
Submitted by
Alexander Lemmé, BSc

Submitted at
Institute of Networks
and Security

Supervisor
Dr. Michael Sonntag

February 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Extension of an existing
P2P-Client for Evidence
Collection

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Network and Security

ABSTRACT

Abstract

Collecting evidence within P2P networks has become an important part of modern
conservation of evidence. Especially in the area of copyrighted material, the legal
situation is very different because of various definitions, what constitutes a copyright
infringement. As a rule, however, the ”pure” participation in a P2P network is not
illegal in any way as long as no copyrighted material is publicly offered and distributed.

Modern solutions, in the form of software or services, usually provide good evidence
that is generally accepted by courts. However, some problems can arise with closed
systems. These range from badly documented evidence to false accusations only due
to the participation of a P2P network.

This master thesis provides a prototype which solves the described problems in an
open and comprehensible way. An existing BitTorrent client is expanded with a plugin.
Only Open Source software is used in the implementation and all steps of the proofing
system are implemented openly and comprehensibly.

The evidence collection is done by downloading parts of files directly from observed
targets and make use of shared meta data by the BitTorrent protocol. So public sharing
of files can be proven and in addition the download progress of a target can be captured
by downloaded parts of files and ”available” messages.

ZUSAMMENFASSUNG

Zusammenfassung

Das Sammeln von Beweisen innerhalb von P2P-Netzwerken ist ein wichtiger Bestandteil
der modernen Beweissicherung geworden. Gerade im Bereich von urheberrechtlich
geschütztem Material, ist die Gesetzeslage aufgrund verschiedenster Definitionen, was
ein Urheberrechtsverstoß ist, sehr verschieden. Im Regelfall ist aber die reine Teil-
nahme an einem P2P-Netzwerk in keinster Weiße illegal, solang kein urheberrechtlich
geschütztes Material öffentlich angeboten und verteilt wird.

Moderne Lösungen, in Form von Software oder Dienstleistungen, liefern meist gute
Beweise die von Gerichten im Allgemeinen akzeptiert werden. Allerdings können bei
geschlossenen Systemen einige Probleme entstehen. Diese reichen von schlecht doku-
mentierten Beweisen bis zu falschen Beschuldigungen, nur aufgrund der Teilnahme
eines P2P-Netzwerkes.

Diese Masterarbeit soll einen Prototyp zur Verfügung stellen, welcher die beschriebenen
Probleme auf eine offene und nachvollziehbare Art löst. Dabei wird ein bestehender
BitTorrent Client mit einem Plug-In erweitert. Bei der Umsetzung kommt nur Open
Source Software zum Einsatz und alle Schritte der Beweissicherung sind offen und
nachvollziehbar implementiert.

Zur Beweissicherung werden Teile von Dateien von den überwachten Zielen herun-
tergeladen und gleichzeitig auch alle Metadaten vom genutzten BitTorrent Protokoll
aufgezeichnet. Damit kann einem Ziel nicht nur das öffentliche zur Verfügung stellen
von Dateien nachgewiesen werden, sondern auch ein Downloadverlauf des Ziels anhand
von den geladenen Daten und sogenannten

”
available Messages“ erfasst werden.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Definitions . 2
1.3. Objective . 3

1.3.1. BitTorrent-protocol . 4

2. Theoretical background 6
2.1. Collecting evidence . 6

2.1.1. Definitions of evidence . 6
2.1.2. Evidence collection in P2P-networks 7

2.2. BitTorrent . 11
2.2.1. History . 11
2.2.2. Functionality . 12
2.2.3. Data structure . 13
2.2.4. .torrent file content . 13
2.2.5. Tracker . 14
2.2.6. Peer Protocol . 15

3. Current Solutions 19
3.1. Existing approaches . 19

3.1.1. Screenshots . 19
3.1.2. Client-logging . 20
3.1.3. Specialized software and services 20

3.2. Exemplary lawsuits . 21
3.2.1. Screenshots as failure . 21
3.2.2. Screenshots as success . 22
3.2.3. False-Positives . 23

4. Prototype implementation 24
4.1. Requirements . 24

4.1.1. Extensible BitTorrent-client . 24
4.1.2. Data traffic . 25
4.1.3. Evidence . 25
4.1.4. Features . 26

i

Contents

4.2. Vuze . 27
4.2.1. Vuze plugin system . 27

4.3. Process of evidence collection . 29
4.3.1. Time synchronization . 30
4.3.2. Target picking . 31
4.3.3. Target observation . 35
4.3.4. Extract evidence . 37
4.3.5. Store evidence . 44

4.4. Evidence viewer . 48
4.4.1. ZIP file verification . 48
4.4.2. XML viewer . 48

5. Testing 50
5.1. Test setup . 51

5.1.1. Configuration . 51
5.1.2. Test environment . 54

5.2. Test scenarios and results . 55
5.2.1. Scenario 1: Multiple files with small size 56
5.2.2. Scenario 2: Single, large file . 64

6. Summary and Conclusion 72
6.1. Summary . 72
6.2. Conclusion . 72

6.2.1. Problems and Solutions . 73
6.3. Possible Extensions . 74

Bibliography 77

Lebenslauf 78

Eidesstattliche Erklärung 80

A. Appendix 81
A.1. info.xsd . 81
A.2. history.xsd . 84
A.3. messages.xsd . 87

ii

List of Figures

2.1. Top 10 Peak Period Applications - Europe, Fixed Access 2015[18] . . . 11
2.2. BitTorrent Procedure[12] . 12
2.3. A torrent is divided in files, pieces and blocks 13
2.4. State diagrams for connection regarding downloads from remote peers[13] 18

4.1. Process of evidence collection . 30
4.2. Start screen of the prototype . 33
4.3. Country filter: countries are defined by ISO 3166-1 34
4.4. Target observation . 35
4.5. Reassemble messages to pieces . 39
4.6. Reassemble pieces to files . 41
4.7. Plugin settings . 43
4.8. Evidence viewer with opened and verified evidence file 49

5.1. Signed package verifies with public key 58

iii

List of Tables

1.1. P2P protocols in comparison [22] and usage 2013 Europe fixed access
[17] . 5

2.1. Messages of the BitTorrent-protocol 16

4.1. Content of packed evidence . 47

5.1. Filter configurations . 53
5.2. testData.torrent . 56
5.3. participants of testData.torrent . 56
5.4. bigBuckBunny.torrent . 64
5.5. participants of bigBuckBunny.torrent 65

iv

Listings

4.1. Plugin.java[4] . 28
4.2. reassemble messages to pieces . 39
4.3. Example of header in each XML file 45

5.1. privateKey.pem . 52
5.2. publicKey.pem . 53
5.3. commons-io-2.2.jar sha1 comparison 57
5.4. testData info.xml . 59
5.5. testData messages-summary . 60
5.6. excerpt testData in-message-list . 61
5.7. excerpt testData out-message-list . 62
5.8. testData history.xml . 63
5.9. big buck bunny 720p h264 sha1 comparison 65
5.10. bigBuckBunny info.xml . 67
5.11. bigBuckBunny messages-summary . 68
5.12. excerpt bigBuckBunny in-message-list 69
5.13. excerpt bigBuckBunny out-message-list 70
5.14. bigBuckBunny history.xml . 71

A.1. info.xsd . 81
A.2. history.xsd . 84
A.3. messages.xsd . 87

iv

1. Introduction

What is peer-to-peer (P2P) filesharing and why do we need to prove something with

evidences? P2P means data is exchanged between peers of a network, without using a

server between them. Evidence collection is necessary because filesharing is a significant

part of the European aggregate internet traffic and makes up to 8.44%[18] of it. But

not all of the traffic is used in a lawful purpose.

1.1. Motivation

Today peer-to-peer(P2P) filesharing is a widely used technology, to exchange large

amounts of data. In contrast to a normal download, files will be shared between

independent peers, using their own resources. So from one point of view there is no

need for the initial uploader to share data and insert resources, because the swarm of

peers will provide all data. This is why companies, organizations and also individuals

employ this technology to share for example software, updates or distribution images.

On the other hand there is no single point where the sharing can be stopped, once it

is spread out in the internet. This is problematic for copyright protected files or files

with illegal content. To enforce laws on illegal file sharing activities, evidence must be

collected. To be used in court, this evidences must meet a certain standard, which are

described in section 2.1. Current solutions, described in detail in chapter 3, for this

problem are

• inadequate to meet the standard (screen shots/logging from client).

• closed source solutions from companies (the mode of operation is unknown).

1

Chapter 1. Introduction

To solve to this problem, this thesis will try to offer a prototype implementation of

an open and automated solution. This prototype implementation will be discussed in

chapter 4.

1.2. Definitions

In order to understand the following sections some terms have to defined.

P2P: Short term for peer-to-peer. P2P in computing or networking describe a sce-

nario where different participants of a system communicate directly which each other,

without the need of a third party, like a server, between them.

Peer: A participant of a P2P-filesharing-network.

Download: Receive files, or parts of them, from connected peers.

Upload: Send files, or parts of them, to connected peers.

Shared file: Content files which are shared in a P2P-network.

Piece: Shared files are chopped in small pieces. Each piece can be verified by a hash.

Block: Pieces are split up in blocks. It is the smallest unit transmitted and can not

be checked on its own.

BitTorrent-protocol: A specific P2P-filesharing-protocol exchanging blocks between

peers.

BitTorrent-client: Software to join a P2P-filesharing-network working with the

BitTorrent-protocol. There exists a wide range of BitTorrent-clients, some cover only

the basic functions, other provide a large number of additional tools.

Torrent-file: Describes the shared files, like name and length, the pieces with the

according hash values, and all including meta-data. They are necessary to communicate

with other peers.

2

Chapter 1. Introduction

Torrent: A torrent in a BitTorrent-client describes the state of a download. This

means is it started or stopped, which percentage is done yet, or what parts or files

need to be downloaded and which will be skipped.

Swarm: Set of all active peers of one torrent.

Chain of custody: A chronological documentation showing the collection, timing and

storage of evidence.

1.3. Objective

The objective of this thesis is a prototype implementation of a software for evidence

collection. For simplicity an existing P2P-client should be extended. To guarantee the

chain of custody and a high grade of automation there are several requirements.

Download:

• Storage of the complete data traffic (including meta-data).

• Comparison of downloaded data with verified original files of the download via

hash value.

• Which files or parts of them where made publicly available?

• History of the files shared by a peer and the progress of a download.

• Prevent extended P2P-client to upload data from shared files.

Evidence:

• Exact documentation including history for the chain of custody.

• Integration of an external time source with time synchronization.

• Possibility to digitally sign the collected and packaged evidences including a

thirdparty timestamp.

