

Figure 2.19: Finalize Project

2.5.6 Data Verification

Oneof themost important tasksof thebase-station is toverify all incomingdata fromthevar-
ious forensic components. As already explained before, the forensic components sign the data
records they send to the base-station using their own YubiKey. The YubiKey holds a private-
public key pair, which was generated directly on the YubiKey, while it was plugged into the

2 System Design 32

base-station, during the project initialization phase (see section 2.5.5). The forensic compo-
nents then use the YubiKey to sign the tail of the hash-chain.

A hash-chain is thereby defined as a chain of multiple hash values that get added together
repetitively, resulting in a new hash-chain ”tail”, each time a new data value is added to the
chain. The starting value of the hash-chain will be the concatenation of the base64 repre-
sentation of each public key that is used to sign hashes in the project. For simplicity, random
starting values are chosen in the examples. The following example will illustrate how a hash-
chainworks usingMD5 hash values2 (”T” stands for the ”tail” of the hash-chain and ”D” for
”data-point”).

1. Choose a random start value: T1 = ”wasd1234”
md5(T1) = 1d5a51389eab7a976d3572e9db25fe78

2. First data point D1 = ”hello”
md5(D1) = 5d41402abc4b2a76b9719d911017c592

3. Update hash-chain (+ stands for string concatenation):
md5(T1)+md5(D1)= 1d5a51389eab7a976d3572e9db25fe785d41402abc4b2a76b9719d911017c592
T2 =md5(md5(T1) + md5(D1)) = 5fdf411b626dff5e9c7d7e504bcba86e

4. Next data point D2 = ”world”
md5(D2) = 7d793037a0760186574b0282f2f435e7

5. Update hash-chain:
md5(T2)+md5(D2)=5fdf411b626dff5e9c7d7e504bcba86e7d793037a0760186574b0282f2f435e7
T3 =md5(md5(T2) +md5(D2)) = c55946d78d8268cc710f7f88cc5ce1fd

In the example, two data points were added to the hash-chain: ”hello” and ”world”. To be
able to verify the hash-chain, we need to save the two data values and the starting point of
the hash-chain, as well as the last tail (T3) of the hash-chain. The verification process for
this hash-chain is very simple. We just need to recompute the whole hash-chain and check if
the recomputed last tail matches our saved tail:

1. Set T1 to the saved start value:
md5(T1) = 1d5a51389eab7a976d3572e9db25fe78

2. Compute hash of D1:
md5(D1) = 5d41402abc4b2a76b9719d911017c592

3. Update hash-chain:
md5(T1)+md5(D1)= 1d5a51389eab7a976d3572e9db25fe785d41402abc4b2a76b9719d911017c592
T2 =md5(md5(T1) + md5(D1)) = 5fdf411b626dff5e9c7d7e504bcba86e

2Please note thatMD5 hashes are only used for demonstration purposes, as they are very short and can be displayed
nicely. MD5 is considered insecure today and should not be used in productive systems.[51]

2 System Design 33

4. Compute hash of D2:
md5(D2) = 7d793037a0760186574b0282f2f435e7

5. Update hash-chain:
md5(T2)+md5(D2)=5fdf411b626dff5e9c7d7e504bcba86e7d793037a0760186574b0282f2f435e7
T3 =md5(md5(T2) +md5(D2)) = c55946d78d8268cc710f7f88cc5ce1fd

If we compare our recomputed T3 value with the saved T3 value, we can see that they match.
If someone had changed the data, for example, replacing ”hello” with ”bye”, the final value
of the hash-chain would not match. But this alone is not enough to verify that no change has
been made to the data. After all, an attacker could just change ”hello” to ”bye” and then re-
compute the hash-chain from there on. So we need some kind of mechanism to be sure, that
the last tail was not modified. Here signatures come into play. An entity that we trust needs
to sign the last entry. Now if someone would simply recompute the whole hash-chain, they
would also need to redo the signature of the hash-chain tail, which should not be possible, as
the attacker should not have access to the private key of the signing party. So to update the
short algorithm presented above, the verification process now looks like this:

1. Verify the signature of the saved last hash-chain entry.

2. If it is invalid, the verification process ends immediately, as the provided tail value cannot
be trusted.

3. Otherwise, start computing the hash-chain from the initial value T1.

4. Update the hash-chain with all data entries until the final tail value is calculated.

5. Then compare the recomputed tail value with the signed one.

6. If they match, the data has not been tampered with.

7. Otherwise, changes were made to the data.

There are two different kinds of hash-chains in the system. The ”sub-hash-chains” and the
”main-hash-chain”.

Sub-Hash-Chains

The sub-hash-chains are the hash-chains that are created by the individual forensic com-
ponents. Each time they record a new data point, they calculate the hash value for that data
and then update their locally stored hash-chain value. When sending the data to the base-
station, the forensic components include their current sub-hash-chain tail with the data and
signs that hash using their YubiKey.

2 System Design 34

Main-Hash-Chain

Themain-hash-chain is thehash-chain, that is createdon thebase-station. It unifies all sub-
hash-chain values from the different components andmerges them into onehash-chain. The
tail of themain-hash-chain is signed using the base-station’s YubiKey. Additionally, if there
is internet available, the base-station adds a 3rd party timestamp to the hash-chain value.

Figure 2.20: Verification of sub-hash-chain and updating of main-hash-chain.

In Figure 2.20 the process of verifying andmerging the sub-hash-chain into themain-hash-
chain is visualized. The process of verification and updating the main hash-chain works as
follows:

1. First a new data point arrives at the base-station. This data point includes the actual data,
the tail of the sub-hash-chain, as well as a signature for the tail.

2. The base-station queries the public key of the forensic component that sends the data
from its database and then uses that key to verify the signature.

2 System Design 35

If the signature does not check out, the base-station rejects the data and displays an
error message to the user.

3. The hash value of the new data point is calculated (see h(x) next to the label ”New Data
Point” in Figure 2.20).

4. The hash value of the new data is concatenated with the last known tail of the sub-hash-
chain for the forensic component that sent it (see left ”+” operation).

5. The resulting string of that operation is hashed (see second leftmost h(x) operation).

6. The calculated sub-hash-chain value is compared with the signed one.

If they don’t match, the sub-chain and the main-chain are not updated and the data
entry is not saved to the database. Additionally, an error is displayed to the user.

7. If the signed tail of the sub-hash-chain matches the computed one, then the sub-hash-
chain value in the base-stations database can be updated.

8. Then the main-hash-chain is updated. The computed sub-hash-chain value is concate-
nated to the current main hash-chain value (see right ”+” operation).

9. The resulting string of that operation is hashed (see second rightmost h(x) operation).

10. Finally, the resulting hash value is saved into the base-station’s database.

One question thatmight arise is, why the forensic component sends the sub-hash-chains tail
and not simply a signed hash of the data. After all the signature verifies that the data has not
been tampered with and that this data entry can be trusted. While this is correct and the sent
data value could be trusted and saved in the database, we lose some of the useful properties
thehash-chain techniquegivesus. This includesprotectionagainst denial ofmessageattacks.
For example, a bad actor lets us record all kinds of data but ifwe record something that he does
not want us to see, he drops the package in transit and the base-station never gets the data
and thus it won’t show up in the forensic report later. The hash-chain protects against such
attacks. If the attacker drops a data package,wewould immediately notice that the sub-hash-
chain tails do not match if we do the verification for the next data point. It is important that
when the project is set to accumulate all data from the forensic components, the base-station
expects one last signed entry of the sub hash-chain tail of the respective forensic component.
This is done to ensure that the base-stationhas actually received all the data from the forensic
components and that a bad actor did not just drop all data packages after letting the system
run for some time.

2 System Design 36

Data Batches

In section 2.5.6 the process of verifying the sub-hash-chain and updating the main-hash-
chainwas explained. However, for performance reasons, the abovemodelwas slightly altered
to facilitate the use of data batches. One problem is, that the signing process on the YubiKey is
quite slow and limits us in the amount ofmessages that we can sign per second. To facilitate a
high number of data points being transferred to the base-station, while keeping the amount
of messages low, the forensic components always send their data in batches. The batch size
per message can be configured by the user and defaults to ten messages. This also leads to a
slightly modified verification process and a divergence from the algorithm presented above,
as some additional steps need to be performed for verification:

1. The data, containing multiple individual entries, arrives and the signature of the sub-
hash-chain tail is verified.

2. Then the sub-hash-chain value is retrieved, from the forensic component that sent us the
data, from the database of the base-station and stored in a buffer.

3. Previously, in step three we computed the hash of the individual data point. Now we cal-
culate the hash of the first datapoint in the batch.

4. The hash value of the first datapoint is concatenatedwith the sub-hash-chain tail and the
resulting value replaces the previously stored sub-hash-chain value in the buffer.

5. Then the resulting string is hashed.

6. Now instead of directly comparing the current sub-hash-chain value with the signed one
that the forensic component sent us, we save the sub-chain tail in the buffer and jump
back to step ”3.” where the next data point is processed.

7. If all datapointshavebeenprocessed,wefinally compare the recomputedsub-hash-chain
tail stored in the buffer with the one the forensic component sent us. If theymatch we can
just continue normally like in the other algorithmand start saving the data and update the
main-hash-chain.

Full Example

Using the architecture shown in Figure 2.20 a full example (including the batches) is given.

Robot:
First, we examine the process of the ”sub-hash-chain” creation on the robot side. Note that
MD5 hashes are used here again. They are not used because they are secure in any way (as

2 System Design 37

already discussed above), but simply because they are very short and thus nicer to display
than longer SHA256 or SHA512 hash values.

Table 2.1: Example of howdata is stored on the robot side, alongwith the creation of thehash-
chain.

Data Hash Hash-Chain

12345 827ccb0eea8a706c4c34a16891f84e7b 827ccb0eea8a706c4c34a16891f84e7b

hello 5d41402abc4b2a76b9719d911017c592 ddf9c2336b3759423d068728bdc122e7

world 7d793037a0760186574b0282f2f435e7 08be48c3a386a7d0c02aa5faa1cfe662

test1 5a105e8b9d40e1329780d62ea2265d8a f8d497c44550192089047056b8b5d30e

12345 : The first entry in the table is not a real data entry. It is simply the random starting value
of the hash-chain. This is also why the columns ”Hash” and ”Hash-Chain”match.

hello : The second entry now contains valid data. As before, we simply build a new hash-chain
entry by calculating the hash value of the data and then appending that value to the hash-
chain:

a) h(”hello”) = ”5d41402abc4b2a76b9719d911017c592”

b) Lookup previous hash-chain tail: 827ccb0eea8a706c4c34a16891f84e7b

c) Calculate the new hash-chain tail, by concatenating the new data hash to the tail and
hashing the resulting string:
h(”827ccb0eea8a706c4c34a16891f84e7b5d41402abc4b2a76b9719d911017c592”) =
”ddf9c2336b3759423d068728bdc122e7”

world : The process for this data entry is the same as for ”hello”, only this time we take the new
tail that we calculated in the previous step.

test1 : The same applies for ”test1”.

Robot - Data Transmission

When the user wants to ”finalize” the project, all forensic components are instructed to stop
gathering new data and to send all their collected data over to the base-station. The sending
process for the robot is the same as for any other forensic component.

Looking back at Table 2.1, we can see that there are three data entries (the first entry is a ran-
dom starting value for the hash-chain, which is given to the robot by the base-station)3. As

3Note that in the real application, the starting value of the hash-chain is not random, but is a hash value that is
derived from the public keys used in the project.

2 System Design 38

already mentioned in section 2.5.6 the data entries are not transferred one by one, but rather
as batches of data. As the whole table in this example is rather small, it will be transferred as
one batch. This means all three data entries will be transferred in one request.

The forensic components communicate with the base-station via the HTTP protocol. The
base-station hasmultiple API endpoints that can be used to transfer the current status of the
component, error messages, or other metrics that the user can view in the web interface. The
forensic components can upload their gathered data at an API endpoint called /api/data. Us-
ing a POST request, the components can upload their stored data using this endpoint. The data
structure, which the endpoint expects in the POST request, can be seen in Listing 2.1.

1 class Data(BaseModel):
2 data: list[dict] = None
3 signature: str = None
4 last_entry: Optional[str] = None
5 last_entry_signature: Optional[str] = None
6 hash_chain_name: str = None

Listing 2.1: Data model for base-station API endpoint: POST/api/data

This datamodel corresponds tohow the JSONbodyof thePOST request should look. If a foren-
sic component sends data that does not conform to the requiredmodel, the HTTP status code
”422 Unprocessable Entity” is returned.

data: The ”data” entry contains a list of all data records. The base model can be seen in
Listing 2.2. Each record contains the actual data, a hash of the data, the hash-chain value,
and a timestamp. Note that this is not a third-party timestamp, but simply a timestamp
that uses the robot’s system time and is measured when the data is recorded.u data: In the ”data” field the actual data of the record is stored.u hash: A hash value of the ”data” field.u hash_chain: The hash-chain tail after this data record was added to the hash-chain.u timestamp: The timestamp field corresponds to the system time at the point in time

when the data record was measured.

signature: In this entry, the signature from the YubiKey is stored. The value that is signed
is always the hash-chain entry of the last data record in the data list.

2 System Design 39

last_entry: The base-stationmust knowwhen the last data batch arrives. This is because
otherwise a bad actor could deny the last message and the base-station would not get the
”real” endof thehash-chain. Also, it is a requirement that each forensic component,must
eventually send a data batch where the ”last_entry” field is present and set to a random
value. Otherwise, the base-station cannot validate the whole hash-chain from the first
to the last entry and won’t know if data is missing. The user cannot finalize and export
the project until the last entry of every forensic component has been sent. If the last entry
package has been dropped by a bad actor the forensic component will continually try to
send it again.

last_entry_signature: This field contains a signature of the hash value of the concate-
nation of the final hash-chain tail and the hash of the random value in the ”last_entry”
field.

hash_chain_name: The base-station stores the hash-chain tail of each sub-hash-chain.
Thesehash-chains are given anameduring the initializationprocesswhen initializing the
individual YubiKeys.

1 class RobotData(BaseModel):
2 data = TextField()
3 hash = TextField()
4 hash_chain = TextField()
5 timestamp = TextField()

Listing 2.2: Data model for the robots data entries

For sending the example data from Table 2.1 over to the base-station, the JSON object would
look like in Listing 2.3. Note that in the example the ”signature” field is not a valid signature
and only shows which value would be signed by the YubiKey.

2 System Design 40

1 {
2 "data":[
3 {
4 "data":"hello",
5 "hash":"5d41402abc4b2a76b9719d911017c592",
6 "hash_chain":"ddf9c2336b3759423d068728bdc122e7",
7 "timestamp":"1702899443"
8 },
9 {
10 "data":"world",
11 "hash":"7d793037a0760186574b0282f2f435e7",
12 "hash_chain":"08be48c3a386a7d0c02aa5faa1cfe662",
13 "timestamp":"1702899448"
14 },
15 {
16 "data":"test1",
17 "hash":"5a105e8b9d40e1329780d62ea2265d8a",
18 "hash_chain":"f8d497c44550192089047056b8b5d30e",
19 "timestamp":"1702899498"
20 }
21],
22 "signature":"SIGN(f8d497c44550192089047056b8b5d30e)",
23 "last_entry":"RANDOM_VALUE",
24 "last_entry_signature":"SIGN(h(f8d497c44550192089047056b8b5d30e +

h(RANDOM_VALUE)))",↪→
25 "hash_chain_name":"robot"
26 }

Listing 2.3: JSON body of POST request to /api/datawith the example data from Table 2.1

In Listing 2.3 the JSON object for the POST request to /api/data can be seen. The single data
entries are simply put into a list in the order they were recorded. The first entry in Table 2.1
is ignored, as it is only the starting value for the hash-chain, which is already known by the
base-station. Also, note that the ”hash_chain_name” value is set to ”robot”. This is impor-
tant because the base-station keeps track of all the individual hash-chains on the component
and when submitting the data needs to ”catch up” with its stored tail of the sub-hash-chain.
There is exactly one hash-chain per YubiKey and their names are given by the user when ini-

2 System Design 41

tializing the project. The base-station only accepts the signed data from one specific YubiKey
for one specific hash-chain. For example, the robot cannot sign messages for another hash-
chain but the ”robot” hash-chain.

Base-Station - Data Verification

After the data has been sent to the base-station, it must be verified before being stored in the
database. The verification process that can be seen in figure Figure 2.20 needs to recompute
the hash-chain to verify it. The base-station has an entry in a table called ”hash-chains”,
where the tail of each sub-hash-chain for each forensic component of the system is stored.
In the field ”hash_chain_name” the value ”robot” is given, so the base-station would look
at the tail of that sub-hash-chain in its database and then start the verification process:

1. Lookup stored hash-chain value for the sub-hash-chain ”robot”.
Last known value is: 827ccb0eea8a706c4c34a16891f84e7b

2. Take the first data entry in the hash-chain and start computing the hash-chain:
h(”hello”) = ”5d41402abc4b2a76b9719d911017c592”

3. Calculate the new hash-chain tail, by concatenating the new data hash to the tail and
hashing the resulting string:
h(”827ccb0eea8a706c4c34a16891f84e7b5d41402abc4b2a76b9719d911017c592”) =
”ddf9c2336b3759423d068728bdc122e7”

4. Take the second data entry and continue:
h(”world”) = ”7d793037a0760186574b0282f2f435e7”

5. Calculate the new hash-chain tail, by concatenating the new data hash to the tail and
hashing the resulting string:
h(”ddf9c2336b3759423d068728bdc122e77d793037a0760186574b0282f2f435e7”) =
”08be48c3a386a7d0c02aa5faa1cfe662”

6. Take the third data entry and continue:
h(”test1”) = ”5a105e8b9d40e1329780d62ea2265d8a”

7. Calculate the new hash-chain tail, by concatenating the new data hash to the tail and
hashing the resulting string:
h(”08be48c3a386a7d0c02aa5faa1cfe6625a105e8b9d40e1329780d62ea2265d8a”) =
”f8d497c44550192089047056b8b5d30e”

8. Verify the signature of the sent hash-chain tail and compare it with the computed one.

If the signature canbe successfully verified and the signedhash-chain tailmatches the
computed one. The verification of the data is successful.

