

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Submitted by

Kai Knabl, BSc (k1457305)

Submitted at

Institute of Networks and

Security - JKU

Supervisor

Assoz.Prof.Mag.Dipl.-Ing.

Dr. Michael Sonntag

Co-Supervisor

Assoz.Prof.Dipl.-Ing. Dr.

Karin Anna Hummel

June 2020

Design,

Implementation and

Evaluation of a Mobile

Security Scanner App

for Smart Home Users

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

 Kai Knabl 2/79

Table of Contents

1. Introduction ... 7

2. Related Work .. 9

2.1 Related Scientific Work ... 9

2.2 Other Mobile Network Scanner Applications .. 11

2.3 Own IoT Security Related Work... 12

2.3.1 First IoT Scanner App ... 12

2.3.2 Extensions of the First IoT Scanner App ... 14

3. Background and Design .. 15

3.1 Vulnerabilities .. 15

3.1.1 Overview and Rating of IoT Vulnerabilities ... 16

3.1.2 Covered Vulnerabilities ... 17

3.1.3 Not Covered Vulnerabilities .. 18

3.2 Network Visualizations .. 20

3.2.1 Visualization Possibilities and Related Work ... 20

3.2.2 Selected Visualization ... 22

3.3 Traffic-Light Scheme and Security States .. 23

3.4 Historical Data and Visualization ... 24

3.4.1 Commonly Used Chart Types in Network Security Related Applications 24

3.4.2 Selected Chart Types ... 25

4. Implementation ... 25

4.1 System Architecture: General Structure of the Application... 25

4.1.1 Platform .. 25

4.1.2 User Interface ... 26

4.1.3 Storing Network and Device Information ... 27

4.1.4 History .. 29

4.1.5 Multi-Threading ... 30

4.1.6 Used Libraries .. 30

4.2 User Interface .. 31

4.2.1 UI Components and Navigation .. 31

4.2.2 Uses of the Traffic-Light and Security State Scheme .. 32

4.2.3 General UI Areas .. 32

4.2.4 Network Specific UI Areas .. 34

4.2.5 Device Specific UI Areas .. 39

4.2.6 Usage of Fragments in the UI Context .. 46

4.3 Scanning Functionality .. 47

 Kai Knabl 3/79

4.3.1 Scan Modes ... 47

4.3.2 Device Detection .. 47

4.3.3 Device and Network Analysis ... 48

4.3.4 Security Scanning ... 48

4.3.5 Usage of Task-Fragments .. 52

4.3.6 Typical Scan Sequence .. 54

5. Evaluation ... 55

5.1 Functional Tests .. 55

5.1.1 Android Test Devices.. 55

5.1.2 Smart Home Devices .. 55

5.2 Usability Tests ... 58

5.2.1 Preliminary User Study ... 59

5.2.2 Main User Study ... 59

6. Summary .. 67

7. Appendix... 68

8. Abbreviations .. 71

9. References ... 73

 Kai Knabl 4/79

ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors Assoz.Prof.Mag.Dipl.-Ing. Dr. Michael

Sonntag from the Institute of Networks and Security and Assoz.Prof.Dipl.-Ing. Dr. Karin Anna

Hummel from the Institute of Telecooperation – both of them regularly provided essential input

and constructive feedback. Furthermore, their substantial patience throughout the entire course

of the project enabled me to create a thesis that I am personally content with.

I would also like to thank Ass.Prof.Mag. Dr. Elisabeth Kapsammer and a.Univ.-Prof.Mag. Dr.

Werner Retschitzegger from the Institute of Telecooperation, a.Univ.-Prof.Dipl.-Ing. Dr. Wolfram

Wöss from the Institute for Application Oriented Knowledge Processing, Univ.-Prof.Mag. Dr. Alois

Ferscha from the Institute of Pervasive Computing and Univ.-Prof. Dr. Gerhard Widmer from the

Institute of Computational Perception. They gave me the opportunity to present the user study –

which is an essential part of the thesis – in their courses.

Additionally, I would like to thank the numerous participants of the user study. Special appreciation

also goes to the persons that took part in the preliminary user study. Without the contributions of

all participants and their interest towards the project, an objective user experience evaluation of

the app that was created in the course of this thesis, would not have been possible.

Furthermore I would like to thank my grandfather Josef who has been an important role model for

as long as I can think, not least due to his light-hearted and courageous attitude towards life.

Finally I would like to express deep appreciation for my parents Karin and Klaus – their caring and

encouragement enabled and accompanied my entire academic development.

 Kai Knabl 5/79

Abstract

In recent years the growing utilization of a large variation of Internet of Things (IoT) devices in the

end-user domain has proven to provide an extensive and highly problematic attack surface. Very

often the devices in question utilize network services with easily accessible and poorly secured

authentication mechanisms, frequently making use of easy-to-guess standard credentials. In

numerous incidents adversaries were able to infect a high number of insecure IoT appliances with

malware. They could do so by scanning large portions of the Internet for appropriate devices and

by employing brute-force attacks to gain full access. Then cyber criminals mostly utilized the

hijacked devices to carry out devastating distributed denial of service (DDoS) attacks. It has

become increasingly difficult for end-users to keep track of the number of appliances in their home

networks, and in particular to make sure that each of these devices is secure.

The main-part of this thesis is therefore the implementation of a contemporary end-user oriented

solution for detecting security threats and explaining them to the user. Due to the widespread use

of mobile devices, the security scanner is implemented as a native and easy-to-use Android

application. By employing brute-force password-guessing techniques the app is able to detect if

File Transfer Protocol (FTP), Telnet, Secure Shell Protocol (SSH) and Hypertext Transfer Protocol

(HTTP) services are using standard authentication credentials. It can also detect Universal Plug

and Play (UPnP) profiles that weaken a device´s security-state.

To make the application easily understandable for users with different degrees of technical

knowledge, three application modes are introduced. An “Expert” mode lets more advanced users

display detailed device information. The other two modes are dedicated to users with less technical

knowledge. One of them reduces information which might be too complex or confusing for novice

users. The other mode is making use of a more novel approach, representing devices and inherent

vulnerabilities in an easily understandable graphical fashion. The app also provides a history

feature which enables users to keep track of changes across multiple network scans. The thesis

is concluded by an elaboration on the results of a user-study.

 Kai Knabl 6/79

Kurzfassung

In den letzten Jahren hat sich herausgestellt, dass der zunehmende Einsatz von verschiedensten

Internet of Things (IoT) Geräten im Endbenutzer Bereich, eine weitreichende und sehr

problematische Angriffsoberfläche darstellt. Die betroffenen Geräte nutzen sehr häufig Netzwerk

Dienste, welche einfach zugängliche und unzureichend gesicherte

Authentifizierungsmechanismen verwenden. Sehr häufig sind diesbezüglich einfach zu erratende

Standard Anmeldedaten im Einsatz. In zahlreichen Fällen konnten Angreifer große Mengen an

IoT Geräten mit Schad-Software infizieren. Derartige Angriffe konnten gelingen, indem größere

Teile des Internets gescannt und mittels der Durchführung von Brute-Force Angriffen der

vollständige Zugang zu entsprechenden Geräten ermöglicht wurde. Danach werden die infizierten

Geräte von Cyber Kriminellen meistens dazu verwendet um verheerende verteilte Denial of

Service (DDoS) Angriffe durchzuführen. Für Endbenutzer wird es zunehmend schwieriger den

Überblick über die Anzahl der Geräte in ihren Heim-Netzwerken, oder gar über Sicherheits

Probleme einzelner Geräte, zu bewahren.

Der Großteil dieser Arbeit erläutert daher die Umsetzung einer modernen, Endbenutzer-

orientierten Lösung mit der gängige IoT Sicherheitsprobleme aufgespürt und erklärt werden

können. Aufgrund der weiten Verbreitung von mobilen Endgeräten wird die Lösung in Form einer

nativen, einfach zu benutzenden Android Applikation implementiert. Anhand der Durchführung

von Brute-Force Techniken ist die App in der Lage herauszufinden ob File Transfer Protocol (FTP),

Telnet, Secure Shell Protocol (SSH) und Hypertext Transfer Protocol (HTTP) Dienste Standard

Authentifizierungsdaten verwenden. Weiters kann die Anwendung Universal Plug and Play

(UPnP) Profile erkennen, welche den Security-Status eines Geräts schwächen.

Um die Anwendung für Benutzer mit unterschiedlichem technischen Wissensstand möglichst

leicht verständlich zu gestalten, werden drei Anwendungsmodi eingeführt. Ein „Experten“-Modus

erlaubt es technisch versierteren Benutzern, Detailinformationen zu Geräten einzusehen. Die

anderen zwei Modi sind auf Benutzer mit geringeren technischen Kenntnissen ausgerichtet. Der

erste dieser Modi reduziert Informationen, die für Laien zu komplex oder verwirrend sein könnten.

Der zweite Modus stützt sich auf eine neuartige, einfach verständliche grafische Darstellung von

Geräten und Schwachstellen. Weiters bietet die App Historisierungs Funktionalität welche es

Benutzern erlaubt Änderungen über mehrere Netzwerk-Scans hinweg, nachzuverfolgen. Die

Arbeit wird mit Erläuterungen der Ergebnisse einer Benutzerstudie abgeschlossen.

 Kai Knabl 7/79

1. Introduction

Initially getting larger media attention in late 2016 with the Mirai malware incident [1], standard

network-devices such as printers, routers and Internet Protocol (IP) cameras have been misused

for creating large botnets. All of the devices were infected with malware via Telnet due to easy-to-

guess standard authentication credentials, provided by the manufacturers during production.

Those botnets were mainly used to run devastating DDoS attacks as seen with the attack on the

“Dyn” Domain Name System (DNS) provider on 21 October in 2016 [2].

However, with the emergence and increasing popularity of crypto currencies, said botnets have

also been utilized to perform crypto-mining activities [3]. Regarding the recent IoT trend it becomes

very obvious that a multitude of other, connected devices based on the TCP (Transmission Control

Protocol)/IP protocol stack, will be susceptible to similar attacks. IoT appliances that might be

problematic, once they are in wider use, include smart meters, smart fridges, various home

sensors and actuators or smart buildings.

In general as with many software projects, the inherent problems with applications running on IoT

devices can mostly be traced back to problematic development processes. In many cases, secure

coding practices and common security measures like regular code-reviews fall short, often due to

restrictions in terms of time and resources [4]. Therefore in many software development projects,

the main focus is put on the quick and inexpensive implementation of a functioning, stable and

easy-to-use application up to a certain deadline. The creation of a product like that, still tends to

be seen more economically viable than software that also employs sufficiently sustainable security

measures [5]. This often results in the release of products which – besides other security problems

– employ insecure authentication mechanisms. This is especially true for the use of standard-

passwords, which provide an uncomplicated but extremely insecure possibility to access a

device´s configuration [6]. On top of that, IoT vendors often support access protocols for the low-

level configuration of devices, such as Telnet or SSH. This might be useful for development

purposes and for certain device-types such as routers. However, for many device types – such as

IP cameras – the necessity of such functionality for the final product is questionable at best. Still,

device vendors often fail to remove unnecessary low-level configuration possibilities which make

use of easy-to-guess credentials, after development. This effectively results in backdoors within

shipped products.

To worsen the situation, appropriate regulations in the IoT sector are still not in place. Even if

device vendors would take security more serious in the near future, the problem persists with

vulnerable devices that are still in use. IoT vendors also often seem to lack the resources for

proper maintenance and patching procedures. This is especially true when a larger variety of IoT

gadgets was already sold and employed. From the consumers´ perspective, patching also leads

to system downtimes. End users and administrators often perceive the risk of service disruption

due to patching to be higher than due to a cybersecurity incident. The result is that even if there

are patches available, consumers might apply them in bulk and at sporadic intervals. Sustainable

patching activities for devices in the IoT domain have therefore proven to be challenging tasks –

from both the vendor and the consumer perspective [7].

Furthermore internal networks behind Network Address Translation (NAT) are often viewed as

secure – many people don’t see the need to properly configure the services of devices which are

not directly accessible from the Internet.

 Kai Knabl 8/79

However, examples for malware do exist that do not directly attack an infected device but other

devices within the same network. The “Switcher” Android malware for instance, does not directly

target the user of an infected smartphone but rather the wireless network that the phone is

connected to. The malware does so by brute-forcing access to the corresponding router and

subsequently changing its settings to make use of a rogue DNS server controlled by the attacker.

The rogue DNS server can then resolve the domain names of benign services to IP addresses of

malicious services such as web sites containing phishing pages or malware. This effectively

means that a single infected smartphone could result in a tremendous security risk for all other

devices connected to the same access point – in cases where the corresponding router is making

use of standard credentials [8].

Research Questions

The research questions for the thesis are formulated as follows:

1. How to design and implement a contemporary application for enumerating network devices

and for detecting and explaining common IoT security issues?

2. How to make the application appropriately usable for end-users with different levels of

technical knowledge?

Due to the widespread use of mobile applications in the end-user domain, the decision is made to

implement the solution as a native Android application. The intention of the app which is created

in the course of this thesis is to help users to detect security risks and solve problems before any

of the afore-mentioned scenarios can occur. The application should not search for device-specific

exploits as those problems can often only be fixed by patches from the vendor. Instead the

application should try to uncover more general problems that apply to a large number of devices

and that the user is more likely to be able to solve by him/herself. By employing brute-force

approaches the solution should be able to detect the use of standard credentials in the

authentication of HTTP, Telnet, SSH or FTP services. Those services are chosen because their

common use in combination with standard credentials has proven to be one of the biggest IoT

security threats. The app should also able to detect several UPnP profiles which have proven to

introduce security problems.

After getting informed about the number and security state of the devices in their home networks,

users should then be able to take appropriate actions to solve the problems found with reasonable

effort. Mitigations suggested by the app are changing user credentials or disabling corresponding

services. It is also mentioned that the user might take the device offline entirely, which might be

viable in certain scenarios. The number of devices in home networks is steadily growing, making

it increasingly harder to keep track of the number of connected devices. Because of this, there

might even be usage scenarios where problematic devices are discovered that the user does not

need anymore and has forgotten about. In those cases simply taking the affected devices offline

entirely, would mitigate the problem.

For making the app appealing to users with more technical knowledge, as well as users with limited

technical knowledge, different application modes are introduced and studied with respect to their

effect on user performance and user acceptance.

• Expert Mode: This mode is targeted towards technically experienced users and displays

all the information that the app is able to gather regarding networks, devices and

vulnerabilities.

 Kai Knabl 9/79

• Normal 1 Mode: This mode is targeted towards technically inexperienced users and is

mainly reducing information which could be considered too complex, such as IP- or Media

Access Control (MAC)-addresses.

• Normal 2 Mode: This mode is also targeted towards novice users but offers a graphical

visualization of networks and inherent vulnerabilities. A graphical network representation

is chosen to provide a novel, visual and more intuitive alternative to just textually listing

devices.

To make changes in networks and individual devices visible over time, a dedicated history feature

should be implemented within the app. Every time a scan on an entire network or a scan of an

individual device takes place, snapshots of the corresponding devices are created. The data are

then visualized via three different timeline charts, based on the selected application mode. This

enables users to draw important conclusions from multiple scans over time.

For being able to objectively determine the user experience of persons interacting with the

application, a usability study with a total of 30 test-users is conducted. The study experiment

consists of three different tasks that the participants have to solve by using the app. In addition,

the test users are asked to rate their experience with the app along well-known user experience

properties. One major goal is to compare the users´ interactions regarding the three different

modes of the application, which are briefly described above.

2. Related Work

In the following sections related scientific work and other applications are described, which provide

functionality similar to that of the project created in the course of this thesis. In one sub-chapter

an application created by the author of this thesis is described. It served as prototype and basis

for the current implementation of the IoT Scanner App.

2.1 Related Scientific Work

Related to this work is a publication by Ruth M. Ogunnaike and Brent Lagesse [9]. Their paper is

discussing the requirements and implementation of an IoT architectural framework based on

Software Defined Networking (SDN) which should enable consumer-friendly security in smart

environments. In this system IoT devices are scanned for security problems by using custom

vulnerability scanners and penetration testing tools before being allowed to communicate with

other devices. Custom vulnerability scanners include programs that detect common usernames

and passwords. In cases where the use of weak/default credentials is detected, the system

automatically changes the password to a secure one and sends it to the user via email. The

solution described in this paper requires a software setup running on a virtual machine. The paper

also states that while a SDN was used for its ease of deployment and testing, it would be possible

to create a similar system using traditional routers. While the scanning for default credentials

described in the paper is also similar to the approach described in this thesis, the

software/hardware setup is clearly not targeted towards a mobile solution. However, this thesis

specifically targets a mobile solution mainly for usability reasons.

A paper by Gudrun Jonsdottir et al. [10] also describes a non-mobile system called “IoT Network

Monitor” which provides a user friendly interface for consumers to visualize vulnerabilities of IoT

devices in their homes. The system runs on a Raspberry Pi device configured as a router and

supports several network-security related operations.

 Kai Knabl 10/79

It performs deep packet analysis for detecting the transmission of potentially sensitive personal

information in cleartext. The solution is also able to detect botnet traffic originating from IoT devices

connected to the network. Lastly, the IoT Network Monitor detects devices with default passwords

that might be exploited by attacks such as the Mirai botnet. This again is similar to the functionality

used in the project that is described in this thesis. The program then also changes default device

passwords to randomly generated strings and reports the new passwords to the user.

Another approach for an IoT vulnerability scanning system is proposed by Yu-rui SU et al. [11].

The system consists of several components including a traffic sniffer, an IoT vulnerability scanning

server and a web visualization terminal. Therefore the proposed architecture is also clearly not

meant to be implemented as a mobile solution. However, the paper describes a feature that is

able to detect the use of default credentials for the access of a device´s web-based management

interface. This functionality appears to be similar to the HTTP authentication brute force

functionality that is implemented for the project described in this thesis.