3

Chapter 1. Introduction

Features:

• Lookup of IP addresses in Geo-IP databases to exclude them from observation.

• Blacklist/Whitelist for IP addresses.

• Selection for interesting files.

• Simulating normal behavior of an P2P-client.

1.3.1. BitTorrent-protocol

There is a wide selection of various P2P-filesharing-protocols available. Some of them

are historic, like the first big P2P-filesharing-network Napster, others are still in use by

a significant amount of users, like BitTorrent, eDonkey, Gnutella2, compared in table

1.1 and many more. Current P2P-protocols are decentralized and so independent of

a central server. Also they are usually standardized, so many P2P-clients of different

vendors exits for these protocols. This thesis will focus on the BitTorrent-protocol.

Due to the wide distribution and the fact that it is often used for illegal filesharing,

the BitTorrent protocol is probably the best choice. In addition in this protocol files

are not distributed as a whole, but in small pieces. This makes it possible to use

upload capacities of distributed users. Thus many peers (some unconsciously) itself

become distributors of files, which in some case may be illegal. By taking advantage

of these uploads, peers will be known by their IP address if data is downloaded. This

information can be used in court, when the upload was illegal. A complete description

of the functionality of the BitTorrent-protocol can be found in section 2.2.

4

Chapter 1. Introduction

Chunking Sheme Peer Finding Hash Distribu-

tion

File

Search

Usage
G

n
u

te
lla

peer negotiate the

chunk size at run-

time, 64Kb by de-

fault

decentralized no chunk level

hashing, file hash

used as ID

yes -

eD
o

n
ke

y devided into

9500kB parts,

each 53 chunks

hybrid, originally

centralized via

servers

MD4 hashing at

part level

yes 2,59%

B
it

T
o

rr
en

t devide file into

fixed size pieces

(16kB up to

>16MB)

hybrid, originally

centralized via

trackers

SHA hashing at

piece level

no 17,36%

Table 1.1.: P2P protocols in comparison [22] and usage 2013 Europe fixed access [17]

5

2. Theoretical background

This section describes the main terms and technologies which are used in this thesis.

2.1. Collecting evidence

To proof something in court, evidence is needed. To gather useful evidence specific

standards must be met.[19]

• Admissible: Everything collected has to be done on a legal basis.

• Authentic: The evidence should cover a specific incident and nothing else.

• Complete: Everything found, collected, or evaluated has to be present in an

evidence, not only the damaging or unburdening parts.

• Reliable: Collecting, handling, and evaluating should ensure veracity and au-

thenticity (”Chain of Custody”).

• Believable: Should be comprehensible and understandable by laymen.

2.1.1. Definitions of evidence

There is no general universal definition of evidence but there are several different

definitions according to different circumstances and countries. The Austrian law does

not have a definition of evidence, it is more of a list of what can be brought up as

proof in court:

6

Chapter 2. Theoretical background

The Austrian concept of an active judge, however, goes along with the

judge’s duty to do case-management and especially to induce a truthful

fact-finding using judicial discretion. While only five means of proof (doc-

uments, witnesses, expert opinions, evidence by inspection and the exam-

ination of parties) are explicitly listed the Austrian civil procedure code,

there is no numerus clausus regarding the means of evidence. Evidence

may be freely assessed by the judge.[15]

In contrast, the Encyclopedia Britannica1 defines evidence as follows:

Evidence, in law, any of the material items or assertions of fact that

may be submitted to a competent tribunal as a means of ascertaining the

truth of any alleged matter of fact under investigation before it.[14]

This two examples show how different several definitions could be, even when they are

very general definitions of evidence. In this thesis digital evidence will be created and

therefore a specific definition is needed. Eoghan Casey defines digital evidence in his

book Digital Evidence and Computer Crime as follows:

”Digital evidence is defined as any data stored or transmitted using a com-

puter that support or refute a theory of how an offense occurred or that

address critical elements of the offense such as intent or alibi.”[6]

This definition, combined with the chain of custody, is used as a guiding principle to

ensure the quality of the evidence collected within the prototype implementation of

this thesis.

2.1.2. Evidence collection in P2P-networks

In computer forensics the evidence collection on P2P-network has to consider several

points. Beside the normal requirements on evidence there are some challenges and

problems, which have to be solved. This special requirements results out of the unique

design of a P2P-network.

1https://www.britannica.com/

7

Chapter 2. Theoretical background

In contrast to normal client-server connections, in P2P-network a client has to deal

with various other peers, and does not even get whole files from a single participant

but rather small parts only. In consequence, without having complete data reliable

evidence has to be collected. In addition in P2P-networks each peer shares files, so

uploading files is part of the sharing, which has to be considered too.

The limitation of the evidence collection in P2P-networks is that it can only provide IP-

addresses, port numbers, and other meta data. To match this information to a physical

computer without the help of internet service providers can be hard to impossible. To

find a responsible human being is even more difficult. So this thesis focuses on gathering

digital evidence only, not on identifying real persons or computers.

Uploading and downloading illegal content

In P2P-network files will be shared between different clients. To verify these files

for investigation, at least some parts of them, have to be downloaded. It is very

important to not upload any copyright protected content as investigator. The problem

is that the shared files can be illegal in different ways. If they are copyright protected

and not allowed to be shared, uploading them is illegal. According to the judgment

of the European Court of Justice the downloading copyright protected files from an

illegal source is illegal as well[8]. Or the content itself is criminal, for example child

pornography, then the processing of the file above is illegal.

Process evidence

Normally a P2P-network is based on messages sent between clients. To get evidence

the gathered messages musts be processed. This can be made on different levels.

Either to get parts of files and meta data or to recover whole files and the complete

communication. What is necessary depends on the validation mechanism of the proto-

col and the required information. It is very important to stick to the protocol standard,

to guarantee a correct and reliable evidence.

8

Chapter 2. Theoretical background

Validation of evidence

All data collected as evidence has to be validated in one or another way. It is important

that this is done on the very first level, because if an error is found on a later processing

or evaluating level, the evidence gets useless. In P2P-networks there are usually two

types to validate:

• Peer: Is the peer the one who participates in a P2P-network? Normally peers

are identified by their IP-address and port number, but a peer can hide this

information behind a proxy, for example TOR2.

• Data: Can a piece of data be assigned to a file? Mostly there are protocol

mechanism to verify parts of a shared files by hash values. If not, at least the

complete downloaded file has to be validated.

Indirect/Direct monitoring

Monitoring a P2P-network can be done in two ways. Which way to choose depends

on what should be investigated.

• Indirect monitoring: This method means that a monitor passively joins a swarm

of a P2P-network and gathers information about other peers in the swarm. A

peer in a swarm shares different information about itself, like IP addresses or

port numbers, depending of the protocol, to connect to it. This information

is processed and evaluated. The problem with indirect monitoring is, that you

cannot prove the information you get.

• Direct monitoring: This means that a monitor actively joins a swarm. In

addition to the information of the indirect monitoring, actual network traffic is

available. A monitor acts like a normal client except that it stores the whole

communications with other peers, so shared files can be compared with their

originals and attributed to specific peers. It is an open legal question if the

whole file is needed for comparison or verifiable parts are sufficient.

2www.torproject.org

9

Chapter 2. Theoretical background

Processing of collected data

Just collecting traffic and meta data in P2P-networks is no evidence at all. To prove

a specific crime the collected information has to be processed. In case of file sharing,

the transferred messages are usually split up in small chunks and therefore has to

be reassembled into pieces, which can be verified. Also meta data of one message

on its own has no special value until all of them are combined and investigated for

conclusions.

Results and evidentiary value

As a result of evidence collection in P2P-networks there is a proof that a specific peer,

identified by IP address and port numbers at a concrete time, had a connection to the

observing party. Also by evaluating the content of the connection a public sharing of

even small parts of files can be verified. This implies that if a target shares a file, it

is, at least partly, stored on it. This can be concluded from a list of sent and received

messages, as well as the recovered files. In addition the evaluation of the meta data

can be used as circumstantial evidence. If done right, the chain of custody was applied

in the collection process.

In the end there is still the problem that a IP address has to be matched to a natural

person or corporate entity. As most of the IP addresses are assigned dynamically,

the institution behind the IP at the given time has to be found. But even when

the computer or network device in question is found, the actual user of it has to be

identified.

10

Chapter 2. Theoretical background

2.2. BitTorrent

This section describes the BitTorrent-protocol on a level that is needed for this thesis.

It contains information about the history, but focuses on the functionality of BitTorrent.

2.2.1. History

The BitTorrent protocol was invented by Bram Cohen in April 2001. It was originally

developed for the bootlegger-online-community etree3. The challenge was to share big

files over the internet without the use of expensive, centralized file servers. In July

2001 the first implementation was published. The protocol itself got final in the year

2008. Nowadays it is the biggest P2P-filesharing-protocol and was in 2015 responsible

for 8.44% fixed access internet traffic, shown in figure 2.1.

Figure 2.1.: Top 10 Peak Period Applications - Europe, Fixed Access 2015[18]

3www.etree.org

11

Chapter 2. Theoretical background

2.2.2. Functionality

The BitTorrent-protocol is designed to share big files in small pieces with many other

peers. Unlike other P2P-protocols that enable users to search and share different

files, BitTorrent does not create a network for all files. For every download, which

can contain an arbitrary number of files, a swarm is created, where only the specified

files are provided. Peers start without any pieces of the shared files. After time they

download more and more pieces, but also upload already downloaded pieces to other

peers. In BitTorrent-swarms these peers are called leecher. When a peer has finished

a download, or is the origin of the torrent, it is called a seeder. A seeder uploads

shared data as long as it stays in the swarm. An overview of the whole BitTorrent

functionality is shown in figure 2.2[3].

Figure 2.2.: BitTorrent Procedure[12]

12

Chapter 2. Theoretical background

2.2.3. Data structure

The BitTorrent-protocol shares big files in small pieces, so there is a need of a data

structure. Files of one torrent are split up in pieces of fixed size (except the last

one) that each can be verified with a SHA1 hash. This pieces are still too long, so

when shared with BitTorrent, a piece is split up into several blocks of fixed size. The

intersection points of the pieces do not consider different files, all files are treated as

one pile of binary data. Figure 2.3 shows a torrent, which consists of six files, split up

in 16 pieces, each of 4 blocks. Also the borders of the files do not line up with the one

from the pieces.

Figure 2.3.: A torrent is divided in files, pieces and blocks

2.2.4. .torrent file content

The .torrent file provides all necessary information to join a swarm. Usually this file

is downloaded from the web and opened in a BitTorrent-client which handles the

download. All data in a .torrent file is a dictionary, containing at least the keys listed

below.