2 System Design 42

If the signature cannotbeverifiedor thehash-chain tails donotmatch, theverification
process is unsuccessful. The data is not stored in the database and the user is informed
of the problem. The data is not deleted but attached to the error report shown to the
user.

9. If the verification is successful, the main-hash-chain is also updated. The main-hash-
chain spans across all different sub-hash-chains, as can be seen in figure Figure 2.20.4

Calculate the new main-hash-chain tail, by concatenating the new sub-hash-chain tail
to the main hash-chain tail and hashing the resulting string:
h(”7ddf32e17a6ac5ce04a8ecbf782ca509f8d497c44550192089047056b8b5d30e”) =
”f225f964374062afb86c1e828a151c4b”

10. After this newmain-hash-chain tail has been computed, the base-station signs the value
using its attached YubiKey.

11. Finally, the main-hash-chain tail and the sub-hash-chain tail are updated in the
database. Also, all the data records are inserted into the database.

It’s important to note that the sent hashes and intermediate hash-chain values are not used
during the verification process, but that everything is recomputed from the data. This is be-
cause the software cannot trust the sent hash values or the intermediate hash values, as a bad
actor could simply change the data and leave the hash values as they are. This way the base-
station would not notice that a change occurred. This data can be omitted from the sent data
batch and only the data fields and the last hash-chain entry need to be present in the data list.
However, in the current software implementation, these values are still sent for debugging
purposes.

2.5.7 Data Storage

Both on the base-station and the robot side a Postgres database is used to store all persistent
data. ThePostgres instance is started togetherwith theotherDocker containersusingdocker-
compose. The containers can access the database using thenameof thePostgres container (by
default ”db”) and the password (by default ”pass”). These options, as well as multiple other
ones, can be modified by the user. It is recommended that the default password is changed,
however, it is not a requirement, as the database can only be accessed fromwithin the Docker
network. This means a bad actor would already need to be able to execute docker containers
locally on the machine, which would likely also mean that the attacker could simply read the
.envfilewith the password inside (or attach to the docker container andfind out the password
by checking the ENV variables) and gain access to the database using the password.
4Note that in this example, the main hash-chain tail is simply the MD5 hash value of the word ”random”, which
would be the starting value for the hash-chain.

2 System Design 43

Figure 2.21: ERD (entity relationship diagram) of the Postgres database(s).

Base-Station - Project Table

The ”project” table on the base-station component holds all the information about a single
project. When data is sent to the base-station it is always associated with the currently ”ac-
tive” project (see section 2.5.5 for a description of the project states).

2 System Design 44

”id”: This is a unique serial number identifying the project.

”name”: The name of the project is given by the user during the initialization process (see
section 2.5.5).

”description”: Alongwith the name, the user can also include a description of the project.

”owner”: This foreign key links the project to an account in the web interface.

”status”: This text field specifies the current status of the project. (The project states are
described in section 2.5.5)

”base_public_key”: Public key of the base-station’s YubiKey, which is generated during
the project’s initialization process. (Note that the robot’s public key is stored in the table
”hash_chain”, see section 2.5.7)

”export_status”: This is an integer value between 0 and 100. If the value is 0, this means
the project has not been exported yet. If the value is between 1 and 99, the export is in
progress (this value gets updated periodically during the export process and indicates the
progress of the export). If the value is 100 the project is fully exported and the export can
be downloaded by the user.

”data_accumulation”: This is an integer value between 0 and 100. If the value is 0, this
means that the project is not accumulating data yet. If the value is between 1 and 99, the
accumulation is in progress (this value gets updated periodically during the accumulation
process and indicates the progress of the data accumulation). If the value is 100 the project
is finished accumulating data and is locked.

”expected_data”: This value is gathered as debug information from the forensic compo-
nents and is used to calculate the progress for the ”data_accumulation” value. However,
it is only used for displaying the progress to the user and the base-station does not expect
this value to be accurate. The data accumulation is only finished, when all the different
forensic component send their final data batch (a data batch with the ”last_entry” set to
a random value).

”robot_status”: In this text field the status instruction for the robot is saved for the
project. For example, one instruction is ”send data”, which means that the robot must
send all the data that it has collected to the project.

Opposed to thepublic keyof thebase-station, thepublic keyof the robot and theother forensic
components, are stored in the ”Hash-Chain Table”, see section 2.5.7.

2 System Design 45

Base-Station - Data Table

In the data table, the base-station stores all of its recorded data. After the verification process,
the data entries are inserted into the table.

”id”: This is a unique serial number identifying the data entry.

”project_id”: This foreign key associates the data record with a project.

”hash”: Hash of the data entry as it was received by the robot.

”main_hash_chain”: Main-hash-chain entry, available if it was computed during the
verification process, otherwise it will be null.

”sub_hash_chain_name”: Name of the forensic component from which the data was
sent to the base-station. This also corresponds to the name of the sub-hash-chain entry
in the hash-chain table.

”sub_hash_chain”: Value of the sub-hash-chain.

”data”: The actual data of the record.

”signature_base_station”: Thesignatureof thebase-station for the”main_hash_chain”
value (if it was computed, otherwise it will be null).

”signature”: The signature of the robot for the ”sub_hash_chain” value (if it was com-
puted, otherwise it will be null).

”timestamp_request”: Base64 encoded .tsq (Time Stamp Request) file of the 3rd party
timestamp request. If a third-party timestamp is not added to the data record, this value
will be null.

”timestamp_signature”: Base64encoded .tsr (TimeStampResponse)fileof the3rdparty
timestamp request. If a third-party timestampwasnot added to the data record, this value
will be null.

”timestamp_text”: Parsed timestamp from the .tsr file. (This value is buffered because
otherwise, the .tsr file would need to be parsed and read every time the user views the data
records in the web interface).

”timestamp_robot”: This is the timestamp the robot attaches to the data.

2 System Design 46

Base-Station - Hash-Chain Table

”id”: This is a unique serial number identifying the hash-chain entry.

”project_id”: This foreign key associates the data record with a project.

”hash_chain_name”: Nameof the sub-hash-chain. Thename is given to thehash-chain
by the user when adding the data source and initializing its corresponding YubiKey.

”hash_chain”: The actual tail of the sub-hash-chain.

”signing_public_key”: The public key of the YubiKey that is trusted to sign the data from
the forensic component.

Other Tables

Other tables on the base-station are:

account: Used for account management. Accounts have a name, a hashed password, and
a role. Currently, the only supported role is ”admin”, which has access to all projects and
all settings. The software will prompt the user to create an admin account the first time
it is started. The user must then supply a username as well as a password for the account.
Currently, only the admin account can be created on the platform.

error_data: This table contains all the data records that failed the verification process.
The data can be viewed by the user in the web interface. It contains the data record, along
with some additional data like the IP address of the device that sent the data, the project
ID the data belongs to, etc.

config: This table is used to store config parameters that the user can change in the web
interface.

config_option: The config option table is for config entries that only support a few spe-
cific values. In this case, the user can select one of the config options for the config entry.
For example, the ”netcap” (network capturing) component reads a config value on which
interface it should capture the data. For this purpose, the component inserts all available
interfaces in the config option table and the user can choose one in the web interface.

2 System Design 47

Robot - Data

The robot is the forensic component provided by default to the project. As alreadymentioned,
more trusted YubiKeys, and thus data sources, can be added to a project. These additional
forensic components can be developed by the user and new data recording methods can be
added to the project. The robot component can be seen as a guideline on how to implement
these other components. In the ”data” table, the robot stores all its recorded data, before
sending it over to the base-station component.

”id”: This is a unique serial number identifying the hash-chain entry.

”hash”: This is the hash value of the data. The data hash is computed as soon as the data
is recorded.

”hash_chain”: This is the sub-hash-chainvalue for thedata entry. It is computeddirectly
before the data is inserted into the database.

”data”: The actual data of the record (for example, CAN bus or ROS2message).

”timestamp”: A timestamp of when the data was recorded. This is not a third-party
timestamp, but simply the robot’s system time at the moment the data was recorded.

2.6 Test

To evaluate the software and test how much data the implementation can handle, example-
data was prepared and fed to the individual forensic components. The test data includes
50.000 random CAN bus messages and a 4 GiB ros2 bag recording that was played back to
capture it again. The point cloud used for testing can be seen in Figure 2.22. It was recorded
using a Zed2i camera, the details of the bag file are listed in Listing 2.4. The final recording
of the test map has 6647184 points and was recorded at an accuracy of 0.02meters. In the 66
messages, inwhich themap is published in thebagfile, the size of themapgradually increases
(as the Zed2i camera wasmoved around tomap the environment), until it reaches its full size
in the final message.

2 System Design 48

Figure 2.22: Point cloud used for testing.

In the test setup, the base-station and an additional computer running the robot’s software
were connected over an Ethernet connection. Additionally, the CAN bus reader was plugged
into the computer running the robot’s software. To write messages on the CAN bus, a second
USB2CAN device was plugged into a third machine, which was used to generate the random
CAN busmessages. The test was configured to take place over a time span of 20minutes. The
ros2 bag file was played back four times during that period, and the computer writing the
messages to the CAN bus was configured to write 42 randommessages per second5. After 20
minutes of the simulated ”inspection”, the project was finalized in the base-station’s web
interface.

542 ∗ 20 ∗ 60 = 50400messages

2 System Design 49

1 > ros2 bag info rosbag2_2023_07_02-19_09_58_HD2K_15_002
2

3 Files: rosbag2_2023_07_02-19_09_58_0.db3
4 Bag size: 4.2 GiB
5 Storage id: sqlite3
6 Duration: 272.632s
7 Start: Jul 2 2023 19:10:07.713 (1688317807.713)
8 End: Jul 2 2023 19:14:40.346 (1688318080.346)
9 Messages: 81547
10 Topic information: Topic: /zed2i/zed_node/path_map |
11 Type: nav_msgs/msg/Path |
12 Count: 6100 | Serialization Format: cdr
13 Topic: /zed2i/zed_node/mapping/fused_cloud |
14 Type: sensor_msgs/msg/PointCloud2 |
15 Count: 66 | Serialization Format: cdr
16 Topic: /zed2i/zed_node/left/image_rect_gray/compressed |
17 Type: sensor_msgs/msg/CompressedImage |
18 Count: 3990 | Serialization Format: cdr
19 Topic: /zed2i/zed_node/left/camera_info |
20 Type: sensor_msgs/msg/CameraInfo |
21 Count: 7983 | Serialization Format: cdr
22 Topic: /zed2i/zed_node/pose_with_covariance |
23 Type: geometry_msgs/msg/PoseWithCovarianceStamped |
24 Count: 3993 | Serialization Format: cdr
25 Topic: /zed2i/robot_description | Type: std_msgs/msg/String |
26 Count: 1 | Serialization Format: cdr
27 Topic: /tf | Type: tf2_msgs/msg/TFMessage |
28 Count: 59414 | Serialization Format: cdr

Listing 2.4: Output of the ”ros2 bag info” command when analyzing the test bag file.

2.6.1 Observations

During the test, the following observations were made:

The CAN bus reader was able to correctly record all messages, and the robot was able to
process them (e.g. compute sub-hash-chain, save incoming data into the database, etc.).

2 System Design 50

The ros2 message collector was able to correctly capture all messages published on the
”/zed2i/zed_node/mapping/fused_cloud” topic.6

After the 20-minute recording period, the project was finalized, and the robot started
sending all recordedmessages to the base-station.u The only observed bottleneck is the speed with which the YuibKey can sign messages.

In the current implementation, the YubiKey can sign onemessage every 300millisec-
onds.However, this is not aproblemsince the robotdoesnot signevery single recorded
message, but rather sends them in batches over to the base-station. That means that
only each batch needs to be signed. The size of the batches can be configured by the
user and set to tenmessages by default. For such a huge recording, a batch of only ten
messages is too small, and the software will adjust the value automatically (if the user
has not manually specified one).u In this test, the robot and the base-station were connected using an Ethernet cable,
so transferring the data was not a bottleneck. If Wi-Fi connections are used, the lower
bandwidth can have an impact on the speed of the data export from the robot to the
base-station. In the test scenario, a total of about 20 GiB have been transferred.u No bottleneck was observed on the base-station during the verification of the hash-
chain and the signatures.

6In Listing 2.4 it can be seen that on this topic the point cloud is published.

Chapter 3

Data Collection

3.1 Forensic Readiness of Data

The ”forensic readiness”[53] of data indicates how useful data is for forensic analysis. When
incidents happen, it usually takes significantlymore time to sort through all the data and fig-
ure out what happened, than for a bad actor to perform an attack. While it is easy to collect
data, it is not easy to collect (only) useful data. For instance,when collecting thenetwork traf-
fic to a server that is under attack,most of the traffic could be genuine and only a fewpackages
may contain malicious data. Thus, it is imperative, that the collected data is of good quality
and useful to the investigator.[40] Several steps can be taken to ensure a good quality of the
collected data, for example, the time of the recording devices should be synchronized across
the network. Furthermore, data should be time-stamped, so that an investigator can recon-
struct the timeline of an attack. These are only a few mechanics that ensure the collection of
useful forensic evidence, a comprehensive list can be found in [53].

3.2 Data Sources

In the current implementation, three different data sources are supported. Additional data
sources can be added by the user, who has to add additional YubiKeys during the projects’ ini-
tialization process, for reference see section 2.5.5. This YubiKey can then be used for signing
messages before sending them over to the base-station. The implemented forensic compo-
nents that serve as data sources can be used as reference for the implementation of additional
ones. These additional components could then gather other kinds of data and add them to the
forensic recording.

51

3 Data Collection 52

3.2.1 CAN Bus

The CAN bus (Controller Area Network bus) is a robust and widely used communication pro-
tocol primarily employed in the automotive industry for connecting various electronic control
units (ECUs) within a vehicle. The primary purpose of the CAN bus is to enable communica-
tion among different components in a vehicle without the need for a host computer. It allows
various electronic systems to exchange information and control signals in a fast and efficient
manner. In the INFRASPEC project, the robot’s motors are controlled via a CAN bus.[9][50]

One important aspect of each CAN bus is the ”baud rate”. The baud rate specifies the speed
at which new symbols arrive at the bus. For classical CAN, this speed is usually 1 mbit/s. And
for CAN FD it is 5 mbit/s. The CANF FD (Controller Area Network Flexible Data-Rate) is an
extension of the CAN bus protocol. It was designed to fulfill higher bandwidth requirements,
as carsgotmore complexand requiredmoredata tobe transferredbetween theengineunits. It
also supports largermessage frames andmore data can be transferred in one singlemessage.
Another limiting factor of a CAN network is the maximum cable length. A cable of a CAN bus
shouldnot be longer than 500meters (whichwill result in amaximumbaud rate of 125 kbit/s).
For comparison, at a cable length of 40meters, CAN still support the whole 1 mbit/s. Another
requirement for a CAN bus is that is terminated with a 120 Ohm resistor.[9]

Messages

Similar tomessages sent over Ethernet, CAN frames consist of a header, the data, and a footer.
A CAN frame always starts with a ”0”, which tells other nodes in the CAN network that the
device sending the 0 wants to send a CANmessage. Then an ”frame identity”, which is 11 bits
in size, is put into themessage. After the ID, the ”remote transmission request”field specifies
if the node wants to send new data to the other nodes, or if it requests data to be sent to it.
Inside the next field, called ”control”, the size of the data section is specified. Also located
in the control field is the identifier extension bit. Behind the control field, the data field is
located. A CRC (cyclic redundancy check) field is located behind the data, which ensures the
integrity of the data, similar to how it is done in Ethernet packages. The second last field in
the frame is the ”ACK” slot. This is used for nodes to signal that they have acknowledged and
received the data correctly. Finally, the ”EOF” (End of Frame) field, signals the end of the CAN
bus frame.[9]

3.2.2 ROS2Messages

ROS stands for ”Robot Operating System” and is a ”publisher and subscriber” basedmessage
broking system, as was explained in section 2.3.5. Its main application is the interoperability

3 Data Collection 53

of individual components of a robot. The software to operate single components (for exam-
ple, themechanical armon the INFRASPEC robot) is implemented usingROS2”nodes”. These
nodes can then publish or subscribe to specific topics. For example, one topic could be called
”/arm/pos”, where the node would publish the current position of the robot’s arm. Another
node can then ”subscribe” to that topic and will get all the messages that were published on
said topic passed to a callback function. The data format, declaring what format can be pub-
lished on the topic, must be specified when the topic is created. Themessage format is speci-
fied by the ”ROS2 messages”. ROS2 messages are defined in ”.msg” files and usually consist
of multiple lines with ”field type” and ”field name” pairs.[46]

1 string name
2 int32 age

Listing 3.1: Example of a ROS2 .msg file.

A simple example for a .msgfile canbe seen inListing3.1. In themessage, afield called”name”
with thedata type”string”andafield called”age”with thedata type”int32” is defined.When
the ROS2 node is compiled, the messages are automatically converted into usable classes for
either Python or C++. This is another advantage of ROS2, as it supports both programming
languages and the messages can easily be interchanged between nodes written in Python or
C++.

As already stated, nodes can subscribe to or publishmessages on topics. Thismeans that usu-
ally components continually publish recorded sensor data and subscribe to topics for input
from the operator. For example, the robot’s arm would subscribe to a ROS2 topic where it
would get a 3D position that the arm shouldmove to. Subsequently, it would publish themo-
tor ticks it recorded from its attached hardware. All of this information is relevant for forensic
data recording, as themovements of the robot’s arm could potentially damage other compo-
nents in the supply shaft. If the user moves the arm inappropriately, that information must
be recorded and be available in the forensic data package for later analysis.