It is important to note that all systems mentioned above are utilizing additional hardware that would

need to be installed in a user´s home network. Those setups have the considerable advantage

that the network can be constantly monitored and checked for anomalous traffic, attacks,

vulnerabilities and new or missing devices. It becomes very apparent that systems which utilize

dedicated hardware, are far more adequate for providing an overall security-monitoring solution

when compared to network scanner applications that run on mobile devices. For one thing, mobile

apps are problematic in terms of constant network monitoring, as the device that runs the app

might frequently get disconnected from the network. The device might often also get powered off,

not least due to low battery times. Secondly, full access to low level network-traffic is often harder

to obtain on mobile devices due to platform restrictions. On Android systems for instance it is only

possible to fully gather all incoming traffic by enabling the “promiscuous mode” of the device´s Wi-

Fi adapter. However, it is only possible to enable this mode with root user rights. For security

reasons most off-the-shelf Android consumer devices are utilizing just regular user accounts with

restricted rights. This means that users would first have to put additional effort into rooting their

device in order to make use of apps that utilize more advanced networking features. Expecting

users with limited technical knowledge to have the abilities and the will to do this, does not seem

reasonable.

However, when considering the recent increase in the distribution of insecure IoT consumer

devices – many of which make use of standard authentication credentials – one might come to

the following conclusion: While dedicated security hardware allows more sophisticated

vulnerability detection, the use of a mobile app that helps users to quickly detect at least the most

severe security problems is still viable. This is especially true regarding the home-networks of end-

users, not least due to the following additional reasons. One of the biggest advantages of an app

that runs on a non-rooted Android device over a solution that requires a dedicated hardware

appliance is the considerably easier procurement and the low configuration effort for users. Many

people already are in possession of one or more mobile Android devices that are connected to

their home network. This means that a person could simply download the app from the Google

Play Store, run it and perform a first scan. By doing so the user can quickly get an overview on

the devices in their network and can reveal severe vulnerabilities such as the use of standard

authentication credentials. Besides the easy distribution of the app, the utilization of Google

infrastructure provides further advantages such as the considerably easy detection of bugs in the

app and the roll-out of fixes or new features.

 Kai Knabl 11/79

Another obvious advantage of a mobile solution is the fact that the app might easily be used on

different networks. Granted that the user has permission to do so, scans on someone else´s

network might help the owner to detect and fix vulnerabilities.

2.2 Other Mobile Network Scanner Applications

Among the most related applications, is the Zanti Diagnostic Pentesting app which is able to

perform a range of detailed network scans and vulnerability tests, due to the internal use of the

Network Mapper (Nmap) and Metasploit projects. The app includes functionality such as traffic

hijacking or man-in-the-middle attacks and enables the user to perform password audits on

individual devices or to manually select exploits that in turn might be executed on a target device.

Users require more advanced knowledge on those topics in order to successfully use the Zanti

app. This is the reason why it can be considered an expert tool. Moreover, the app can only be

used to full extent on a rooted Android device [12].

Another related application is a very popular, free network scanner called Fing which displays lots

of network-information including IP, MAC and host name. Overall the Fing app detects devices

quickly and reliably and convinces with its thoughtfully crafted user interface. It also automatically

saves scan-results, marks missing devices and provides a basic scan-timeline for individual

devices. During recent updates, the developers even included a feature that lets users edit the

appearance of device and network lists (“Standard”, “Simplified” and “Technical”). Those modes

differ in terms of the presented information which is quite similar to the functionality of the “Expert”

and “Normal 1” modes described in this paper. However, Fing does not provide a graphical

network representation (“Normal 2” – mode) and also offers no timeline for entire networks and

services for individual devices. Furthermore the app´s device history entries are merely listed

textually. The app described in this paper on the other hand, makes use of a visual approach by

introducing three different history-chart types. Fing also lacks functionality in reliable port scanning

and does not detect any security related aspects, such as weak passwords [13].

Several other “general” network scanners, that don’t claim to detect security issues, have been

tested, including ezNetScan [14] and Net scan [15]. Both show deficiencies in reliability, possible

network scan-range or displaying sufficient device-information.

The “Dojo by Bullguard” application is primarily meant to be used alongside a dedicated hardware

appliance, which is directly integrated into home networks. The vendor claims that the product is

able to “protect all of the user´s connected home devices from malware, viruses and any cyber

attacks”. The app on its own is able to detect network devices and to subsequently scan devices

for open ports. After detecting an open port the app assigns a severity level and provides a generic

message, which states that “open ports can be exploited by hackers and potentially enable them

to gain remote control over the device”. However, the app does not actually check the service for

insecure authentication – it merely detects that the corresponding standard port is open. The app

shows very limited additional device-information and does not provide a scan history [16].

Similarly, the “IoT Scanner” app by Kaspersky detects devices in home networks and scans for

open ports which might run security critical services. The publishers claim that the app is able to

detect weak or default logins on devices. This is not true – the app merely suggests that the user

should disable certain services, without actually checking any user credentials. The app informs

the user when new devices connect to a network.

 Kai Knabl 12/79

It does so in seemingly random intervals without providing any mapping from devices to networks.

The scanner also provides very little additional device information and has no history functionality

[17].

Another similar application is called “IoT Security”. Its publishers claim that the app is able to list

all devices in a network and reliably detect security problems and weak passwords. The app

supports IoT devices such as routers and IP cameras and also should provide instructions on how

to fix any found problems. However, the app provides insufficient device information and no

history. It also failed to detect any problems when used to scan networks, containing multiple

devices which make use of standard credentials for SSH and Telnet [18].

Another app meant to detect vulnerabilities in home-network devices is the IoPT (“Internet of

Protected Things”) scanner. Here a scan is performed in two steps. First device “fingerprints” are

created, containing information like open ports and running services. In a second step the app

tests devices for a range of potential vulnerabilities. The app´s description states that the software

is able to detect Server Message Block Protocol (SMB) vulnerabilities like “Eternal Blue” and the

“Double Pulsar” backdoor installations. Other examples include the “String Bleed” exploit, which

utilizes unauthorized Simple Network Management Protocol (SNMP) read/write and most recent

router authorization bypass vulnerabilities. However, most checked vulnerabilities seem to be very

specific which introduces issues as described in Section 3.1.3, including annoyingly long scan

times. On a positive note, this app – compared to most others that have been mentioned – actually

scans devices for actual problems. Yet, the used terminology definitely appears to be too technical

for end-users with non-technical backgrounds. Furthermore the app seems to only list devices that

could be successfully fingerprinted, meaning that a device provides at least one service which is

considered relevant enough for further investigation. On top of that devices are only identifiable

via their IP addresses. Scan-history functionality is not existing. The convenient use and

meaningful interpretation of vulnerabilities by non-expert users therefore seems questionable.

Furthermore, when tested with devices that contain insecure Telnet and SSH authentication the

app failed to detect any problems [19].

2.3 Own IoT Security Related Work

Own previous work on the IoT security topic includes the implementation of a very basic network

scanner created in the course of the Mobile Computing combined lecture in 2016. In the following

subsections elaborations on this prototype and how it is extended in the course of this thesis are

given – mostly regarding the deficiencies found in the related apps described in Section 2.2.

2.3.1 First IoT Scanner App

The app enables users to enumerate network devices and check them for obviously insecure

HTTP and Telnet authentication. Its code is used as a first experimentation prototype and basis

for the current implementation. The screenshots on Figures 1, 2, 3 and 4 illustrate the app´s UI

and functionality.

 Kai Knabl 13/79

Figure 2 – Device detection

Figure 4 – Results of the brute force
attacks

Figure 1 – Main screen

Figure 3 – Brute force on Telnet and/or
HTTP authentication

 Kai Knabl 14/79

2.3.2 Extensions of the First IoT Scanner App

The app that is created in the course of this thesis is introducing new functionality or is significantly

improving multiple features that are insufficiently implemented in the first prototype and in most

comparable apps listed in Section 2.2.

Application Modes for Adapting the App to Fit the User´s Technical Knowledge

The first prototype of the IoT Scanner App and other apps are mostly either too technical or provide

too little information on devices/vulnerabilities. The second prototype solves this disparity by

introducing different application modes. An “Expert” mode, a “Normal 1” mode and a “Normal 2”

mode. This makes it possible to easily adapt the app´s availability of functionality and presentation

of information appropriate to the user´s level of technical knowledge. The Expert mode provides

detailed information on networks and devices and retains all of the app´s functionality such as the

possibility to perform extended port-scans on individual devices. Both Normal modes remove

functionality and hide or re-name information that might be considered too complex or confusing

for users with limited technical knowledge.

Graphical Network and Vulnerability Visualization

The second prototype´s Expert and Normal 1 modes that were mentioned in the last section as

well as the first prototype and all other comparable apps that are described in Section 2.2 are

merely textually listing a network´s devices. Here the second prototype´s Normal 2 mode

introduces an innovative feature by providing a carefully constructed, interactive graphical

visualization of devices in a network and inherent vulnerabilities. Furthermore the visualization is

specifically designed to be well understood by non-expert users.

History Functionality

The first prototype and most comparable apps are completely missing scan-history functionality –

an important feature which makes it possible to keep track of a network´s development over time

and for comparing individual scans. This is especially true for security-related information,

regarding important questions such as:

• When did the scan take place where a specific device was first detected in a network?

• When did the scan take place that first revealed a security-problem with a specific device?

• When did the scan take place that first revealed that a security problem is not existing

anymore with a specific device?

The implementation described in this thesis enables users to easily answer those questions by

providing three different, interactive history charts which are based on snapshots that are created

for each scan. These charts allow users to drill-down on snapshots of entire networks or to go

even further by drilling down on snapshots of individual devices within that network. This enables

users to track changes over time on a very granular level, including detailed information on found

vulnerabilities.

 Kai Knabl 15/79

Improved Information Gathering on Networks and Devices

The first prototype as well as many comparable apps generally provide very limited information on

individual networks and devices. Some apps only provide a network´s Service Set Identifier (SSID)

and make individual devices identifiable by only their IP and MAC addresses for instance. The

second prototype however, automatically extracts additional data such as Internet provider

information if the network´s router is connected to the Internet. For individual devices the app tries

to extract data such as the MAC-vendor, Netbios name, host name, UPnP information and SNMP

information. This approach not only provides additional, potentially interesting data for technically

advanced users but also helps novice users to easier identify individual devices. The afore-

mentioned additional data often contains human-readable information that can be understood

considerably better compared to primarily technical identifiers such as IP or MAC addresses.

Scanning for Weak Authentication in Common Network Services

The first prototype described in Section 2.3.1 already provided reliable functionality for detecting

whether HTTP and Telnet authentication uses standard credentials. It is worth mentioning, that

most of the comparable apps from Section 2.2 do not even attempt to detect weak authentication

in common services such as HTTP, Telnet, SSH or FTP. Some of those apps detect the use of

those services by performing port-scans. But then instead of actually testing those services for

weak authentication via brute force – like the second prototype does – the other apps merely

display warnings that those services might be attacked by adversaries.

Different Modes for Controlling Scan Behavior

In order to give the user better control over scans on entire networks, the second prototype

provides three different scan modes which differ in the kind of tests that are automatically

performed on devices after they were detected. This for instance provides the possibility to disable

port- or vulnerability-scanning which might be interesting for scenarios where the user just requires

a regular network scanner. This might be useful for cases where the user is merely interested in

which devices are online or where the user does not want to perform aggressive tests on all

devices of a network. After such a regular scan it is still possible to perform extended port- or

vulnerability scans on individual devices. The first prototype already supports some level of control

by providing the possibility to exclude services from vulnerability scans. However, the apps from

Section 2.2 that claim to perform vulnerability scans on all devices of a network are not providing

any means to control what kind of scanning actually takes place.

3. Background and Design

In the following subsections elaborations are given on the reasoning and theoretical background

behind decisions that are made regarding important parts of this project.

3.1 Vulnerabilities

In the subsequent sections an overview is provided on prominent IoT security issues and their

severity ratings. Reasons are given why some vulnerability types are chosen to be addressed

within the application while other types aren’t.

 Kai Knabl 16/79

3.1.1 Overview and Rating of IoT Vulnerabilities

The Open Web Application Security Project (OWASP) organization known for numerous web

application security projects and guidelines started an Internet of Things project in 2014. Similar

to its renowned web application vulnerability top 10 lists, OWASP also released two IoT

vulnerability top 10 lists so far. The project team responsible for the lists consisted of volunteer

professionals from within the security industry, with experience spanning multiple areas of

expertise, including manufacturers, consultants, security testers, developers and more. Table 1

shows the most recent list which has been released in 2018. The ranking reflects the most actual

impact and damage caused by individual issues [20].

Rank Title Description

1 Weak, Guessable, or

Hardcoded Passwords

Use of easily bruteforced, publicly available, or unchangeable

credentials, including backdoors in firmware or client software that

grants unauthorized access to deployed systems.

2 Insecure Network Services Unneeded or insecure network services running on the device itself,

especially those exposed to the Internet that compromise the

confidentiality, integrity/authenticity, or availability of information or

allow unauthorized remote control.

3 Insecure Ecosystem

Interfaces

Insecure web, backend Application Programming Interface (API),

cloud, or mobile interfaces in the ecosystem outside of the device that

allows compromise of the device or its related components. Common

issues include a lack of authentication/authorization, lacking or weak

encryption, and a lack of input and output filtering.

4 Lack of Secure Update

Mechanism

Lack of ability to securely update the device. This includes lack of

firmware validation on device, lack of secure delivery (un-encrypted in

transit), lack of anti-rollback mechanisms, and lack of notifications of

security changes due to updates.

5 Use of Insecure or Outdated

Components

Use of deprecated or insecure software components/libraries that could

allow the device to be compromised. This includes insecure

customization of operating system platforms, and the use of third-party

software or hardware components from a compromised supply chain.

6 Insufficient Privacy

Protection

User’s personal information stored on the device or in the ecosystem

that is used insecurely, improperly, or without permission.

7 Insecure Data Transfer and

Storage

Lack of encryption or access control of sensitive data anywhere within

the ecosystem, including at rest, in transit, or during processing.

8 Lack of Device Management Lack of security support on devices deployed in production, including

asset management, update management, secure decommissioning,

systems monitoring, and response capabilities.

9 Insecure Default Settings Devices or systems shipped with insecure default settings or lack the

ability to make the system more secure by restricting operators from

modifying configurations.

10 Lack of Physical Hardening Lack of physical hardening measures, allowing potential attackers to

gain sensitive information that can help in a future remote attack or take

local control of the device.

Table 1 – OWASP top 10 IoT vulnerability list [20]

 Kai Knabl 17/79

Other institutions besides OWASP also confirm that brute force attacks on authentication

mechanisms (number 1 issue in Table 1) by far still seem to be the most prominent attack vector

for infecting IoT devices with malware. Kaspersky lab has published an article which states that in

the second quarter of 2018 over 75.40% of infection attempts on their research-honeypots were

conducted by brute-forcing the authentication of Telnet services. 11.59% of all attack attempts

were made against the SSH service. Only 13.01% of all attacks made use of other attack vectors

[21].

An article from F5 Labs, regarding their research on the most commonly attacked services in IoT

devices, describes different – but equally relevant – results. Instead of Telnet the article states

that brute force attacks are the global number one attack type on IoT, followed by HTTP. In F5

labs´ research, attacks on Telnet are found to be on the third place. They state that the reason for

this might be the shift to SSH for remote administration of devices [22].

3.1.2 Covered Vulnerabilities

Based on the OWASP vulnerability list described in Section 3.1.1, vulnerabilities are selected

along two considerations. Firstly, the attempt is made to only cover relevant issues which can be

programmatically detected with a mobile solution within reasonable time and effort. Secondly, one

of the major goals of the project is to create a solution which reveals problems that end-users can

solve themselves, shortly after detection. This requirement is therefore also taken into account

when selecting vulnerabilities to be covered in the project. It is assumed that generally even users

with limited technical knowledge will be able to change authentication credentials or look for

device-settings that let them disable services. To help users in understanding respective problems

and services, the app provides brief explanations and additional links to online resources.

Weak, Guessable or Hardcoded Passwords

The OWASP IoT project´s top 10 list as well as the research of Kaspersky and F5 Labs are

underlining the importance of securing authentication mechanisms against a multitude of threats,

including numerous malware variants. The application created in the course of this thesis helps to

quickly and reliably detect the use of standard credentials for services prominent with many IoT

devices:

• Telnet and SSH authentication are chosen to be covered because they are actively

exploited by IoT malware on a large scale.

• HTTP is chosen to be covered because it is generally very frequently used for the

configuration web-interfaces of network devices.

• FTP is chosen to be covered because it is the most prominent service for file

upload/download, which – if not properly secured – can result in a significant security risk.

If the respective service is making use of standard authentication credentials, an attacker in many

cases might gain control over the device by employing simple brute force attacks. In terms of

severity, weak authentication for Telnet and SSH services is generally viewed more severe than

weak authentication for HTTP and FTP services. This is because Telnet and SSH access grants

the attacker full control over the device in most cases. Gaining the same control over a device via

its web configuration interface (HTTP) or via FTP (file upload / download) may often require some

additional exploitation steps or might not be possible at all.

 Kai Knabl 18/79

The check for standard authentication credentials is directly addressing the rank 1 security issue

of the most recent OWASP IoT top 10 list as described in Section 3.1.1. It should also be noted

that the two most prominent problems in the previous top 10 list released in 2014 are described

as “Insecure Web Interface” and “Insufficient Authentication/Authorization” [23]. Both issues are

partly addressed by the aforementioned functionality: Detection of weak authentication in Web

Interfaces via HTTP and detection of insufficient authentication due to standard credentials in

Telnet, SSH and FTP.

Insecure Network Services

With the app, users can determine if UPnP is active on a device and whether problematic profiles

are used (“LANHostConfigManagement”, “WANIPConnection” and “WANPPPConnection”). This

functionality is considering the rank 2 issue of the most recent OWASP top 10 list. The UPnP

profile detection is included because of the following reasons:

1. The UPnP service is frequently used in IoT devices (especially routers).

2. UPnP has generally known to be problematic for a long time [24].

3. The service is often directly accessible from the Internet.

4. UPnP can often be disabled via a device´s web configuration interface, which means that

the user can take care of the problem him/herself.