13

Chapter 2. Theoretical background

• announce contains the announce URL of the tracker

• info dictionary that describes the shared files in this torrent

– piece length number of bytes in each piece

– pieces concatenation of 20-byte SHA1 hash value of each piece

– name filename, dictionary if more than one file

– length filelength, dictionary if more than one file

2.2.5. Tracker

The tracker is a web service that provides lists of peers and statistics about a torrent,

but is not directly involved in the data transfer. It responds to HTTP-GET requests

which contains all information to connect to the swarm of this torrent, like a list of

peers to start sharing data. The necessary information for the tracker, to help peers

find each other, are the following:

• info hash 20-byte SHA1 hash value of the info dictionary in the .torrent file.

• peer id arbitrary 20-byte string, there are no guidelines for creation.

• port the client is listening on.

The tracker’s HTTP-response is of type ”text/plain” and contains a dictionary with a

lit of peers and other information about the health and the state of the torrent. The

important fields of this dictionary are the following:

• peers dictionary or binary encoded list of peers

– peer id self selected 20-byte string identifies a peer

– ip peer’s IP-address as string, could be IPv4(dotted quad), IPv6(hexed) or

even a DNS-name

– port peer’s port number as integer

14

Chapter 2. Theoretical background

• complete number of seeders as integer

• incomplete number of leechers as integer

2.2.6. Peer Protocol

The peer protocol is a TCP based protocol for the exchange of pieces which are listed

in the .torrent file. A connection is initiated via a handshake and then continued

with the exchange of BitTorrent-messages. Beside the actual data exchange, the peer

protocol also maintains the state, described in section 2.2.6, and meta information,

like available pieces, of a torrent.

Handshake

Every connection between two peers starts with an initial handshake. The initiator

of a connection first sends their handshake. The recipient checks via the info hash if

it can serve the requested torrent. If so, he responds with its own handshake and a

connection is established. The handshake contains following information:

• pstrlen single byte, containing the string length of pstr.

• pstr string identifier of the protocol (”BitTorrent protocol”).

• reserved 8-bytes, can be used to change the behavior of the protocol. In current

implementations all zeroes.

• info hash 20-byte SHA1 hash value of the info dictionary in the .torrent file.

• peer id arbitrary 20-byte string, usually the same that is announced to the

tracker.

15

Chapter 2. Theoretical background

Messages

The BitTorrent-protocol is implemented with unique messages. With these messages,

shown in table 2.1, the connection between two peers is maintained and the data

exchange takes place.

ID Name Description
- keep-alive Keeps the connection open, because a connection will be

dropped after a certain period of time without activity.
0 choke Choke a connected peer.
1 unchoke Unchoke a connected peer.
2 interested Register interest of pieces from a connected peer.
3 not interested Cancel interest of pieces from a connected peer.
4 have Inform other peers a piece has been successfully downloaded

and verified via the hash.
5 bitfield Sent after the handshaking sequence is completed, down-

loaded pieces are indicated with a 1.
6 request Request one or more blocks of a piece.
7 piece Contains the actual data of one or more blocks.
8 cancel Cancel a block request.

Table 2.1.: Messages of the BitTorrent-protocol

State

A peer must maintain state information for each connection that it has with other

peers. There are three states:

• NOT INTERESTED: Initial idle state.

• INTERESTED&CHOKED: Client registered interested in pieces of a remote

peer but waits on unchoke message from them.

• INTERESTED&UNCHOKED: Client can request and download pieces from

the remote peer.

16

Chapter 2. Theoretical background

Initially a client is in NOT INTERESTED state. A client has to send an inter-

ested message to a remote peer to register interest in pieces. He is now INTER-

ESTED&CHOKED. If the remote peer is willing to communicate, he sends an unchoke

message. The client now is INTERESTED&UNCHOKED and can send requests for

pieces until either the remote peer chokes the client again or the client has lost interest

(for example he finished a download). A full state diagram is shown in figure 2.4.

17

Chapter 2. Theoretical background

Figure 2.4.: State diagrams for connection regarding downloads from remote peers[13]

18

3. Current Solutions

This chapter shows an overview of existing approaches to collect evidence. The differ-

ences and problems of this approaches will be shown and discussed. It also presents

some exemplary cases with reference to the approaches.

3.1. Existing approaches

Evidence collection could be done in various ways. Some of them are very cheap and

simple and result in circumstantial evidence which relies on witnesses or other evidence.

Other approaches are able to prove actions so this evidence can be seen as a fact, like

plain network communication. But these approaches are more complex and cost more

money. In today’s evidence collection three main approaches can be found.

3.1.1. Screenshots

The simplest and easiest solution is to make screenshots during the operation of a

BitTorrent-client. Most clients can show all necessary information to a user like IP-

addresses, the shared files and the process of uploading pieces of a file. One big

problem with this approach is that there is no link to the actual data transferred by

the client. For example uploading a readme-file as part of a torrent is nothing special

and does not interfere with the copyright of a music track but cannot be excluded via

a screenshot. In addition screenshots always show only parts of a full picture, there

can be scroll bars, different tabs with information or they show only information a user

wanted to be visible on them. Another big problem with screenshots as evidence is

19

Chapter 3. Current Solutions

that it is a simple picture, which can be tampered very easily. Even worse, as long

as it shows only a computer screen, it can be easily constructed with software out

of nowhere. The problem becomes even worse when screenshots are printed out as

evidence for use in court, because there is no chance to identify tampering.

3.1.2. Client-logging

Another approach is to use the logging ability of some BitTorrent-clients. This could

generate really useful evidence, because the information is provided by the client soft-

ware itself. Theoretically, all information is available and written to a log file. In reality

the logs of a BitTorrent-client exist for developers and not for the creation of evidence

which can be used in court. So normally those logs shows too little and/or the wrong

information to prove a specific action on a torrent.

3.1.3. Specialized software and services

Like the software developed in this thesis there exists specialized software to extract

evidence from BitTorrent-traffic. These programs or services are provided by companies

specialized on evidence collection. When doing correct and comprehensible evidence

collection, there is no problem at all with such kind of service. The problem is that

most companies and organizations do not disclose their process and therefore it is dif-

ficult to understand how evidence was collected. It is therefore often the interpretation

of the court whether a ”proof” is accepted. Although most companies are acting with

conscience, several cases have happened in the past where companies have uncon-

sciously collected false evidence, like in the example case described in section 3.2.3. In

the worst case, some companies even partially created it themselves, which happened

in 2014 in the RedTube copyright infringement affair in Germany[5]. Also, semi-legal

methods such as honeypots with real content were used, like 2007 where a anti piracy

gang set up their own video download portal to trap people into uploading copyright

protected material[1].

20

Chapter 3. Current Solutions

3.2. Exemplary lawsuits

This section introduces three different cases from Germany to show the complexity of

evidence collection. It covers a lawsuit as positive and one as negative example for the

use of screenshots, and one case that points out the possible fallibility of closed-source

solutions.

3.2.1. Screenshots as failure

LG Hamburg, Judgment from 14.03.2008 - Az. 308 O 76/07[10]

Summary: ”The subject-matter of the proceedings is an objection by the plaintiff to

the defendant on the basis of the public access to two music recordings of a pop-

ular German artist group in a file sharing system via the Internet connection of the

defendants.

The applicant claims that he has the exclusive right to exploit the disputed music

recordings. On 11.07.2006 at 17:10:13 (CEST) at the found IP address altogether 170

audio files were made available for download by means of a file sharing software, based

on a P2P-protocol, including files with the disputed music recordings. The IP address

had been assigned to the defendant at the time of the contested date. The applicant

did not allow such use of his recordings.”[7]

The case was dismissed.

Excerpt from the decision reasons: ”Although the applicant has claimed that the

company’s online investigators have determined that the literal title of the controversial

music has been made available for download over the period in question, and has

provided proofs of the company, he has also submitted a public prosecutor’s information

to the effect that this IP address has been assigned to the defendant during the period

in question. The prints produced by the company itself are, however, not a suitable

means for the proper conduct of the investigations. The head of the investigation

service, who had been appointed by the applicant as a witness for the investigation,

could not say anything about the investigations. Rather, he merely said that the

21

Chapter 3. Current Solutions

investigations had been made by a student who was now living in L. again. He then

presented the results of his investigations and checked the results on the screen for

plausibility. He had not been part of the investigation himself and he had not listened

to the music files.”[7]

Annotation: This case is a negative example how to do computer forensic. Printouts

of screenshots and logs provided by the applicant can not be used as evidence without

a witness that can prove its reliability. The fact that such a witness who collected the

evidences was not available in court and could not explain his approach on his own

lead to the rejection of the case.

3.2.2. Screenshots as success

LG Köln, Judgment from 31.10.2012 - Az. 28 O 306/11[11]

Summary: ”The applicants are among the leading German phonogram producers.

They are the owners of exclusive rights to numerous pieces of music. In so-called

online file-sharing-software music pieces as MP3 files are offered by the respective

parties for download. In this way, every user of the exchange can download pieces

of music from the computers of the offerer. The applicants thus suffer substantial

damage annually.

The applicants have therefore commissioned a company to investigate such copyright

infringements. These determined that a total of 5080 audio files were made available

for download via an internet connection, which could be traced to the defendant, based

on the IP address, by means of the exchange software software BearShare.”[2]

The defendant is convicted.

Excerpt from the decision reasons: ”The applicants have shown with the help of

the screenshots and the testimony of the witnesses that on 19.08.2007 at 11:12:31 over

an internet connection, at that time the found IP address was assigned, which from the

screenshots with the names of music tracks have been made publicly available.. . . There

are no indications of any doubts as to the correctness of the classification. In the board’s

22

Chapter 3. Current Solutions

view, it is clear from the findings of the evidence that the infringement originated from

the Internet connection of the defendant.”[2]

Annotation: The applicants succeeded in court even with only screenshots as evi-

dence. In contrast to the case described before, the applicants could show the full

process of evidence collection, including witnesses. This shows how important it is

how to collect evidence and substantiate it with comprehensibility and witnesses.

3.2.3. False-Positives

LG Berlin, Judgment from 03.05.2011, Az. 16 O 55/11[9]

Summary: ”In this present case, LG Berlin had to decide on the legal dispute between

an investigator of IP addresses on the one hand and the company issuing file-sharing

warnings on the basis of such determined IP addresses. It became clear that the

complaining company had worked unreliably when determining IP addresses.”[16]

The case was actually not about the question if the investigator provided reliable

evidence itself, but about an injunction. The applicants argue that the defendant con-

tacted the applicant’s contract partners and attempted to persuade them to terminate

their contractual relationship with the applicant based on untrue facts and on secret in-

house information. These allegedly untrue facts about the reliability about the findings

of IP addresses turned out to be true.[9]

Annotation: The interesting part of this case is not the verdict itself but the admission

of the applicant that can be found in it. It became clear that the applicant’s company

had worked unreliably when determining IP addresses. In fact, they produced false

positives which must not happen ever.