QoS Policy

The QoS (Quality of Service) policies in ROS2 pose an additional challenge for recording all
the data that we need. Usually, not all messages are passed to the node which subscribes to
the topic. For example, point cloudmessages can be very large and are usually published con-
tinually every few seconds. If the subscribing node is still receiving a message, while a newer
one is already available, the node cannot keep up with processing the messages. Depending

3 Data Collection 54

on the QoS policy, the next message will either get saved into a buffer and the node will re-
ceive it immediately after finishing processing the currentmessage, or it will be discarded. In
the latter case, the node would not get to see the message. This is a problem for our forensic
data recording, as we need to capture all the messages and want to avoid losing potentially
important data at all costs. In ROS2, a variety of different QoS policies exist.[43]

”History”: Specifies howmanymessages should be buffered. This is especially important
for the case described above, where a node temporarily cannot keep up with processing
the incomingmessage.u ”Keep last”: This optionwill only store the lastmessage.Messages can be lost if a node

cannot process the message fast enough.u ”Keep all”: Thiswill store all incomingmessages. However, amessage can still be lost,
if the resource limits of the underlying middleware are exhausted.

”Depth”: This specifies a ”Queue size”, which is the amount of ”last messages’ to keep.
It is only used if the ”History” policy is set to ”Keep last”. For example, it can be specified
to keep the last five messages in a buffer.

”Reliability”: This policy specifies if themessages should bedelivered, even if thenetwork
is under high load.u ”Best effort”: This optionwill potentially dropmessages if the network is under stress

and the message can’t immediately be sent.u ”Reliable”: This option guarantees that themessagewill eventually be delivered to the
node, even if the sendingmust be retried multiple times.

”Durability”: Specifies how the messages are saved.u ”Transient local”: The publisher will be responsible for persisting messages.u ”Volatile”: Nomessages will be persisted.

”Deadline”: Using the parameter ”duration” this policy sets the expected maximum
amount of time between twomessages which are published on the same topic.

”Lifespan”: Using the parameter ”duration” this policy sets amaximumtime limit for the
delivery of a message. If the message cannot be delivered within the specified deadline, it
will be dropped.

”Liveliness”: This pertains to the health or ”liveliness” of a node in the network.u ”Automatic”: When using this option, the ROS2 system will consider the publishing
node to be alive for the ”Lease Duration”, each time it publishes a newmessage.

3 Data Collection 55

u ”Manual by topic”: The node will be considered alive for the ”Lease Duration”, each
time it publishes amessage on a specific topic. This is useful for nodes that periodically
publish messages on a specific topic (for example, a sensor publishing recorded data
every second).

”Lease Duration”: Specifies the duration for which a node is considered alive after some
event has happened.

As we want to collect as much information as possible, the QoS policy must be configured to
reflect that. A possible QoS policy set on the subscriber nodewhich collects asmanymessages
as possible could look as follows:

History = ”Keep all”: This will lead to all incomingmessages being saved in a buffer, even
if the subscribing node is still busy processing the last message.

Depth: This does not have to be set, as all messages are kept.

Reliability = ”Reliable”: This will tell the messaging middleware to keep trying to deliver
the message, even if the network is under high load.

Durability =”Transient local”:Using this option,messages canbepersisted, as opposed to
setting it to volatile. However, if the publisher is set to ”Volatile” this QoS policy will lead
to a problem, as those two options are not compatible with each other and no messages
will be sent at all. If possible, the publisher must also be set to ”Transient local” for the
messages tobepersistedproperly. If this isnotpossible,wemust set thevalue to”volatile”
and keep in mind that somemessages could be lost.

Deadline: This value can be left at the default value for a good estimate that fits most use
cases.

Lifespan: This value can be left at the default value for a good estimate that fits most use
cases.

Liveliness = ”Automatic”. Thisway, the publishingnodewill be considered alive, if it pub-
lishes anymessage on any topic.

LeaseDuration: This value can be left at the default value for a good estimate that fitsmost
use cases.

3.2.3 Network

The network is the third data source that the current software implementation uses. The lo-
cal network is an important source of information, as all components of the whole system

3 Data Collection 56

are connected to it. The base-station and the robot use the network for communication. For
example, sensor data from the robot is sent over to the base-station and the base-station is-
sues commands to the robot. These commands are usually ROS2 messages, which are also
captured using the ”ROS2 message collector”, for reference see section 3.3.2. However, the
recorded network data can also contain additional information, for example on other active
devices in the network. The network recording can also be used to gain insight if a bad actor
was present in the system or if there were any other anomalies.[7][58]

To record the network data, the Wireshark package sniffer is used. Package sniffers work by
setting the network card of the computer into ”promiscuous mode”, which will result in the
network card acceptingall packages, even thosemeant for other computers. Then thenetwork
sniffer parses the package and stores the information. When inspecting the stored informa-
tion, the user can see all the data that is contained in the package. For example, the source
IP, the destination IP, etc., and of course the actual data of the package. However, the data
section of the package could be encrypted if a secure protocol was used. But information like
the source or destination IP is still visible, and this metadata alone can already be valuable
information for later analysis.[2]

3.3 CollectionMethods

3.3.1 CAN Bus

To record the data on the CAN bus, a device is used, which can attach to the bus and read all
messages that are transmitted on it. For simplicity, a ”USB2CAN”devicewas chosen. Once the
device is attached to a CANbus, the reader can be plugged into a USB port and used for reading
orwriting to the CANbus.[29] The CANbus typically has threewires that need to be connected
to the CAN bus reader:

CAN_RX Cable: Used for data reception, incoming data signals are accepted on this cable.

CAN_TXCable: Used for data transmission, this cable enables the sending of data signals.

GND Cable: Serving as the ground connection, this cable establishes the reference point
for electrical potential.

3 Data Collection 57

Figure 3.1: Wiring of a CAN bus connecting two nodes.

In Figure 3.1 the wiring of the CAN bus connecting two USB2CAN devices from Figure 3.2 can
be seen. Note that the RX and TX connection must ”cross” each other, as the receiver at the
one endmust be wired to the transmitter of the other node.

Figure 3.2: CAN bus connection between two USB2CAN devices.

3 Data Collection 58

Testing the CAN bus

To implement the collection and to test the data collection for the CAN bus, a simple test CAN
bus was created. It can be seen in Figure 3.2 and consists of two USB2CAN devices that are
wired together using copper cables. The CAN bus is extremely short, and the cables have a
simple isolation so no errors or crosstalk is to be expected. To use the CAN bus, both devices
must be configured:

1. The devices should be plugged into a computer that is running an up-to-date Linux ver-
sion. After they have beenwired up and plugged in using USB, the ”Link” LED should light
up green.

2. In the next step, the CAN devices must be brought up using the ”IP” command from the
”iproute2” package.1

3. To bring up the first device, the user must issue the following command using the termi-
nal:
ip link set can0 up type can bitrate 1000000
This sets up a link with the name ”can0” using a bitrate (baud rate) of 1,000,000.

4. Then we can set up the second device using the command:
ip link set can1 up type can bitrate 1000000

5. If the setupwas successful, the RX and TX LEDs of both devices should now light up green.

Both of the USB2CAN devices should now be set up correctly and can communicate with each
other. One important thing to note is that, for this test case, it does not matter which device
will be ”can0” and which one ”can1”. We are essentially communicating between two USB
ports using the CAN protocol. To test the sending and receiving of messages, we can use the
following commands, which should be present onmost Linux systems:

1. We choose one device that will just listen and print out all the incoming messages. For
example, we choose the ”can0” device as the listener. To print all incoming data on the
”can0” RX line, we can use the ”cansniffer” command from the ”can-utils” package2.
cansniffer can0
Now the terminal should show all themessages that are received by the ”can0” interface.

2. To test if the CAN bus works and if the sniffer will print the sent messages, a message can
be sent using the ”cansend” command. Just as the ”cansniffer” command, this one also
requires the ”can-utils” package to be installed.

1Should already be installed onmost Debian and Ubuntu derivatives.
2Can be installed on most Linux distributions by installing the ”can-utils” package. For example, this has been

tested under Debian and Ubuntu: sudo apt install can-utils .

3 Data Collection 59

cansend can1 123#DEADBEEF
When issuing this command, theTX line of the ”can1” interface shouldwrite out the spec-
ifiedmessage. The ”can frame” that we sent in the example above, has the frame ID ”123”
and carries the data ”DEADBEEF”. The data, as well as the ID, is written in hexadecimal
and are separated by a ”#” character.

3. At themoment we press enter and issue the send command from above, the TX LED of the
”can1” device, as well as the RX LED of the ”can0” device should blink briefly. Thismeans
that somemessage was transmitted over that cable.

4. Looking back at the receiving side, if everything is working correctly, the cansniffer pro-
gram should print out the sent message.

CAN bus Sniffer Implementation

The implementation of the CAN bus sniffer in the INFRASPEC software is very straight-
forward. It runs on the robot in its Docker container and publishes read messages onto a
RabbitMQ messaging queue. The only configuration parameters of this container need the
name of the ”CAN_INTERFACE” and the ”CAN_BAUDRATE”. Taking the example setup
from above, we could set the environment variable CAN_INTERFACE to ”can0” and the
CAN_BAUDRATE to 1000000. This way the program listens to all incoming messages on the
”can0” interface and then publishes them onto a messaging queue for the signing service.
The signing service runs on the robot and builds the hash-chain, signs, stores, and eventu-
ally sends over the messages to the base-station, as already described in detail in chapter 2.
To read the messages from the CAN bus, the Python library ”python-can” is used.[42] This
library supports reading and writing CAN frames to a Linux CAN socket.

3 Data Collection 60

1 with can.Bus(interface="socketcan", channel=CAN_INTERFACE, bitrate=CAN_BAUDRATE)
as bus:↪→

2 while crawl_data:
3 msg = bus.recv(timeout=1)
4 if msg is None:
5 continue
6

7 with RabbitMQConn() as conn:
8 channel = conn.channel()
9 channel.basic_publish(exchange="",

routing_key=rabbitmq.Queues.RobotDataCollect.value,
body=str(list(msg.data)).encode())

↪→
↪→

Listing 3.2: Very simple implementation of a CAN bus sniffer using the USB2CAN device [29].

The code in Listing 3.2 is a simple implementation of a CAN bus sniffer in Python. In line one,
the ”with” statement is used to create a CAN bus reader using the ”socketcan” protocol. The
”socketcan” protocol is a collection of open-source frameworks that implement the use of a
variety of CAN bus devices in a standardized way. After the interface has been set up, a loop is
executedwhich runs as long as the sniffer should record new data. In that loop a newmessage
is received (line three) then it is checked if the receivedmessage is valid (lines four tofive) and
finally the message is converted to a string format and published on a RabbitMQ messaging
queue, where the signing service on the robot takes over and handles the signing, hash-chain
creation, etc.

3.3.2 ROS2Message Collector

For collecting the ROS2messages, the software supports two different approaches. As already
explained in section 3.2.2, ROS2 uses a publisher and subscriber model. To record as many
ROS2messages as possible, we need a node that subscribes to all the relevant topics and then
records themessages sent on the topics. In ROS2, there is a tool that already implements that
use case, called ”ros2 bag”. However, this tool will simply create one single file, which con-
tains all the data, but some users might want to have the individual ROS2 messages in the
database together with the CAN bus messages and all the other recorded data. For this use
case, a configurable ROS2 node has been developed, that listens to the topics and then pro-
cesses the individualmessages, just like the CAN busmessages are processed.When the ROS2

3 Data Collection 61

node is used in conjunction with the robot, it can sign the messages, create the sub-hash-
chain, etc.

The ROS2 message collector could theoretically be located anywhere in the network, which
means that it could also be located on the base-station. However, the robot is a more conve-
nient place to run this component. If the ROS2 message collector were located on the base-
station side, all the sensor data from the robot would be sent over the network to the base-
station. This causes two problems, firstly it causes additional unnecessary network loadwhile
the INFRASPEC system is in operation, and secondly, it will cause the ROS2message to be in-
cluded twice in the forensic data package, as the network sniffer also collects the sent data.
However, on the robot side, the ROS2 messages can be sent directly from the sensors to the
recording component and no additional traffic is caused on the main data link between the
robot and the base-station. For further reference, see Figure 2.7.

Using Bag Files

When using the ”bag file” approach, a bash script is provided that handles the starting of the
ROS2 bag file recorder andwill also sign and send the bag file over to the base-station, so that
it is included in the forensic data package. The user must only specify which topics should be
recorded, the rest is automatically handled by the provided bash script. The ”bag files” are
files that are like records of all ROS2 traffic on the topics. They can even be ”played back” by
running ”ros2 bag play FILENAME”, which will start a ROS2 node that publishes all recorded
messages on their respective topic at the same time intervals as they were recorded. So for
example, the recorded positions of the robot’s arm could be ”played back” and viewed in a
ROS2 visualization tool like ”rviz” and the examiners would precisely see how the arm has
moved. Even more interesting could be the recording of the commands that were sent to the
arm. These could also be played back and used to let the armmove again just like it did before
and then see how it behaves in the real world when those commands are issued.[46]

As alreadymentioned in section 3.2.2, wemust override the default QoS policy, to ensure that
the subscribing node receives all messages. This is also true for the ROS2 bag file recorder,
which is essentially nothing more than a ROS2 node that subscribes to the specified topics
and then writes the ROS2 messages to a file format from which they can be read again at a
later time. The configuration file to override the default QoS policy can be seen in Listing 3.3.
The file is automatically passed to the ROS2 bag file recorder by the provided bash script.[46]

3 Data Collection 62

1 history: keep_all
2 reliability: reliable
3 durability: transient_local
4 liveliness: automatic

Listing 3.3: QoS override file passed to the ROS2 bag recorder.

When the user wants to finalize the project on the base-station, the ROS2 bag file creator is
stopped. Then the file is encoded in base64, put into the robot’s RabbitMQ messaging queue
and the signing component handles the rest.

Manual ROS2 Subscriber Node

If the user wishes that the individual ROS2 messages should be parsed and included in the
forensic data just like theCANbusmessages, a speciallywrittenROS2node can fulfill thatuse-
case. The ROS2 message collector starts as a ROS2 node on the robot and records messages
thatwere published using ROS2. The user can specifywhich topics should be recorded and can
provide additional formatters for the collected data. For example, the recorded point clouds
can be converted from the ROS2 message ”sensor_msgs/PointCloud2” to a .pcl file and can
even be viewed directly in the base-station’s web interface, once they are transferred over.
The topics this service records are specified in a Python file that acts as a configuration file:

1 from infra_bridge import processors
2

3 CONFIG = [
4 {
5 "topic": "test",
6 "processor": processors.StringProcessor
7 },
8 {
9 "topic": "/mapping/fused_cloud",
10 "processor": processors.PointCloud2Processor
11 }
12]

Listing 3.4: Configuration file for the ROS2 bridge component.

3 Data Collection 63

Using the example configuration, from Listing 3.4, the ROS2message collector will listen to a
topic called ”test”,where simple stringmessages can be published and another topic,where a
3D camera will publish the 3D point cloud that it records. The usersmust supply the ”proces-
sors” (apart from the string and point cloud processor, as they are implemented by default)
themselves. The processors simply convert the ROS2 data into a string format and then push
the data onto the robot’s RabbitMQ queue, where the signing component takes over.

TheQoSpolicy is directly specified in thePythoncodeof theROS2node.This is donewhencre-
ating themessage callback, as theQoSpolicy canbepassed to the subscriber creation function.

3.3.3 Network Traffic Collector

The task of the network traffic collector is to monitor one specific network interface and
record all transmitted packages on that interface. One popular choice for a package sniffer
is ”Wireshark”.[61] The software can record all the network traffic that the network card re-
ceives and display it to the user. The network traffic collector does not need a graphical in-
terface for the user. Conveniently, Wireshark can be used without a GUI, by directly using the
underlying program that records the traffic. This program is called ”dumpcap” and it can be
started from the command line.

The network traffic collector starts the dumpcap program using the subprocess module of
Python. The arguments passed to the dumpcap program can be seen in Listing 3.5 and con-
figure the process to write out all recorded network data to ”.pcap” files at an increment of
five seconds. Another thread checks if new files have been written and if it finds a new file, it
encodes it in base64 and then puts it into the appropriate RabbitMQmessaging queue on the
base-station. The base-station then handles the hash-chain creation, signing, etc.

1 dumpcap -i {interface} -w /tmp/dumpcap.pcap --ring-buffer duration:5 -P

Listing 3.5: Starting the dumpcap program in ring buffer mode.

This will result in the network traffic being split intomultiple ”.pcap”files, of which each one
contains five secondsworth of data. Users that want to analyze the network traffic, will find it
very inconvenient that the traffic is split into so many different files. For ease of use, a script
is provided that can merge the ”.pcap” files into one single file again, which can then easily
be inspected using wireguard. The Python script is shipped together with the exported data
and the verification script.

3 Data Collection 64

3.4 Visualization of Data

Different types of data require different techniques for visualization. In Figure 3.3 the web
page showing an overview of the project’s collected data can be seen. The forensic compo-
nents can include information about the type of the sent data, for example, the CAN bus data
is tagged as ”CAN” data. When the web server renders the web page, it checks if a plugin is
present to render the data type. If a plugin is found, the data is passed to the plugin, and the
HTML content visualizing the data is returned. Plugins are also used to add support for visu-
alizingmore complex data types. For example, in the implementation, a plugin exists that can
visualize point clouds. The plugin returns anHTML button that reads ”View Pointcloud”, and
can be clicked by the user to view a 3D representation of the data directly in their browser. To
visualize the data in the browser, the ”three.js” library is used.[55]

Figure 3.3: Project overview in the web interface.