3.1.3 Not Covered Vulnerabilities

Searching for other issues described in the OWASP IoT vulnerability list (Section 3.1.1) – besides

authentication vulnerabilities and potentially problematic UPnP profiles – proves to not be viable,

for multiple reasons. In general, providing a high coverage of specific vulnerabilities does not scale

as the number of different devices is steadily increasing. Additionally, testing a possibly large

number of devices for many potential problems would in most cases result in disproportionally

long durations for network scans to complete. By introducing excessively long scan times, the

app´s user experience would suffer. As stated in Section 3.1.2, a major goal of the project is to

reveal problems that users can solve themselves. More specific problems would often only be

fixable by patches from the vendor or by applying workarounds that require considerably more

effort and technical knowledge. Providing notifications about those kinds of problems would

undoubtably have informational value. However, in terms of encouraging users with little technical

knowledge to increase the security in their home networks themselves, the practical value of such

information would be rather limited. In detail, the following vulnerabilities are not covered in this

thesis' project.

Weak, Guessable or Hardcoded Passwords (Other than Telnet, SSH, HTTP and FTP)

Other services that require authentication are generally not as common as the four covered ones

and can often be considered rather specific. Trying to attack more specific services upon detection

would result in increased scan durations, even though there is less chance of finding standard

credentials. Regarding the studies described in Section 3.1.1 it also becomes obvious that for IoT

devices, authentication mechanisms of other services are not attacked as frequently. This means

that brute-forcing Telnet and SSH authentication is generally seen as one of the most viable attack

vectors, by malware authors.

 Kai Knabl 19/79

Insecure Network Services (Other than UPnP)

Besides insecure authentication, network services might be susceptible to a large variety of other

security problems. UPnP was specifically chosen to be covered due to its potentially negative

security impact, its frequent use in all kinds of network devices and because the service is

frequently accessible via the Internet. Furthermore users can often disable UPnP on their devices,

meaning that they could easily fix the problem themselves in many cases. The combination of

those properties which makes UPnP relevant for this project is simply not found in other services.

This circumstance is the reason why the decision is made to not check other network services for

security problems.

Insecure Ecosystem Interfaces

Trying to programmatically check the ecosystem outside of a device – such as web, backend API,

cloud or mobile interfaces – is not feasible within the boundaries of this project, for obvious

reasons. In order to implement such functionality, an enormous collection with information

regarding all kinds of specific device-types and their fingerprints, together with their potential

ecosystem interfaces would be necessary. Then additional data would have to be available which

somehow describes a multitude of potential security problems that may arise when a specific

device interacts with one of its ecosystem interfaces in one way or another. This kind of

functionality implicates seemingly limitless complexity. However, it might be possible to detect

lacking or weak encryption of a device´s network communication. For instance, detecting

unencrypted traffic is possible without the necessity to possess detailed information about

individual devices and their interactions with certain interfaces. However, this again is only

possible by inspecting the device´s outgoing and incoming traffic – something that requires

systems such as the ones described in Section 2.1.

Lack of Secure Update Mechanism

Similar to the previous issue it is not feasible to try to programmatically check whether a device

can be securely updated or not. Trying to examine the points mentioned in the description of this

issue from a blackbox perspective for a large amount of different device-types would also implicate

seemingly limitless complexity. However, as mentioned in the previous issue, the general

detection of unencrypted traffic with systems described in Section 2.1 could also lead to

conclusions about whether or not updates get encrypted during delivery.

Use of Insecure or Outdated Components

This issue considers the security of a device´s system-internal software components. Trying to

programmatically test devices for such specific vulnerabilities would imply in-depth knowledge of

a great number of different devices, which is beyond the scope of this thesis.

Insufficient Privacy Protection

Issues of this kind are very specific to a device and its ecosystem and would be extremely hard to

programmatically detect on a general level from a blackbox perspective. The fact that those kind

of issues also consider the security of the device´s ecosystem, implies almost limitless complexity.

 Kai Knabl 20/79

Insecure Data Transfer and Storage

This issue considers the lack of encryption or access control of sensitive data anywhere within the

ecosystem. While this is very hard to detect from a blackbox perspective for data that is at rest or

during processing, it might be possible to detect unencrypted data in transit with systems

described in Section 2.1.

Lack of Device Management

This issue describes primarily organizational problems. Trying to detect those problems

programmatically from a blackbox perspective for a wide range of devices would not make any

sense whatsoever.

Insecure Default Settings

Issues regarding default settings – besides the detection of default authentication credentials –

are very device specific and therefore very hard to programmatically detect for a wide array of

different devices.

Lack of Physical Hardening

Security problems of this kind are primarily based on the device´s physical features and cannot

be programmatically detected from a blackbox perspective. An example for such issue could be a

device that provides a USB socket, through which an attacker could locally supply malicious code.

3.2 Network Visualizations

In the following sections possibilities are mentioned for visualizing a computer network including

security relevant information. Furthermore the selected visualization for the app´s graphical mode

is discussed.

3.2.1 Visualization Possibilities and Related Work

The most natural visualization types for displaying computer networks generally seem to be force-

directed graph layouts. This is concluded by multiple publications dedicated to visualizing

computer network topologies and network traffic which are making use of this graph layout.

Examples include the master thesis of Pauline Gomér and Jon-Erik Johnzon [25] and papers by

Matthew Dean and Lucas Vespa [26], Roberto Tamassia et al. [27] and Florian Mansmann et al.

[28]. Yarden Livnat et al. [29] suggest a sophisticated, alternative approach. It combines a force-

directed graph layout with radial visualizations in order to display what security events were

triggered for which device at a certain time. All visualizations displayed in the aforementioned

papers are either too complex for novice users or lack visual appeal. This essentially makes them

unsuitable for a solution that is primarily targeted towards novice end-users with limited technical

knowledge.

 Kai Knabl 21/79

Finally, work of Philip A. Legg [30] describes network visualizations that are simple, appealing and

specifically targeted towards novice users. Due to the considerable relevance of those

requirements in the network representation of the own app´s graphical mode, the paper is

described in reasonable detail. This work describes a system which makes use of easily

understandable graphical visualizations for network traffic. One of the main goals of the project is

to increase the awareness of Non Expert Users (“NEUs”) towards suspicious traffic in their home

networks. The visualization makes use of a graph layout, created with the D3 JavaScript library.

It depicts devices as nodes in circular shape and connections between devices as directed edges.

Ports are displayed as smaller circles which are concentrically positioned around devices.

Additional visual channels like color, shape and size are used for depicting attributes such as

volume of activity (amount of sent data), communication between nodes and types of ports used

by a host, as seen in Figure 5.

The paper describes one case study where the system is utilized for visualizing the quantity of

secure and insecure communication between devices in a large home network (pink-colored

nodes) and external hosts (blue-colored nodes). Figure 6 shows a screenshot of the visualization

directly from the tool. The used home network consists of two iOS devices, two Android devices,

one Windows device, one Apple Mac and a router. For being able to visualize the security of

certain communication protocols, port colors are extended by a traffic light scheme. This scheme

makes use of the colors red, green and orange. The HTTP protocol (port 80), which is unencrypted

and therefore considered insecure, is represented by a red-colored circle. The Secure Hypertext

Transfer Protocol (HTTPS) (port 443), which is encrypted and therefore considered secure, is

represented by a green-colored circle. All other ports are colored orange, signaling uncertainty

regarding the level of communication-security.

Figure 5 – Device, port and communication visualization [30].

 Kai Knabl 22/79

Finally the paper mentions that five test-users were selected to interact with the example from the

afore-mentioned case-study. The feedback received from this informal consultation was generally

positive, with users describing the visual interface to be bright, colorful and inviting. They also

understood the security implications behind the traffic-light scheme, finding it simple and intuitive.

3.2.2 Selected Visualization

Due to the similar topic, the positive user feedback and general visual appeal of the solution

described in Legg´s paper, some of the aspects mentioned before are also used in the app´s

graphical mode. Those include the circular shape of device-nodes and the circular and

concentrically positioned port-visualizations. Instead of depicting network traffic via directed

edges, all device-nodes are simply connected to the network´s wireless router-node via undirected

edges. The router-node is located in the middle of the screen and is slightly larger than the device

nodes which are concentrically positioned around it. This should visualize a simplified version of

the basic concept behind a computer network: A routing-capable device connects all other devices

with each other, enabling communication within the network. Screenshots of the implemented

visualization can be found in Section 4.2.5.

Figure 6 – Visualization of secure and insecure communication between local (pink-colored nodes) and external
devices (blue-colored nodes) [30].

 Kai Knabl 23/79

3.3 Traffic-Light Scheme and Security States

For appropriately depicting the security state of devices and ports for graphical network

visualizations, an adaption of the traffic-light scheme described in Section 3.2.1 is used. This

traffic-light scheme is not only put to use in the graphical application mode, but also in other

application areas. The use of different colors and symbols is also always combined with a security

state and a simple prioritization mechanism. The security state with the highest priority that applies

to at least one device during a scan will in the end be applied to the entire network. The complete

scheme is listed in Table 2 and the specific use of it in certain parts of the application is described

in Section 4.2.2.

State name Priority Color and symbol encoding

(graphical mode)

Color encoding

(textual modes)

Applying condition

Neutral 0 Light blue for device-nodes and

black for ports.

Grey background

for list elements.

No problems were detected

for the device. This does

not mean that the device is

“secure” though, hence the

state “Neutral”.

Validation

needed

1 Orange for device nodes and

ports. An additional icon is

connected to each orange port,

visualizing an attack possibility.

Orange background

for list elements.

One or more potentially

problematic UPnP profiles

were detected.

Insecure 2 Red for device nodes and ports.

An additional icon is connected to

each red port, visualizing an

attack possibility.

Red background for

list elements.

The use of standard

credentials for one or more

of the following services

was detected: HTTP, SSH,

Telnet or FTP.

Table 2 – Traffic-light scheme in combination with security states.

Examples for the Assignment of Security States to Devices and Networks

1. During the scan of a network which contains three devices A, B and C, the app detects

that the device B is using a potentially problematic UPnP profile. The security state

“Validation needed” (priority 1) is therefore assigned to the device B. No problems are

detected for the devices A and C, which means that the security state “Neutral” (priority 0)

is assigned to both of them. Out of all devices within the network, the “Validation needed”

security state of device B has the highest priority. This means that the security state of the

entire network is set to “Validation needed” at that point.

2. At a later time the same network is scanned again. The app detects that device B is using

the same UPnP profile, which again results in a “Validation needed” (priority 1) security

state for the device. Also again, no problems are detected for the device C which results

in the same “Neutral” (priority 0) security state. However at this scan the app detects that

device A is using standard credentials for the Telnet service. The state “Insecure” (priority

2) is therefore assigned to A. Out of all devices within the network, the “Insecure” security

state of A has the highest priority. This means that the security state of the entire network

is now changed to “Insecure”.

 Kai Knabl 24/79

Assigning the “Insecure” security state to the entire network, even if just one out of potentially

hundreds of devices is found to be actually insecure, might appear exaggerated. However, this

decision is justified if taken into consideration that just one insecure device leads to a potential

foothold within the network and might enable attackers to compromise more devices.

3.4 Historical Data and Visualization

In the following sections, frequently used chart types for displaying network security related data

over time are described. Furthermore the history chart-types which are chosen for the app are

explained.

3.4.1 Commonly Used Chart Types in Network Security Related Applications

One of the app´s main features is the possibility to view the results of scans for an entire network

via three different interactive history charts. The charts should mainly provide an overview on the

overall development of the network (missing-, new-, previously-detected devices) and the

network´s security state over time. The displayed chart types should be well known but most

importantly also be easily understandable. Line charts, bar charts and scatter plots generally seem

to be good choices for visualizing the quantity of one or more properties of a dataset over time.

To examine this statement – especially regarding network security related topics – the

presentation of timeline-based data within Graphical User Interfaces (GUIs) of several common

Intrusion Detection (IDS)-, Intrusion Prevention (IPS)-, and Security Information and Event

Management (SIEM)-Systems is considered (Table 3).

Many of those systems allow users to customize how data are presented. This is especially true

for systems that are commonly coupled with the “Elastic Stack”, such as the “Suricata” IPS/IDS

[31]. The Elastic Stack describes the Logstash, Elasticsearch and Kibana technologies for the

collection, analysis and presentation of data [32]. Kibana (the presentation component) allows a

very high degree of customization [33]. The information in Table 3 therefore merely provides a

rough outline on how time-based data is commonly visualized in popular network security related

systems. This is mostly concluded by information from vendor websites (screenshots of the

systems).

Product name Type Bar charts Line charts Scatter plots

SolarWinds Log & Event Manager [34] SIEM Yes Yes No

OSSIM [35] SIEM Yes Yes No

ArcSight Enterprise Security Manager [36] SIEM Yes Yes Yes

Splunk Enterprise Security [37] SIEM Yes Yes Yes

IBM QRadar [38] SIEM Yes Yes No

Suricata in combination with Logstash / Kibana [31]. IDS / IPS Yes Yes Yes

SELKS (Suricata based) [39] IDS / IPS Yes Yes No

Cisco Firepower [40] IDS / IPS Yes Yes No

Snorby (Snort based) [41] IDS / IPS Yes Yes No

Cisco Meraki IDS / IPS [42] IDS / IPS Yes Yes Yes

Table 3 – Overview on common chart types for displaying time-based data within popular SIEM, IDS / IPS systems.

 Kai Knabl 25/79

In addition to this overview, the master thesis of Alexander Zahariev [43] which is examining

graphical user interfaces for intrusion detection systems in telecommunication systems is coming

to a similar conclusion regarding line charts. Five out of six examined intrusion detection systems

were utilizing line charts in their graphical user interface.

Another interesting approach of visualizing network-data over time is proposed by John R. Goodall

et al. [44]. Their work describes visual network traffic analysis by making use of a tool called “Time-

based Network traffic Visualizer” (TNV). The tool implements a visualization matrix which positions

time-intervals on the x-axis and all hosts on the y-axis. The number of network packets sent by a

host in a time interval is encoded by a colored box.

3.4.2 Selected Chart Types

From Section 3.4.1 it can be concluded that bar charts and line charts are commonly used for

visualizing the quantity of one or more properties of a dataset over time. Therefore the decision is

made to use those two chart types for two of the three different charts that are implemented for

the app´s history functionality. Both of them use the quantity of certain devices as values for the

y-axis and points in time as values for the x-axis (when a scan took place).

The third history chart is based on the more sophisticated visualization used by the TNV tool which

is described in the paper by John R. Goodall et al., as mentioned in Section 3.4.1. The app

employs an adapted version of their visualization approach. It uses scan-times on the x-axis, lists

all devices on the y-axis and encodes device-properties (such as “secure” or “insecure”) at a

certain network-scan with colored boxes. Compared to charts that discuss the quantity of devices

with certain properties, this visualization has the advantage of providing more information on the

security state of individual devices.

4. Implementation

In this chapter´s first subsection insights are given into the application´s structure and general

relevant technical topics. In the second subsection further elaborations on implementation details

and results are provided.

4.1 System Architecture: General Structure of the Application

In this section general technical and structural topics are discussed. Those include the platform,

a brief overview on the UI components, application modes, storage and history functionality, multi-

threading and the libraries used for this project.

4.1.1 Platform

The project is implemented as native Android application in Android Studio 3.1.3 and is compiled

against the minimum Software Development Kit (SDK) version 16 (Jelly Bean) and the target SDK

version 24 (Nougat). Due to extensive use of multithreading, it is preferred that the app is used

with hardware which at least makes use of quad-core processors. Scans can then take place

within reasonable time which increases with the size of the network.

 Kai Knabl 26/79

4.1.2 User Interface

General UI Component and Navigation Overview

Figure 7 illustrates the application´s most basic components and navigation possibilities when the

app is set to the “Expert”-application mode. In the two other modes, the appearance is different,

yet the program flow is similar.

Application Modes

One of the major features are the three application modes which are implemented in order to make

the application easily usable for audiences with different degrees of technical knowledge. One of

the project´s main objectives is to provide application modes that present security-relevant

information as comprehensible as possible – especially for novice users. This goal is achieved by

reducing information that is considered to be too complex and by providing a graphical

representation of network topologies and inherent vulnerabilities.

The three different application modes are:

• Expert mode: This mode is targeted towards users having an understanding of

fundamental networking concepts such as IP-addresses, MAC-addresses, network

services and ports. With this mode the user has unrestricted access to the application´s

entire functionality and is able to view any information gathered on networks / devices.

Figure 7 – General UI component and navigation overview

 Kai Knabl 27/79

• Normal 1 mode (reduced information): The Normal 1 mode mostly consists of functionality

similar to that of the Expert mode. However, the data presented in this mode are greatly

reduced by hiding information that might not be sufficiently comprehensible for novice

users, such as IP-addresses, MAC-addresses, port numbers or network services.

• Normal 2 mode (graphical): The Normal 2 mode differs from the Normal 1 mode in the way

devices within a network are being presented. Instead of merely textually listing devices,

this mode follows a graphical approach visualizing the topology and possible vulnerabilities

of a network.

Furthermore each application mode provides a unique chart, visualizing a network´s scanning

history. The application also provides a chart for visualizing a device´s service history – however

this feature is only available in the application´s “Expert” mode, as network services have generally

found to be a too complex topic for novice users.

It is important to note that there is no functionality in place which helps users in choosing an

application mode that would fit best for them. However, finding a fitting application mode can be

considered a rather easy task. If the user considers him/herself as technically experienced then

the Expert mode is probably a good choice. If that is not the case, then the user might try both

Normal modes. Technically inexperienced users that rather prefer textual information will then

probably chose the Normal 1 mode. For users who like to explore information visually, the Normal

2 mode might be a good choice. It also has to be noted that users do not have to restrict

themselves to use the app in just one particular mode. Via the settings menu it is possible to freely

switch between all modes in any part of the app (except when a network scan is taking place).

4.1.3 Storing Network and Device Information

Scanned networks and their devices are automatically saved during initial scans. During re-scans

respective database records are updated with information retrieved from the device detection,

information gathering, port and vulnerability scanning functionality.

The application makes use of the following data objects:

• Device

• Network

• OUI – Organizational Unique Identifier for identifying a device´s Network Interface

Controller (NIC) vendor name via its MAC address

• ServiceEntry (used for services detected during portscans)

It has to be noted that the device and network data objects are being reused for holding data from

device and network snapshots (as there are only minor differences between saved devices /

networks and saved device / network snapshots).