23

4. Prototype implementation

This chapter describes the prototype implementation. It is structured into the require-

ments for the implementation, the choice of the extendable BitTorrent-client with its

plugin system and the structure and workflow of the prototype. Furthermore there is

a short section about the viewer for the collected evidence.

4.1. Requirements

In this section the objectives of this thesis, shown in section 1.3, are transformed into

specific requirements for the implementation of a prototype application, regarding the

choice of an extensible BitTorrent-client as well as technical specification to deploy the

chain of custody.

4.1.1. Extensible BitTorrent-client

The prerequisites by which an BitTorrent-client is selected are listed in the following

list:

• Open source: To provide open software, the extended client has to be open

source software as well. With this precondition it is guaranteed that the whole

process of evidence collection is reproducible and can be owned. In addition the

whole source code is available and can be customized for own needs.

• Full BitTorrent functionality: To get full advantage of the BitTorrent-protocol

24

Chapter 4. Prototype implementation

and its powerful extensions it is required that the extended client supports and

gives access to at least the official extensions described in the accepted BEPs.

• Up to date & Ongoing development: To have access to the latest function

and security updates the client has to be in ongoing development. So a widely

used, up to date client is preferred. To keep up with the latest versions there

should be an easy way to patch the application.

4.1.2. Data traffic

The data traffic between the extended client and other peers is the only source for

evidence. To extract good and reasonable evidence the client has to implement the

following requirements:

• Storage of complete data traffic: In order to obtain the most accurate and

comprehensible results possible, all traffic must be stored including the shared

downloaded data as well as protocol traffic.

• Verification of shared data: To guarantee the consistency and completeness

of the recorded shared data, a comparison of the data downloaded with the

original file has to be performed, for example based on hash values.

• Availability & history of shared data: To keep track of the progress of a

download at a peer, it is required to store the files made available and the

completeness of a download over time provided by the BitTorrent-protocol.

• Prevent data upload: To not run the risk of providing shared data on its own,

the extended client has to prevent upload of non protocol data.

4.1.3. Evidence

The collection of evidence is the main objective of this thesis, so it is important to

extract and handle evidence with care. Evidences have to fulfill some specific standards

25

Chapter 4. Prototype implementation

described in chapter 2.1. To achieve these standards the following requirements apply

to the extended client:

• Reliable time source: To be independent of the operating system the extended

client is running on and its system-clock an integration of an external time source

is required. Accurate timestamps are necessary to identify physical computers

behind dynamically assigned IP addresses through their internet service providers.

• Evidence documentation: The collected evidence has to fulfill the chain of

custody and therefore all processed data, actions on them, and all derived meta

data have to be documented.

• Evidence extraction: The extraction of evidence based on the stored traffic

has to be reasonable and reproducible. Only hard evidence are extracted, there

must not be guessing or possibilities mentioned as evidence.

• Tamperproof evidence: To prevent any tampering with the results there must

be the possibility to digitally sign the collected and packaged evidence including

a timestamp.

4.1.4. Features

To automate the process of evidence collection and make the extended client easier to

use there are some additional non-functional requirements:

• Geolocation: Lookup IP addresses in GEO-IP databases to exclude them from

observation. This is required to collect evidence only from IP addresses within

legal access. Countries to observe can be selected independently.

• Blacklist/Whitelist: Exclude or include IP addresses from observation. This

filters have to be manually configurable.

• Tor filter: Exclude Tor-exit-nodes from observation, because there is no useful

evidence to collect.

26

Chapter 4. Prototype implementation

• File selection: Observe only files in a specific torrent interesting for evidence

collection.

• Do not attract attention: Act as normal BitTorrent-client which supports all

expected functionality, except upload of shared files.

4.2. Vuze

Vuze(formerly known as Azureus) is a widely used BitTorrent-client. The original

software Azureus was first released in 2003 on SourceForge.net as playground for the

Standard Widget Toolkit (SWT), a graphical widget toolkit written in Java maintained

by the Eclipse foundation. Although some feature parts of the Vuze has a proprietary

license the core is released under GNU General Public License, Version 24 and therefore

open source.[21]

For the extendable BitTorrent-client Vuze is the client of choice because it is open

source and because of its powerful plugin system described in the next section.

4.2.1. Vuze plugin system

The BitTorrent-client Vuze provides a plugin system to extend the normal BitTorrent

functionality. A plugin is a Java application which can interact with Vuze with the

Plugin-API and is otherwise only limited to the possibilities of Java. Plugins are pro-

vided from Vuze itself as well as from the community. Some of the main functions are

implemented with plugins like the official DHT implementation. There is also support

to write own plugins and make them public available.

The Plugin-API can be used to add UI elements to existing views or create views on

their own. But even more important, it is also possible to interact with the underlying

BitTorrent core. This interaction is provided via listeners and resource managers. This

interface even provides methods to manipulate the actual BitTorrent-messages. This

4www.gnu.org/licenses/gpl-2.0.html

27

Chapter 4. Prototype implementation

functionality is needed to reach the requirements described in section 4.1.

To develop a Vuze plugin the pluginapi.jar, provided at dev.vuze.com/, is needed

and the Plugin interface has to be implemented. The plugin system provides optional

internationalization as well, in forms of .properties files for each supported language. To

deploy a plugin to Vuze it has to be deployed as a JAR file including a plugin.properties

file which defines it as Vuze plugin. This file contains all information for Vuze to load

and identify the JAR file as a plugin:

• plugin.class: Class containing the Plugin interface

• plugin.id: Internal representation of the plugin

• plugin.name: User readable name of the plugin

• plugin.version: The version of the plugin

• plugin.langfile: Location of the language files

This plugin can now being installed in an arbitrary Vuze instance supporting at least

the version of the pluginapi.jar used in the plugin. A plugin can be installed for all

users or only for individual ones.[4]

PluginInterface

The entry point for a plugin is the PluginInterface, not to confuse with the Plugin

interface. Plugins only need to implement one particular method, shown in listing 4.1

to get the PluginInterface, which provides access to all components of Vuze, like user

interface, downloads or networking.[4]

Listing 4.1: Plugin.java[4]

1 public interface Plugin {

2 void initialize(PluginInterface plugin_interface)

3 throws PluginException;

4 }

28

dev.vuze.com/

Chapter 4. Prototype implementation

Types of running code

There are three types of code that plugins can run:

• Code executed on plugin initialization.

• Code executed by listener methods.

• Code running in a separate thread.

This means, that all code after initialization is triggered by listeners or is executed in a

separate thread. Threading has to be handle with care, because the user interface and

the Vuze core are running on different threads. Adding threads without syncronization

can lead to unexpected behavior.[4]

4.3. Process of evidence collection

The implemented process of evidence collection results in several steps derived from

the requirements. These steps are split up in functional parts in therms of what is

implemented within the prototype beside the normal BitTorrent-functionality. This

section describes the overall process a user will experience, referring to the subsections

where the actual implementation of the parts are described.

An overview of the processing of evidence in this implementation is shown in figure 4.1

but is also described in more details as follows. The first step in this process of evidence

collection is the 1.time synchronization. It is triggered at application startup, to have

reliable timestamps when evidence collection starts. In order to start the actual process

a torrent has to be added to the client like usual. Within the application the added

torrent starts to look up peers and provides them for 2.target picking. Targets are

selected by various attributes, like country or specific IP-ranges. When selected as

target, the peer is added to the referring torrent in the application. The target is

now treated as a normal peer and is in the state of 3.target observation. So the

target interacts normally with the client and additionally all activities will be recorded

by the application. After collecting enough data, specified by some criteria, the target

29

Chapter 4. Prototype implementation

is dropped as a peer in the client. The collected data of the target is then processed in

the step of 4.extract & store evidence. In this step evidence is extracted from the

raw traffic data, and also meta data is processed to get a better picture of the target.

To fulfill the chain of custody the collected evidence is digitally signed to render it

tamper proof.

.torrent

NTP

peer list

targets

messages

XML

binary

1. time synchronization

2. target picking3. target observation

4. extract & store evidence

Figure 4.1.: Process of evidence collection

4.3.1. Time synchronization

The local system clock of a computer can be set to an arbitrary value. So this clock

is not reliable and does not fulfill the requirements for automatic documentation of

evidence. To get trustworthy timestamps and timings the application supports the

30

Chapter 4. Prototype implementation

Simple Network Time Protocol (SNTP) specified in the RFC43305. SNTP allows to

synchronize local clocks over a network with several specific sources.

To get an exact, system independent timestamps the application implements timing

as follows:

1. A time source has to be selected in the setting, shown in figure 4.7

2. On initialization or refresh of the time source a request is sent to the specified

NTP-timeserver.

3. With the response the local time-offset is computed.

4. This local time-offset is stored and added to every timestamp created within the

plugin.

5. After a configurable timeout the time source will be refreshed.

As a remark, SNTP does not recognize any time zones, instead it works only with Co-

ordinated Universal Time (UTC). The presentation of the time in the correct timezone

is up to the underlying operating system the application is running on. Therefore it

doesn’t matter which timeserver is picked, as long as it is reliable and trustworthy. In

consequence the time-correcting offset works timezone independent and can be used

on any UTC based operating system.

4.3.2. Target picking

First of all, a source for targets is needed, so the torrent selected for observation has

to be added to the application. Since the administration of torrents is still a task of

Vuze, the observed torrent is added as usual by the client. So all kinds of torrent

sources, like magnet links, are supported as long as Vuze can handle them. When the

observed torrent is added, it appears in the list of available torrents in the start screen

of the plugin, shown on the left in figure 4.2. Before starting the process of evidence

collection there is the possibility to select the interested files of the torrent.

5tools.ietf.org/html/rfc4330

31

Chapter 4. Prototype implementation

When the torrent is started, the PeerManger of Vuze starts to collect peers from all

available sources. This sources, like trackers or DHT, are not restricted in any way and

are configurable in Vuze as a normal functionality of a BitTorrent-client. There is one

PeerManger per torrent, which handles the discovering as well as the management of

the peers. The usual result of a discovered peer would be that it is added to the torrent

immediately. This is the first point where the prototype intercepts the usual procedure

in the BitTorrent-protocol. The peers, added to the observed torrent, should meet

certain criteria and have to be filtered before added to the torrent as targets. Therefore

the application listens on PEER DISCOVERED-events from the PeerManager, which

are thrown every time a peer is discovered by a specific source. This means a peer

can be discovered multiple times, between different sources. A newly discovered peer

is added to the peer list available for target picking, shown in the center of figure 4.2.