Chapter 4

Data Processing

4.1 Outline

In the previous chapters the collection of data, as well as a data format for secure storage,
were explained. In chapter 2, the design of the forensic system has been discussed and the
creation of the ”forensic data package” has been shown in detail. The exported forensic data
package itself is a Sqlite3 database, that can be queried with common tools. Usersmight want
to automatically analyze this data package. For example, they could performananalysis of the
recorded network traffic using such methods as mentioned in [7] and [58] and which were
already discussed in section 3.2.3. The analysis of the data may require a long time or a lot
of processing power, which would be an incentive to process the data in the cloud. However,
this would immediately spark concerns, as the data that is sent to the cloud provider could
be recorded or copied. Even if the cloud provider can be trusted, there might be a bad actor
hiding in their network without their knowledge, and we would put our transferred data at
risk of being captured by that bad actor. As the data that is recorded by the forensic software
includes a lot of information about components of critical infrastructure, the recorded data
must be kept confidential. This leaves us with two requirements, firstly the data should be
processed in the cloud and secondly, the cloud provider must be unable to gain any insight
into the data that is being processed. To fulfill this requirement of secure computation in the
cloud, Intel secure guard extensions (SGX) are used.

4.2 SGX - Software Guard Extensions

The SGX technology from Intel is an extension to the x86 architecture to enable the user to
create applications that run in ”secure enclaves”. SGX is a hardware technology that is di-
rectly built into (some) Intel CPUs.[60] As such, SGX is a CPU functionality and can protect

65

4 Data Processing 66

the enclave from usual attacks on the OS, the hypervisor, corrupt drivers, and even the BIOS.
The technology provides several useful security features to the user:[11]

Encrypted memory: The program memory of the ”trusted” part of an SGX application is
encrypted and cannot be accessed by any other application or even by hardware sniffers
on the memory bus, as the data is only decrypted inside the CPU. The key for encryption
and decryption is also only stored inside the CPU.

Remote Attestation: When a user runs an enclave program in a server center, they can
verify that exactly theprogramtheysent to the cloudprovider is executedusing the remote
attestation procedure. This is necessary to verify that the cloud provider cannot access the
memory and that SGX is working properly.

Sealed Storage: The data and code that make up the enclave program are not secrets. En-
clave applications canbe reverse-engineered, their data sections inspected, and their code
decompiled. If confidential information should be included in the enclave application it-
self that informationmust be ”sealed”. SGX has a sealing process inwhich the data can be
encrypted and only accessed by the enclave program.

Combining all the functionalities listed above, the user can execute a programona cloud plat-
form without the cloud provider gaining any knowledge as to which data is processed. Fur-
thermore, the user can verify that the program they sent is also the one running in the cloud
environment and that the cloud provider did not alter the program in any way.

Figure 4.1: Attack surface or normal applications vs applications that utilize SGX en-
claves.[34][Overview]

Apart from keeping data and code secure, another primary goal is to reduce the attack sur-

4 Data Processing 67

face. Keeping the attack surface as small as possible will reduce the amount of possible attack
vectors and increase overall security. In Figure 4.1 the attack surface of a normal application
is compared with one using SGX enclaves. The normal application has a larger attack sur-
face, as it relies on the security of the whole application itself, the OS, the hypervisor, and the
hardware. If one of these parts contains an exploitable security vulnerability, the application
itself is likely also compromised. But this large attack surface does not only include actual at-
tacks. If a bad actor has access to the OS, they could manipulate the application on that level.
When running an enclave application, the sensitive parts of the application will be protected
and will be running in a secure environment, where it does not matter if the OS or hypervisor
is compromised, as the application is executed in a secure environment that even the OS or
hypervisor has no access to. The only remaining attack surfaces are parts of the application
and the hardware itself. In SGX, the application is split into ”trusted” and ”untrusted” code.
The trusted part is always securely executed in the enclave,meaning that itsmemory content
is encrypted, etc. The untrusted part is running just like a normal application, and the two
parts can interact with each other with so-called ”E-Calls” and ”O-Calls”. In the E-Calls, the
untrusted part ”calls” a function in the trusted part, and for the O-Calls, it is the exact op-
posite. If there is a bug in the enclave application itself, for example, if a signature validation
performed in the untrusted part of the application is trusted, the whole application can still
be compromised. The attacks against the hardware remain, even when using enclaves. As the
secure environment relies on the hardware to be secure, an attacker who can tamper with the
CPU at the time of manufacturing will be able to modify security measures or install a back-
door. However, the ”root of trust” must be somewhere, and the hardware layer is already at
the bottom of the hierarchy, as presented in Figure 4.1. For further reference on the root of
trust, see section 4.3.2.

4.2.1 Use Cases

Blue-ray

”PowerDVD” by CyberLink is a Windows application that can be used to play UHD Blu-ray
discs on computers. It is the only software that is licensed to play UHD Blu-rays, as all other
players use dedicated hardware. To play Blu-rays, the proprietary ”Advanced Access Con-
tent System (AACS) 2” is used that acts as a DRM (Digital Rights Management) software that
should prevent the user from copying the data on the disk. The goal of the PowerDVD appli-
cation is to hide the AACS2 keys from the user, as some of these keys are used to decrypt the
Blu-ray content. If a user obtained the keys, they would be able to play back any Blu-ray on
any computer and also copy their content. In [57] the authors found a flaw in the PowerDVD
implementation and abused an old insecure Intel processor to form a ”rogue Quoting En-
clave”. Usually, platforms that are known to contain a flaw in their SGX implementation are

4 Data Processing 68

marked as insecure, and during the attestation process other programs can notice that they
are communicatingwith a potentially insecure enclave. However, the PowerDVDs implemen-
tation ignored the”GROUP_OUT_OF_DATE”statusduring theattestationprocedure and the
authors were able to extract the SGX attestation keys using the ”Foreshadow attack”[56]. By
deliberately using an unpatched Intel Core i7-6820HQ and constructing a rouge Quoting En-
clave togenerate thedesiredquotes for anattack, theywere able to contact CyberLink’sAACS2
provisioning service and get the AACS2 key material. Using that key material, they were able
to play a UHD Blu-ray on Linux using VLC without any SGX enclaves being required for the
playback.

The extraction of the keys was only possible because the PowerDVD application did not re-
ject an SGX implementation that was known to have security issues. So this was not an issue
with SGX itself, but with the PowerDVD application ignoring a warning during the attesta-
tion process. However, it must be noted that it is at least ”indirectly” a problem with SGX,
to be more precise a problem with their update strategy. To fix known SGX vulnerabilities,
users must perform a BIOS update and update the microcode of their CPU. Performing these
updates is already too hard for some users, as the update process is different across moth-
erboard brands and requires somemanual work. For example, downloading the correct BIOS
version for the correct motherboard, then saving that binary onto a USB stick, pressing the
correct button during the boot process, etc. This is not what the ”typical” user usually does,
and fromgeneral experience it follows thatnot everyPCuserknows theexactmodel andbrand
name of their motherboard. However, even if the user can make those updates, the BIOS up-
dates are often rolled out very late, taking up to 100 days or more since the discovery of the
vulnerability.[57] During the time spent waiting for a BIOS update, users would be left unable
to play their Blu-rays. This is why PowerDVD did not enforce a strict policy of only trusting
secure SGX implementations, and their application disregarded the SGX warning. In the near
future, PC users won’t be able to play Blu-ray discs anymore using PowerDVD, as the newer
consumer Intel CPUs (starting from the 11th generation) don’t support SGX anymore.[14][60]

TTP - Trusted Third Party

One application for SGX,which is presented in [31], is to utilize SGX to create a ”Trusted Third
Party” (TTP). A TTP is an entity that is trusted by all participants in a system. However, the
single participants are generally distrusting each other and do notwant to reveal their secrets
to the other participants. If a TTP is present, each participant can simply send their data to
the TTP and process it there. In [31] a concrete implementation for a trusted third party is
provided by using the SGX technology.

4 Data Processing 69

4.3 Confidential Computing

4.3.1 Definitions

The ”Confidential Computing Consortium” (CCC) defines ”Confidential Computing” as the
protection of data in use (= data being processed) by hardware-based attested Trusted Exe-
cution Environments.[10] A ”Trusted Execution Environment” (TEE) is an environment that
ensures that unauthorized entities cannot...

modify the data inside the TEE. (Data Integrity)

view the data inside the TEE. (Data Confidentiality)

modify the code running inside the TEE. (Code Integrity)

An ”unauthorized entity” could be another program, the user, the operating system, etc. Es-
sentially, anyone or anything that should not be able to access or modify the data or the code
should not be able to do so.

The CCC also defines several additional attributes that TEEs can have. This includes ”Code
Confidentiality”, which means that in addition to preventing unauthorized entities from
modifying the code, they are also unable to access it. This is useful if the algorithm process-
ing the data inside the TEE should be kept confidential. However, this shouldn’t result in de-
velopers turning to ”security by obscurity”[38] and implementing flawed algorithms in the
hope that the flaws won’t be discovered due to the code being a secret. A better use case for
this property is to keep algorithms confidential that are considered intellectual property and
should not be copied by unauthorized entities. Another such property is the ”Attestability”,
which is described as a process inwhich another party can verify the integrity of theTEE. Dur-
ing that check, a signed ”evidence” is created by hardware, which checks the current state of
the TEE and verifies that the three attributes listed above can be fulfilled.

4.3.2 Hardware vs Software TEEs

The CCC argues that ”security is only as strong as the layers below it”[10][Section 2.2 first
sentence]. This is due to the layered architecture of computers. The lowest layer is the hard-
ware, then comes the operating system with its device drivers, and then the user’s applica-
tions (at least in a very simplified architecture). If the operating system is compromised, so
are theuser’s applications, as theydependon the integrity of theoperating system. In reverse,
this means that if we want to trust the application of a user (to process secrets, etc.), wemust
also trust the operating systemand thehardware. Thatwould involve a lot of components that

4 Data Processing 70

we need to trust, as the operating system usually also includes drivers that come from differ-
ent vendors, etc. This shows that to guarantee confidential computing, we need to have a very
small ”trusted computing base”. As the bottom layer, the hardware is ideal for this task, as it
has only minimal dependencies on other components.

4.3.3 CCC ThreatModel

The threat model defined by the CCC includes five threat vectors that are in-scope (meaning
that a TEE should protect against them) and three that are out-of-scope.[10][Section 5.2] The
in-scope threat vectors are:

Software attacks: This threat vector includes all attacks against the software, theBIOS, the
firmware, etc. As already mentioned in section 4.3.2, these sorts of attacks are prevented
by placing the TEE in the hardware layer.

Protocol attacks: Themain point of concern here is flaws in the attestation protocol. If the
attestation is flawed, a third party could trust a compromised TEE and send confidential
information to the TEE, which could then be extracted. This is similar to the attack de-
scribed in section 4.2.1.

Cryptographic attacks: These attacks include concerns about possible vulnerabilities in
cryptographic algorithms, as well as the ongoing increase in computational power, which
poses a threat to some encryption algorithms. Also, new emerging technologies, such as
quantum computing, pose a threat to conventional cryptography algorithms. Mitigating
these sorts of threats is especially challenging. As discussed in section 4.3.2 the TEE is
located on the hardware layer. Changing ”hardwired” encryption schemes can’t easily be
done.

Basic physical attacks: Abasic physical attackwouldbe to read thebus connectionbetween
the CPU and the memory banks. Reading the contents that are transferred between these
two components should not yield secret information. For example, this kind of attack can
be successful against a ”Trusted Platform Module” (TPM 2.0).[15][54] The TPM can be
used to store secret keys for disk encryption. On boot, the TPMwill send the secret key to
the CPU to decrypt the disk. This transfer can be sniffed, by listening on the correct bus
on the motherboard and recording the key, which would give the adversary the ability to
decrypt the disk on another device.

Basic upstreamsupply-chain attacks: TheTEEs should alsoprotect against ”simple” sup-
ply chain attacks. For example, a supply chain attack could be to include debugging ports
that allow access to secret data or violate any of the three principles listed in section 4.3.1.

4 Data Processing 71

Some other attacks are considered out-of-scope as protecting against them is currently
hardly possible, or it is simply a limitation of current TEE implementations:

Upstream hardware supply-chain attacks: In this sort of attack, an adversary has the
power to modify the CPU or influence the generation of a secret key at the time the CPU
is being manufactured. It makes sense to exclude these attack vectors, as somewhere the
”root of trust” must be placed. As discussed in section 4.3.2, the hardware is the lowest
layer in the architecture and thus gives the smallest attack surface. However, this does
notmean that we need to trust no one. If the hardwaremanufacturer builds in a deliberate
backdoor or leaves debug registers in the final product, the TEEwill still be compromised.
As such, we need to trust the hardware manufacturer to design a secure chip.

Sophisticated physical attacks: If an adversary has long-lasting physical access to the de-
vice and is capable of using chip scraping techniques or other very intrusive logical an-
alyzers, the attacks are considered out of scope. These kinds of attacks could become a
problem in the future, especially when thinking about the PowerDVD example that was
discussed in section 4.2.1. In that use case, a TEE was used to obtain a secret decryption
key from a third party. The third-party onlywants to send that key to attested TEEswhere
it can be sure that the three principles listed in section 4.3.1 are assured. However, the ad-
versary has full control over the hardware of the TEE, which receives the key and could
use that power to extract secret information from the TEE. This also enables them to use
side-channel attacks and possibly gain insight into the data being processed. The CCC
threat model mentions side-channel attacks separately and also discusses them as ama-
jor problem.[10][Section 5.3]However, themitigation that is proposed onlymentions that
theTEEvendors andapplicationdevelopers shouldprevent side-channel attacks frombe-
ing possible. For example, numerous side-channel attacks have recently been discovered
in SGX.[39][59]

Availability attacks: Denial-of-service attacks are currently not considered within the
scope of attacks that current TEE implementations must protect against.

4.4 SGX Enclaves

The ”enclave” is the part of the SGX system in which private data is securely processed. An
SGX application can consist of multiple enclaves that perform different tasks and computa-
tions. The application is always split into two different components: the trusted component
and the untrusted component. The trusted component is the enclave or enclaves, and data
is secured while being processed in those components. This means that the RAM content is
protected, and the data is encrypted while it is not processed inside the CPU. Additionally, in-
tegrity checks are also performed to detect changes to the memory. The trusted components

4 Data Processing 72

should always be designed ”as simple and small as possible” and to only do one thing, but do
that thing well. This design directive can not only be applied to enclaves but is also a general
philosophy which, for example, the Linux kernel also follows.[20] Having the trusted part as
small as possible is not only important for security but also for performance. Computationand
memory access inside the enclave can be a lot slower than those in the untrusted part. Thus,
only computations that have to be performed in the trusted part should be performed in the
trusted part. Any additional code that is run inside the trusted part, but does not necessarily
have to be run there, may slow down the application considerably.[11][34]

4.4.1 Example Application

Take the following application as an example: The application is part of amessaging APP and
should process text by running it through a secret AImodel to detect certain phrases in it. The
AI model is considered a secret; it should not be revealed to the client and is sent to the client
once each time the application is started. The client inputs the text directly on their computer,
and it is not considered a secret. However, the result of the AImodel is considered a secret, as
otherwise the user could drop themessage and prevent its delivery if the AImodel outputs an
unwanted result. From that description, it follows that therewill be a server, which has a copy
of the secret AI model, and a client, which processes text messages and uses the AI model.
When the client application is started, the AI model needs to be downloaded. As the model
should be kept secret, that AImodel can only reside in the trusted part of the application. The
download of the model could work as follows:

1. Enclave for downloading the AI model is started on the client.

2. Enclave sends an HTTP request to the server indicating that it wants to download the
model.

3. The server performs remote attestation (see section4.5.2) on the client’s enclave to ensure
that it sends the secret AI model to a genuine enclave.

4. The server sends the AI model to the enclave (using an attested TLS channel).

Note that all data transfers are encrypted and can only be read by the enclave itself. The client
computer cannot simply listen to the network traffic and record the AI model that way. The
encrypted channel is established during the remote attestation procedure. The untrusted part
of this SGX application contains all the necessary interactions with the networking devices.
The enclave itself cannot directly interact with the network card, but still relies on the oper-
ating system and the drivers to communicate with that hardware device. So these networking
parts would be considered ”untrusted” and the enclave would issue an ”O-Call” to the func-
tions outside the enclave. Once the enclave has the AI model downloaded, it can start pro-
cessingmessages from the user. When the client inputs new text into the chat application, an

4 Data Processing 73

”E-Call” is made to a function inside the enclave. This way, the enclave is ”entered” and the
text will be processed securely inside the enclave using the downloaded AImodel. As the out-
come is considered a secret, it should be encrypted and signed by the enclave and then sent
along with the message text. Additionally, the message should include a hash of the message
content, so that a verifier can detect if the message content was altered after being analyzed
by the AI model. These two hashes are combined, and the resulting value is signed by the en-
clave.1 When a newmessage arrives at the server, it is processed in the following way:

1. Verify the signature of the whole message (signedmessage hash).

2. Check the message hash.

3. Decrypt the result of the AI model.

4. Either block the message or forward it, depending on the result of the AI model.

This way, the server can trust the result from the client without the need to verify the text on
their own. This process would still work if the text messages were end-to-end encrypted for
another client, and the server should be unable to read themessage. Then the enclave (which
stillmust see the plain text to process it)would simply include the hash of the encryptedmes-
sage instead.

Note that the data input by the user comes from an untrusted part of the application. The
operating system handles the text input and the interaction with the keyboard, the speech-
to-text input, the touchscreen input, etc. So the input of the user cannot be ”trusted” in any
way.