Database Model

The database model consists of the following tables:

• Device table: This table contains all device specific information, such as the MAC address,

open ports, the device´s host name, SNMP and UPnP details, and security specific

information such as credentials found during HTTP, Telnet, SSH or FTP brute-force

attempts.

 Kai Knabl 28/79

• Network table: This table contains all network specific information, such as the SSID, the

Basic Service Set Identifier (BSSID), the gateway IP address and Internet Service Provider

(ISP) information in cases where the network is connected to the Internet.

• Network_to_device table: This table is required for implementing the N:M relationship

between networks and devices. It contains information which is unique to a device´s

relationship to a specific network, such as the IP address that the device received, when it

has been connected to the network the last time.

• Device_snapshot table: This table contains the same information as the device table, with

minor differences. For snapshots, the device´s IP address is directly stored in the

device_snapshot table. This is because there is an 1:N relationship between the

network_snapshot and the device_snapshot table, instead of a N:M relationship as it is the

case with the network and device tables.

• Network_snapshot table: This table contains the same fields as the network table and two

additional ones. The scan type, which indicates what kind of network-scan took place when

the network snapshot has been created and the scan percentage which indicates whether

the scan has been completed or not.

• OUI table: This table contains datasets which consist of the three OUI (Organizational

Unique Identifier) bytes and the corresponding NIC vendor names. For initially filling this

table, a formatted version of the OUI-list on the Institute of Electrical and Electronics

Engineers (IEEE) website is used [45].

• Service table: This table contains service-specific information such as a service´s name,

port number, open frequency and description. For initially filling this table, a formatted

version of the well-known Nmap project´s service list is being used [46].

Figure 8 illustrates the relationships between the database tables mentioned above. For the

sake of brevity not all attributes are listed in this figure.

Figure 8 – Database model

 Kai Knabl 29/79

Notes on Database Design Decisions

• It is important to clarify the difference between the network and network_snapshot and the

device and device_snapshot tables. The network and device tables are used for saving an

object´s current state, which means that the corresponding data is updated when changes

are detected. Snapshots however are used for storing final versions of objects (networks

or devices) at a certain point time. When changes of the object are detected, previous

snapshots are not updated – instead a new snapshot is created, which guarantees the

traceability of the object over time.

• Not making the unique BSSID and MAC attributes the primary keys of the network and

device tables is a deliberate decision to remain consistent with the incremental integer-

type primary-key creation for each table. Furthermore, for the network_snapshot and

device_snapshot tables, using the BSSID and MAC properties as primary keys would not

work, because those properties are not unique for records of those tables. For instance,

multiple snapshots of the same device might obviously contain the same MAC value.

• It is a deliberate decision to not resolve the device to service and the device_snapshot to

service N:M relationships via a dedicated junction-table – as seen with the network to

device N:M relationship. Firstly, unlike the network_to_device table which contains the IP-

and discovered_at-properties, additional attributes (besides the foreign keys) for possible

device_to_service and device_snapshot_to_service tables would not be required.

Secondly, introducing more junction-tables would increase the model´s complexity, which

would result in more complex Create-Read-Update-Delete (CRUD) Structured Query

Language (SQL) statements. Therefore the decision is made to save a list of open ports

directly for each device and each device snapshot and to use this list to load corresponding

information from the service table via a service´s port number (unique), only if necessary.

• For resolving the 1:N relationships between the device and device_snapshot and the

network and network-snapshot tables, the database model refrains from using dedicated

device and network foreign keys in the network_snapshot and device_snapshot tables. If

necessary, a device´s snapshots might be loaded by simply looking up device snapshot

records that contain the same MAC address as the device. Likewise, if a network´s

snapshots should be loaded, a database lookup for network snapshots containing the

corresponding BSSID, takes place.

4.1.4 History

For being able to observe the development of networks and individual devices over time, history

features are implemented. For every full or partial network scan, a snapshot of every detected

device is saved. The entire network-history can be displayed via three different chart visualizations

(based on the currently selected application mode) as described in Section 4.2.4.

Device snapshots are not only created during full or partial network scans but also during

vulnerability scans (including basic-port scans) and extended port scans, which both can be

triggered for individual devices. A device-service-history chart might be displayed via a device´s

detail page as briefly described in Section 4.2.5.

 Kai Knabl 30/79

4.1.5 Multi-Threading

The application´s AsyncTask components responsible for performing detection, information

gathering, port- and vulnerability scanning operations make heavy use of multithreading. For

efficient handling of threads the Android ExecutorService class is used – mostly with thread pools

of a fixed size.

Synchronization after executing any asynchronous code is achieved by making use of the Android

CountDownLatch class. Likewise asynchronous operations are cancelled in time by regularly

checking the corresponding AsyncTask´s state during longer running operations.

For scanning activities the app uses thread pools with a large number of threads. Thread pools of

about 100 threads have been successfully tested. This is because individual actions mostly consist

of operations that are not very CPU-intensive, such as waiting for a ping-request / authentication

attempt / etc. to complete.

4.1.6 Used Libraries

The application makes use of a range of different external libraries which are listed in Table 4.

Library name Vers. General usage scenario License

OK HTTP [47] 3.4.1 Used for various HTTP-Requesting functionality,

including the HTTP-authentication brute force.

Apache 2.0

Sadun Telnet Client

library [48]

1.13 Used for Telnet brute force functionality. GNU Lesser General

Public License

(LGPL)v2

JSch – Java Secure

Channel Library [49]

0.1.54 Used for SSH brute force functionality. "Berkeley Software

Distribution (BSD) style

license"

Apache commons net

[50]

3.6 Used for FTP brute force- and networking-

functionality, such as the extraction of all

possible IP addresses from a network.

Apache 2.0

Jsoup [51] 1.10.2 Used for processing the Extensible Markup

Language (XML) inside of UPnP Service Control

Point Definition (SCDP) documents.

Massachusetts Institute

of Technology (MIT)

License

The Java Common

Internet File System

Protocol (CIFS) Client

Library [52]

1.3.18 Used for extracting Netbios information. LGPL 2.1

SNMP4J [53] 2.5.8 Used for extracting SNMP information. Apache 2.0

Android MP charts library

[54]

3.0.3 Used for creating network- and device-history

charts.

Apache 2.0

D3.JS (JavaScript

charting library) [55]

3 Used for creating a graphical network-topology

visualization.

BSD 3-Clause “New” or

“Revised” License

Table 4 – Used libraries

 Kai Knabl 31/79

4.2 User Interface

In this chapter´s first subsection, several UI areas are grouped by making use of a “UI components

and navigation” visualization. In the next subsection, elaborations are given on the use of the

traffic-light and security state scheme in the user interface. In the remaining sections descriptions

on the implementation of all UI areas are provided in more detail.

4.2.1 UI Components and Navigation

The user interface is implemented by a set of Activities in combination with appropriate XML layout

files. However in some Activities UI-elements are also being created dynamically, directly via Java

code provided by numerous helper classes. Easily understandable icons for the different areas of

the application are selected from the Website https://www.flaticon.com/; some are adapted.

In addition to the general UI component and navigation overview shown in Figure 7, Figure 9

provides a different UI visualization. It takes the UI changes into account that might occur, based

on the selected application-mode. Furthermore the figure arranges the user interface´s

components into three different areas (general, network- and device-specific). Doing so helps to

categorize the UI components described in the subsequent chapters.

Figure 9 – Schematic view of UI components and navigation regarding application areas and
differences between application modes.

https://www.flaticon.com/

 Kai Knabl 32/79

4.2.2 Uses of the Traffic-Light and Security State Scheme

Table 5 lists all the UI components that contain areas which make use of the traffic-light and

security state scheme described in Section 3.3.

UI component Affected areas

Network related (Section 4.2.4)

Display saved networks Colorization of network list-items

Overall network state and scan information Colorization and description of the security state

Device related (Section 4.2.5)

Display devices (list-based) Colorization of device list-items

Textual device details Colorization of port list-items

Display devices (graphically) Colorization of device nodes and port-circles and use of

corresponding vulnerability icons.

Graphical device details Colorization of device node and port-circles and use of

corresponding vulnerability icons.

Table 5 – UI components that make use of the coloring scheme.

4.2.3 General UI Areas

In the following sections, information is provided on the main-screen and the settings. Both of

those UI-areas can be considered general as they provide functionality which is important for

features regarding both networks and devices.

Application Icon and Main Screen

The first UI screen that gets displayed when opening the application via its icon (Figure 10) is the

main screen (Figure 11). It lets the user open the settings menu via an icon on the top right, scan

the wireless network that the mobile device is connected to or lets the user open the previously

scanned, saved networks. The main Activity performs a network connectivity check when the

Activity is started and also when the user tries to perform a network scan. If the connectivity check

fails, the main screen provides corresponding feedback (Figure 12). Upon the first start of the

application, the main Activity also triggers the initialization of the Service- and OUI-database

tables. This is done automatically and temporarily prevents the user from performing any actions

by blocking the user interface with an appropriate “loading”-overlay. The database initialization

routine makes use of multithreading and therefore usually finishes within seconds.

 Kai Knabl 33/79

Settings

It is possible to open the settings menu from all application-screens via the “gear”-icon in the top

right corner. However, the settings menu is not accessible while a network-scan is active (hidden

settings-icon) or when the vulnerability details-, graphical device details- or overall network state-

popups are opened (areas outside of the popup are not clickable). Which kind of settings are

presented to the user, depends on the selected application mode.

When the Expert mode is selected (Figure 46) the user can change the way how device- and

network-lists are sorted via several different attributes (Figures 47 and 48). For device-lists it is

possible to order devices – in addition to the primarily selected sorting attribute – by two additional

attributes:

• By the device´s security state (“weak devices first”).

• By information that indicates whether the device has been found in that network before

(“newly found devices first”).

Likewise it is possible for networks to additionally order them by their security state (“weak

networks first”). In the Expert mode it is also possible to change the application´s scan mode

(Figure 49). The default-mode here is: “Device detection and basic port scan and weakness scan”.

When the Normal 1 or Normal 2 modes are selected, the only available setting is the one for

changing the application mode (Figures 50 and 51). All screenshots for this section can be found

in the Appendix.

Figure 12 – Main screen when the
device is not connected to a network

Figure 10 – Application icon
Figure 11 – Main screen when the
device is connected to a network

 Kai Knabl 34/79

4.2.4 Network Specific UI Areas

In the following sections information is provided on UI areas that are more specific to networks.

Display Saved Networks

This Activity provides functionality for displaying saved networks, based on different application

modes. Figure 13 depicts the Activity in the Expert mode and Figure 14 shows the Activity in the

Normal modes. Table 6 illustrates the differences in terms of displayed information between the

application modes. For enabling users to quickly reach other relevant application areas from this

screen, an intermediate navigation step is introduced. If the user taps on one of the networks a

popup menu appears (Figure 15). The first option allows displaying the network´s last state (listing

saved devices) and the second option allows navigating directly to the network´s scan history.

Application mode Expert Normal 1 & 2 (reduced information)

Displayed

information

SSID SSID

BSSID -

Access Point IP -

Number of total devices Number of total devices

Number of problematic devices Number of problematic devices

Table 6 – Displayed information in the Saved Networks view

Figure 13 – Saved networks in the
Expert mode

Figure 14 – Saved networks in the Normal
1 & 2 modes (reduced information)

Figure 15 – Additional navigation
possibilities

 Kai Knabl 35/79

Overall Network State and Scan Information

The information popups displayed in Figures 16, 17 and 18 inform the user about the overall

network state and result of a preceding scan. The only difference between the Expert and both

Normal application modes is the description of the number of scanned IP addresses. In the Normal

1 and 2 modes the description says “Scanned device addresses” instead of “Scanned IPs”.

Network Details

This Activity provides functionality for displaying network-information collected during the

information-gathering phase of a network scan, based on the selected application mode (Figures

19 and 20). From this Activity the user also might access a network´s scanning history (application-

mode independent). Table 7 illustrates the information that is being displayed in the Normal 1 and

2 application-modes in comparison to the Expert mode.

Figure 18 – Overall state of an
“Insecure” network

Figure 16 – Overall state of a
“Neutral” network

Figure 17 – Overall state of a
network that requires validation

 Kai Knabl 36/79

Application mode Expert Normal 1 & 2 (reduced information)

Displayed

information

Wi-Fi information

SSID SSID

BSSID -

Network state -

Link speed in Megabits Per Second (Mbps) Link speed in Megabits Per Second (Mbps)

First scanned First scanned

Network information

Gateway IP -

Broadcast address -

Network prefix -

Total possible devices -

Provider information

ISP name ISP name

Organization Organization

External IP -

Country Country

Country code -

Region -

City City

Zip code Zip code

Latitude, longitude -

Time zone Time zone

Autonomous System (AS) number -

Table 7 – Displayed information in the Network Details view

Figure 19 – Network details in Expert mode
Figure 20 – Network details in Normal 1 & 2 modes

 Kai Knabl 37/79

Network Scan History

This Activity provides functionality for displaying all the snapshots of a network´s previous scans.

Snapshots are visualized via appropriate charts by making use of the “MPCharts” library [54]. The

chart type that gets presented to the user, when viewing the network history, depends on the

currently selected application mode. In addition to the reasons from Section 3.4, the types are

chosen to match the general purpose of the respective application mode, which is described in

the next sections.

Expert Mode

The Expert mode generally aims at providing detailed information. As a consequence a chart type

is required which makes it possible to easily visualize the number of devices with different

properties, for multiple network scans over time. Grouped bar charts are used where each of the

bars indicates the number of devices in a group with a certain property. Groups that are used in

this chart are:

• All devices

• All online devices

• New devices

• Missing or offline devices

• Problematic devices

This chart-type is quite common and has the advantage of letting users easily compare the

quantity of devices from one scan to others. The bar chart makes it easy to detect an increase in

the number of problematic devices from one scan to the next, for instance. Additionally, information

about the exact time, type and completion state is added for each scan. Figure 21 depicts a

screenshot of the described chart.

Normal 1 Mode

This mode aims at omitting possibly complex information, so the decision is made to only display

the quantity of online devices over time, via a simple line chart. Additionally the chart visualizes

another important aspect, which is whether at least one of those online devices were found to be

vulnerable during a scan. This is done by simply coloring the respective data-point in red. A

screenshot of the chart can be seen on Figure 22.

Normal 2 Mode

This mode is introduced to mainly provide some interesting, alternative visualization compared to

the other modes. In accordance to that, a history-chart is chosen that would have a major

advantage over the other charts. The chosen solution lists all device names on its y axis and the

time when a scan took place on its x axis. The devices´ states after a certain scan took place are

displayed by differently colored sections along the x-axis (time) on the respective y-position

(device names). The visualization distinguishes between the following states:

• Problematic

• Found new

• Found existing

• Offline

 Kai Knabl 38/79

This solution allows users to quickly spot the exact names of devices that caused problems during

a certain scan. In order to find this information with the other charts, user interaction for directly

opening individual snapshots, would be necessary. Figure 23 shows a screenshot of the described

chart.

All of the charts are interactive and support horizontal scrolling (vertical scrolling only for the chart

in the Normal 2 mode) and horizontal zooming for enlarging a certain chart-area. It is also possible

to click on certain chart areas, which has different effects for the different chart types. When a user

clicks on one of the bars from the Expert- or on one of the data-points from the Normal 1- charts,

one or more device-snapshots for the respective selection are displayed via the “Display Devices”

Activity which is described in Section 4.2.5. However, one bar in the Normal 2 – chart always

represents one snapshot of a particular device. This means that if the user clicks on one of those

bars, the respective device-snapshot is opened in the “Textual device detail” Activity, described in

Section 4.2.5.

Figure 21 – Network history in Expert
mode

Figure 22 – Network history in Normal
1 mode

Figure 23 – Network history in Normal
2 mode

 Kai Knabl 39/79

4.2.5 Device Specific UI Areas

In the next sections elaborations are provided on UI areas that are rather specific to functionality

regarding devices.

Display Devices

This Activity is by far the most complex one and provides functionality for cancelling scans and

triggering re-scans (application mode-independent). It most importantly displays information on

devices during active scans, as well as saved devices or device snapshots. Figures 24, 25 and 26

show devices within a smaller home network in different application modes. Table 8 shows

application mode dependent differences in the displayed information.

Application

mode

Expert Normal 1 (reduced

information)

Normal 2 (graphical)

Displayed

information

Device name Device name Device as node with a name

MAC-vendor MAC-vendor -

IP-address - -

MAC-address - -

Services including port

numbers

- Ports as smaller circles,

positioned around the device

node

Basic device type indicated

by icon

Basic device type indicated by

icon

-

Action on

device

selection

Open textual device detail

page in Expert mode

Open textual device detail

page in Normal 1 mode

Open graphical device detail

page

Table 8 – Displayed information and possible actions in the Device List view

In order to provide an alternative to merely displaying networks based on ListViews, a custom

graphical network visualization for devices/vulnerabilities is created (Normal 2 mode). For the

implementation it is necessary to use the “D3.js” JavaScript library [55]. This is because no Java

charting library (like the one used for the history charts) exists, which allows the implementation

of the desired visualization. The following list mentions the most important components which are

employed to create the final visualizations:

• WebView components are used to integrate Web-based content – such as Hypertext

Markup Language (HTML) pages – into the app.

• Two basic HTML pages (embedded within WebView components) are used to display an

entire network or an individual node.

• Several JavaScript files containing D3 code and helper functions are loaded within the

HTML files.

• A WebViewInterface is required for calling Java code from within JavaScript. In this case

that is needed for opening the graphical device detail popup, after a user taps on an

individual device in the network visualization.

• A DialogFragment component is necessary for displaying a graphical device detail popup

containing a visualization and vulnerability-information for an individual device, as shown

in the next section.

• Several images are used for displaying different vulnerability classes within the

visualization.