Only if a peer from this list passes the filters described below, or is selected by hand

it is added as a target to the system. To prevent Vuze from adding newly discovered

peers as targets to the torrent the application also listens on PEER ADDED-events

and intercepts additions of peers not selected as target. This filtering and managing of

targets has to be done beside Vuze within the application-plugin and is located in the

class PeerFetcher. It handles all needed listeners on the PeerManager and the storing

of the discovered peers.

Filters

By connecting to a BitTorrent swarm the application gets supplied with possible peers

via various sources, like a tracker, or DHT. Manually picking all interesting peers as a

target would require a huge effort, so there is the possibility to automatically include

or exclude peers as a targets by generalized criteria.

This mechanism is implemented in the listener of PEER DISCOVERED-events. When

a new peer is discovered it will be immediately selected as a target if it passes all the

enabled filters. Since this filtering process depends on the discovery time of a peer,

it could happen that when filters are changed during runtime, a peer that would be

previously selected as target, will now not be selected after such a change. So there is

no retroactive selection. The available filters are:

32

Chapter 4. Prototype implementation

Figure 4.2.: Start screen of the prototype

• Country filter: This filter, shown in figure 4.3, selects only peers where the IP

address can be matched to a given country based on a geolocation service. The

filter can be applied to multiple countries at once. IPs which can not be matched

to a specific country can be either included or excluded automatically.

• Blacklist filter: With this filter peers with specific IP addresses can be explicitly

excluded as targets. So local or already covered addresses can be excluded.

• Whitelist filter: With this filter specific IP addresses can be explicitly included

as targets. So a specific target can be further investigated.

• Tor filter: As a filter activated by default, it excludes all Tor exit nodes addresses

since no useful evidence can be expected at all. A list of all active Tor exit

nodes is provided directly from the Tor project at check.torproject.org/

exit-addresses. This list is fetched periodically in a configurable period of

time, see figure 4.7, and discovered peers can be matched against it.

33

check.torproject.org/exit-addresses
check.torproject.org/exit-addresses

Chapter 4. Prototype implementation

With these filters configured and enabled the target picking takes place automatically,

nevertheless the whole peer list is visible to the user and he still can pick targets

manually bypassing the filters. If a target is picked, it is added to the according torrent

as a peer and the peer observation starts.

Figure 4.3.: Country filter: countries are defined by ISO 3166-1

34

Chapter 4. Prototype implementation

4.3.3. Target observation

When a peer passed all filters and becomes a target, it is added to the observed torrent

and therefore will be automatically observed. So only target peers will be added, there

are no peers which will not be observed. Each target is now treated by Vuze as a

normal peer and it follows the usual process of filesharing in BitTorrent, described in

section 2.2.6. The only exception to this is, that all outgoing and incoming messages

of the protocol will be recorded to process them afterwards. Additionally outgoing

data messages will be dropped to fulfill the requirement of not uploading data. How

this is implemented is described below. Figure 4.4 shows the observed target with

their current state and the piece count, which have already be downloaded. This piece

count is the metric to decide when enough data is available as evidence.

Figure 4.4.: Target observation

In Vuze each peer has its own Connection over which messages can be sent and

received. This Connection consists of two message queues, the IncomingMessageQueue

and OutgoingMessageQueue. To each of them a listener is registered to intercept the

35

Chapter 4. Prototype implementation

messages sent or received. This listeners are:

• IncomingMessageQueueListener: The only relevant method is messageRe-

ceived. It provides every valid incoming message. Invalid messages, which can

not be decoded, will be dropped by Vuze automatically. Every message is stored

in the target’s incoming message list. Additionally incoming handshakes will be

inspected to recognize other Vuze clients, because they have to be treated in a

special way because of Vuze BitTorrent extensions.

• OutgoingMessageQueueListener: A method, called messageAdded, indicates

that a messages is about to be added to the OutgoingMessageQueue and is ready

for sending. If it returns false the messages will be dropped and is not added to

the queue and guaranteed not to be sent. This enables the possibility to tamper

with or drop messages, which is used to prevent the application to send data in

the form of piece-messages. In contrast the method messageSent provides the

already sent messages, which were queued in the outgoing message list of the

target, but has no mechanism to check the receipt. This is used to collect all

sent messages of the client to the target.

Each collected messages is stored with a timestamp, the internal Vuze representation

Message, as well as the binary data of the message as ByteBuffer. This messages are

stored separately in an incoming and outgoing message list which are processed in the

next step of evidence extraction.

To collect meaningful evidence, enough data has to be collected. To have a good

measurement of having enough data the pieces a target has downloaded are counted.

When this piece count exceeds a user defined threshold, or is stopped manually, the

target is removed from the torrent and is further processed outside the BitTorrent

functionality. The threshold is defined as a percentage of the available pieces in a

torrent, which depends on the piece size and the selected interesting files. It depends

on type and size of an interesting file, how many pieces are necessary for reasonable

evidence collection and is up to the user to decide. This threshold can be set in the

same tab as the target observation and is shown in figure 4.4 in the bottom right box.

36

Chapter 4. Prototype implementation

4.3.4. Extract evidence

When a target’s observation has finished, the next step in the process is to extract

evidence from the collected data and information. This evidence includes hard facts,

in the form of the data traffic, as well as information derived from the meta data, like

the history of a target. To get these two types the collected data has to be processed

in two different ways. For shared data traffic, the pieces and messages have to be

reassembled and verified, which is done in the MessageReassembler. For meta data

the protocol messages have to be analyzed, which is done in the HistoryExtractor.

Message reassembling

To be able to verify downloaded data, it is necessary to reconstruct data at least on

piece level to compare the hash value with the one in the torrent file. Dependent on

the amount of reconstructed data it can be possible to reconstruct fully downloaded

files, which then can be verified with the md5-hash located in the file dictionary in

the torrent file. This reconstruction of data is done by the application itself and not

by Vuze. This is because there is no possibility to distinguish the origin of the pieces

from different targets and keep them separated. So it is guaranteed that all targets

are treated separately and and no false positive is created.

As described in section 2.2.3 and shown in figure 2.3 the structure of a torrent is split

up in files, pieces and blocks. So the blocks, as the only unit shared in the messages,

have to be reassembled to pieces, which then can be reassembled to files, if all pieces

of a file are available. This structure splits up the reassembling process into two stages:

Reassemble messages to pieces

To reassemble the messages some operating numbers are required:

• torrentSize the overall size in bytes of the shared data in a torrent, computed

and provided by Vuze. newpage

37

Chapter 4. Prototype implementation

• pieceSize the size in bytes of a single piece except the last one, provided by the

torrent file.

• pieceCount the amount of pieces of a torrent, computed by the following for-

mula:

pieceCount = dtorrentSize
pieceSize

e

• lastP ieceSize the size in bytes of the last piece, which is irregular, of a torrent.

It is computed by the following formula:

lastP ieceSize = torrentSize− pieceSize ∗ (pieceCount− 1)

With these numbers all information is available to start reassembling the messages,

shown in figure 4.5. First a map pieceMap is created, where we can link partly re-

stored pieces to their index. As shown in listing 4.2, each collected message of type

BT PIECE, which holds the shared data in form of blocks, is processed. To insert a

block into the right piece and position into the piece, the key of the piece and the

offset has to be extracted of the message. Because of Vuze BitTorrent extensions,

Vuze clients has extended meta data, so this has to be considered when reassembling

pieces. If a piece is not available in the pieceMap yet, it is created. The last piece of

a torrent is treated specially because of its different length. Now all information and

objects are available to store the actual binary data into a piece.

38

Chapter 4. Prototype implementation

Figure 4.5.: Reassemble messages to pieces

Listing 4.2: reassemble messages to pieces

1 for (MyMessage message : incomingMessageList) {

2 if (message.getMsg (). getID (). equals("BT_PIECE")) {

3 metaData = extractKey(message.getMsg (). getPayload ());

4 key = metaData.getF1 ();

5 offset = metaData.getF2 ();

6 if (! pieceMap.containsKey(key)) {

7 // handle last piece

8 if (key == torrent.getPieceCount () - 1) {

9 piece = new MyPiece(key ,

10 lastPieceSize ,

11 message.getTime ());

12 } else {

13 piece = new MyPiece(key ,

14 pieceSize ,

15 message.getTime ());

16 }

17 pieceMap.put(key , piece);

18 } else {

19 piece = pieceMap.get(key);

20 }

21 piece.addData(message.getTime(),

22 offset ,

23 Arrays.copyOfRange(message.getData(),

24 metaLength ,

25 m.getData (). length));

26 }

27 }

39

Chapter 4. Prototype implementation

When finished processing all messages, the reassembled pieces can be verified with the

hash values from the torrent file, see section 2.2.4. To get these hashes the pieces

string is convertet into a bytearray with the piece number as index and the hash values

as entries, so it can be easily accessed in the application.

For further processing of the pieces we only consider complete pieces, all others are

useless, as we cannot verify their integrity. A piece is consider as complete when all

blocks of it have data stored inside. For each complete piece a SHA1 hash value is

computed and compared with the referring hash value from the torrent file. If successful

the piece is added to the pieceList, which is returned at the end for further processing.

Reassemble pieces to files

To reassemble the files some numbers have to be known for each different file. This is

because the borders of the files inside a torrent do not line up with the borders of the

pieces. These numbers are:

• fileSize in bytes, provided by the torrent file.

• byteStartRange the byte a file starts, initially 0.

byteStartRangen = byteEndRangen−1

• byteEndRange the byte a file ends.

byteEndRange = byteStartRange+ fileSize

• startP iece the index of the piece which contains the byteStartRange.

startP iece = bbyteStartRange

pieceSize
c

• endP iece the index of the piece which contains the byteEndRange.

endP iece = bbyteEndRange

pieceSize
c

40

Chapter 4. Prototype implementation

With these numbers, pieces can now be written to each file as shown in figure 4.6.

Files are represented as RandomAccessFile to write data to them at arbitrary positions,

according to which pieces are available. Knowing all files and numbers, the application

can now iterate over the files and fill it with data from the pieces.

For each file the startP iece and the endP iece is known. Now all pieces belonging to

the file will be copied into the file, with three exceptions:

• First piece: An offset where the data of the file starts has to be computed and

only data after this offset is copied.

• Last piece: An offset where the data of the file ends has to be computed and

only data before this offset is copied.

• Empty piece: If a piece is not available, because it was not downloaded or can

not be verified, the file as a whole can not be restored and will be marked as

incomplete.