4.4.2 O-Calls and E-Calls

To enter and exit the enclave, so-called ”O-Calls” and ”E-Calls” are needed. ”O-Calls” are
made from inside the enclave to the ”outside”, which means from trusted code to untrusted
code. The ”E-Calls” are doing exactly the reverse, meaning that untrusted code is calling
trusted code inside the enclave. When an ”E-Call” is performed, all input parameters and
pointers to shared memory are passed to the enclave. Contrary to that, when performing an
”O-Call”, the application cannot simply pass pointers to data that resides in the enclave ap-
plication, as they areprotected and cannot be read fromtheuntrustedpart.Whenpassingdata
with an O-Call, the enclave must first copy the data contents into the application’s memory,
as they can’t be accessed otherwise.[11][34]

A very simple and common ”O-Call” and ”E-Call” combination is one where the untrusted
application calls a function inside the enclave and then the enclaves ”returns” the result by
making an ”O-Call” back to the untrusted part.
1The hashes could be combined by concatenating them and then hashing the result.

4 Data Processing 74

1. Untrusted code calls the function ”calc(a, b)” inside the enclave (E-Call). The variables
”a” and ”b” are pointers to shared memory and can be accessed by the enclave.

2. The enclave reads ”a” and ”b” from thememory and saves them in local variables (stack).

3. The enclave then computes ”a + b+ S”,where ”S” is a secret value only the enclave knows.
Then it saves the result in the local variable ”c”.

4. The enclave copies the variable ”c” into the unprotected memory.

5. Then the enclavemakes an ”O-Call” so that the untrusted application can continue. (Like
a ”return” from the trusted function)

Note that this example enclave application would not protect the ”secret variable S”. While
”S” is not known to the untrusted component and only processed within the trusted compo-
nent, it is still easily retrievable. By setting”a” and”b” to0, the functionwould return 0+0+S,
which means that the secret is easily leaked without modifying the enclave code or breaking
any of the security grantees of SGX.

4.5 SGXAttestation

Attestation is essentially the process of one party verifying the other party’s TCB (trusted
computing base). The TCB includes everything from the enclave code and data to the secu-
rity flags being used. SGX generates a cryptographic log of the build activities, which includes
the previously listed values. This log is being used to create the TCB value. This value repre-
sents an ”Enclave Identity”, which is a 256-bit hash of the aforementioned log. In the SGX
implementation, this measurement is called ”MRENCLAVE”.[34][52]

For theattestationprocess towork, twoprivatekeysare stored inside theCPU.Theseare called
the ”device root keys”. The ”root provisioning key” (RPK) is randomly generated at an ”Intel
Key Generation Facility”. This key needs to be known to Intel for the attestation protocol to
work; for this reason, Intel keeps a database of all the keys generated at those facilities. The
second key is the ”root sealing key” (RSK), which is generated inside the CPU during produc-
tion and is not known to Intel.[34]

The device root keys can’t be used by the enclaves directly. They have special SGX instruc-
tions available to get key derivatives, but not the actual keys. If someone were able to extract
the root provisioning key and the root seal key, they would be able to ”fake” attestation. This
would be a very bad situation, as this wouldmean that anyone who obtains a copy of the keys
could fake attestation, and no one could trust the process anymore. For this reason, Intel has
created a ”full reset” function, that applies specific transformations to the root provision-
ing key, after the SGX update fixing the vulnerability has been installed. As can be seen in

4 Data Processing 75

Figure 4.2 the ”security version” can be incremented to apply transformations to the original
root provisioning key. Toget thenewest security version, users have to update their firmware,
microcode, etc. on their SGXsystems. As the security version is alsopart of the report, auditors
wouldnot trust a system that reports anold security version. Such a”full reset”wasnecessary
due to CVE-2022-0005, which allowed attackers to extract secrets from SGX systems using
JTAG functionalities.[12][30]

Figure 4.2: Device root keys and keys being derived from them for attesta-
tion.[34][Attestation]

4 Data Processing 76

4.5.1 Local-Attestation

Using local attestation, two SGX enclaves can verify that they are running on the same plat-
form. This process can also be used to establish a secure connection between the two enclaves.
In Figure 4.3, two enclaves are present in the system. The enclaves called ”A” and ”B”want to
prove toeachother, that theyare runningon the sameTCBplatformandat the same timewant
to establish a trusted channel (e.g. an encrypted channel) between them. In the firstmessage,
B sends A its MRENCLAVE value (see message 1 in Figure 4.3). Using the MRENCLAVE value,
enclave A calls EREPORTgivingB’sMRENCALVE value as input. This results in a signed report
being generated for B’sMRENCLAVE, which binds it to the TCB of A. Additionally, A can begin
a Diffie-Helman key exchange and attach the necessary data in the report’s data section. This
report is then sent over to enclave B (see message 2 in Figure 4.3). B gets the REPORT KEY
using the SGX instruction EGETKEY. Using that key, B tries to verify the report sent by A. As
the report key is platform-specific, the verification will only be successful if A and B are on
the same platform. B has now verified that A is on the same platform. For A to verify that B is
on the same platform, B now uses A’s MRENCLAVE value (which was included inmessage 2),
to create a report using the EREPORT instruction and sends it over to A (seemessage 3 in Fig-
ure 4.3). To verify the report from B, enclave A can then use the same steps as when B verified
the report of A.

Figure 4.3: Local attestation of SGX enclaves running on the same platform.[34][Attestation]

4.5.2 Remote-Attestation

In remote attestation, an enclave attests a certain TCB to a remote party. For this process, an
”architectural enclave” is used. These types of enclaves are written by Intel and included in
SGXbydefault. The”quoting enclave” is the architectural enclaveused for remote attestation.
First, the user enclave sends its report to the QE (quoting enclave), which verifies the report.
Then the QE signs the report with the private EPID (enhanced private ID) key and converts
the result into a ”quote”. The remote attestation party can then verify the quote using the

4 Data Processing 77

EPID public key and check if the MRENCLAVE value matches the expected result. In this way
a remote party can verify that a certain enclave is running inside a TEE.

4.6 SGX Security

4.6.1 Memory Limits

Figure 4.4: ”Processor Reserved Memory” (PRM) used by the enclaves.[34][Enclave]

In SGX the DRAM is not trusted, as bad actors could read or modify the contents of the DRAM
using specialized (hardware) tools. Also, the bus in between the CPU and the DRAM could be
recorded, and secrets stored in memory would be revealed. SGX uses a special section of the
DRAM, called the PRM (process reservedmemory), where the EPC (enclave page cache) is lo-
cated. In the EPC, the enclaves store their data and code. When CPUs access memory, they
first look into their internal caches (L1, L2 etc.), and if the requested section of memory is
not present there, they use the MC (memory controller) to retrieve the memory section from
DRAM. In SGX, theMC is used in extension with theMEE (memory encryption engine). When
accessing the special PRM memory section, the MEE supplements the MC’s functionality by
adding a encryption and an integrity check to thememory access. As theMEE resides directly
on the CPU, thismeans that the data from the DRAM is encrypted until it is inside the physical
bounds of the CPU. The downside of thismodel is that the PRM section (on currentmachines)
has a maximum size of only 128 MB.[28]

This means that enclaves can use a maximum of 128 MB of RAM for code and data. However,
the Linux SGX driver supports paging and can store the encrypted memory pages in normal
DRAM. However, as pages need to be swapped out from DRAM back to PRM when being ac-

4 Data Processing 78

cessed, this will slow down applications, asmemory access will take significantly longer than
when staying under the 128MB RAM limit and only using the PRM section.[49][32]

4.6.2 Exploits and Vulnerabilities

Although SGXprovides a very secure environment, it is notwithoutflaws. Over the years since
SGXwas released there have been numerous discoveries of attacks that can leak data,manip-
ulate the control flow etc. One such attack on SGX was already mentioned in section 4.5. As
it was possible to extract information from enclaves using the JTAG interface, a ”full reset”
of the SGX system was necessary, and the security version number was incremented. Most
flaws can usually be patched using BIOS updates; however, this is very inconvenient to nor-
mal users, which was one problem of the PowerDVD application (see section 4.2.1).

ÆPIC Leak

One such recently discoveredflaw inwhich bad actors (with admin access to themachine) can
leak data from inside an enclave is CVE-2022-21233.[13] The authors discovered an ”archi-
tectural CPU vulnerability” inwhich the Advanced Programmable Interrupt Controller (APIC)
could be abused to readdata transferred between the L2 and the”last-level cache”. This cache
can also include enclave data. Their implementation of the attack can leak memory from en-
claves at a rate of 334.8 b/s and a success rate of 92.2%. In combinationwith twoother attacks,
they were able to extract Intel SGX sealing keys, as well as remote attestation keys.[8]

Malware Guard Extension

”Malware Guard Extension” is the first SGX malware, that uses the TEE to conceal cache at-
tacks. The authors developed a software-based side-channel attack, in which one enclave
(running the malware) attacks co-located enclaves running on the same machine. The at-
tackperformedwas a”Prime+Probe” cache side-channel attack, and theywere able to extract
96%ofanRSAprivatekey fromasingle traceusing thewide-spreadmbedTLS library.[36]Ex-
tracting a full private key took five minutes, and the process of extracting it was automated.
Runningmalware inside SGX enclaves canmake detection and analyzing themalware harder
for antivirus programs and vendors.[47]

Other Attacks

Most attacks on SGX are ”side-channel” attacks. Intel itself admitted that SGX does not de-
fendagainst side-channel attacksbasedonpower statistics, branch timing, cachemiss statis-

4 Data Processing 79

tics, and page access via page tables.[59][SGX side-channel hazards] In side-channel attacks,
the attacker does not directly target the SGX system but rather tries to infer information
about an enclave from a ”side-channel”, for example, the amount of power that the com-
puter draws. By measuring the total power usage of the computer and also measuring how
much power a specific operation uses, bad actors can interpret the power usage and deter-
minewhatoperationswereexecuted.Asadefenseagainst side-channel attacks,multiplefixes
were proposed. One such defense is called ”Varys”[39], which can protect unmodified SGX
enclaves from cache timing and page table side-channel attacks, but intrudes an overhead of
15%. ”Varys” prevents an attacker from accessing shared CPU resources by ”reserving” one
CPU core for the enclave application.[39][57]

While many attacks exist, that does not mean that SGX is entirely ”broken”. Most attacks
can be patched using firmware updates and many attacks cannot be exploited easily. With
proper isolation in cloud environments and restricted access to themachine running SGXwill
still be secure against attacks ”from the outside”. However, the threat model of SGX states
that nothing but the CPU itself should be trusted. This is not fulfilled, as the numerous side-
channel attacks could be exploited by the cloud provider running themachine, as the provider
has physical access.

4.7 SGX Frameworks

Several different frameworks exist for SGX. These enable the developers towrite software ap-
plications that use the SGX hardware in many different languages. The frameworks vary in
which language or operating system they support, as well as in their complexity to develop
applications.

4.7.1 Intel SGX

This framework includes the ”Intel SGX SDK”, ”Intel SGX driver”, and ”Intel SGX Platform
Software (PSW)”.[25] It is developed directly by Intel and is available for development on
Linuxoperating systems. Currently,Ubuntu20.04, 22.04, andDebian 10, aswell as someother
distributions, are supported. Note that at the time ofwriting this, the ”stable”Debian version
is 12, and version 10will be EOL (Endof Life) soon. This framework is arguably one of themore
complex ones and is not a good way to get started developing SGX applications. For example,
the remote attestation example has 25,000 lines of code and has been archived on GitHub
since January 2023.[26]

4 Data Processing 80

4.7.2 Asylo

This framework was developed by Google and uses the ”bazel” build system. Asylo aims to
provide a backend that can run secure applications on different TEEs. The goal is for the TEE
technology to be interchangeable, with Asylo acting as the proxy between the application and
the TEE. So an Asylo application could be started on a machine with an Intel CPU and run
using SGX, but it would also work (in the future) with an AMD CPU and then use AMD Trust-
Zone. However, despite the note in their GitHub repository, that Asylo is being actively de-
veloped, the software is neither actively developed nor being maintained. Currently, when
trying to build the project, it fails with various errors. Firstly, only an outdated Bazel ver-
sion is supported, as there have been breaking changes in the newer versions. The second
problem is how dependencies are managed in Bazel builds. Essentially, dependency versions
are pinned and need to be manually updated by the developers. So, for example, the depen-
dency ”boringssl” (Google’s fork of OpenSSL) is specified by directly linking to the GitHub
repository in the bazel build files. However, the version linked to it cannot be built with GCC
12 and should be upgraded. Unfortunately, when updating the dependency by specifying a
newer version, the build also fails because of other changes in boringssl. Another option is
to use an older GCC version. This can be done using the following script to execute bazel:
CC=/usr/bin/gcc-10 CCX=/usr/bin/g++-10 bazelisk "$@" 2 However, even when building the project
with an outdated GCC version, the simulationmodeworks (which does not use the SGX hard-
ware, but only simulates it), but the hardware mode, unfortunately, does not.[24]

4.7.3 Openenclave

The aim of the Openenclave framework is similar to the one of Asylo. Unlike asylo however,
it is still actively being developed and maintained. Developing programs for Openenclave is
more similar to developing applications for the Intel SGX SDK. For example, they also use .edl
(enclave definition language) files to specify the trusted and untrusted functions.[27]

4.7.4 Mystikos

This framework can be used to run Docker containers in a trusted environment using SGX.
This framework uses Openenclave for remote attestation and starting the enclave. This sig-
nificantly simplifies the building of SGX applications, as the developer can directly start by
creating a Docker container and does not have to worry about trusted and untrusted compo-
nents. The framework implements a small kernel that handlesmost syscalls (for networking,
2Note that the tool ”bazelisk” will automatically download and use the version of Bazel that has been specified in
the projects ”.bazelversion” file.

4 Data Processing 81

threads, etc.) and processes them directly inside the enclave if possible. This architecture can
be seen in Figure 4.5. For remote attestation and to use other features of the TEE, the devel-
oper must create a ”TEE-aware application”. This means that the application ”knows” that
it runs inside an enclave and can perform such tasks as remote attestation and other SGX-
specific functionalities.[21]

Figure 4.5: Architecture of mystikos.[21]

4.7.5 Edgeless RT

This framework is also built on top of Openenclave and further simplifies the development
of enclave applications. Edgeless RT provides support for C++ 17, pthread, std::thread, and
overall better comparability with libstdc++. It also adds support for other programming lan-
guages, such as Rust or GO.[22]

4 Data Processing 82

4.7.6 EGo

”EGo” is an SGX framework that uses Edgeless RT and further simplifies the development of
secure applications. It provides an adapted compiler, called ”ego-go” and a CLI tool called
”ego”. Using the CLI tool, applications can easily be built, signed, and executed.[23] EGo was
chosen for the implementation of this project because of its simplicity and good documenta-
tion. The remote attestation exampledwas the only one that worked ”out of the box”without
any changes.

Example

The example application written in Go, seen in Listing 4.1 simply prints the string ”Hello
World” ten times.

1 package main
2

3 import (
4 "fmt"
5)
6

7 func say_hello() {
8 for i := 0; i < 10; i++ {
9 fmt.Println("Hello World")
10 }
11 }
12

13 func main() {
14 say()
15 }

Listing 4.1: Example ”Hello World” application.

To run this go program in an enclave, it must be compiled using the ”ego-go” compiler.
This can be done using the following command:
ego-go build

Then the application needs to be signed:
ego sign helloworld

4 Data Processing 83

And finally, the application can be started:
ego run helloworld

If the platform that the application is started on does not support Intel SGX, the application
can also be started in simulation mode: OE_SIMULATION=1 ego run helloworld

1 [erthost] loading enclave ...
2 [erthost] entering enclave ...
3 [ego] starting application ...
4 Hello World
5 Hello World
6 Hello World
7 Hello World
8 .
9 .
10 .

Listing 4.2: The output of the application, shown in Listing 4.1, after being compiled, signed,
and then executed using the ”ego” tools.

4.8 Processing Forensic Data in the Cloud

As alreadymentioned in section 4.1, the goal is to create an SGX application that can securely
process the recorded forensic data in the cloud. The application should be a simple demon-
strator, that can be further extended to process all kinds of forensic data. The implementation
should be able to securely process a point cloud or a portion of a point cloudmap. For demon-
stration purposes, the point cloud will simply be normalized to values between -1 and 1. The
input for the application should be sent over an ”Attested TLS channel”, that is established
during the remote attestation procedure, where the client (holding the data) audits the en-
clave (on the server) before sending the data directly to the enclave. After the data has been
processedby theenclave, it shouldbe sentbackover the samesecure, attestedTLSconnection.

4.8.1 Security Requirements

The security requirements for the whole application are similar to the ones already described
in section 4.3.1 (Confidential Computing). Themost important task is to keep the data strictly

4 Data Processing 84

confidential. Thatmeans, neither the cloudprovider nor anyone listening on the communica-
tion link between the client and the cloud should be able tomodify the data (data integrity) or
view the data (data confidentiality). Furthermore, they should also not be able to extract the
datawhile it is beingprocessedormanipulatehow thedata is beingprocessed (code integrity).
However, the code of the application itself is not considered a secret. By default, the code of an
enclave is not secret and can be disassembled before the enclave is fully initialized. This is not
a security vulnerability but this was a design decision by Intel.[52]However, if the application
developer wants the enclave code to be a secret, they can use SGXElide which enables enclave
code secrecy via self-modification at runtime.[6]

4.8.2 Implementation

Figure 4.6: Dependencies of the SGX libraries used.