 Kai Knabl 40/79

Graphical Device Details

Graphical device details are presented in the form of a dialog. This dialog can only be accessed

when clicking on one of the devices from the graphical device visualization and is therefore only

available in the Normal 2 mode. The popup enlarges the selected device-circle and provides some

additional explanations. Figures 27, 28, 29 and 30 show detailed information about the devices of

the network topology depicted in Figure 26.

Figure 24 – Device list in Expert-Mode Figure 25 – Device list in Normal 1
mode

Figure 26 – Devices in graphical
mode

Figure 27 – Graphical details on a
neutral device

Figure 28 – Graphical details on a
device with insecure console access

 Kai Knabl 41/79

Textual Device Details

This Activity provides functionality for displaying all the device-information collected during the

device analysis, and security-testing phases of a network scan (see chapter 4.3). Figures 31 and

32 display a device in the Expert mode (comprehensive textual information). The app detected

that several services are running on this device such as SSH, Telnet, DNS and HTTP. The Telnet

service is marked in red because it was found to be vulnerable in a preceding scan. The user can

find out what exactly is wrong by clicking on a service. As described in the next section, a popup

then opens which provides details on the found vulnerability. In the “General Information” section

of this view the user can see – in addition to other general data such as device´s IP or MAC

address – that this device acts as the network´s access point. The last section of this view lists all

the networks where this device showed up during scans. Figure 33 displays the same device in

the Normal 1 and 2 modes (reduced information). In those modes information and functionality is

hidden that is considered to be too complex for novice users. Similarly, Figures 34 and 35 show a

different, potentially vulnerable device. The most obvious difference to the previous example is

that this device makes use of an UPnP service which contains one or more potentially problematic

profiles. For devices that use UPnP, the device details view provides a dedicated section that

contains additional UPnP information. Figure 36 shows the same device in the Normal 1 and 2

modes with reduced information. The information reduction is also applied to the “UPnP

Information” section.

This part of the application also enables users to scan an individual device for weaknesses (any

application mode) and to perform an extended port-scan (only in the Expert mode), if the

corresponding device was online during a preceding scan. The Expert mode also allows the user

to display a device´s service history and to remove a device from the device-list of a saved

network. Removing a device is only possible if the device does not act as the network´s access

point. This is because the graphical network representation of the Normal 2 mode uses the access

point as root node. A detailed comparison of the presented information and the available

functionality between the Expert and Normal modes is listed in Table 9.

Figure 29 – Graphical details on a
device with insecure FTP access

and insecure web interface

Figure 30 – Graphical details on a
device with insecure UPnP profiles

 Kai Knabl 42/79

Application mode Expert Normal 1 & 2 (reduced information)

Displayed

information

If the device is the device on which the app is running

Model -

Operating System (OS) Version -

OS API level -

Hardware -

Host -

Type -

Display -

If the device is the network´s access point

Indicate that this device is the network´s

access point

Indicate that this device is the network´s

access point

Detected ports / problems

Short service names
Only for insecure services: Short service

names

Always: Full service names

For insecure services: Additional problem

notifications

Only for insecure services: Full service

names and problem notifications

Port numbers -

General information

IP address -

Host name Host name

Netbios name Netbios name

MAC address -

MAC vendor MAC vendor

UPnP information

Friendly name Friendly name

Device type Device type

Manufacturer Manufacturer

Model name -

Model description -

Services -

SCDP URL -

SNMP information

Description Description

Name Name

Contact Contact

Location Location

Uptime Uptime

Object ID -

Services -

Networks that include the device

SSID SSID

IP address / network prefix -

BSSID -

Possible actions

General

Display service history -

Remove device from device list -

If the device is contained in the currently connected network

Scan for problems Scan for problems

Extended scan for open ports -

Table 9 – Displayed information and possible actions in the Textual Device Details view

 Kai Knabl 43/79

• Example Device 1

• Example Device 2

Figure 31 – Textual details of a
critical device in Expert mode (part 1)

Figure 32 – Textual details of a
critical device in Expert mode (part 2)

Figure 33 – Textual details of a critical
device in Normal 1 & 2 modes

(reduced information)

Figure 34 – Textual details of a
device with problematic UPnP
profiles in Expert mode (part 1)

Figure 35 – Textual details of a
device with problematic UPnP
profiles in Expert mode (part 2)

Figure 36 – Textual details of a
device with problematic UPnP
profiles in Normal 1 & 2 modes

(reduced information)

 Kai Knabl 44/79

Vulnerability Details

This Activity displays vulnerability-specific information and provides general suggestions for

mitigating the found problems. Those general mitigation suggestions are to either change insecure

authentication credentials (in case of an authentication vulnerability), to disable the corresponding

service or to take the device offline altogether. The popup also provides a link to an online resource

where the affected service is explained in more detail:

• HTTP: https://study-ccna.com/http-https/

• FTP: https://study-ccna.com/ftp-tftp/

• Telnet / SSH: https://study-ccna.com/telnet-ssh/

• UPnP: http://www.upnp-hacks.org/upnp.html

Figure 37 shows information on a vulnerable Telnet service in the Expert mode. Figure 39 displays

the popup containing information on a problematic UPnP service – also in the Expert mode.

Analogously Figures 38 and 40 depict the same problematic services – but with reduced

information – for both the Normal 1 and Normal 2 modes. Detailed differences in terms of

application modes can be found in Table 10.

Application mode Expert Normal 1 & 2 (reduced information)

Displayed

information

Any vulnerability type

Short service name Short service name

Full service name Full service name

Port -

Vulnerability description Vulnerability description

Remediation advice Remediation advice

Information link Information link

Authentication vulnerability (Default credentials for Telnet, SSH, HTTP or FTP)

Found username and password Found username and password

Only for Telnet or SSH: Console output

after a successful attack
-

Potential UPnP vulnerabilities

Names of problematic UPnP profiles Names of problematic UPnP profiles

Detailed UPnP profile explanations -

Table 10 – Displayed information in the vulnerability details popup

https://study-ccna.com/http-https/
https://study-ccna.com/ftp-tftp/
https://study-ccna.com/telnet-ssh/
http://www.upnp-hacks.org/upnp.html

 Kai Knabl 45/79

Figure 37 – Details on weak Telnet
authentication in Expert mode

Figure 38 – Details on weak Telnet
authentication in Normal 1 & 2 modes

Figure 39 – Details on potentially
insecure UPnP profile in Expert

mode

Figure 40 – Details on potentially
insecure UPnP profile in Normal 1 & 2

modes

 Kai Knabl 46/79

Device Service History

This Activity displays a chart for an individual device which is similar to the Normal 2-mode

network-snapshot chart. However, this chart indicates the change of service states for a specific

device over time. The different service states are:

• Problematic

• Open

• Closed

• Unknown (port not checked)

The visualization should make it especially obvious which services turned out to be problematic

during the device´s scan history. This mode is only available via the Expert application-mode,

since network services and ports are generally found to be too complicated topics for novice-

users. Figure 41 displays the service history chart for a laptop.

4.2.6 Usage of Fragments in the UI Context

Fragments are components that can be used to enable other components to outlive the Android

Activity-lifecycle. In the UI context, Fragments have proven to be especially useful for saving and

retaining data, as well as the creation of dialogs.

Data-Fragments

During configuration changes, such as screen rotations, the current Activity – including any data

that is associated with it – gets destroyed. During the Activities´ subsequent recreation, associated

data is not automatically retained. In the app Data-Fragments are used in the UI context for saving

and retaining large amounts of data. The data comes in the form of collections, containing a large

amount of device-objects which might get created during scans of larger networks.

Figure 41 – Device service history
chart for a laptop (Expert mode only)

 Kai Knabl 47/79

Large device-collections might also be created in the context of functionality which requires to load

many saved devices from the database, such as network-scan history features. After a

configuration change occurred, device-collections can be retained and used to again display

devices either via lists (in the Expert and Normal 1 application-modes) or graphically (in the Normal

2 application mode). Traditionally, data can also be saved by writing it into a parcel in the Activity´s

SavedInstanceState method. However, this method has one major drawback in comparison to the

Fragment-solution described above. By writing too much data into a parcel, a

“TransactionTooLargeException” can occur [56].

Dialog-Fragments

Dialog-Fragments are used for creating information popups with custom layouts that also might

contain more complex content than just static text, such as WebViews. Dialog-Fragments are used

for displaying detail information for the following areas:

• AuthenticationDialogFragment: Used for displaying insecure authentication.

• UPnPDialogFragment: Used for displaying insecure UPnP configuration.

• NetworkStatusDialogFragment: Used for displaying the overall network state after a scan.

• GraphDeviceDialogFragment: Used for displaying devices / vulnerabilities in the graphical

application-mode.

4.3 Scanning Functionality

In the following sections approaches are described which are used for the detection, information

gathering and security scanning of devices.

4.3.1 Scan Modes

The application´s settings let users select one of three scan modes which are based upon each

other and alter the behavior of the main network scan. This feature is implemented in order to give

advanced users more control over what is actually happening during a network scan. The scan

modes can be briefly described as follows:

• Mode 1 – Device detection and information gathering: Devices will be detected and for

each device the app will try to extract general information.

• Mode 2 – Device detection and information gathering and basic port scan: This mode – in

addition to the functionality from the first mode – includes a scan on the standard ports of

ten common network services.

• Mode 3 – Device detection and information gathering and basic port scan and vulnerability

scan: This mode – in addition to the functionality of the first and second modes – includes

vulnerability scans for the authentication of certain services via brute force.

4.3.2 Device Detection

The initial detection of devices during the scan of a network mainly takes place in three stages:

1. A Simple Service Discovery Protocol (SSDP) broadcast is performed to detect devices

which have the UPnP protocol enabled.

2. Every possible IP address of the current network is checked with the ping utility.

3. Lookups in the Address Resolution Protocol (ARP) cache are performed for devices that

haven´t been detected in the previous two steps. This makes sense as the ARP resolution

might still have taken place, even for devices that did not respond to SSDP broadcasts or

ping requests.

 Kai Knabl 48/79

4.3.3 Device and Network Analysis

During the device and network analysis phase of the network scan, the application tries to extract

the information listed in Table 9 for each device. This is accomplished by making use of numerous

smaller helper-classes, which in turn are using libraries for fetching SNMP-, UPnP-, Netbios- and

OUI-data. For each network, the application tries to gather the information listed in Table 7. For

gathering Internet provider information the app makes use of the API provided by http://ip-api.com.

Most of the found network- and device-data is gathered and displayed for mainly informational

purposes. A major goal of the device analysis phase is to make individual devices as easily

identifiable as possible. Security relevant information that can be extracted directly during this

phase are the detection of potentially problematic UPnP profiles, as briefly described in Section

4.3.4.

4.3.4 Security Scanning

In the following sections elaborations are provided on the techniques used for extracting security

relevant information, taking place after the device-detection and device-analysis phases.

Port Scanning

Port scanning takes place in several different application contexts and different extent in terms of

how many ports are scanned. A basic port scan consists of a scan on the standard ports of ten

common services and takes place in the context of a main scan on an entire network (depending

on the selected scan-mode). It is also automatically executed for a vulnerability scan that is

triggered on the device detail Activity of an individual device. The used services are listed in Table

11. The selection of those services is based on the service list that is used within the popular

Nmap port scanning tool. Each service in this list is attributed with an “open-frequency” which

indicates the rate with which the service is opened. The top ten services of this list based on their

open-frequency were selected to be used in the app´s basic port scan.

Abbreviation Full service name Standard Port

FTP File Transfer Protocol 21

SSH Secure Shell 22

Telnet Telnet 23

SMTP Simple Mail Transfer Protocol 25

DNS Domain Name System 53

HTTP Hypertext Transfer Protocol 80

POP3 Post Office Protocol v3 110

HTTPS Hypertext Transfer Protocol over SSL/TLS 443

SMB Server Message Block 445

HTTP Alternative Hypertext Transfer Protocol (alternative) 8080

Table 11 – Used services for the basic port scan

An extended port scan can only be triggered on the device detail Activity of individual devices and

consists of a scan on the standard ports of 6323 services. The used service list is also fetched

from the Nmap port scanning tool.

http://ip-api.com/

 Kai Knabl 49/79

Vulnerability Scanning

Similar to the basic port scan, a vulnerability scan might take place in the context of a main scan

on an entire network (depending on the selected scan-mode) or in the context of a scan on an

individual device. The latter can be triggered in a device´s detail Activity. During a vulnerability

scan the app tries to find weak authentication credentials via brute-force approaches by making

use of a standard username/password list consisting of ~70 credential pairs. Most of the used

credentials are directly taken from the Mirai source code [57]. However only the following services

can be checked for weak authentication – which makes it necessary that one or more of those

services are actually found to be running on the target device during the preceding basic port scan:

• HTTP

• FTP

• Telnet

• SSH

• HTTP Message Digest Authentication

First the application verifies whether HTTP Message Digest Authentication is available on the

target device (HTTP-Response-Code 401). Upon successful verification the application

determines whether the device is vulnerable, by observing response codes after brute-force

authentication attempts (by making use of the credential-list mentioned above). The HTTP-

Response-Code 200 means that the authentication attempt has been successful. The library for

performing HTTP-requests is called “OK-HTTP” and is used in different parts of the application

[47].

• HTTP Authentication via Simple HTML Forms

Some devices provide authentication via HTML forms. However, to detect whether a device is

vulnerable or to successfully verify that a device is in fact even using this kind of authentication is

far from trivial. One of the reasons for this is, that many modern web applications often make

excessive use of JavaScript which is integrated into HTML form authentication mechanisms. This

makes it very hard to programmatically find a way to successfully verify the existence or even

brute-force this kind of authentication, without parsing and intelligently interpreting JavaScript

code.

However, for very basic HTML form authentication mechanisms that refrain from making use of

JavaScript, simple verification and brute-force functionality was implemented. To verify if there is

an actual HTML form authentication mechanism in place, the app first follows any possible HTTP

header-redirects and then tries to find a form element from the underlying HTML source code. If

the search for a form element is unsuccessful, the app tries to anticipate possible JavaScript

redirects by extracting and visiting the URLs found in JavaScript redirect-calls listed beneath:

• window.location

• top.location

• document.location

• parent.location

 Kai Knabl 50/79

After performing manual source-code checks, the listed redirect methods are found to be common

with devices that use HTML authentication. After a corresponding URL is found and followed, the

underlying HTML source code is again searched for possible form elements. Once a form element

is found, the following information is extracted:

• The value of the form´s “method” parameter (mostly GET or POST)

• The value of the form´s “action” parameter

• The name of a possible “username” input-child-element (possible candidates are input-

elements that contain the string “user” in the name-attribute)

• The name of a possible “password” input-child-element (possible candidates are input-

elements that contain the string “pass” in the name-attribute)

• The names and values of any other input-child-elements

• Any cookies

As an example, Figure 42 shows the HTML login form of a Tenda N3 Wireless router. The page

even indicates that the default password for accessing the router´s configuration page is “admin”.

For this login-form, all information which is necessary for being able to programmatically send

login HTTP requests, can be gathered from the page´s HTML source code which is shown in

Listing 1. The following important parts are marked in red in the Listing and are extracted by the

app:

• The value of the form´s “method” parameter is “GET”.

• The value of the form´s “action” parameter is “/LoginCheck”.

• A possible “username” input-element is identified, including the default value “admin”.

• A possible “password” input-element is identified.

• An additional input-element with the name “checkEn” and the value “0” is identified.

 Figure 42 – Login form for a Tenda N3 Wireless router

 Kai Knabl 51/79

HTML source code

<form name="Login" method="post" action="/LoginCheck" _lpchecked="1">

 <input type="hidden" name="Username" value="admin">

 <input type="hidden" name="checkEn" value="0">

 <h1 class="login-title">Login</h1>

 <div class="container">

 <p class="login-massage">Default: admin</p>

 <div class="control-group">

 <div class="control-label">Password:</div>

 <div class="controls">

<input type="password" name="Password" maxlength="12" class="text

input-medium" onkeydown="enterDown(document.Login,event);"

style="...">

 </div>

 </div>

 ...

 </div>

</form>

Listing 1 – HTML code of the login form for a Tenda N3 Wireless router

Via the extracted information mentioned above, a false-login-request containing bogus login-

information is sent, in order to receive the HTML output of an obviously invalid authentication

attempt. During the actual brute-force attack, requests containing possibly valid authentication

credentials are sent. After each request the resulting HTML output is compared line-by-line to the

HTML output of the false-login-request. If at any point the HTML output of an authentication

request differs from the HTML output of the false-login-request, the attack might have been

successful.

Yet again it has to be noted that the entire approach is rather unreliable and might not work in

cases where an application´s authentication mechanism makes major use of JavaScript. As

mentioned above it is very hard to programmatically find a way to successfully study the

authentication mechanism (e.g. through a brute force-attempt), without parsing and intelligently

interpreting JavaScript code. Also dynamic content like the display of the current time makes the

direct comparison of HTML responses error-prone and might lead to false-positives.

• FTP Authentication

The code created for the FTP authentication brute-force makes use of the apache.commons.net

FTPClient [50] functionality and is very straight-forward. If an FTP connection attempt in

combination with a certain credential-pair is working, then the brute-force attack was successful.

 Kai Knabl 52/79

• SSH Authentication

Similarly to the FTP authentication, the functionality created for the SSH authentication brute-force

is also pretty straight forward. The code uses the “Java Secure Channel” [49] library and attempts

to establish working SSH sessions in combination with possibly valid credential pairs.

• Telnet Authentication

The Telnet brute-force functionality makes use of the “Sadun Telnet client library” [48] and is

slightly more complex than the previous two brute-force mechanisms. With Telnet it generally is

not possible to reliably detect successful or unsuccessful login attempts. This is because the actual

authentication functionality is not part of Telnet but part of the underlying server application.

Devices may differ in their underlying operating systems and command line interfaces. This means

that login procedures do differ as well. Even with the help of the used Telnet client library it is

possible to merely read-from or write-to the stream of an established network socket and to

determine by the server´s response whether a login succeeded or not. However due to the

aforementioned differences this is not so obvious to detect. In fact the author of the infamous

“Mirai” IoT malware was facing the same issue. However, Mirai´s source code was published in

late 2016, which made it possible to take a look at the malware author´s approach. We see that

the author detects successful login-attempts by certain characters that are likely to be part of a

shell prompt, such as ‘>’, ‘#’ or ‘$’. The corresponding code is located in the lines 768 to 844 of

the malware´s scanner component [57]. Therefore a similar approach is used in the application,

which has proven to work well for most devices that are accessible via Telnet.