If all pieces of a file are processed and valid the file is marked as complete and can be

used as evidence.

Figure 4.6.: Reassemble pieces to files

41

Chapter 4. Prototype implementation

History extraction

Within the history extraction the messages of the BitTorrent-protocol, which tells

something about the history of a target, will be inspected. These messages are basically

for managing the requests for specific pieces. So they contain information what piece

or pieces a peer announces to the swarm and can be downloaded from it. With this

information, in addition to the timing information, it is possible to reconstruct the

sharing history of a torrent for a target. As a reminder, these elements are no hard

facts, because there is no way to prove them. A tampered client can basically send

what ever they want, but it might be suspicious and monitors detect such misbehaving

client and put them on block lists.

There are several messages worth to look at. As they are a essential part of the

BitTorrent-protocol to work, they are always available. The messages considered for

the history are:

• bitfield: Message sent immediately after the handshake, so it appears only once.

It indicates all pieces a target has when the observation starts. It contains a binary

array where every bit represents the availability of a piece.

bitfield: = 001101002 = 1A16

indicates that pieces number 3, 4, and 6 are available.

• have: Message sent when a piece was successfully downloaded and verified via

the hash value. Different clients implement this message in different ways. Beside

the implementation according to the standard, for example there is the strategy

to only advertise pieces the receiving peer does not have, which results in less

traffic overhead.

• haveAll/haveNone: These two messages are part of the Fast Extension6. To

reduce overhead traffic and these messages just indicates that a target has all or

no pieces at all.

To create the sharing history of a target the collected messages are filtered for the

6bittorrent.org/beps/bep 0006.html

42

Chapter 4. Prototype implementation

messages described above and sorted by time. Starting with the bitfield message a

reference bitfield as bytearray for the targets pieces is created and pre-filled. Unless

the target has not downloaded all pieces yet, for every further message the bitfield

array is updated with the new pieces and stored seperatly per message. Additionally a

percentage and the according timestamp is stored, so the changes of shared files over

time is visible in pieces and percentage.

With this information the download progress of a target can be observed but the origin

of the pieces of this progress can not be determined. So when a target keeps advertising

new pieces over time, it is an indication that the target is still actively downloading

parts of the torrent. But to really prove the public availability of the announced pieces,

they has to be downloaded and verified.

Figure 4.7.: Plugin settings

43

Chapter 4. Prototype implementation

4.3.5. Store evidence

After completing the evidence extraction the result has to be stored. This is achieved

in a compact, tamper proof and human readable form. The output of this step is a

zip file per target and an according digital signature. Inside the zip file the results are

stored in two different ways. First the actual downloaded binary data and second the

meta data, history and messages as XML files.

Binary data

The downloaded binary data itself would not be very useful without context, but the

reassembled files, even if not completed, are usable. So the reassembled files are stored

in a folder like they would be stored regularly by a BitTorrent client. The completeness

of the files and which parts are missing can be looked up in the info.xml about the

target. This storage of binary data is not usable for all kinds of file formats, like

encrypted containers, but can be very useful for formats where even small parts can

contain usable, independent information like pictures or audio.

XML

To provide evidence in a human readable way and in a structured form it can easily

processed by other programs it is stored in the XML file format. There are three differ-

ent XML files which provide information about the target itself and a summary about

the collected data, the observed share history of the target, and all single messages

sent or received by the application.

The implementation makes use of a standard Java library, the Document Object Model

(DOM) parser, which is an in-memory representation of the XML file. This enables the

possibility to create the XML file without a specific order and change elements until

it is written to a file. For creating such a DOM a DocumentBuilder provides a new

Document where first a root element has to be added and afterwards normal elements

and attributes can be appended. When the DOM is finished, a Transformer transforms

44

Chapter 4. Prototype implementation

it into an actual XML file.

Header

The header, described in listing 4.3, of all XML files are the same. It contains the

target’s IP, peerId and date, so it can be matched over different files of one target.

Listing 4.3: Example of header in each XML file

1 <info>

2 <header >

3 <peer>

4 <ip>123.123.123.213 </ip>

5 <id>2d417a353734402d3830505559596467344e7868 </id>

6 <date>Mon Sep 25 21 :01:01 CEST 2017</date>

7 <client >Vuze 5.7.5.0 </client >

8 </peer>

9 <torrent >

10 <name>torrentName </name>

11 <infohash >epk51MxXilxn55tubi6MbHFEd4k=</infohash >

12 </torrent >

13 </header >

14 <file -list>

15 <file complete="true"

16 name="README.txt"

17 size="771 bytes">

18 <progress piece -count="1" total -piece -count="1"/>

19 <start -time>Mon Sep 25 21 :01:05 CEST 2017</start -time>

20 <end -time>Mon Sep 25 21 :01:07 CEST 2017</end -time>

21 </file>

22 </file -list>

23 <time -server offset=" -0.39248037338256836"

24 time -server="at.pool.ntp.org"/>

25 </info>

45

Chapter 4. Prototype implementation

info.xml

In the info.xml file all relevant information about the target and the observation are

stored. Beside the header this includes information about the used timeserver and tor

exit node list provider as well as the torrent and its containing files. To these files

additional meta data are added, which contains start and end of observation and how

many pieces were downloaded of that specific file. The XML shema definition (XSD)

is shown in appendix A.1.

history.xml

The history.xml contains the collected data from the history extraction. The history

is sorted ascending by date and shows all history related messages as elements. Each

element contains the date, the causing message and the change in percent and as

bitfield. The XSD is shown in appendix A.2.

messages.xml

The message.xml file provide all messages collected in observation. Starting with a

summary of the amount and type of messages, the incoming and outgoing messages

are shown as a list. Each message has description and a timestamp when the message

was first recognized. Depending on the message type it can also has a payload of

binary data, which is encoded in Base647. The XSD is shown in appendix A.3.

Pack

After generating all binary and XML files showed in table 4.1 all elements are packed

and compressed in a ZIP file. This is necessary to have all evidence in one file, which

can then be signed afterwards and easily transferred. In the end this ZIP file must

contain all information to reconstruct the process of evidence finding.

This step is implemented with the standard Java library and uses a ZipOutputStream

to compress the targets folder into itself, so that all files, including the generated ZIP

file, related to a target are in the same folder.

7tools.ietf.org/html/rfc4648

46

Chapter 4. Prototype implementation

Name Description
.torrent The torrent file used for observation
info.xml Summary and general information about the observation

history.xml Share history of the observed target
messages.xml Collected in and outgoing messages
Torrent folder Contains the downloaded files

Table 4.1.: Content of packed evidence

Sign

The final step of the process of evidence collection is to digitally sign the collected and

compressed evidence to fulfill the chain of custody. This has to be done to prove the

integrity and authenticity of the evidence. So it can be verified that there has been no

tampering of the data and the signer is the collector of the evidence.

The implementation uses the Java Security API for generation and verification of

signatures.[20] As this application is a prototype there is only one cryptographic system

implemented to sign data, namely RSA.

Key Files: To use the signing ability of the application a key pair, consisting of a

private and a public RSA key, has to be provided. In the settings of the application,

shown in figure 4.7, there is a possibility to select a private and public key file. If no

key pair is provided there is also the possibility to create a new RSA key pair with the

length of 2048 byte and the pseudo-random number generation algorithm SHA1PRNG.

Sign Data: To sign the evidence the generated ZIP file is passed to the sign method.

There a Signature object is created with the algorithm SHA1withDSA. Before use the

Signature is initialized with the private key. Now the input ZIP file is read byte wise

and updates the Signature. When the file was read completely the signature is now

complete in the referring object[20]. As a last step the signature is written to a file in

the directory containing the evidence.

47

Chapter 4. Prototype implementation

With this step the collection and storing of evidence is finished. There is now a ZIP file

a specific target of a specific torrent containing all collected information and messages

in binary as well as human readable form. This file is also tamper proof with the

belonging signature and can now be delivered for further use.

4.4. Evidence viewer

To show and verify the collected evidence the application provides a very simple ev-

idence viewer. To show the evidence the generated ZIP file of a target has to be

selected in the file tree. Then the evidence is opened and shown on the right side of

the viewer. It consists of three parts shown in figure 4.8.

4.4.1. ZIP file verification

On the top left the ZIP viewer is displayed. It just shows the folders and files of the ZIP

file. The verification is located on the top right of the evidence viewer. It provides a

small tool to match the signature file of the ZIP file with a file containing the matching

public key. So tampering with the packed evidence can be discovered easily.

The implementation of the signature verification is similar to the signing step described

in section 4.3.5. To verify the signature the public key is needed. So a Signature object

is created with the SHA1withDSA algorithm and afterward initialized with the public

key. Then the Signature is updated byte wise with the ZIP file. In the end the

computed signature hast to match the one in the signature file. If this comparison fails

it is possible that the evidence file has been compromised or a false public key is used.

4.4.2. XML viewer

In the bottom the content of the generated XML files are shown. The tabs only display

the generated files, even if other XML files are present in the ZIP file. It provides a

48

Chapter 4. Prototype implementation

short overview of the evidence and a simple way to look deeper into the specific XML

files.

Because a XML file can be seen as a tree structure the viewer is a simple implementation

of a TreeViewer from the JFace8 UI toolkit provided by Eclipse.

Figure 4.8.: Evidence viewer with opened and verified evidence file

8wiki.eclipse.org/JFace

49

5. Testing

This chapter contains tests that verify the functionality of the prototype. It describes

the different tests scenarios, preconditions, and what the tests are about. The concrete

test descriptions, results, and outcome of each tests are presented independent for each

test.

The tests should cover the complete functionality of the prototype. So a single test will

start by going through the complete process of evidence collection and simulates one

observation of a target. As a result, there should be the correct and complete output

of the collected evidence. Nevertheless, the tests should also cover the different parts

of the evidence collection process:

• Time synchronization: Offset of the system clock in comparison with an ex-

ternal time source is computed and applied.

• Target picking: Filters detect the specified target only. This includes all the

different filters: Tor/Country/Whitelist filter.

• Target observation:The messages are intercepted and stored correctly, as well

as no shared data is uploaded by the prototype.

• Extract evidence: Show that the different pieces and files are reassembled

correctly and verified by the provided hash values.

• Store evidence: The XML-files containing the metadata and analysis of the

history are generated correctly.

• Pack & Sign: The collected evidence is packed and signed in an single archive

and the signature verifies.

50

Chapter 5. Testing

5.1. Test setup

In order to reproduce and compare the tests a fixed test setup is needed. This setup

consists of a few preconditions about the configuration of the prototype as well as the

participants in the test environment. The actual tests vary in the different specialized

torrent used. How they differ of each other will be described in the according section

of the tests in section 5.2.