The demonstrator application uses the EGo framework, which is an extension of the Edge-
less RT library, as can be seen in Figure 4.6. The application can be compiled using the ”ego-
go” compiler (a modified go compiler) on Ubuntu 20.04 and 22.04. Furthermore, the system
must have an SGX-capable Intel CPU installed if the software should be running in ”hardware
mode”with proper remote attestation. The software can also be run in ”simulationmode” on
non-SGX-capable CPUs. The remote attestation ”Data Center Attestation Primitives” (DCAP)
procedure requires that a ”ProvisioningCertificationCaching Service” (PCCS) is running.[44]
Intel specifies that the PCCS service should be running on a different machine from the one
that is executing the SGX workloads.[37] However, for this demonstrator, everything (the
client, the server (SGX), and the PCCS) will be running on the samemachine.

To runaPCCSservice, anAPIkey fromIntel is required.[37] It canbeobtainedby registeringan
accountwith Intel andfilling out a form. For running the service, the EGodevelopers provide a

4 Data Processing 85

convenientDocker container.When starting theDocker container, the API keymust be passed
to the container via an environment variable.

1 docker run -e APIKEY=YOUR_KEY -p 8081:8081 --name pccs -d ghcr.io/edgelesssys/pccs

Listing 4.3: Starting the PCCS Docker container provided by the EGo developers.[44]

For the SGX applications to recognize the PCCS service, two values need to be changed in the
configuration file /etc/sgx_default_qcnl.conf (see Appendix A). If the file does not exist at all,
it must be created first. The following configuration values should be changed:

”pccs_url”: Needs to be set to the local instance of the PCCS service.
For example: https://localhost:8081/sgx/certification/v4/

”use_secure_cert”: Needs to be set to ”false”, as the PCCS service is only started locally and
no valid certificate is provided by it.

Architecture

Figure 4.7: TLS connection into an attested enclave running in the cloud.

4 Data Processing 86

Figure 4.7 shows the intended architecture of the demonstrator. A client, which holds the
forensic data, and a server running in the cloud, which processes the secret data. The only
”trusted” component is the client itself, and thewhole cloud environment is considered ”un-
trusted”. Thismeans that thedatamustnot be accessible to the cloudprovider andalso should
not be accessible to anyone listening on the communication link between the client and the
server. To send the data into a TEE, the client will perform the remote attestation of the data
processing enclave started on the server. After the enclave has been audited, the client trusts
the application and sends the data over an ”attested TLS” channel to the enclave. The data
sent over the attested TLS connection can only be decrypted by the enclave itself, which in
turn runs in a TEE. Note that the ”Domain of Trust” in Figure 4.7 extends only over the TLS
connection and the enclave, but not the whole cloud server. Only the enclave itself has been
audited and can be trusted; other components, like the ”Cloud Storage” seen in Figure 4.7,
cannot be trusted. Those components operate out of bounds from the enclave, and data writ-
ten to that device could be read by the cloud provider. If the enclave has to write data to the
device, it would have to write encrypted data to it.

The demonstrator could be set up as shown in Figure 4.7, but for simplicity, all services will
run on the samemachine. The components communicate with each other using the loopback
interface.

Server

The server enclave runs an HTTP server and has an endpoint called ”/pointcloud/normalize”.
The client can send a secret point cloud via the attested TLS connection, and the HTTP re-
sponse will return the normalized point cloud. The point cloud is simply a list of multiple
points, as defined in Listing 4.4.

1 type Point struct {
2 X float64 `json:"x"`
3 Y float64 `json:"y"`
4 Z float64 `json:"z"`
5 }

Listing 4.4: Definition of the ”Point” structure.

When the HTTP endpoint receives a point cloud from the client, the function
normalizePoints(points []Point) will be called. It takes a reference to the list of points as
input and performs the normalization on that reference, instead of copying the list and then

4 Data Processing 87

returning a copy where the normalization is applied. This must be done due to the strict
memory limits of SGX applications, as already explained in section 4.6.1. The algorithm seen
in Listing 4.5 then looks for the minimum and maximum X, Y, and Z values and scales the
values accordingly. The result is a normalized point cloudwhere all values are between -1 and
1. This algorithm was chosen because it’s a small and simple example, where the server uses
all the data sent to it and the result can be sent back to the client.

4 Data Processing 88

1 func normalizePoints(points []Point) {
2 min_x := math.Inf(1)
3 min_y := math.Inf(1)
4 min_z := math.Inf(1)
5 max_x := math.Inf(-1)
6 max_y := math.Inf(-1)
7 max_z := math.Inf(-1)
8

9 // find the minimum and maximum values for X, Y, and Z
10 for _, item := range points {
11 if item.X < min_x {
12 min_x = item.X
13 }
14 if item.Y < min_y {
15 min_y = item.Y
16 }
17 if item.Z < min_z {
18 min_z = item.Z
19 }
20 if item.X > max_x {
21 max_x = item.X
22 }
23 if item.Y > max_y {
24 max_y = item.Y
25 }
26 if item.Z > max_z {
27 max_z = item.Z
28 }
29 }
30

31 // normalize the points
32 for i := range points {
33 points[i].X = (points[i].X - min_x) / (max_x - min_x)
34 points[i].Y = (points[i].Y - min_y) / (max_y - min_y)
35 points[i].Z = (points[i].Z - min_z) / (max_z - min_z)
36 }
37 }

Listing 4.5: Simple algorithm for normalizing point clouds.

To receive the point cloud from the client, an HTTP server is started in the enclave. The func-
tion normalizePointcloud(w http.ResponseWriter, r *http.Request) is called by the server, when a

4 Data Processing 89

point cloud is sent to it. The normalization function can be seen in Listing 4.6. It supports two
different HTTP requests. If a ”GET” request is sent, the server simply replies with an example
point cloud. If the client sends a ”POST” request, the server expects a JSON object of a point
cloud in the request body. It then parses that JSON and saves it into a list of ”Point” objects;
see Listing 4.4. Then the function to normalize the points, seen in Listing 4.5, is called. Fi-
nally, the normalized list of points is marshaled into a JSON object and then returned in the
HTTP response.

4 Data Processing 90

1 func normalizePointcloud(w http.ResponseWriter, r *http.Request) {
2 var inputPoints []Point
3

4 switch r.Method {
5 case "GET":
6 test_pointcloud := []Point{
7 {1, 2, 3},
8 {2, 2, 2},
9 }
10 j, _ := json.Marshal(test_pointcloud)
11 w.Write(j)
12 case "POST":
13

14 // decode the JSON request body into the inputPoints slice
15 d := json.NewDecoder(r.Body)
16 err := d.Decode(&inputPoints)
17 if err != nil {
18 http.Error(w, err.Error(), http.StatusInternalServerError)
19 return
20 }
21

22 // normalize the pointcloud
23 normalizePoints(inputPoints)
24

25 // return the modified pointcloud as JSON
26 j, err := json.Marshal(inputPoints)
27 if err != nil {
28 http.Error(w, err.Error(), http.StatusInternalServerError)
29 return
30 }
31 w.Write(j)
32 default:
33 w.WriteHeader(http.StatusMethodNotAllowed)
34 fmt.Fprintf(w, "Method not allowed")
35 }
36 }

Listing 4.6: Callback function for the ”/pointcloud/normalize” HTTP endpoint.

To initialize the server, the enclave first generates a certificate (see Listing 4.7), which will be
used for the attested TLS connection. Then it generates a report (line 5 in Listing 4.8), which
includes the hash of the certificate and can be used to attest the application. Then the HTTP

4 Data Processing 91

routes are created:

The ”/cert” route is being used to query the generated certificate.

The ”/report” route is used to query the enclave report that will be used for remote attes-
tation.

The ”/pointcloud/normalize” route is used by the client to process a point cloud.

After the routeshavebeen specified, a”tls.Config” is created,whichholds thepreviously gen-
erated certificate and private key. The TLS config is then passed to the HTTP server, which
starts accepting connections on port 8000 and uses the certificate and private key for encryp-
tion.

1 func createCertificate() ([]byte, crypto.PrivateKey) {
2 template := &x509.Certificate{
3 SerialNumber: &big.Int{},
4 Subject: pkix.Name{CommonName: "localhost"},
5 NotAfter: time.Now().Add(time.Hour),
6 DNSNames: []string{"localhost"},
7 }
8 priv, _ := rsa.GenerateKey(rand.Reader, 2048)
9 cert, _ := x509.CreateCertificate(rand.Reader, template, template, &priv.PublicKey, priv)
10 return cert, priv
11 }

Listing 4.7: Function for creating a certificate.[19]

4 Data Processing 92

1 func main() {
2 // create certificate and a report that includes the certificate's hash.
3 cert, priv := createCertificate()
4 hash := sha256.Sum256(cert)
5 report, err := enclave.GetRemoteReport(hash[:])
6 if err != nil {
7 fmt.Println(err)
8 }
9

10 // create HTTPS server routes
11

12 // returns the server certificate
13 http.HandleFunc("/cert", func(w http.ResponseWriter, r *http.Request) { w.Write(cert) })
14

15 // returns the enclave report
16 http.HandleFunc("/report", func(w http.ResponseWriter, r *http.Request) { w.Write(report) })
17

18 // normalize a pointcloud
19 http.HandleFunc("/pointcloud/normalize", normalizePointcloud)
20

21 tlsCfg := tls.Config{
22 Certificates: []tls.Certificate{
23 {
24 Certificate: [][]byte{cert},
25 PrivateKey: priv,
26 },
27 },
28 }
29

30 server := http.Server{Addr: "0.0.0.0:8080", TLSConfig: &tlsCfg}
31

32 fmt.Println("listening ...")
33 err = server.ListenAndServeTLS("", "")
34 fmt.Println(err)
35 }

Listing 4.8: Initializing the HTTP server in the enclave.[19]

Note that in the current implementation, everyone with the server address and the right port
can connect to the web server. This means that anyone could use the ”/pointcloud/noraml-
ize” endpoint, even without performing remote attestation; they would only need to trust the
certificate manually, as it is self-signed. This would open the door to DoS (denial of service)

4 Data Processing 93

attacks, as a bad actor could just upload random point clouds over and over again and fill the
memory of the application. As already discussed in section 4.6.1, once the PRM limit of 128MB
is reached, the applicationwill become significantly slower.[32] Tofix this problem, in a real-
world application, the client first needs to authenticatewith the server. One practical solution
would be to include a public key in the enclave application. The server would then send the
client a random value (after the attestation has been completed), which they sign and send
back to the server for verification.

Client

In thedemonstrator application, the clienthas secret forensicdata in the formofapoint cloud.
The client wants to utilize a cloud application to normalize this point cloud but without the
risk of the data being leaked to the cloud provider or other entities. Before sending the secret
information to the cloud, the client must perform the attestation and verify that the enclave
is running correctly and has not been modified. This is done via ”remote attestation”; see
section 4.5.2 for more details.

In Listing 4.9 the main function of the client can be seen. It starts by parsing the in-
put arguments, like the server address, and then continues to perform remote attesta-
tion on the server. Similar to the server, the ”tls.Config” must be initialized. The client
simply queries the certificate from the server over HTTP (line 16 in Listing 4.9). Then
the client gets the ”report” from the server, which is used for attestation. The function
verifyReport(reportBytes, certBytes, signer []byte) , seen in Listing 4.10, takes the report, the
certificate and the signer ID as input. Using the EGo tool, the ID can be derived from the public
key used by the signer: ego signerid public.pem . Inside the ”verifyReport” function, the client
then calls the EGo function eclient.VerifyRemoteReport , which checks the report. If the func-
tion returns an error, for example, if it is determined that the TCB (trusted computing base)
level is invalid (whichmeans that the enclave is running on an outdated or insecure SGX plat-
form), the verification will fail.3 Previously, the certificate of the web server running in the
enclave was simply downloaded using HTTP, which is possibly insecure. For that reason, the
server has included a hash of the valid certificate in the report’s data section. As we can trust
the report (if it’s valid), we can also trust the hash provided in the report. If the hash of the
certificate queried over HTTPmatches the hash provided in the report, the client can be sure
that the certificate was generated securely inside the enclave. Other checks include checking
if the signer IDmatches, if debugmode is set to false etc.

3Note that in this example the TCB level is ignored, as it caused problems on the test machine. This warning can
usually be fixed by performing a BIOS update if one is available, which is not the case for the test machine. Please
keep inmind that ignoring the TCB level is not a good idea, as it defeats the whole purpose of a TEE. If the audited
system is running a version of the SGX with known security issues, that system should not be trusted. This is
essentially what made the Blue-ray hack discussed in section 4.2.1 possible.

4 Data Processing 94

If the checks are passed, the certificate can be used to securely transmit the demo point
cloud to the web server running in the enclave. To marshal the point cloud into the JSON
format and send it in a PORT request to the HTTP ”/pointcloud/normalize, the function
normalizePointCloudOnServer(pointcloud []Point, tlsConfig *tls.Config, url string, debug_print bool)
is called. If everything works accordingly, the server returns the normalized point cloud in
the response body.

1 func main() {
2 signerArg := flag.String("s", "", "signer ID")
3 serverAddr := flag.String("a", "localhost:8080", "server address")
4 flag.Parse()
5 signer, err := hex.DecodeString(*signerArg)
6 if err != nil {
7 panic(err)
8 }
9 if len(signer) == 0 {
10 flag.Usage()
11 return
12 }
13

14 url := "https://" + *serverAddr
15 tlsConfig := &tls.Config{InsecureSkipVerify: true}
16 certBytes := httpGet(tlsConfig, url+"/cert")
17 reportBytes := httpGet(tlsConfig, url+"/report")
18 if err := verifyReport(reportBytes, certBytes, signer); err != nil {
19 panic(err)
20 }
21

22 cert, _ := x509.ParseCertificate(certBytes)
23 tlsConfig = &tls.Config{RootCAs: x509.NewCertPool(), ServerName: "localhost"}
24 tlsConfig.RootCAs.AddCert(cert)
25 test_pointcloud := []Point{{100, 100, 100}, {0, 0, 0}}
26

27 fmt.Printf("Sending pointcloud with len: %d\n", len(test_pointcloud))
28 if err := normalizePointCloudOnServer(test_pointcloud, tlsConfig, url +

"/pointcloud/normalize", false); err != nil {↪→
29 fmt.Printf("Error: %v\n", err)
30 }
31 }

Listing 4.9: Perform remote attestation on the server and process an example point cloud in
the enclave.[19]

4 Data Processing 95

1 func verifyReport(reportBytes, certBytes, signer []byte) error {
2 report, err := eclient.VerifyRemoteReport(reportBytes)
3 if err == attestation.ErrTCBLevelInvalid {
4 fmt.Printf("Warning: TCB level is invalid: %v\n%v\n", report.TCBStatus,

tcbstatus.Explain(report.TCBStatus))↪→
5 } else if err != nil {
6 return err
7 }
8

9 hash := sha256.Sum256(certBytes)
10 if !bytes.Equal(report.Data[:len(hash)], hash[:]) {
11 return errors.New("report data does not match the certificate's hash")
12 }
13

14 // either verify the UniqueID or the tuple (SignerID, ProductID, SecurityVersion, Debug).
15

16 if report.SecurityVersion < 2 {
17 return errors.New("invalid security version")
18 }
19 if binary.LittleEndian.Uint16(report.ProductID) != 1234 {
20 return errors.New("invalid product")
21 }
22 if !bytes.Equal(report.SignerID, signer) {
23 return errors.New("invalid signer")
24 }
25

26 // for production debug should be: report.Debug == false
27 if report.Debug == true {
28 fmt.Println("Warning: Debug is set to true in report!")
29 }
30

31 return nil
32 }

Listing 4.10: Verify the report sent by the server during the remote attestation procedure.[19]

4 Data Processing 96

1 func normalizePointCloudOnServer(pointcloud []Point, tlsConfig *tls.Config, url string,
debug_print bool) error {↪→

2 // serialize the point cloud to JSON
3 jsonData, err := json.Marshal(pointcloud)
4 if err != nil {
5 return err
6 }
7

8 // create an HTTP client with the provided TLS configuration
9 client := &http.Client{
10 Transport: &http.Transport{
11 TLSClientConfig: tlsConfig,
12 },
13 }
14

15 // send a POST request to the specified URL with the JSON data in the body
16 resp, err := client.Post(url, "application/json", bytes.NewBuffer(jsonData))
17 if err != nil {
18 return err
19 }
20 defer resp.Body.Close()
21

22 // check the response status code
23 if resp.StatusCode != http.StatusOK {
24 return fmt.Errorf("Server returned non-OK status code: %d", resp.StatusCode)
25 }
26

27 // read the response body
28 responseBody, err := ioutil.ReadAll(resp.Body)
29 if err != nil {
30 return err
31 }
32

33 // unmarshal the response JSON into a slice of Point
34 var modifiedPointCloud []Point
35 if err := json.Unmarshal(responseBody, &modifiedPointCloud); err != nil {
36 return err
37 }
38

39 if (debug_print) {
40 // print the modified point cloud
41 fmt.Println("Modified Point Cloud:")
42 for _, point := range modifiedPointCloud {
43 fmt.Printf("X: %f, Y: %f, Z: %f\n", point.X, point.Y, point.Z)
44 }
45 }
46

47 return nil
48 }

Listing 4.11: Sending a secret point cloud to the server for normalization.

4 Data Processing 97

4.8.3 Running the Demonstrator

To run the demonstrator, either Ubuntu 20.04 or 22.04 are required. Those are the Ubuntu
versions that are currently supported by ”EGo”.[23] Furthermore, a CPU with SGX capabili-
ties is required. To find out if a CPU supports SGX, the ”cpuid” command can be used. This
command is provided by the package ”cpuid” onmost Linux distributions.

1 >> cpuid | grep SGX
2 SGX: Software Guard Extensions supported = true
3 SGX_LC: SGX launch config supported = true
4 Software Guard Extensions (SGX) capability (0x12/0):
5 SGX1 supported = true
6 SGX2 supported = false
7 SGX ENCLV E*VIRTCHILD, ESETCONTEXT = false
8 SGX ENCLS ETRACKC, ERDINFO, ELDBC, ELDUC = false
9 SGX attributes: ECREATE SECS.ATTRIBUTES (0x12/1):
10 SGX Enclave Page Cache (EPC) enumeration (0x12/0x2):
11 SGX Enclave Page Cache (EPC) enumeration (0x12/0x3):

Listing 4.12: Checking if the installedCPU(Intel Core i9-10885H)hasSGXsupport, by running
the ”cpuid” command and filtering for the word ”SGX”.