• Problematic UPnP Profiles

The following UPnP profiles are directly detected during the device-analysis phase and have

proven to introduce potentially problematic functionality [58]:

• LANHostConfigManagement: This profile enables programs to query and set local settings

of a router, such as DNS and Dynamic Host Configuration Protocol (DHCP) changes.

• WANIPConnection / WANPPPConnection: Those profiles enable the forwarding of

arbitrary ports and have been proven to be generally problematic regarding involuntary

onion routing/port redirection and/or the execution of shell commands.

4.3.5 Usage of Task-Fragments

In the application, Task-Fragments are essential components that are used for all longer-running

background tasks – a topic which is therefore especially important for the app´s scanning

functionality. Task-Fragments are needed for being able to re-establish the reference from a

running task to an Activity after configuration changes - such as screen rotations. The main idea

behind TaskFragments is to encapsulate a potentially longer running AsyncTask into a Fragment

that might be reliably restored after configuration changes. The employed approach has proven

to be practical and robust from the very start of the project [59]. By not using this method, the

reference from a running task to a newly created Activity would be lost, ultimately leading to

undesired behavior. The first problem is that the UI cannot be accessed/updated anymore from

within the running task. Secondly, Memory leaks occur as the task still holds a reference to the

old Activity, preventing the garbage collector from doing its work.

 Kai Knabl 53/79

The following list briefly describes the functionality implemented within the most important

TaskFragment classes in combination with their corresponding inner AsyncTask classes and

numerous helper classes:

• Performing the application´s main scan on an entire network, including functionality for

device-detection, information gathering, vulnerability-scans and basic port scans.

• Performing extended port scans and vulnerability scans for individual devices.

• Initialization of the SQLite database with MAC-vendor and network-service information

during the initial startup of the application.

• Asynchronous loading of device snapshots, network snapshots and saved networks as

fast as possible.

 Kai Knabl 54/79

4.3.6 Typical Scan Sequence

Listing 2 contains a very simplified algorithm in pseudo-code (Java-based) which includes all major

steps that take place during a scan. The algorithm is independent from any UI functionality /

interaction and considers all phases described in the previous sections.

Pseudo-code (Java-based)

public void scanCurrentNetwork(){

 Network currentNetwork = getCurrentNetwork();

 gatherNetworkInfo(currentNetwork);

 //network and snapshot database actions

 Long networkId = DBHelper.createOrUpdateNetwork(currentNetwork);

 Long networkSnapshotId = DBHelper.createNetworkSnapshot(currentNetwork);

 new ScanTaskFragment<>(){ //execution within a Fragment

 new AsyncTask<>() { //execute asynchronously

 List<Device> foundDevices = new ArrayList<>();

 //start device detection

 addDevicesFromUPnPBroadcast(foundDevices,currentNetwork));

 addDevicesFromPing(foundDevices,currentNetwork);

 addDevicesFromARP(foundDevices);

 for(Device device : foundDevices){

 //start device analysis

 addUPnPInfo(device);

 addHostName(device);

 addNetbiosInfo(device);

 addSNMPInfo(device);

 //start security scanning

 performBasicPortscan(device);

 if(device.isUsingHTTPMsgDigestAuth()){

 attackHTTPMsgDigestAuth(device);

 } else if(device.isUsingHTMLAuth()){

 attackHTMLAuth(device);

 }

 if(device.isUsingTelnet()){

 attackTelnet(device);

 }

 if(device.isUsingSSH()){

 attackSSH(device);

 }

 if(device.isUsingFTP()){

 attackFTP(device);

 }

 //device and snapshot database actions

 DBHelper.createOrUpdateDevice(device,networkId);

 DBHelper.createDeviceSnapshot(device,networkSnapshotId);

 }

 }.execute();

 }.commit();

}

Listing 2 – Scan sequence algorithm in (Java-based) Pseudo-Code

 Kai Knabl 55/79

5. Evaluation

The prototype is evaluated along two important criteria. Firstly, the functionality is tested on several

Android test devices and different IoT devices to demonstrate that the scanner application works

as intended (Section 5.1). Secondly, tests were conducted together with users for being able to

objectively assess the app´s usability when used in different application modes. The metrics for

the main user-study are the completion times of several tasks that users had to complete with the

help of the app and the quantitative ratings of several user-experience related aspects (Section

5.2).

5.1 Functional Tests

Functional tests took place in two stages. Firstly tests were performed on a range of several

Android devices to ensure that the app is actually running properly on devices with different

Android versions, and different hardware specifications (screen-size, CPU type, RAM). Secondly

the app was tested regarding the detection of devices and inherent vulnerabilities with a variety of

different IoT devices. This is to ensure that the functionality described in Section 4.3 works as

intended. Additionally, the outcome of those tests results in a list that contains the security state

of a range of different IoT devices in terms of authentication security.

5.1.1 Android Test Devices

At no point during development an emulator has been used. New functionality was always tested

by making use of real devices (mainly phones) which run on the supported Android versions. This

is because the app contains numerous networking features – many of which are hard or impossible

to test on emulators. Table 12 lists the used Android devices on which the app was successfully

tested.

Device name Android version CPU type RAM

Samsung Galaxy S8 Android 8 4x2.3GHz and 4x1.7GHz

Octa-Core

4GB

Sony Xperia XA Android 7.0 4x1.0GHz and 4x2.0GHz

Octa-Core

2GB

Huawei P9 Lite Android 7.0 4x1.7GHz and 4x2.0GHz

Octa-Core

2GB

Samsung Galaxy Tab A Android 7.0 8x1.6GHz Octa-Core 2GB

LG G4 Stylus Android 6.0 1.2GHz Quad-Core 1GB

Lenovo Tab 3 Essential Android 5.1 1,3GHz Quad-Core 1GB

Table 12 – Android devices used for testing

5.1.2 Smart Home Devices

For testing the app´s scanning and authentication-brute-forcing functionality, the devices in Table

13 (a) and (b) were utilized after resetting them to their factory defaults. The devices mostly consist

of Small Office, Home Office (SOHO) routers that were tested individually or in a network, together

with other devices. For routers this was possible by turning off DHCP and by configuring them to

use static IP addresses.

 Kai Knabl 56/79

Furthermore, the Android devices that have been used for running the app, were also included in

such networks. In addition to that, tests for detection and port-scanning functionality were regularly

made via publicly accessible Wi-Fi networks.

For testing the brute-forcing functionality for FTP authentication, the “Digitus Mini Network

Attached Storage (NAS) server”, the “Zyxel Prestige 600” and the “Zubo Helicute H821HW”

devices (the first three in Table 13 (a)) were primarily used. The app was able to successfully log

in to the FTP service of the NAS and the “Zubo Helicute” devices with the credentials “anonymous”

: “”. The FTP service of the Zyxel router could be entered with the credentials “test” : ”1234”.

Furthermore it is noticeable that only two of the devices support authentication via SSH. Those

are the “Thomson Speed Touch 5 tg 585 v7” router and the “3Com Switch 4500” (fourth and fifth

in Table 13 (a)). The router could be accessed with the credentials “Administrator” : “” and the

switch can be accessed with the credentials “admin” : “”. Additionally, the SSH and Telnet

authentication brute-force functionality was also successfully tested via the “FreeSSHd” tool on a

Windows 7 laptop. This tool makes it possible to easily set up SSH or Telnet servers that grant

console access after successful authentication [60]. For the sake of brevity, the availability of FTP

or SSH and the afore-mentioned tests on those services are not included in the Tables 13 (a) and

(b).

Device name Type HTML form or

HTTP auth.

Found HTML/HTTP std.

pass

Telnet

auth.

Found Telnet std.

pass

Digitus Mini NAS Server NAS-

Server

Http auth Yes, with “admin” :

“admin”

No -

Zyxel Prestige 600 Router Http auth Yes, with "admin" : "1234" Yes No (can´t connect

multiple times)

Zubo Helicute H821HW Drone No - No -

Thomson Speed Touch tg 585

v7

Router Http auth Yes, with “Administrator” :

“”

Yes Yes, with

“Administrator” : “”

3Com Switch 4500 Managed

switch

No - Yes Yes, with “admin” : “”

Ibox Wi-Fi repeater WR01 Wi-Fi

repeater

Html auth No (extensive use of JS) Yes Yes, with “admin” :

“1234567890”

Linksys Wireless-G

Broadband Router WRT54GL

v1.1

Router
Http auth

Yes, with “admin” :

“admin”

Yes Yes, with “admin”

Maginon IP-Camera IPC-

100AC

IP Camera Html auth No (extensive use of JS) Yes Yes with “root” :

“123456”

Cisco E3000 Router Http auth Yes, with “admin” :

”admin”

No -

Zyxel NBG-417N Router Html auth Yes, with “” : "1234" No -

Linksys Wrt54G2 V1 Router Http auth Yes, with “admin” :

“admin”

No -

Linksys Wrt54GC Router Http auth Yes, with “admin” :

“admin”

No -

Table 13 (a) – Test devices used

 Kai Knabl 57/79

Device name Type HTML form or

HTTP auth.

Found HTML/HTTP std.

pass

Telnet

auth.

Found Telnet std.

pass

TP-Link 54M Router Http auth Yes, with “admin” :

“admin”

No -

Netgear WGR614 v6 Router Http auth Yes, with

“admin”:”password”

Yes No (connecting to the

port was not possible)

Siemens Gigaset SE505 Router Html auth Yes, with “”:”” No -

Netgear WNR834B Router Http auth Yes, with “admin”:

“password”

No -

Thomson Speed Touch 510i Router No - Yes Yes, with “” : “”

Edimax Broadband Router Router Http auth Yes, with "admin" : "1234" No -

Linksys E1200 Router Http auth No (multiple steps in

HTML page necessary)

No -

Speedport W 500V Router Http auth Yes, with "root" : "0000" Yes Yes, with "root" : "0000"

Fujitsu Siemens AP-600RP Router Http auth Yes, with "" : "connect" No -

Belkin N300 Router Html auth No (extensive use of JS) No -

Tenda N3 Wireless Router Html auth Yes, with "admin" :

"admin"

No -

Lenovo ThinkPad T540p - Win

7

Laptop No - No -

Lenovo ThinkPad T61 - Kali

Linux

Laptop No - No -

Asus Workstation - Win 7 Desktop No - No -

Sony PS4 Gaming

Console

No - No -

Medion MAX! Cube LAN

Gateway

Smart

Home

device

No - No -

Panasonic TXL42ETW60 TV No - No -

Samsung Galaxy S8 Mobile

Phone

No - No -

Sony Xperia XA Mobile

Phone

No - No -

Huawei P9 Lite Mobile

Phone

No - No -

Samsung Galaxy Tab A Tablet No - No -

LG G4 Stylus Mobile

Phone

No - No -

Lenovo Tab 3 Essential Tablet No - No -

Table 13 (b) – Test devices used

 Kai Knabl 58/79

Vulnerabilities Detected in Smart Home Devices

The results of the tests can be summarized as follows:

• Routers: Most of the test devices are routers and most of them are either susceptible to

Telnet or HTTP authentication vulnerabilities. It also has to be noted that only one of the

routers supports SSH, which should be the preferred way of accessing a device´s shell.

This is because in contrast to Telnet, SSH provides encrypted communication.

• NAS-Server: The NAS-Server that was used for testing allows unauthenticated FTP

access and uses standard credentials for HTTP authentication.

• Wi-Fi Drone: The drone that was covered during testing allows unauthenticated FTP

access to its internal system, which could allow a remote attacker to manipulate the

drone´s behavior during operation. This can be considered a security vulnerability that

could even be used to physically harm people.

• Managed Switch: The managed switch that was tested uses Telnet and SSH services by

default – both of which were using standard authentication credentials.

• Wi-Fi Repeater: The tested Wi-Fi repeater also allows Telnet access via standard

credentials.

• IP Camera: The IP camera that was tested contains a Telnet backdoor. In contrast to

networking-devices such as routers, it can be considered rather unrealistic that Telnet

access to a camera provides any benefit for end-consumers. This service was most likely

used by developers for debugging purposes and forgotten to be removed before the

product was shipped.

• Smart Home Device: The Medion MAX! Cube LAN Gateway device acts as a central

heating-regulation system. None of the vulnerabilities that were covered in this project

could be found with this device.

• Laptops and Desktops: None of the covered vulnerabilities could be found when scanning

Windows 7 laptops and desktops with the app.

• Gaming Console: The PS4 gaming console that was tested with the app did not display

any of the vulnerabilities that are covered in the project.

• TV: The Panasonic TV that was tested also did not contain any of the covered

vulnerabilities.

• Mobile Phones and Tablets: Lastly, the phones and tablets that were scanned during

testing also did not show any of the covered vulnerabilities.

To summarize, a considerable number of the tested devices is displaying authentication

vulnerabilities and most of those devices could be successfully identified as vulnerable by the app

described in this thesis.

5.2 Usability Tests

Two user studies and their evaluations are presented in order to objectively assess the app´s

usability. The preliminary user study consisted of semi-formal interviews where the participants

were guided through the app. Based on the participants´ comments regarding the usability of UI

components and the understandability of presented information, a “comprehensibility-score” was

assigned to components or pieces of information. The results of this first test were primarily used

to increase the usability and overall quality of the app. This was done by hiding information,

renaming description texts and fixing bugs.

 Kai Knabl 59/79

The first objective of the main user-study – which was conducted with a questionnaire – was to

test how well users manage to perform basic tasks with the app when using it in a certain

application mode. This was achieved by measuring the time that participants took to complete

three different user tasks with the help of the app (the faster the better). The second objective of

the main user study was to assess how well participants perceive the user experience with the

app after using it in a certain application mode. This was achieved with a short evaluation where

participants could numerically rate the app in terms of several user experience related topics. This

approach made it possible to compare the participants´ results with special regard to the three

application modes.

5.2.1 Preliminary User Study

The main objective of the preliminary user study was to gather first impressions on how people

would use the app, how well the presented information was understood and to detect

inconsistencies and bugs. The preliminary user study was conducted via individual semi-formal

interviews with four technically inexperienced participants, consisting of one female (age 21) and

three males (with the ages 24, 24 and 28). They were questioned about their opinion on all of the

UI components and the understandability of all information described in Section 4.2, which

resulted in interviews that approximately took 30 to 40 minutes. Based on the participant´s

answers the interviewer assigned a “comprehensibility-score” to individual UI components or

pieces of information. The score could either be 1 (difficult to comprehend), 2 (somewhat

comprehensible) or 3 (fully comprehensible). To ensure that all UI areas were encountered, the

participants were guided through the app while also having the opportunity to interact with it at

will. The app was presented in the Expert mode to get an impression on what kind of information

could be too complex for technically inexperienced users.

The received feedback was directly utilized, mainly for changing the app in the following ways:

• Hide information which is difficult to comprehend in the Normal 1 and 2 modes

• Rename description texts based on modes

• Fix bugs

5.2.2 Main User Study

In the following sections, elaborations are provided on details of the main user study. Those

include the goal of the study, the used metrics, the used questionnaire, information on user tasks,

the procedure which was employed when conducting the study and the study´s results.

Goal of the Study

One major goal of the study is to objectively assess how efficiently users are able to complete

common tasks with the app in a certain application mode. Another goal of the study is to determine

how participants perceive the app´s user experience after using the app in a certain application

mode. This makes it possible to compare the three different application modes in terms of the

users´ completion times for different tasks and in terms of the user experience ratings.

 Kai Knabl 60/79

Metrics used for the Evaluation

The main user study is conducted with a questionnaire that for one part consists of three different

tasks that users have to complete with the help of the app. The time that it takes for users to

complete those tasks is used as metric to determine how efficient they are in using the app (the

faster the better). The second part of the user study targets subjective ratings of the users´

experience. Users can rate the app along different categories with an integer score ranging from

-2 to +2.

Questionnaire

The main user study was conducted via a simple questionnaire which consists of the following

parts:

1. General Information: This section provides information on how much time the survey

should approximately take and gathers information on the participant´s gender, technical

experience and age.

2. User tasks: This section contains three different, increasingly difficult tasks that the

participant has to solve by making use of the app in one pre-defined application mode. The

user tasks are based on a pre-defined saved network. Before the tasks two notes state

that participants should pay special attention to underlined parts and to return to the “Saved

Networks” view each time a task was completed. By introducing a fixed starting-point the

attempt was made to ensure that the user tasks are solved independently from each other.

3. User experience evaluation: The questionnaire is concluded by a section that lets

participants rate the app in terms of several user experience aspects, by assigning values

from -2 to +2. The used evaluation schema and the various user experience aspects are

based on Maria Rauschenberger et al. [61].

The different aspects that are used in the user experience evaluation and their explanations are:

• Attractiveness: The app is appealing – I like it (overall rating).

• Efficiency / Understandability: The app is well structured and easy to understand.

• Dependability: The behavior of the app is comprehensible (the app does not confuse).

• Novelty: The app comprises novel aspects and is original.

• Stimulation: The app is interesting, I will likely use it in future.

Figure 52 (in the Appendix) shows the questionnaire that was used for the study.

User Tasks

All user tasks were designed to ensure that participants interact with parts of the app that contain

interesting information, such as details on vulnerabilities and historical data. The tasks were also

chosen to introduce parts of the UI that differ between application modes. This makes it possible

to compare the modes in terms of completion times and correctness of answers for the user tasks

and also regarding user experience ratings.

 Kai Knabl 61/79

• Task 1

This task is about looking up a certain device, describing inherent vulnerabilities and providing

solutions for dealing with them. Even though there is no major difference for the vulnerability

descriptions between application modes, this task is still very important. It is emphasizing one of

the app´s main application areas which is the presentation of vulnerabilities and appropriate

remediation suggestions. It is of vital importance that the app presents this kind of information in

a way so users can understand it, thus the necessity for evaluating their ability to do so.

• Task 2

The second task requires users to find the device which acts as the network´s Wi-Fi access point.