5.1.1. Configuration

There are a few preconditions set which are the same for all tests. These are settings

in the configuration of the plugin prototype. In general shared files of a torrent, which

are not interesting for evidence collection, should be excluded in the torrent. Also the

amount of pieces downloaded from a target should be adapted to the specific observed

torrent. To keep the tests comparable, all files are selected for observation and the

pieceCount is set to 10%.

Timeserver

As external time source at.pool.ntp.org is set. This URL links to a pool of time-

servers provided by the NTP Pool Project9. It will automatically provide the closest

available timeserver to use with NTP.

Signature keyfiles

The keypair of private and public key are created by the prototype itself, so they are

RSA keys with a keysize of 2048 bit. After creation they stay the same for all tests.

Internally the keys are stored in binary format, but for readability they are shown in

listing 5.1 and 5.2 in the Privacy-enhanced Electronic Mail (PEM) format.

9http://www.pool.ntp.org

51

at.pool.ntp.org

Chapter 5. Testing

Listing 5.1: privateKey.pem

1 −−−−−BEGIN RSA PRIVATE KEY−−−−−
2 MIIEowIBAAKCAQEAnbHLyhhiNTCHhxQCOF0+93N1SUdTSwLON5Xy2EuIKUQ4GUhx

3 7vqKiP2hZCdjOPg4cvCTcDWe/U8M1WKkEdgDzeCzfBXVznFtGUTYPxBnJFkDbPy+

4 XKyRLF+Yl /4 b6 /65 t / Rhvl / luHNBALA9f25gisSsuvcVOqMc2HvE4EhtZwF18ifL

5 RbA7UW18cPpcbA5y666OYviZbLUMoc5VGf81qwiTSzKLwhWq+Sv+yV6O18uSERpR

6 YTozSGv1JJ+XDGIhhp/VvhFBSmVxpFuIABJAfjLReVX9wXP/LD11Hwmxr+F8IG3F

7 z8ktUb3j4tS4MzWTrdtjyTwQufoTHV17u5TJfQIDAQABAoIBAGYNw3I115DOqFb9

8 1vX9OpvQB851r2zzEtwcWb4rG6KBOMD8Bmf/kppXchQr/WXIFlgkY3aR7SPH/ ek2

9 3jGCF+wsCFw8kVL6Sv24dS5TAj0esj3dT6EQOR97enibBhzzi+OF75/ R1gxJ4n58

10 kEAhAa+s2pBhCUcaereLWf1AQjUPUDxRGXWMpT8MBL9unQGdBbgwlT/S3GMTFDlm

11 QCGVuzKzMywBgPnHE+SOvS0o1mW0QX5TnROfFeQaPji6tMEDuEt9m1xoliwhqak9

12 EkIA7k5VTW8evhwLTYegQ/5MPsR3w4FFWeMe7zk2iHxTJwuoGpbozV74s7kLeAwo

13 WTwkFw0CgYEA7YTmDq4b3u5Y7X9baLhkkIjjq8k7zUmAc0mIzqKRboxlEI+LxPKx

14 fRFRfvKjoG1ysPBUWmS9ZkxSA58kyM5IA+F+nQopEna5FFIyz2RgBBQYF+9j a V r o

15 H3suO1LNbrM/ayx48AFLhdLSMk6AxoO2wDLUXwHNTjMbHroKTXbx2/MCgYEAqfbi

16 kG+J b l 6 q n i U /65 s 3 1 Z I I l+j4Srdp77KEbAlPmxEzT3T5JHSG24MTFl/ XXnlx7Vjg

17 TxpNxaTdJ3I4OhZiDj8Iiqn44wF5fs8BxkwQTB / R L E E c i i 7 f+vr1Qv46rIB72N+S

18 9 l x / iQ /cos3uOBVNQgcZjyi7DihzTdeRUVuYUM8CgYBtM2PeLfhMZ4LlNl+dZuF9

19 f iJGkc9306pF1vIaJq38iHnSwlx9YSNvH+47Em1eTdOkO+pcYOKfTMmMNrffxs9f

20 UWY35zr47TKsgBoyNbDbTy3Am2Q2RQBhsO2RgsFGewzWRm0X01CYp1PSozsbieUU

21 uonfYGG26VI3r0sbUGtkNwKBgHNLl8uU7exh6WmYKTFBPPHyu0OZdPzySLmiJrRG

22 6KpvU5g96Fgzd9vmoYcXArkCtybjmF3woPtG6AK/N6cn0eKKHdg6jywmru03raN/

23 q7qIBtP3Y03VmHjfzopgfRrRmbG3kDDw9E7c5LXH7iY7RQpaWJtFbQagp/8REXHY

24 KY3/AoGBAOiCYqPOFuMeiBVnynHfWmKIudX06+SLD2/9oRpWhaEPwjeUL2DgFPJ0

25 X9QsmzZZGj0sWW22wKsEyfIIexcLdgQfdQZrpbfRPczlABMv8cJ5aoU641wnnk/B

26 e5A1zzHNsKVQ1Fnpwkui366A3cuWHRHtLrhVeEo9oCcBfI1OxlfQ

27 −−−−−END RSA PRIVATE KEY−−−−−

52

Chapter 5. Testing

Listing 5.2: publicKey.pem

1 −−−−−BEGIN PUBLIC KEY−−−−−
2 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnbHLyhhiNTCHhxQCOF0+

3 93N1SUdTSwLON5Xy2EuIKUQ4GUhx7vqKiP2hZCdjOPg4cvCTcDWe/U8M1WKkEdgD

4 zeCzfBXVznFtGUTYPxBnJFkDbPy+XKyRLF+Yl /4 b6 /65 t / Rhvl / luHNBALA9f25g

5 isSsuvcVOqMc2HvE4EhtZwF18ifLRbA7UW18cPpcbA5y666OYviZbLUMoc5VGf81

6 qwiTSzKLwhWq+Sv+yV6O18uSERpRYTozSGv1JJ+XDGIhhp/VvhFBSmVxpFuIABJA

7 fjLReVX9wXP/LD11Hwmxr+F8IG3Fz8ktUb3j4tS4MzWTrdtjyTwQufoTHV17u5TJ

8 fQIDAQAB

9 −−−−−END PUBLIC KEY−−−−−

Filters

The configuration for the different filters are shown in table 5.1.

Filters Values
Whitelist containing the target’s IP-address
Blacklist containing the source’s IP-address
Country enabled and Austria (AT) as only country selected
Tor Tor exit nodes are excluded and the list is refreshed every 10 minutes

Table 5.1.: Filter configurations

53

Chapter 5. Testing

5.1.2. Test environment

To stick as close as possible to the real world, the tests should take place over the

internet and not in a controlled local network. The reason about this decision is, that

modern BitTorrent clients are rather good with peer finding algorithms and recognize

local peers. In consequence there is no public IP-address to pin down. Instead of

solving this problem by a complex network setup, it is easier and closer to reality to

use the internet with different providers.

To run the different tests in this environment a special torrent file is needed as well

as at least three participants (source, target and observer) to meet the minimum

requirements for a BitTorrent swarm, as they are described in detail below.

Torrent file

For each test there is a special prepared torrent available. These torrent files are

distributed to all three participants to join the BitTorrent swarm. The data shared by

these torrents are described in the specific test sections, but are all freely available and

allowed to share in public. But nevertheless the torrent files shall not be shared outside

of this test environment, to not monitor third parties within the tests.

Source

The source, or in terms of BitTorrent the seeder, is needed to provide a data source

for the target to download. It is a simple Windows machine connected to the internet

with fully working installation of Vuze. In theory Vuze could also act as a tracker for

the test-torrents, but this functionality is not needed in this tests. Finding other peers

works also via DHT so a specific tracker is not required, and for testing purpose the

peer source does not matter.

54

Chapter 5. Testing

Target

The machine which is observed in the tests. To act as a target, a fully working

BitTorrent client, Vuze, is installed. Vuze is not configured in any special way, just

with its default settings. So it simulates an ordinary user in a BitTorrent swarm. It

starts with the torrent file added to Vuze for download. So in the beginning of each

test there is no shared data on the target machine stored. The only thing available is

the torrent file to be observed for the given test.

Observer

The machine running the prototype application to test. It is a machine with the

prototype plugin installed in Vuze. As the target, it only has the torrent files to observe

without any data. The observer is the only one, where direct access is possible, like

it would be in real world. So the tests will be started from the observer, and and will

take place until enough data has been collected.

5.2. Test scenarios and results

As mentioned before, the different tests are about different torrent with special char-

acteristics. So the tests cover special cases and evaluate the usability of the resulting

evidence. The prepared torrent files vary in two ways, both variables influences the

way to use the prototype:

• File size: The specific sizes of the shared files. This affects the possibility of

downloading a complete file as evidence.

• File count: The amount of files shared within a torrent. This affects the amount

of data needed to gather evidence for different files.

55

Chapter 5. Testing

5.2.1. Scenario 1: Multiple files with small size

In this scenario the observed torrent will contain a bunch of relative small (100kB up

to 2MB) files. This simulates shared music albums if they are not packed into one file,

which is a common use-case. This test scenario should ensure that the implemented

prototype works correct and provides useful evidence for this scenario.

As test result, it is expected that the collected evidence are correct and verified. This

also includes that the observed peer is identified correctly. The collected data has to

be reassembled and verified. Because of the small sizes of the shared files, there should

also be at least one file that is completely restored. As the target starts download with

the beginning of the test, the history should contain correct data too.

Setup

The scenario setup is defined by the torrent shown in table 5.2, which contains a

README file and a selection of various Java libraries up to 2 megabyte of size, taken

from the Eclipse IDE. The information about the participating BitTorrent clients are

shown in table 5.3.

Attribute Value
Name testData
Hash 2CBAD1A1 68BB8F41 DFA5A570 6072C7B2 0DEA7F27

Total Size 216,11MB
of Pieces 1729

Piece Size 128kB
Files 107

Table 5.2.: testData.torrent

Participant IP ISP OS Client
Observer 46.124.119.153 T-Mobile Austria Windows 10 Vuze 5.7.5.0
Target 93.82.156.213 A1 Telekom Austria Windows 10 Vuze 5.7.5.0
Source 91.119.65.135 UPC Austria Windows 7 Vuze 5.7.5.0

Table 5.3.: participants of testData.torrent

56

Chapter 5. Testing

Result

The test run has been completed without any errors and produced the expected evi-

dences in form of XML files and downloaded data files inside a signed ZIP package.

The test result will be discussed step by step with an interpretation in the end.