In Listing 4.12 the output of ”cpuid” for the CPU Intel Core i9-10885H can be seen. Important
are the first three lines that end with ”true”, as those are the requirements for EGo program
to run.[23]

After verifying that the CPU has SGX capabilities, the PCCS must be started, as already de-
scribed in Listing 4.3. After that, the applications can be built and started.

SimulationMode

SGX also supports a ”Simulation Mode”, in which the program is not run using an enclave,
but some features of SGX are ”simulated”. This should only be used for debugging and testing
purposes and is useful onmachines that have no SGX support. However, as the demonstrator
application depends on SGX’s report functionality, running the enclave in simulationmode is
not possible. If the server is started in simulationmode, it will print a warning, as can be seen
in Listing 4.13.

4 Data Processing 98

1 EGo v1.4.1 (8b99356398dd3bcb5f74e5194d20ce421f607404)
2 EGo v1.4.1 (8b99356398dd3bcb5f74e5194d20ce421f607404)
3 [erthost] running in simulation mode
4 [erthost] loading enclave ...
5 [erthost] entering enclave ...
6 [ego] starting application ...
7 ERROR: can't get report in simulation mode (oe_result_t=OE_UNSUPPORTED)

[openenclave-src/enclave/sgx/report.c:oe_get_report_v2:190]↪→
8 OE_UNSUPPORTED
9 listening ...

Listing 4.13: Running the server in simulation mode.

If the client is started, it will receive an empty report from the server and throw an error, as it
can’t verify that the server is running in a secure enclave.

HardwareMode

On a CPU with SGX support, the server can be started by running the commands shown in
Listing 4.14. This will build the server, sign the application, and then start it. If the server is
started successfully, the output should look like in Listing 4.15.

1 mkdir build
2 ego-go build
3 ego sign server
4 mv server ./build
5 cp private.pem public.pem ./build
6 ego run build/server

Listing 4.14: Building and starting the server part of the demonstrator in hardware mode.

4 Data Processing 99

1 EGo v1.4.1 (8b99356398dd3bcb5f74e5194d20ce421f607404)
2 EGo v1.4.1 (8b99356398dd3bcb5f74e5194d20ce421f607404)
3 [erthost] loading enclave ...
4 [erthost] entering enclave ...
5 [ego] starting application ...
6 listening ...

Listing 4.15: Output of the server application.

After the serverhasbeensuccessfully started, the commandsshown inListing4.16 canbeused
to build and start the client application. The ”public.pem” key is used to verify the signature
of the server application, which was previously signed in Listing 4.14 using the private key of
that key-pair.

1 mkdir build
2 CGO_CFLAGS=-I/opt/ego/include CGO_LDFLAGS=-L/opt/ego/lib go build client.go
3 mv client build/
4 cp public.pem build/
5 ./build/client -s `ego signerid public.pem`

Listing 4.16: Building and starting the client in hardware mode.

In Listing 4.17 the output of the client application can be seen. One warning concerning the
TCB level of the application is printed, but as already explained in section 4.8.2 thiswarning is
currently ignored in the demonstrator. As the warning points out, the ”cpu_svn” (CPU Secu-
rity Version Number) is outdated. This warning should not be ignored on productive systems
and can be fixed as soon as a new BIOS update is available, that patches the CPUmicrocode to
the newest SGX version. Otherwise, the remote attestation is successful, and the point cloud
can be processed on the server. The point cloud that is sent to the server contains one point
where x, y, and z are all 100 and one point where all are 0. The correct result is returned by the
enclave and printed at the end of the program, as can be seen in Listing 4.17.

4 Data Processing 100

1 EGo v1.4.1 (8b99356398dd3bcb5f74e5194d20ce421f607404)
2 2024-01-30T10:50:06+0100.103368Z [(H)ERROR] tid(0x7fb1694ee740) | Invalid platform TCB level:

OutOfDate (cpu_svn[0] = 0xb, pce_svn = 0xb)
[/ertbuild/3rdparty/openenclave/openenclave-src/common/sgx/tcbinfo.c:
oe_parse_tcb_info_json:1213]

↪→
↪→
↪→

3 2024-01-30T10:50:06+0100.107406Z [(H)ERROR] tid(0x7fb1694ee740) | Invalid platform TCB level:
OutOfDate (cpu_svn[0] = 0xb, pce_svn = 0xb)
[/ertbuild/3rdparty/openenclave/openenclave-src/common/sgx/tcbinfo.c:
oe_parse_tcb_info_json:1213]

↪→
↪→
↪→

4 Warning: TCB level is invalid: OutOfDate
5 TCB level of SGX platform is outdated.
6 Sending pointcloud with len: 2
7 Modified Point Cloud:
8 X: 1.000000, Y: 1.000000, Z: 1.000000
9 X: 0.000000, Y: 0.000000, Z: 0.000000

Listing 4.17: Output of the client application.

Chapter 5

Conclusion and Outlook

5.1 Forensic Data Collection and Storage

This master thesis demonstrates a practical approach on how to collect, store, and securely
process forensic data. One requirement is, that the collection and storage systemmustwork in
offline environments. To overcome this challenge and still be able to securely exchange infor-
mation, YubiKeys are used to establish trust between the different parts of the system. During
the initialization of a newproject, the base-station (data collector) generates a public-private
keypair directly on theYubiKey,without theprivate key leaving thephysical boundaries of the
YubiKey at any time. While the public key can be retrieved from the device and is saved in the
base-station’s database, the private key cannot be extracted from the YubiKey and remains a
secret.When a forensic component has recorded data andwants to send it to the base-station,
it can use the YubiKey to sign a hash-chain including the recorded data, and send the whole
packageover to thebase-station. Thebase-station is thenable to verify the signature by look-
ing up the public key in its database and checking the validity of the signature.

TheYubiKeys ensure the authenticity of thedata. To ensure integrity and thatnodatawas lost,
or intentionally denied, multiple hash-chains are used. Each forensic component maintains
a ”sub-hash-chain”, which is a hash-chain that includes all the data the forensic component
collects. When sending over the data to the base-station, the component includes a signed
sub-hash-chain value of the hash-chain’s tail in the data package. On the base-station side,
this signed value is then verified using the stored public key of that forensic component. To
verify the integrity, the base-station also stores the sub-hash-chain of each forensic compo-
nent. When a new data package arrives, the base-station ”catches up” with the sent signed
sub-hash-chain value by using its stored old tail value as a starting point and then repeatedly
computes the new tail value for eachmeasurement included in the data package, until it stops
at the last value. If the computed tail matches the sent sub-hash-chain tail, no data has been
lost or changed in the transmission from the forensic component to the base-station and the
data is saved into the project’s data table.

101

5 Conclusion and Outlook 102

Finally, the collected data can be exported into one single SQLite3 database. Alongside this
database, a few scripts are provided for the user. The most important one is the ”verification
script”, which checks each signature, all hash-chains, as well as some additional properties
that ensure that the export was not altered in any way. For example, one of the additional
properties is that the last data entry (e.g. the hash-chain entry) must be signed by both the
forensic component that sent it, and the base-station. Otherwise, a bad actor could add data
to the export, as the necessary hash-chain entries can easily be computed, but the signatures
cannot be computed without the private keys. Subsequently, this means that the YubiKeys
should be overwritten as soon as the inspection is finished, and all data has been collected by
the base-station. Deleting the keys will ensure that no one can add data to the package at a
later time. This results in one currently unsolved problem. It’s not possible to sign amessage
that states that the private key on the YubiKey has been deleted, as the key for signing that
message would not exist anymore if it was deleted securely. On the other hand, one approach
could be to sign amessage, that states that the next operationwill be to delete the private key,
but is this enough? No, because after sending that message, a bad actor could simply unplug
the YubiKey and hinder the deletion of the private key. Other approaches, like protecting the
YubiKeyusing aPIN,wouldnot be sufficient, as the keywouldhave tobeknown to the forensic
component. A bad actor, that can gain access to the YubiKey (meaning physical access), could
likely also gain access to the forensic component itself. Conventional solutions do not protect
against these kinds of attacks, however, there is a possible solution to the problem, which is
further discussed in section 5.3.1.

5.2 Confidential Computing

After collecting and recording the forensic data, users might want to analyze the recorded
data in the cloud. However, as the data collected by the INFRASPEC project contains supply
shaftswhichare considered critical infrastructure, thedatahas tobekept strictly confidential.
This hinders the use of cloud services, as data sent to the server could potentially be read by
the cloud provider. To ensure that the data stays confidential, a demonstrator was developed,
which uses SGX to secure the data during transmission and processing.

5.2.1 SGX

The implemented demonstrator is split into two components. The client and the server. The
client holds the forensic data that was previously collected, and the server is the component
that should process it and is running in a distant cloud environment. After the client and the

5 Conclusion and Outlook 103

server are started, the client performs remote attestation and can verify, that the server pro-
gramhasnot beenmodified and is running in aproper SGXenclave. The cloudprovider cannot
access any data that the SGX enclave is processing, as the application’s data inmemory is en-
crypted and only decrypted directly inside the CPU. During the transmission from the client
to the server the data is also encrypted using an attested TLS channel, which is established
during the remote attestation process.

While SGXpromises a secure computation environment, various attacks have breached its se-
curity guarantees and attackers were able to extract data, mostly using side-channel attacks,
as was discussed in section 4.6.2. Apart from the security vulnerabilities, SGX is also imprac-
tical to use, as is evident when looking at one of the few SGX applications that were developed
for clients, as was explained in section 4.2.1. Users will regularly need to update their BIOS, to
keep the installed SGXversion up to date, so that enclaves can be run securely. This is a burden
to many users, as not every BIOS updates automatically and some are also rarely updated by
their vendors. All in all, it’s understandable why Intel has deprecated SGX on consumer CPUs
and focused its efforts on the cloud environments and server CPUs. For the remote attesta-
tion to work, the client usually does not need an enclave and thus does not need to have SGX
support. This is also the case for the demonstrator developed in this thesis.

5.3 FurtherWork

5.3.1 Solving the Key Deletion Problem using SGX

Asalreadymentioned, the securedeletionof theprivate keysused for singing remainsonepo-
tential security problem. If the private keys of one forensic component and the base-station
are not deleted, a bad actor could use those keys to add ormodify the forensic data. As the Yu-
biKeys are physical devices, a bad actor could unplug them before the deletion process is fin-
ished and thus have access to the private key to sign new data. A future solution to this prob-
lem could be to utilize SGX enclaves for signing. The whole system could then work without
YubiKeys and only use the enclaves to establish trust between the devices. The system could
work as follows:

1. The base-station is started with a trusted component (enclave), that generates a public-
private key pair. The private key remains inside the enclave at all times and should not be
leaked outside the trusted component.

2. Then the other forensic components are started, which also generate a public-private key
pair inside their enclaves.

5 Conclusion and Outlook 104

3. The forensic components notify the base-station to perform mutual remote attestation
and establish an attestedTLS connection. After this step, each forensic component and the
base-station have been attested and a secure connection from each forensic component
to the base-station exists.

4. Then the forensic components can start gathering their data. All their data is directly
passed to the enclave, which handles the creation of the hash-chain, aswell as the signing
and the transmission to the base-station.

5. After the inspection is complete, the base-station instructs the forensic components to
delete their private key.

6. The forensic components then sign amessage that states, that thenext operation theywill
perform is the deletion of their private key.

7. After the base-station has received all thosemessages from each forensic component, the
base-station signs the forensic package one last time and then deletes its private key.

This procedure seems very similar at first, however, it’s the use of enclaves that solves the key
deletion problem in this case. If in step 6 a YubiKey is used, a bad actor could simply unplug
the key and prevent the key deletion. However, with enclaves, this is not a problem anymore.
Firstly, the enclave protects the private key from being accessible by anyone but the enclave
itself. This means that even a person with physical access could not extract the private key
from the enclave’s memory. Secondly, the enclave code cannot be modified to print out the
key after sending the deletionmessage to the base station, as these changes would be imme-
diately detected by the base-station during the remote attestation procedure. Finally, even if
the key is not deleted and a bad actor shuts off the computer running the enclave (similar to
unplugging the YubiKey before it is deleted), the private key would also be lost, as it’s stored
(encrypted) in memory, which deteriorates fast after the machine is turned off. But even if
parts of the memory could be extracted using cold boot attacks, the memory content of the
enclave would still be encrypted. Either way, the attacker is not able to extract the private key.

Bibliography

[1] 2023. Adminer - Database management in a single PHP file — adminer.org. https://w
ww.adminer.org/. [Accessed 18-12-2023]. (2023).

[2] S. Ansari, S.G. Rajeev, and H.S. Chandrashekar. 2003. Packet sniffing: a brief introduc-
tion. IEEE Potentials, 21, 5, 17–19. DOI: 10.1109/MP.2002.1166620.

[3] 2023. Azure Kinect DK. Retrieved 10/24/2023 from https://azure.microsoft.com/de-de
/products/kinect-dk.

[4] 2018. Azure Kinect DK Fact Sheet. Retrieved 10/24/2023 from https://news.microsoft.c
om/wp-content/uploads/prod/2019/06/Factsheet-Azure-Kinect-DK.pdf.

[5] Muhammad Shamraiz Bashir andMNA Khan. 2013. Triage in live digital forensic anal-
ysis. International journal of Forensic Computer Science, 1, 35–44.

[6] ErickBauman,HuiboWang,MingweiZhang, andZhiqiangLin. 2018. Sgxelide: enabling
enclave code secrecy via self-modification. InProceedings of the 2018 International Sym-
posium on Code Generation and Optimization, pp. 75–86.

[7] Klaus Biß, Jörg Kippe, andMarkus Karch. 2023. Geräteerkennung und -identifizierung
in industriellen Netzen. at - Automatisierungstechnik, 71, 9, 726–735. DOI: doi:10.1515
/auto-2023-0135. https://doi.org/10.1515/auto-2023-0135.

[8] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and
Michael Schwarz. 2022. {ÆPIC} Leak: Architecturally Leaking Uninitialized Data
from the Microarchitecture. In 31st USENIX Security Symposium (USENIX Security 22),
pp. 3917–3934.

[9] 2022. CAN Bus Explained - A Simple Intro [2023] — csselectronics.com. https://www
.csselectronics.com/pages/can-bus-simple- intro-tutorial. [Accessed 11-12-2023].
(2022).

[10] Confidential Computing Consortium. 2022. A Technical Analysis of Confidential Com-
puting. Technical report. [Accessed 27-12-2023].

[11] Victor Costan andSrinivasDevadas. 2016. Intel SGX explained.Cryptology ePrint Archive.

[12] 2022. CVE-2022-0005. Available from MITRE, CVE-ID CVE-2022-0005. (2022). Re-
trieved 01/09/2024 from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-202
2-0005.

105

https://www.adminer.org/
https://www.adminer.org/
https://doi.org/10.1109/MP.2002.1166620
https://azure.microsoft.com/de-de/products/kinect-dk
https://azure.microsoft.com/de-de/products/kinect-dk
https://news.microsoft.com/wp-content/uploads/prod/2019/06/Factsheet-Azure-Kinect-DK.pdf
https://news.microsoft.com/wp-content/uploads/prod/2019/06/Factsheet-Azure-Kinect-DK.pdf
https://doi.org/doi:10.1515/auto-2023-0135
https://doi.org/doi:10.1515/auto-2023-0135
https://doi.org/10.1515/auto-2023-0135
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0005
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0005

Bibliography 106

[13] 2022. CVE-2022-21233. Available from MITRE, CVE-ID CVE-2022-21233. (2022). Re-
trieved 01/11/2024 from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022
-21233.

[14] 2023. CyberLink Support Center— cyberlink.com. https://www.cyberlink.com/suppo
rt-center/faq/content?id=26690. [Accessed 27-12-2023]. (2023).

[15] Matheus Bichara de Assumpção, Marcelo Abdalla dos Reis, Marcos Roberto Marcon-
des, Pedro Monteiro da Silva Eleutério, and Victor Hugo Vieira. 2023. Forensic method
for decrypting TPM-protected BitLocker volumes using Intel DCI. Forensic Science In-
ternational: Digital Investigation, 44, 301514.

[16] 2023. docker run (docker container run). Retrieved 10/30/2023 from https://docs.dock
er.com/engine/reference/commandline/run/.

[17] 2023.Documentation—redis.io. https://redis.io/docs/. [Accessed 18-12-2023]. (2023).

[18] 2023. Documentation: Table of Contents 2014; RabbitMQ— rabbitmq.com. https://ww
w.rabbitmq.com/documentation.html. [Accessed 18-12-2023]. (2023).

[19] 2023. ego/samples/remote_attestation at master edgelesssys/ego— github.com. http
s://github.com/edgelesssys/ego/tree/master/samples/remote_attestation. [Accessed
08-01-2024]. (2023).

[20] Mike Gancarz. 2001. Unix philosophy.

[21] 2023. GitHub - deislabs/mystikos: Tools and runtime for launching unmodified con-
tainer images in Trusted Execution Environments — github.com. https://github.com
/deislabs/mystikos. [Accessed 02-01-2024]. (2023).

[22] 2023. GitHub - edgelesssys/edgelessrt: Edgeless RT is an SDK and a runtime for Intel
SGX. It combines top-notch Go support with simplicity, robustness and a small TCB.
Developing confidential microservices has never been easier! C++17 and Rust (experi-
mental) are also supported.—github.com. https://github.com/edgelesssys/edgelessrt.
[Accessed 02-01-2024]. (2023).