In the device list (Expert and Normal 1 modes) the corresponding device is marked with a

preceding Wi-Fi symbol. If in doubt the user can always open a device´s detail view – which

provides a textual indication if the device is the network´s access point. With the graphical network

representation (Normal 2 mode) this information might be easier recognizable, due to the access

point´s distinct visual properties. The device node is larger, positioned in the middle of the screen

and connects all devices with each other. This task aims at revealing possible differences in how

visual network representations are perceived compared to networks illustrated as lists of devices.

• Task 3

The last task expects users to identify the date and time when the scan took place that first

revealed a problem with a certain device. Users are instructed to do so by inspecting the network´s

scan-history chart. This task has the primary objective to identify possible differences between the

three different history charts in terms of completion times and correctness of the answers. Here

the participants that used the app in the Normal 2 application mode are generally expected to

have an advantage over participants that use the app in other modes. This is due to the fact that

the chart in the Normal 2 mode does not require any user interaction to find the desired

information. The answer can be found by simply looking up the time and date (x-axis) when the

corresponding device (y-axis) was first marked with a red rectangle (“problematic”). To find the

same information with charts of other modes, user-interaction becomes necessary. By opening

device-groups, looking at device-lists and comparing them to those of other device-groups, users

might identify when a specific device first turned out to be problematic.

Procedure

The user study was conducted with a total of 30 participants consisting of students of JKU, aged

between 18 and 46. They were mostly invited to the study by short presentations that were held

at the beginning of various computer science lectures. One major goal of the main user study was

to compare the app´s three different application modes. This was accomplished in the following

way: For each of the three modes ten persons would fill out the questionnaire by making use of

the app in the respective mode. For providing a pre-defined saved network which is required for

the user tasks, functionality has been implemented which makes it possible to easily clear the

app´s database and re-initialize it with an appropriate test-network. All records are inserted with

hard-coded information which guarantees that every participant is working with the same data-set.

The saved network consists of multiple devices and contains several history entries. The

described database functionality can be triggered by an additional button on the home screen

which can be hidden via the app´s settings menu.

 Kai Knabl 62/79

At the beginning of an evaluation session, each participant receives a smartphone on which the

app was installed beforehand. Furthermore the app was set to the appropriate application mode

and the database was initialized with the functionality described above. At first the participants are

asked to fill out the “General Information” section of the questionnaire. Then the two notes in the

“User Task” section are mentioned with special emphasis on the necessity to start each task from

the “Saved Networks” view, as described in the previous sections. After that the participants are

introduced to the time-measurement approach which is required in order to determine how long it

took for the user to complete individual tasks. A task has been finished when the participant has

solved the task and returned to the “Saved Networks” view. For each task n (n=1,..3), the

CompletionTimeStamp(n) is noted as the point in time when task n has been finished, where

CompletionTimeStamp(0) = 0. In a post processing step the time to solve a task is calculated as:

TimeToSolve(n) = CompletionTimeStamp(n) – CompletionTimeStamp(n-1);

Upon completion of the tasks, the participants may fill out the “user experience evaluation” part.

Even though the questionnaire mentions an approximate duration of 15 minutes for the entire

procedure, no fixed time limit was set for any parts of the study.

Collected Data

Table 18 (see Appendix) displays the raw data that was gathered from the user study. It lists the

used application mode, the participant´s gender, age and whether the participant would consider

him/herself as technically experienced. The data further contain the times that were required to

complete each of the three user tasks and information on whether the given answers were correct,

partially correct or incorrect (this was assigned by the author afterwards). The values that were

assigned during the third part of the questionnaire which is the “user experience evaluation” are

also part of the raw data.

Results

Tables 15, 16 and 17 summarize the evaluation results. From Table 18 it becomes apparent, that

some participants solved some tasks incorrectly or only partially correct. However, the solve-times

for those (incorrectly or partially solved) tasks were still included in the overall evaluation without

any dedicated labelling or changes. Even though the number of incorrectly or partially solved tasks

is rather small, it is still important to note that those datasets exist and that they might introduce

some marginal errors. The numbers of correctly, partially correct and incorrectly solved tasks by

application mode are listed in Table 14.

It also is important to note that the application modes, on which the user study is largely based,

were primarily designed for two different target audiences. Both Normal modes were designed for

technically inexperienced audiences whereas the Expert mode is targeted towards users with

more technical knowledge. Since the participants of the study were invited in the course of various

computer science lectures it is safe to assume that they rather fall into the latter category. This is

further underlined by the results of the questionnaire where all participants stated that they would

consider themselves technically experienced. The lack of technically inexperienced participants is

not considered in the evaluation of the results. The circumstance that there are no participants of

such an audience is best explained by fewer opportunities to introduce the user study outside of

technical lectures.

 Kai Knabl 63/79

Table 15 contains the calculation of the average, median and standard deviation of the

participants´ ages, completion times for the three user tasks and the user experience ratings. The

numbers are grouped by the application mode that the participants were using. For each task

colors are indicating the ranking of the application modes (green: best, yellow: middle, red: worst)

for the average and the median, in terms of completion times (the faster the better). The same

coloring scheme is also used for the average and median calculations of the user experience

ratings (the higher the better).

When taking a look at the average and median values of the second user task one can conclude

the following: In contrast to prior assumptions participants that used the app´s Normal 2 mode

(which uses a graphical network visualization) were not faster in solving the task (identifying the

network´s access point). However, for the third task the average and median values show that the

persons using the Normal 2 mode´s chart (the matrix containing devices and scan times) were

slightly faster than those who made use of other charts (the grouped bar chart and the line chart).

The user experience ratings show that for the most part the app was positively perceived. It also

becomes apparent that the app´s Normal 2 mode was generally favored over the other application

modes. However, for the dependability and stimulation aspects the Normal 2 mode was on

average ranked slightly lower than the Expert mode, which takes the second place regarding the

overall rating. The least favored mode was the Normal 2 mode which was ranked lowest for most

aspects. The reason for this could be that the participants were mostly technically experienced

and therefore least impressed of the Normal 2 mode – which reduces technical information.

App Mode Solved Task 1 Task 2 Task 3

Expert

Correctly 8 10 9

Partially correct 2 0 0

Incorrectly 0 0 1

Normal 1

Correctly 9 10 10

Partially correct 0 0 0

Incorrectly 1 0 0

Normal 2

Correctly 8 10 9

Partially correct 2 0 0

Incorrectly 0 0 1

Total

Correctly 25 30 28

Partially correct 4 0 0

Incorrectly 1 0 2

Table 14 – Number of correctly, partially correct and incorrectly solved tasks by application mode

 Kai Knabl 64/79

 App Mode Age
T1
time

T2
time

T3
time

Attractive-
ness

Efficiency /
Understand
ability

Depend-
ability

Novelty Stimulation

Average

Expert 23 03:32 01:28 02:39 1,20 0,90 1,70 1,50 1,60

Normal 1 24 03:56 01:15 01:59 1,10 1,40 1,30 1,40 0,80

Normal 2 22 03:50 01:20 01:56 1,40 1,80 1,50 1,60 1,40

Total 23 03:46 01:21 02:11 1,23 1,37 1,50 1,50 1,27

Median

Expert 21 03:29 01:19 02:22 1,00 1,00 2,00 1,50 2,00

Normal 1 21 03:56 01:10 01:55 1,00 1,00 1,00 2,00 1,00

Normal 2 22 03:18 01:17 01:51 1,00 2,00 2,00 2,00 1,50

Total 21 03:24 01:14 01:55 1,00 1,00 2,00 2,00 1,00

Std.
Deviation

Expert 5 01:19 00:37 01:12 0,87 0,70 0,46 0,50 0,49

Normal 1 8 01:39 00:18 00:33 0,70 0,49 0,64 0,80 0,87

Normal 2 2 01:01 00:20 00:37 0,49 0,40 0,67 0,49 0,66

Total 6 01:22 00:27 00:54 0,72 0,66 0,62 0,62 0,77

Table 15 – Data evaluation: Average, Median and Standard Deviation. Colors are indicating the ranking of the
application modes (green: best, yellow: middle, red: worst).

Table 16 contains the calculation of the standard error and the coefficient of variation (CV) for

each task, per application mode. The latter is expressing the ratio between the standard deviation

and the mean. A lesser value means less variance within the sample. A mode which shows a

small CV means that the participants solved the task with a similar completion time.

When considering the average and median together with the CV, the following conclusions can

be drawn:

1. The second and third tasks were generally completed faster by the participants that used

the Normal 1 and 2 modes.

2. Participants that used the app in the Normal 1 and 2 modes were able to solve the second

and third user task with similar completion times as most other participants who used one

of those modes for those tasks.

 App Mode T1 T2 T3

Coefficient of Variation (CV)
(Average / Standard Deviation)

Expert 37,49% 42,49% 45,51%

Normal 1 42,22% 24,92% 28,09%

Normal 2 26,67% 26,08% 32,16%

Total 36,43% 33,80% 41,41%

Standard Error
(Standard Deviation / sqrt(N))

Expert 1,75% 0,82% 1,59%

Normal 1 2,19% 0,42% 0,73%

Normal 2 1,35% 0,46% 0,82%

Total 1,05% 0,35% 0,69%

Table 16 – Data evaluation: Coefficient of Variation (CV) and Standard Error. N in the Standard Error is the number
of participants (10 for each mode and 30 in total). Colors are indicating the ranking of the application modes (green:

best, yellow: middle, red: worst).

 Kai Knabl 65/79

Table 17 summarizes the quartile points of the evaluation of each task. The quartile points consist

of the first quartile, the median value and the third quartile. The regions between the first and third

quartiles are most likely to contain prospective data samples. The data of Table 17 are being

visualized with three box-plot charts – one for each user task (Figures 43, 44 and 45). Each figure

contains four box-plots (the three app modes and their aggregation) that describe the minimum,

maximum and the calculated quartile points.

The box plots visualize that the user tasks that were solved with the Normal 1 and 2 application

modes were generally solved quicker. They also show that the first and third quartile points are

generally closer to the median, for the Normal modes, indicating that most of the participants

solved the tasks in a similar time. Finally, as visualized by the box plots, no mode has turned out

to be clearly superior with respect to solving the user tasks. One of the reasons may be that the

selected tasks are too simple to benefit from more comprehensible network and timeline

representations.

Task App mode Minimum value First quartile Median value Third quartile Maximum value

1

Expert 01:44 02:27 03:29 04:49 05:28

Normal 1 01:33 02:32 03:56 05:23 06:41

Normal 2 02:31 03:09 03:18 04:32 05:52

Total 01:33 02:49 03:24 04:55 06:41

2

Expert 00:50 00:56 01:19 01:42 02:46

Normal 1 00:55 01:02 01:10 01:25 01:58

Normal 2 00:50 01:08 01:17 01:31 02:02

Total 00:50 01:00 01:14 01:32 02:46

3

Expert 01:00 01:45 02:22 03:05 05:00

Normal 1 01:13 01:29 01:55 02:26 02:55

Normal 2 01:14 01:28 01:51 02:01 03:18

Total 01:00 01:34 01:55 02:39 05:00

Table 17 – Completion time evaluation: Calculation of quartiles (data for box-plots).

 Kai Knabl 66/79

Figure 43 – Box-plot chart for the first user task.

Figure 44 – Box-plot chart for the second user task.

Figure 45 – Box-plot chart for the third user task.

 Kai Knabl 67/79

6. Summary

This thesis describes the design, implementation and evaluation of a modern, end-user friendly

mobile application that enables non-experts to detect currently relevant and highly problematic

security issues in IoT devices. The resulting implementation contains various features that

comparable apps are not providing on a sufficient level. Such features include dedicated history

functionality which easily lets users track the results of multiple network scans over time by making

use of three different, interactive history charts. This implementation also provides improved

information gathering by trying to extract human-readable data from various network services

which helps users to identify individual devices more easily.

Implemented features that are not found within comparable applications include the three different

application modes that allow users to adapt the presented information and available functionality

to their level of technical knowledge. Further features include the graphical visualization of

networks and inherent vulnerabilities which provides a novel alternative to list-based network

representations on smartphones. One of the app´s core features is the vulnerability scanning

functionality which enables users to detect the use of standard authentication credentials in

common network services. Additionally, the app provides three different scan modes that differ in

what kind of tests are performed on devices after they were detected, in order to give the user

better control over network scans.

The results of functional tests that were performed by using the app to scan various types of

network devices underline the relevance of the vulnerabilities that are covered in this project. Most

of the tested devices were susceptible to one or more of the covered vulnerabilities and could be

successfully identified as such by the app.

The thesis concludes with the results of a user study which on the one hand was conducted in

order to objectively assess how efficiently users could solve tasks with the app in a certain

application mode. On the other hand the user study determined how users perceive the app in

terms of several user experience aspects after using it in a certain application mode. The results

of the study show that participants who used the app in the Normal 1 (reduced information) and

Normal 2 (graphical network visualization) modes solved the given tasks slightly faster than

participants who used the app in the Expert mode. Furthermore the results of participants that

used the app in the Normal modes show less variation, which means that those users finished the

tasks with more similar completion times. In terms of usability ratings the app was generally

positively perceived. However, the graphical mode was favored over other application modes.

 Kai Knabl 68/79

7. Appendix

Figure 49 – Selection of one of the
three scan options

Figure 50 – Settings in the Normal 1
& 2 modes (reduced settings)

Figure 51 –Selection of one of the
three application modes

Figure 47 – Selection of one of six
device-sorting options

Figure 46 – Settings in the expert
mode (all settings are available)

Figure 48 – Selection of one of five
network sorting options

 Kai Knabl 69/79

Figure 52 – User study questionnaire

 Kai Knabl 70/79

ID

A
p

p
 M

o
d

e

M
/F

T

e
c
h

.
e
x
p

.
A

g
e

T

1
 t

im
e

T

2
 t

im
e

T

3
 t

im
e

T

1
 c

o
rr

e
c
t

T
2
 c

o
rr

e
c
t

T
3
 c

o
rr

e
c
t

A
tt

ra
c
ti

v
e

n

e
s
s

E
ff

ic
ie

n
c
y
 /

U

n
d

e
rs

ta
n

d
a
b

il
it

y

D
e
p

e
n

d

a
b

il
it

y

N
o

v
e
lt

y

S
ti

m
u

la
ti

o
n

1

E
x
p
e
rt

M

Y

e
s

1
9

0
5
:0

2

0
1
:2

8

0
2
:5

0

Y
e
s

Y
e
s

Y
e
s

2

1

2

1

2

2

E
x
p
e
rt

M

Y

e
s

2
0

0
2
:4

8

0
1
:1

0

0
1
:4

2

Y
e
s

Y
e
s

Y
e
s

1

1

1

1

2

3

E
x
p
e
rt

M

Y

e
s

1
8

0
3
:5

8

0
0
:5

5

0
2
:3

6

Y
e
s

Y
e
s

Y
e
s

1

1

2

2

1

4

E
x
p
e
rt

M

Y

e
s

2
2

0
4
:1

8

0
2
:4

6

0
3
:1

1

Y
e
s

Y
e
s

Y
e
s

2

2

2

1

2

5

E
x
p
e
rt

M

Y

e
s

2
3

0
5
:2

8

0
1
:4

7

0
1
:5

5

Y
e
s

Y
e
s

Y
e
s

2

1

2

1

1

6

E
x
p
e
rt

M

Y

e
s

3
4

0
3
:0

0

0
2
:2

1

0
2
:0

9

Y
e
s

Y
e
s

N
o

1

0

2

2

1

7

E
x
p
e
rt

M

Y

e
s

1
9

0
5
:0

0

0
1
:0

0

0
5
:0

0

Y
e
s

Y
e
s

Y
e
s

1

0

2

2

1

8

E
x
p
e
rt

F

Y

e
s

2
0

0
2
:2

0

0
0
:5

0

0
1
:4

0

Y
e
s

Y
e
s

Y
e
s

1

0

2

2

2

9

E
x
p
e
rt

M

Y

e
s

2
2

0
1
:4

5

0
0
:5

5

0
1
:0

0

P
a
rt

ia
lly

Y

e
s

Y
e
s

2

2

1

1

2

1
0

E

x
p
e
rt

M

Y

e
s

3
0

0
1
:4

4

0
1
:2

8

0
4
:2

9

P
a
rt

ia
lly

Y

e
s

Y
e
s

-1

1

1

2

2

1
1

N

o
rm

a
l
1

M

Y

e
s

3
0

0
3
:2

5

0
1
:5

8

0
1
:1

3

Y
e
s

Y
e
s

Y
e
s

1

2

1

1

1

1
2

N

o
rm

a
l
1

M

Y

e
s

2
1

0
5
:4

5

0
1
:0

5

0
2
:3

0

Y
e
s

Y
e
s

Y
e
s

1

1

0

2

0

1
3

N

o
rm

a
l
1

M

Y

e
s

1
9

0
5
:3

8

0
1
:1

5

0
1
:3

3

Y
e
s

Y
e
s

Y
e
s

1

2

1

2

2

1
4

N

o
rm

a
l
1

M

Y

e
s

1
9

0
1
:5

8

0
1
:3

7

0
2
:1

5

Y
e
s

Y
e
s

Y
e
s

1

1

2

0

1

1
5

N

o
rm

a
l
1

M

Y

e
s

1
9

0
4
:4

0

0
0
:5

5

0
1
:4

5

Y
e
s

Y
e
s

Y
e
s

1

1

1

2

1

1
6

N

o
rm

a
l
1

M

Y

e
s

2
0

0
1
:3

3

0
0
:5

7

0
1
:2

6

Y
e
s

Y
e
s

Y
e
s

0

2

2

2

1

1
7

N

o
rm

a
l
1

M

Y

e
s

4
6

0
2
:2

6

0
1
:0

7

0
2
:4

1

Y
e
s

Y
e
s

Y
e
s

2

1

2

1

0

1
8

N

o
rm

a
l
1

M

Y

e
s

2
5

0
6
:4

1

0
1
:0

2

0
1
:2

8

N
o

Y

e
s

Y
e
s

2

1

1

2

1

1
9

N

o
rm

a
l
1

M

Y

e
s

2
1

0
2
:5

3

0
1
:2

9

0
2
:0

5

Y
e
s

Y
e
s

Y
e
s

0

1

2

0

-1

2
0

N

o
rm

a
l
1

M

Y

e
s

2
1

0
4
:2

8

0
1
:1

4

0
2
:5

5

Y
e
s

Y
e
s

Y
e
s

2

2

1

2

2

2
1

N

o
rm

a
l
2

M

Y

e
s

2
2

0
4
:0

0

0
0
:5

0

0
2
:5

0

Y
e
s

Y
e
s

Y
e
s

1

2

2

2

1

2
2

N

o
rm

a
l
2

M

Y

e
s

2
0

0
2
:3

1

0
1
:1

9

0
1
:2

4

Y
e
s

Y
e
s

Y
e
s

2

2

1

1

2

2
3

N

o
rm

a
l
2

M

Y

e
s

2
6

0
3
:1

1

0
1
:0

8

0
1
:5

3

P
a
rt

ia
lly

Y

e
s

Y
e
s

1

2

1

1

2

2
4

N

o
rm

a
l
2

F

Y

e
s

1
9

0
5
:1

1

0
1
:4

6

0
2
:0

3

P
a
rt

ia
lly

Y

e
s

Y
e
s

2

2

2

2

2

2
5

N

o
rm

a
l
2

M

Y

e
s

2
4

0
5
:5

2

0
1
:0

8

0
3
:1

8

Y
e
s

Y
e
s

Y
e
s

1

1

2

1

2

2
6

N

o
rm

a
l
2

M

Y

e
s

2
2

0
3
:1

3

0
1
:2

2

0
1
:4

0

Y
e
s

Y
e
s

Y
e
s

2

2

2

2

1

2
7

N

o
rm

a
l
2

M

Y

e
s

1
9

0
3
:2

3

0
0
:5

7

0
1
:1

4

Y
e
s

Y
e
s

N
o

1

2

1

2

2

2
8

N

o
rm

a
l
2

M

Y

e
s

2
6

0
3
:0

9

0
1
:3

4

0
1
:2

0

Y
e
s

Y
e
s

Y
e
s

1

1

0

2

0

2
9

N

o
rm

a
l
2

F

Y

e
s

2
2

0
3
:0

8

0
1
:1

6

0
1
:5

6

Y
e
s

Y
e
s

Y
e
s

1

2

2

1

1

3
0

N

o
rm

a
l
2

M

Y

e
s

2
1

0
4
:4

3

0
2
:0

2

0
1
:4

9

Y
e
s

Y
e
s

Y
e
s

2

2

2

2

1

T
a
b
le

 1
8
 –

 D
a
ta

 g
a
th

e
re

d
 f
ro

m
 t
h
e
 u

s
e
r

s
tu

d
y

 Kai Knabl 71/79

8. Abbreviations

Abbreviation Full text

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

BSD Berkeley Software Distribution

BSSID Basic Service Set Identifier

CIFS Common Internet File System Protocol

CRUD Create Read Update Delete

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FTP File Transfer Protocol

GB Gigabyte

GHz Gigahertz

GNU GNU's Not Unix

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Service Provider

IoT Internet of Things

JS JavaScript

LAN Local Area Network

LGPL GNU Lesser General Public License

MAC Media Access Control

MIT Massachusetts Institute of Technology

Mbps Megabits Per Second

NAS Network Attached Storage

NAT Network Address Translation

NEU Non Expert User

NIC Network Interface Controller

Nmap Network Mapper

OS Operating System

OUI Organizational Unique Identifier

OWASP Open Web Application Security Project

 Kai Knabl 72/79

PPP Point-to-Point Protocol

SCDP Service Control Point Definition

SDK Software Development Kit

SDN Software Defined Networking

SIEM Security Information and Event Management

SMB Server Message Block Protocol

SNMP Simple Network Management Protocol

SOHO Small Office, Home Office

SQL Structured Query Language

SSDP Simple Service Discovery Protocol

SSH Secure Shell Protocol

SSID Service Set Identifier

TCP Transmission Control Protocol

TNV Time-based Network Traffic Visualizer

UI User Interface

UPnP Universal Plug and Play

WAN Wide Area Network

XML Extensible Markup Language

 Kai Knabl 73/79

9. References

[1] P. Paganini, "Linux/Mirai ELF, When Malware is Recycled Could be Still Dangerous,"

Security Affairs, 5 September 2016. [Online]. Available:

http://securityaffairs.co/wordpress/50929/malware/linux-mirai-elf.html. [Accessed June

2020].

[2] S. Hilton, "Dyn Analysis Summary of Friday October 21 Attack," Dyn, 26 October 2016.

[Online]. Available: https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-

attack/. [Accessed June 2020].

[3] D. McMillen and M. Alvarez, "Mirai IoT Botnet: Mining for Bitcoins?," SecurityIntelligence,

10 April 2017. [Online]. Available: https://securityintelligence.com/mirai-iot-botnet-mining-

for-bitcoins/. [Accessed June 2020].

[4] A. Gilchrist, "Chapter 3 - Flawed, Insecure Devices," in IoT Security Issues, De|G Press,

pp. 35-36, 2017.

[5] L. O'Donnell, "At CES, Focus is on ‘Cool Factor’ not IoT Security," Threatpost, 10 January

2019. [Online]. Available: https://threatpost.com/at-ces-focus-is-on-cool-factor-not-iot-

security/140767. [Accessed June 2020].

[6] A. Tannenbaum, "Why do IoT Companies Keep Building Devices with Huge Security

Flaws?," Harvard Business Review, 27 April 2017. [Online]. Available:

https://hbr.org/2017/04/why-do-iot-companies-keep-building-devices-with-huge-security-

flaws. [Accessed June 2020].

[7] J. Nazario, "The Problem with Patching in Addressing IoT Vulnerabilities," fastly.com, 29

August 2017. [Online]. Available: https://www.fastly.com/blog/problem-patching-

addressing-iot-vulnerabilities. [Accessed June 2020].

[8] N. Buchka, "Switcher: Android Joins the ‘Attack-the-Router’ Club," Securelist, 28 December

2016. [Online]. Available: https://securelist.com/switcher-android-joins-the-attack-the-

router-club/76969/. [Accessed June 2020].

[9] R. M. Ogunnaike and B. Lagesse, "Toward Consumer-Friendly Security in Smart

Environments," in 2017 IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops), pp. 1-6, 2017.

[10] G. Jonsdottir, D. Wood and R. Doshi, "IoT Network Monitor," in 2017 IEEE MIT

Undergraduate Research Technology Conference (URTC), pp. 1-5, 2017.

[11] Y.-r. SU, X.-f. LI, S.-f. WANG, J. YI and H.-r. HE, "Vulnerability Scanning System Used in

the Internet of Things for Intelligent Devices," in 2nd International Conference on

Communications, Information Management and Network Security (CIMNS 2017), pp. 1-6,

2017.

[12] "Mobile Penetration Testing Toolkit and Risk Assessment," ZIMPERIUM, [Online].

Available: https://www.zimperium.com/zanti-mobile-penetration-testing. [Accessed June

2020].

[13] "fing.com," Fing, [Online]. Available: https://www.fing.com/. [Accessed June 2020].

[14] "ezNetScan," VRSSPL, [Online]. Available:

https://play.google.com/store/apps/details?id=com.vrsspl.android.eznetscan.plus.

[Accessed June 2020].

 Kai Knabl 74/79

[15] N. Circelli, "Net Scan," [Online]. Available:

https://play.google.com/store/apps/details?id=com.wwnd.netmapper. [Accessed June

2020].

[16] "Dojo by BullGuard," Bullguard Israel Ltd, [Online]. Available:

https://play.google.com/store/apps/details?id=dojo.dojo. [Accessed June 2020].

[17] "Kaspersky Smart Home & IoT Scanner," Kaspersky Lab Switzerland, [Online]. Available:

https://play.google.com/store/apps/details?id=com.kaspersky.iot.scanner. [Accessed June

2020].

[18] "IoT Security (Guard Internet of Things Devices)," Cheetah Mobile, [Online]. Available:

https://apkpure.com/iot-security-%EF%BC%88guard-internet-of-things-

devices%EF%BC%89/com.cheetahmobile.iotsecurity. [Accessed June 2020].

[19] D. Novikov, "IoPT: Network Security Scanner," [Online]. Available:

https://play.google.com/store/apps/details?id=pro.dnovikov.iopt. [Accessed June 2020].

[20] "OWASP Internet of Things Project," OWASP, 2018. [Online]. Available:

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project. [Accessed June

2020].

[21] M. Kuzin, Y. Shmelev and V. Kuskov, "New Trends in the World of IoT Threats," Securelist,

18 September 2018. [Online]. Available: https://securelist.com/new-trends-in-the-world-of-

iot-threats/87991/. [Accessed June 2020].

[22] S. Boddy, J. Shattuck, D. Walkowski and D. Warburton, "The Hunt for IoT: Multi-Purpose

Attack Thingbots Threaten Internet Stability and Human Life," F5 Labs, 24 October 2018.

[Online]. Available: https://www.f5.com/labs/articles/threat-intelligence/the-hunt-for-iot--

multi-purpose-attack-thingbots-threaten-intern. [Accessed June 2020].

[23] "OWASP Internet of Things Project - IoT Top 10," OWASP, 2018. [Online]. Available:

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10.

[Accessed June 2020].

[24] H. Moore, "Security Flaws in Universal Plug and Play," Rapid 7, 29 January 2013. [Online].

Available: https://information.rapid7.com/rs/411-NAK-

970/images/SecurityFlawsUPnP%20%281%29.pdf. [Accessed June 2020].

[25] P. Gomér and J.-E. Johnzon, "Computer Network Analysis by Visualization," Chalmers

University of Technology / Department of Computer Science and Engineering (Chalmers),

pp. 32-37, 2010.

[26] M. Dean and L. Vespa, "Simplified Network Traffic Visualization for Real-Time Security

Analysis," in The 2013 International Conference on Security and Management, pp. 1-5,

2013.

[27] R. Tamassia, B. Palazzi and C. Papamanthou, "Graph Drawing for Security Visualization,"

in The 16th International Symposium on Graph Drawing (GD 2008), pp. 1-12, 2008.

[28] F. Mansman, L. Meier and D. A. Keim, "Visualization of Host Behavior for Network

Security," in The 4th International Workshop on Computer Security (VizSec 2007), pp. 6-

14, 2007.

[29] Y. Livnat, J. Agutter, S. Moon, R. F. Erbacher and S. Foresti, "A Visualization Paradigm for

Network Intrusion Detection," in Proceedings from the Sixth Annual IEEE SMC Information

Assurance Workshop, pp. 1-8, 2005.

 Kai Knabl 75/79

[30] P. A. Legg, "Visual Analytics for Non-Expert Users in Cyber Situation Awareness," in 2016

International Conference On Cyber Situational Awareness, Data Analytics And Assessment

(CyberSA), pp. 8-15, 2016.

[31] "Suricata 2.0 Available!," Suricata, 25 March 2014. [Online]. Available: https://suricata-

ids.org/tag/logstash/. [Accessed June 2020].

[32] "The Elastic Stack," Elastic, [Online]. Available: https://www.elastic.co/products. [Accessed

June 2020].

[33] "KIBANA The Elastic Stack," Elastic, [Online]. Available:

https://www.elastic.co/products/kibana. [Accessed June 2020].

[34] "Intrusion Detection Software with Threat Monitor - IT Ops Edition," Solarwinds, [Online].

Available: https://www.solarwinds.com/topics/intrusion-detection-software. [Accessed June

2020].

[35] "OSSIM Download – Open Source SIEM Tools & Software," Darknet, 20 October 2017.

[Online]. Available: https://www.darknet.org.uk/2017/10/ossim-download-open-source-

siem-tools-software/. [Accessed June 2020].

[36] "ArcSight Investigate - Security Investigation and Analytics," Micro Focus, [Online].

Available: https://www.microfocus.com/en-us/products/arcsight-investigate/overview.

[Accessed June 2020].

[37] "Splunk Enterprise," Splunk, [Online]. Available:

https://www.splunk.com/en_us/software/splunk-enterprise.html. [Accessed June 2020].

[38] "IBM QRadar SIEM," IBM, [Online]. Available: https://www.ibm.com/us-

en/marketplace/ibm-qradar-siem. [Accessed June 2020].

[39] P. Manev, "Let’s Talk About SELKS 2.0," Stamus Networks, 6 May 2015. [Online].

Available: https://www.stamus-networks.com/2015/05/06/lets-talk-about-selks-2-0/.

[Accessed June 2020].

[40] "Cisco Firepower Management Center Demos," Cisco, [Online]. Available:

https://www.cisco.com/c/en/us/products/security/firepower-management-

center/demos.html. [Accessed June 2020].

[41] "Snorby Introduction," 1 November 2013. [Online]. Available:

https://www.aldeid.com/wiki/Snorby#Introduction. [Accessed June 2020].

[42] "Keeping the Wolves at Bay," Meraki Cisco, 25 September 2014. [Online]. Available:

https://meraki.cisco.com/blog/2014/09/keeping-the-wolves-at-bay/. [Accessed June 2020].

[43] A. Zahariev, "Graphical User Interface for Intrusion Detection in Telecommunications

Networks," Aalto University / School of Science, p. 42, 2011.

[44] J. R. Goodall, W. G. Lutters, P. Rheingans and A. Komlodi, "Preserving the Big Picture:

Visual Network Traffic Analysis with TNV," in IEEE Workshop on Visualization for

Computer Security, 2005. (VizSEC 05), pp. 3-4, 2005.

[45] "OUI List," IEEE, [Online]. Available: http://standards-oui.ieee.org/oui.txt. [Accessed June

2020].

[46] "Nmap," [Online]. Available: https://nmap.org/. [Accessed June 2020].

[47] "OKHttp," Square, [Online]. Available: http://square.github.io/okhttp/. [Accessed June

2020].

[48] C. Sadun, "Telnet Client Library," [Online]. Available: http://sadun-

util.sourceforge.net/telnet_library.html. [Accessed June 2020].

 Kai Knabl 76/79

[49] "Jsch," Jcraft, [Online]. Available: http://www.jcraft.com/jsch/. [Accessed June 2020].

[50] "Apache Commons Net," The Apache Software Foundation, [Online]. Available:

https://commons.apache.org/proper/commons-net/. [Accessed June 2020].

[51] J. Hedley, "Jsoup," [Online]. Available: https://jsoup.org/. [Accessed June 2020].

[52] "JCIFS," The JCIFS Project, [Online]. Available: https://jcifs.samba.org/. [Accessed June

2020].

[53] F. Fock and J. Katz, "SNMP4J," [Online]. Available: https://www.snmp4j.org/. [Accessed

June 2020].

[54] P. Jahoda, "MPAndroidChart," [Online]. Available:

https://github.com/PhilJay/MPAndroidChart. [Accessed June 2020].

[55] M. Bostock, "D3 JS," [Online]. Available: https://d3js.org/. [Accessed June 2020].

[56] "TransactionTooLargeException," Google, [Online]. Available:

https://developer.android.com/reference/android/os/TransactionTooLargeException.

[Accessed June 2020].

[57] "Mirai Source Code," 2016. [Online]. Available: https://github.com/jgamblin/Mirai-Source-

Code/blob/master/mirai/bot/scanner.c. [Accessed June 2020].

[58] A. Hemel, "UPnP IGD Hacking," UPnP Hacks, [Online]. Available: http://www.upnp-

hacks.org/igd.html. [Accessed June 2020].

[59] A. Lockwood, "Handling Configuration Changes with Fragments," Android Design Patterns,

29 April 2013. [Online]. Available:

https://www.androiddesignpatterns.com/2013/04/retaining-objects-across-config-

changes.html. [Accessed June 2020].

[60] K. Petric, "freesshd.com," [Online]. Available: http://www.freesshd.com/. [Accessed June

2020].

[61] M. Rauschenberger, M. Schrepp, M. P. Cota, S. Olschner and J. Thomaschewski, "Efficient

Measurement of the User Experience. How to use the User Experience Questionnaire

(UEQ)," International Journal of Interactive Multimedia and Artificial Intelligence, pp. 1-7,

2013.

 Kai Knabl 77/79

CURRICULUM VITAE

Kai Knabl

kai.knabl@gmail.com

Studies / Education

2014 – today JKU Linz

Master study, Computer Science with the major subject „Networks and

Security“

2010 – 2014 FH Hagenberg

 Bachelor of Science, Software Engineering

2004 – 2008 BORG Ried im Innkreis

 AHS Matura

Professional experience / Internships / Study projects

04/2019 – today CBC-X GmbH, Leonding

Software Quality & Test Engineer, Application Security Tester

03/2017 – 09/2017 Hotel Reichmann, St. Kanzian am Klopeinersee

Requirements Engineer and Technical Consultant for coordinating major
changes in the technical infrastructure (hardware-, software and network
solutions) of two hotels and one restaurant (family business)

10/2013 – 03/2016 ReqPOOL GmbH, Linz

 Software Developer, Software Tester, Requirements Engineer

07/2013 – 10/2013 KTM Sportmotorcycle GmbH, Mattighofen

Penetration Tester, Creation of the theoretical bachelor thesis in cooperation

with the KTM GmbH

04/2013 – 06/2013 ReqPOOL GmbH, Linz

Internship as Software Developer, Creation of the practical bachelor thesis
in cooperation with the ReqPOOL GmbH

03/2012 – 06/2012 Profactor GmbH, Steyr

10/2012 – 01/2013 Software Developer, Study project in cooperation with the Profactor GmbH
in the summer- and winter-semesters 2012

 Kai Knabl 78/79

All summers Hotel Reichmann, St. Kanzian am Klopeinersee

2005 – 2008 Various activities in the hotel and restaurant business
2010 – 2018

Certifications

IREB CPRE Foundation Level

ISTQB CT Foundation Level

Community Service

07/2009 – 06/2010 Arbeiter Samariterbund, Alkoven

 Paramedic (Nine regular + three voluntary months)

 Kai Knabl 79/79

STATUTORY DECLARATION

I hereby declare that the thesis submitted is my own unaided work, that I have not used other than

the sources indicated, and that all direct and indirect sources are acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Place, Date

Signature