[23] 2023.GitHub-edgelesssys/ego: EGo is anopen-source SDK that enables you todevelop
your own confidential apps in the Go programming language.— github.com. https://g
ithub.com/edgelesssys/ego. [Accessed 02-01-2024]. (2023).

[24] 2022. GitHub - google/asylo: An open and flexible framework for developing enclave
applications— github.com. https://github.com/google/asylo. [Accessed 02-01-2024].
(2022).

[25] 2023. GitHub - intel/linux-sgx: Intel SGX for Linux*— github.com. https://github.co
m/intel/linux-sgx. [Accessed 02-01-2024]. (2023).

[26] 2023. GitHub - intel/sgx-ra-sample— github.com. https://github.com/intel/sgx-ra-
sample. [Accessed 02-01-2024]. (2023).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21233
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21233
https://www.cyberlink.com/support-center/faq/content?id=26690
https://www.cyberlink.com/support-center/faq/content?id=26690
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/
https://redis.io/docs/
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html
https://github.com/edgelesssys/ego/tree/master/samples/remote_attestation
https://github.com/edgelesssys/ego/tree/master/samples/remote_attestation
https://github.com/deislabs/mystikos
https://github.com/deislabs/mystikos
https://github.com/edgelesssys/edgelessrt
https://github.com/edgelesssys/ego
https://github.com/edgelesssys/ego
https://github.com/google/asylo
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://github.com/intel/sgx-ra-sample
https://github.com/intel/sgx-ra-sample

Bibliography 107

[27] 2023. GitHub - openenclave/openenclave: SDK for developing enclaves— github.com.
https://github.com/openenclave/openenclave. [Accessed 02-01-2024]. (2023).

[28] Shay Gueron. 2016. AMemory Encryption Engine Suitable for General Purpose Proces-
sors. Cryptology ePrint Archive, Paper 2016/204. https://eprint . iacr .org/2016/204.
(2016). https://eprint.iacr.org/2016/204.

[29] INNO-MAKER. [n. d.] Innomaker USB2CAN Device UserManual. Version 1.8. Retrieved
10/31/2023 from https://github.com/INNO-MAKER/usb2can/blob/master/Document
%EF%BC%88read%20me%20first%EF%BC%89/USB2CAN%20UserManual%20v.1.8
.pdf.

[30] 2022. INTEL-SA-00614— intel.com. https://www.intel.com/content/www/us/en/sec
urity-center/advisory/intel-sa-00614.html. [Accessed 09-01-2024]. (2022).

[31] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N Asokan, Andrew Simpson,
and Robin Ankele. 2016. Exploring the use of Intel SGX for securemany-party applica-
tions. In Proceedings of the 1st Workshop on System Software for Trusted Execution, pp. 1–
6.

[32] Sandeep Kumar, Abhisek Panda, and Smruti R Sarangi. 2022. A Comprehensive Bench-
mark Suite for Intel SGX. arXiv preprint arXiv:2205.06415.

[33] Nicolai Kuntze, Carsten Rudolph, Aaron Alva, Barbara Endicott-Popovsky, John Chris-
tiansen, and Thomas Kemmerich. 2012. On the creation of reliable digital evidence.
In Advances in Digital Forensics VIII: 8th IFIP WG 11.9 International Conference on Digital
Forensics, Pretoria, South Africa, January 3-5, 2012, Revised Selected Papers 8. Springer,
pp. 3–17.

[34] Systems Software & Security Lab. 2022. Home— sgx101.gitbook.io. https://sgx101.gitb
ook.io/sgx101/. [Accessed 30-12-2023]. (2022).

[35] Linux Kernel Organization. [n. d.] hidraw.txt. Retrieved 10/30/2023 from https://www
.kernel.org/doc/Documentation/hid/hidraw.txt.

[36] 2023. Mbed TLS — trustedfirmware.org. https://www.trustedfirmware.org/projects
/mbed-tls/. [Accessed 11-01-2024]. (2023).

[37] JohnMechalas. [n. d.] Intel® SGX DCAP Quick Install Guide. (). https://www.intel.com
/content/www/us/en/developer/articles/guide/intel-software-guard-extensions-da
ta-center-attestation-primitives-quick-install-guide.html.

[38] Rebecca T Mercuri and Peter G Neumann. 2003. Security by obscurity. Communications
of the ACM, 46, 11, 160.

[39] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer.
2018. Varys: Protecting {SGX} Enclaves from Practical {Side-Channel} Attacks. In 2018
Usenix Annual Technical Conference (USENIX ATC 18), pp. 227–240.

https://github.com/openenclave/openenclave
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://github.com/INNO-MAKER/usb2can/blob/master/Document%EF%BC%88read%20me%20first%EF%BC%89/USB2CAN%20UserManual%20v.1.8.pdf
https://github.com/INNO-MAKER/usb2can/blob/master/Document%EF%BC%88read%20me%20first%EF%BC%89/USB2CAN%20UserManual%20v.1.8.pdf
https://github.com/INNO-MAKER/usb2can/blob/master/Document%EF%BC%88read%20me%20first%EF%BC%89/USB2CAN%20UserManual%20v.1.8.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00614.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00614.html
https://sgx101.gitbook.io/sgx101/
https://sgx101.gitbook.io/sgx101/
https://www.kernel.org/doc/Documentation/hid/hidraw.txt
https://www.kernel.org/doc/Documentation/hid/hidraw.txt
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-software-guard-extensions-data-center-attestation-primitives-quick-install-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-software-guard-extensions-data-center-attestation-primitives-quick-install-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-software-guard-extensions-data-center-attestation-primitives-quick-install-guide.html

Bibliography 108

[40] Mark M Pollitt. 2007. An ad hoc review of digital forensic models. In Second Inter-
national Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE’07).
IEEE, pp. 43–54.

[41] 2023. PostgreSQL: Documentation— postgresql.org. https://www.postgresql.org/doc
s/. [Accessed 18-12-2023]. (2023).

[42] 2023. python-can 4.3.1 documentation — python-can.readthedocs.io. https://python
-can.readthedocs.io/en/stable/. [Accessed 16-12-2023]. (2023).

[43] 2023. Quality of Service settings 2014; ROS 2 Documentation: Rolling documentation
— docs.ros.org. https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Qualit
y-of-Service-Settings.html. [Accessed 16-12-2023]. (2023).

[44] 2023. Remote attestation | EGo— docs.edgeless.systems. https://docs.edgeless.syste
ms/ego/reference/attest. [Accessed 07-01-2024]. (2023).

[45] 2023. RIEGL VZ-400i. Retrieved 10/24/2023 from http://www.riegl.com/nc/products/t
errestrial-scanning/produktdetail/product/scanner/48/.

[46] 2023. ROS 2 Documentation 2014 ROS 2 Documentation: Humble documentation —
docs.ros.org. https://docs .ros .org/en/humble/index.html. [Accessed 16-12-2023].
(2023).

[47] Michael Schwarz, Samuel Weiser, Daniel Gruss, ClémentineMaurice, and StefanMan-
gard. 2020. Malware Guard Extension: abusing Intel SGX to conceal cache attacks. Cy-
bersecurity, 3, 1–20.

[48] Mick Seaman. 2023. 802.1AE:MAC Security (MACsec) |— 1.ieee802.org. https://1.ieee8
02.org/security/802-1ae/. [Accessed 09-02-2024]. (2023).

[49] 2016. SGX protected memory limit in SGX— community.intel.com. https://communit
y.intel.com/t5/Intel-Software-Guard-Extensions/SGX-protected-memory-limit-in
-SGX/td-p/1068817. [Accessed 08-01-2024]. (2016).

[50] Michal Sojka, Pavel Pı́ša, Martin Petera, Ondřej Špinka, and Zdeněk Hanzálek. 2010. A
comparison of Linux CAN drivers and their applications. In International Symposium on
Industrial Embedded System (SIES). IEEE, pp. 18–27.

[51] Alexander Sotirov,Marc Stevens, JacobAppelbaum,ArjenKLenstra,DavidMolnar,Dag
ArneOsvik, andBennedeWeger. 2008.MD5consideredharmful today, creating a rogue
CA certificate. In 25th Annual Chaos Communication Congress number CONF.

[52] 2015. Stanford Seminar - Intel Software Guard Extensions— youtube.com. https://ww
w.youtube.com/watch?v=mPT_vJrlHlg. [Accessed 05-01-2024]. (2015).

[53] John Tan. 2001. Forensic readiness. Cambridge, MA:@ Stake, 1.

[54] Julien Oberson Thomas Dewaele. 2021. TPM sniffing; Sec Team Blog— blog.scrt.ch. ht
tps://blog.scrt.ch/2021/11/15/tpm-sniffing/. [Accessed 28-12-2023]. (2021).

https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://python-can.readthedocs.io/en/stable/
https://python-can.readthedocs.io/en/stable/
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.edgeless.systems/ego/reference/attest
https://docs.edgeless.systems/ego/reference/attest
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
https://docs.ros.org/en/humble/index.html
https://1.ieee802.org/security/802-1ae/
https://1.ieee802.org/security/802-1ae/
https://community.intel.com/t5/Intel-Software-Guard-Extensions/SGX-protected-memory-limit-in-SGX/td-p/1068817
https://community.intel.com/t5/Intel-Software-Guard-Extensions/SGX-protected-memory-limit-in-SGX/td-p/1068817
https://community.intel.com/t5/Intel-Software-Guard-Extensions/SGX-protected-memory-limit-in-SGX/td-p/1068817
https://www.youtube.com/watch?v=mPT_vJrlHlg
https://www.youtube.com/watch?v=mPT_vJrlHlg
https://blog.scrt.ch/2021/11/15/tpm-sniffing/
https://blog.scrt.ch/2021/11/15/tpm-sniffing/

Bibliography 109

[55] 2024. three.js manual — threejs.org. https://threejs.org/manual/. [Accessed 29-01-
2024]. (2024).

[56] Jo VanBulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci, FrankPiessens,
Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Fore-
shadow: Extracting the keys to the intel {SGX} kingdom with transient {Out-of-Order}
execution. In 27th USENIX Security Symposium (USENIX Security 18), pp. 991–1008.

[57] Stephan van Schaik, Alex Seto, Thomas Yurek, AdamBatori, Bader AlBassam, Christina
Garman, Daniel Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom. 2022. Sok: Sgx.
fail: How stuff get exposed. (2022).

[58] Radu Velea, Casian Ciobanu, Florina Gurzau, and Victor-Valeriu Patriciu. 2017. Feature
Extraction andVisualization forNetwork PcapNgTraces. In 2017 21st International Con-
ference on Control Systems and Computer Science (CSCS), pp. 311–316. DOI: 10.1109/CSCS
.2017.49.

[59] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2421–2434.

[60] 2021. Will SGX be deprecated? Issue 760 intel/linux-sgx— github.com. https://github
.com/intel/linux-sgx/issues/760. [Accessed 28-01-2024]. (2021).

[61] 2023. Wireshark Developer 2019;s Guide—wireshark.org. https://www.wireshark.org
/docs/wsdg_html_chunked/. [Accessed 19-12-2023]. (2023).

[62] 2023. yubico. Retrieved 10/30/2023 from https://www.yubico.com/.

https://threejs.org/manual/
https://doi.org/10.1109/CSCS.2017.49
https://doi.org/10.1109/CSCS.2017.49
https://github.com/intel/linux-sgx/issues/760
https://github.com/intel/linux-sgx/issues/760
https://www.wireshark.org/docs/wsdg_html_chunked/
https://www.wireshark.org/docs/wsdg_html_chunked/
https://www.yubico.com/

Appendix A

sgx_default_qcnl.conf File

1 {
2 // *** ATTENTION : This file is in JSON format so the keys are case sensitive. Don't change

them.↪→
3

4 //PCCS server address
5 "pccs_url": "https://localhost:8081/sgx/certification/v4/"
6

7 // To accept insecure HTTPS certificate, set this option to false
8 ,"use_secure_cert": false
9

10 // You can use the Intel PCS or another PCCS to get quote verification collateral. Retrieval
of PCK↪→

11 // Certificates will always use the PCCS described in pccs_url. When collateral_service is
not defined, both↪→

12 // PCK Certs and verification collateral will be retrieved using pccs_url
13 //,"collateral_service": "https://api.trustedservices.intel.com/sgx/certification/v4/"
14

15 // If you use a PCCS service to get the quote verification collateral, you can specify which
PCCS API version is to be used.↪→

16 // The legacy 3.0 API will return CRLs in HEX encoded DER format and the
sgx_ql_qve_collateral_t.version will be set to 3.0, while↪→

17 // the new 3.1 API will return raw DER format and the sgx_ql_qve_collateral_t.version will be
set to 3.1. The pccs_api_version↪→

18 // setting is ignored if collateral_service is set to the Intel PCS. In this case, the
pccs_api_version is forced to be 3.1↪→

19 // internally. Currently, only values of 3.0 and 3.1 are valid. Note, if you set this to
3.1, the PCCS use to retrieve↪→

20 // verification collateral must support the new 3.1 APIs.
21 //,"pccs_api_version": "3.1"
22 // Maximum retry times for QCNL. If RETRY is not defined or set to 0, no retry will be

performed.↪→

110

Appendix A sgx_default_qcnl.conf File 111

23 // It will first wait one second and then for all forthcoming retries it will double the
waiting time.↪→

24 // By using retry_delay you disable this exponential backoff algorithm
25 ,"retry_times": 6
26

27 // Sleep this amount of seconds before each retry when a transfer has failed with a transient
error↪→

28 ,"retry_delay": 10
29

30 // If local_pck_url is defined, the QCNL will try to retrieve PCK cert chain from
local_pck_url first,↪→

31 // and failover to pccs_url as in legacy mode.
32 //,"local_pck_url": "http://localhost:8081/sgx/certification/v4/"
33

34 // If local_pck_url is not defined, set pck_cache_expire_hours to a none-zero value will
enable local cache.↪→

35 // The PCK certificates will be cached in memory and then to the disk drive.
36 // ===== Important: Once the local cache files are created, currently there is no other way

to clean them other↪→
37 // than to delete them manually, or wait for them to expire after

"pck_cache_expire_hours" hours.↪→
38 // To delete the cache files manually, go to these foders:
39 // Linux : $AZDCAP_CACHE, $XDG_CACHE_HOME, $HOME, $TMPDIR, /tmp/
40 // Windows : $AZDCAP_CACHE, $LOCALAPPDATA\..\..\LocalLow
41 // If there is a folder called .dcap-qcnl, delete it. Restart the service

after all cache↪→
42 // folders were deleted. The same method applies to

"verify_collateral_cache_expire_hours"↪→
43 ,"pck_cache_expire_hours": 168
44

45 // To set cache expire time for quote verification collateral in hours
46 // See the above comment for pck_cache_expire_hours for more information on the local cache.
47 ,"verify_collateral_cache_expire_hours": 168
48

49 // When the "local_cache_only" parameter is set to true, the QPL/QCNL will exclusively use
PCK certificates↪→

50 // from local cache files and will not request any PCK certificates from service providers,
whether local or remote.↪→

51 // To ensure that the PCK cache is available for use, an administrator must pre-populate the
cache folders with↪→

52 // the appropriate cache files. To generate these cache files for specific platforms, the
administrator can use↪→

53 // the PCCS admin tool. Once the cache files are generated, the administrator must distribute
them to each platform↪→

Appendix A sgx_default_qcnl.conf File 112

54 // that requires provisioning.
55 ,"local_cache_only": false
56

57 // You can add custom request headers and parameters to the get certificate API.
58 // But the default PCCS implementation just ignores them.
59 //,"custom_request_options" : {
60 // "get_cert" : {
61 // "headers": {
62 // "head1": "value1"
63 // },
64 // "params": {
65 // "param1": "value1",
66 // "param2": "value2"
67 // }
68 // }
69 //}
70 }

Listing A.1: Modified configuration file ”/etc/sgx_default_qcnl.conf” which the demonstra-
tor application requires for the remote attestation.[44]

	Abstract
	Kurzfassung
	Acknowledgement
	Eidesstattliche Erklärung/ Affidavit
	Contents
	Introduction
	Motivation
	Objectives and Approach
	Collecting Forensic Evidence
	Storing Forensic Evidence
	Securely Processing Forensic Data in the Cloud

	System Design
	Outline
	System under Examination
	Use-Cases

	INFRASPEC - Components
	Robot
	Vz-400i (Laser Scanner)
	Robot Arm
	IR-Camera
	ROS2 (Robot Operating System)
	Base-Station

	Forensic Evidence Collection System
	Components
	Interaction between Components

	Preservation of Forensic Evidence
	Security Requirements
	YubiKeys
	Signing Service
	Forensic Base-Station
	Setup
	Data Verification
	Data Storage

	Test
	Observations

	Data Collection
	Forensic Readiness of Data
	Data Sources
	CAN Bus
	ROS2 Messages
	Network

	Collection Methods
	CAN Bus
	ROS2 Message Collector
	Network Traffic Collector

	Visualization of Data

	Data Processing
	Outline
	SGX - Software Guard Extensions
	Use Cases

	Confidential Computing
	Definitions
	Hardware vs Software TEEs
	CCC Threat Model

	SGX Enclaves
	Example Application
	O-Calls and E-Calls

	SGX Attestation
	Local-Attestation
	Remote-Attestation

	SGX Security
	Memory Limits
	Exploits and Vulnerabilities

	SGX Frameworks
	Intel SGX
	Asylo
	Openenclave
	Mystikos
	Edgeless RT
	EGo

	Processing Forensic Data in the Cloud
	Security Requirements
	Implementation
	Running the Demonstrator

	Conclusion and Outlook
	Forensic Data Collection and Storage
	Confidential Computing
	SGX

	Further Work
	Solving the Key Deletion Problem using SGX

	Bibliography
	sgx_default_qcnl.conf File