The target observation started at 17:54 on 11th of November 2017 with the BitTorrent

handshake which is shown in listing 5.6 and listing 5.7. The observation was triggered

by passing the special prepared filters when the target peer was discovered. The

observation stopped at 18:15 as planned after 10% (172 pieces/21MB) of the torrent

was downloaded.

As counted in the message summary in listing 5.5 1380 BT PIECE messages were

reassembled. Altogether 64 files were partly restored and one file was downloaded and

reassembled completely. The info.xml, shown in listing 5.4, identifies the commons-

io-2.2.jar as completed file, which was in addition verified manually in listing 5.3 to

demonstrate the correct reconstruction of files from received messages.

Listing 5.3: commons-io-2.2.jar sha1 comparison

1 L o c a l :

2 f c i v . exe −sha1 .\ commons−i o −2.2 . j a r

3 83 b 5 b 8 a 7 b a 1 c 0 8 f 9 e 8 c 8 f f 2 3 7 3 7 2 4 e 3 3 d 3 c 1 e 2 2 a

4

5 Remote:

6 h t t p s : // repo1 . maven . org /maven2/commons−i o /

7 commons−i o / 2 .2 / commons−i o −2.2 . j a r . sha1

8 83 b 5 b 8 a 7 b a 1 c 0 8 f 9 e 8 c 8 f f 2 3 7 3 7 2 4 e 3 3 d 3 c 1 e 2 2 a

The messages.xml file provides a summary of the collected messages, shown in listing

5.5. The sent and received messages indicated a normal BitTorrent traffic with the

only difference that the observer does not share any pieces, as expected.

From the previous mentioned messages the history.xml was created. Listing 5.8 shows

the initial completeness state of the target with 1,27% by receiving a BT BITFIELD

message. This value is updated by received BT HAVE messages or when the observer

57

Chapter 5. Testing

successfully downloaded a piece (<piece downloaded index=”49”/>). In the time pe-

riod of observation the target completed the torrent to 11,16%. The fact, that the

target started at 1,27% and not with zero or a low percentage can be explained by the

peer finding processes of BitTorrent. First, a peer joining a swarm has to distributed to

other peers in the swarm via different sources, like tracker or DHT, which are updated

periodically in the range of minutes. The second reason is, that if a peer just joined a

swarm it has nothing to offer, so it denies requests.

As last step the created and reassembled files are packed into the

2d415a353735302d626c39726b4c4f3256766361.zip file, named according to the

peerId, along with the according signature file created with the private key, shown in

listing 5.2. Figure 5.1 shows the correct verification of the created package with the

signature file.

Figure 5.1.: Signed package verifies with public key

The test was a success, because the results are as expected. One file could be restored

completely and also many other files could be restored partly by verified pieces. All

single steps of evidence extraction were working correct and without any problems.

With the collected evidence it can be proven, that the target made the files, marked

in listing 5.4 with a piece count of one or above, public available. In addition listing

5.8 shows that the target was still downloading pieces from other sources, which are

later downloaded and successfully verified by the observing client.

58

Chapter 5. Testing

Listing 5.4: testData info.xml

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 < i n f o>

3 <h e a d e r>

4 <p e e r>

5 < i p>9 3 . 8 2 . 1 5 6 . 2 1 3</ i p>

6 < i d>2 d415a353735302d626c39726b4c4f3256766361</ i d>

7 <dat e>Sat Nov 11 17 : 5 4 : 5 0 CET 2017</ dat e>

8 < c l i e n t>Vuze 5 . 7 . 5 . 0</ c l i e n t>

9 </ p e e r>

10 <t o r r e n t>

11 <name>t e s t D a t a</name>

12 < i n f o h a s h>LLrRoWi7j0HfpaVwYHLHsg3qfyc=</ i n f o h a s h>

13 </ t o r r e n t>

14 </ h e a d e r>

15 < f i l e − l i s t>

16 . . .

17 < f i l e complete=”t r u e ”

18 name=” . . . \ commons−i o −2.2 . j a r ”

19 s i z e=”173587 b y t e s ”>

20 <p r o g r e s s p i e c e−count=”2 ” t o t a l−p i e c e−count=”2 ”/>

21 <s t a r t−t ime>Sat Nov 11 17 : 5 7 : 2 4 CET 2017</ s t a r t−t ime>

22 <end−t ime>Sat Nov 11 17 : 5 9 : 4 9 CET 2017</end−t ime>

23 </ f i l e>

24 . . .

25 < f i l e complete=” f a l s e ”

26 name=”org . e c l i p s e . j s t . j 2 e e 1 . 2 . 0 . v201704202045 . j a r ”

27 s i z e=”1889386 b y t e s ”>

28 <p r o g r e s s p i e c e−count=”4 ” t o t a l−p i e c e−count=”15 ”/>

29 <s t a r t−t ime>Sat Nov 11 17 : 5 6 : 2 5 CET 2017</ s t a r t−t ime>

30 <end−t ime>Sat Nov 11 18 : 1 5 : 0 7 CET 2017</end−t ime>

31 </ f i l e>

32 . . .

33 </ f i l e − l i s t>

34 <t ime−s e r v e r o f f s e t=”−0.4631321430206299 ”

35 t ime−s e r v e r=”at . p o o l . ntp . org ”/>

36 <to r−e x i t−node− l i s t

37 u r l=”h t t p s : // check . t o r p r o j e c t . o rg / e x i t−a d d r e s s e s ”/>

38 </ i n f o>

59

Chapter 5. Testing

Listing 5.5: testData messages-summary

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 <messages>

3 <h e a d e r> . . .</ h e a d e r>

4 <messages−summary>

5 <t o t a l−message−count>3183</ t o t a l−message−count>

6 <in−message− l i s t −summary>

7 < s i z e>1626</ s i z e>

8 <message−t y p e count=”1 ” i d=”AZ HANDSHAKE”/>

9 <message−t y p e count=”1 ” i d=”BT BITFIELD ”/>

10 <message−t y p e count=”1 ” i d=”AZ PEER EXCHANGE ”/>

11 <message−t y p e count=”228 ” i d=”BT HAVE ”/>

12 <message−t y p e count=”3 ” i d=”AZ HAVE ”/>

13 <message−t y p e count=”1 ” i d=”BT HANDSHAKE”/>

14 <message−t y p e count=”10 ” i d=”BT ALLOWED FAST ”/>

15 <message−t y p e count=”1 ” i d=”BT UNCHOKE”/>

16 <message−t y p e count=”1380 ” i d=”BT PIECE ”/>

17 </ in−message− l i s t −summary>

18 <out−message− l i s t −summary>

19 < s i z e>1557</ s i z e>

20 <message−t y p e count=”1 ” i d=”AZ HANDSHAKE”/>

21 <message−t y p e count=”1 ” i d=”BT BITFIELD ”/>

22 <message−t y p e count=”1 ” i d=”BT INTERESTED ”/>

23 <message−t y p e count=”172 ” i d=”BT HAVE ”/>

24 <message−t y p e count=”1382 ” i d=”BT REQUEST ”/>

25 </ out−message− l i s t −summary>

26 </ messages−summary>

27 <in−message− l i s t> . . .</ in−message− l i s t>

28 <out−message− l i s t> . . .</ out−message− l i s t>

29 </ messages>

60

Chapter 5. Testing

Listing 5.6: excerpt testData in-message-list

1 <in−message− l i s t>

2 <message i d=”BT HANDSHAKE”>

3 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

4 <t ime>1510419303321</ t ime>

5 <d e s c r i p t i o n>

6 BT HANDSHAKE o f d a t a I D : . . .

7 </ d e s c r i p t i o n>

8 <p a y l o a d> . . .</ p a y l o a d>

9 </ message>

10 <message i d=”AZ HANDSHAKE”>

11 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

12 <t ime>1510419303326</ t ime>

13 <d e s c r i p t i o n>AZ HANDSHAKE from . . .</ d e s c r i p t i o n>

14 <p a y l o a d> . . .</ p a y l o a d>

15 </ message>

16 <message i d=”BT BITFIELD ”>

17 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

18 <t ime>1510419303602</ t ime>

19 <d e s c r i p t i o n>BT BITFIELD</ d e s c r i p t i o n>

20 <p a y l o a d> . . .</ p a y l o a d>

21 </ message>

22 <message i d=”BT UNCHOKE”>

23 <dat e>Sat Nov 11 17 : 5 5 : 0 4 CET 2017</ dat e>

24 <t ime>1510419304861</ t ime>

25 <d e s c r i p t i o n>BT UNCHOKE</ d e s c r i p t i o n>

26 </ message>

27 . . .

28 <message i d=”BT PIECE ”>

29 <dat e>Sat Nov 11 17 : 5 5 : 0 5 CET 2017</ dat e>

30 <t ime>1510419305488</ t ime>

31 <d e s c r i p t i o n>

32 BT PIECE data f o r p i e c e #49:0−> ;16383

33 </ d e s c r i p t i o n>

34 <p a y l o a d> . . .</ p a y l o a d>

35 </ message>

36 . . .

37 </ in−message− l i s t>
61

Chapter 5. Testing

Listing 5.7: excerpt testData out-message-list

1 <out−message− l i s t>

2 <message i d=”AZ HANDSHAKE”>

3 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

4 <t ime>1510419303371</ t ime>

5 <d e s c r i p t i o n>AZ HANDSHAKE from . . .</ d e s c r i p t i o n>

6 <p a y l o a d> . . .</ p a y l o a d>

7 </ message>

8 <message i d=”BT BITFIELD ”>

9 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

10 <t ime>1510419303371</ t ime>

11 <d e s c r i p t i o n>BT BITFIELD</ d e s c r i p t i o n>

12 <p a y l o a d> . . .</ p a y l o a d>

13 </ message>

14 <message i d=”BT INTERESTED ”>

15 <dat e>Sat Nov 11 17 : 5 5 : 0 3 CET 2017</ dat e>

16 <t ime>1510419303622</ t ime>

17 <d e s c r i p t i o n>BT INTERESTED</ d e s c r i p t i o n>

18 </ message>

19 <message i d=”BT REQUEST ”>

20 <dat e>Sat Nov 11 17 : 5 5 : 0 4 CET 2017</ dat e>

21 <t ime>1510419304913</ t ime>

22 <d e s c r i p t i o n>

23 BT REQUEST p i e c e #49:0−> ;16383

24 </ d e s c r i p t i o n>

25 <p a y l o a d> . . .</ p a y l o a d>

26 </ message>

27 . . .

28 </ out−message− l i s t>

62

Chapter 5. Testing

Listing 5.8: testData history.xml

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 <s h a r e h i s t o r y>

3 <h e a d e r> . . .</ h e a d e r>

4 <h i s t o r y>

5 <e n t r y dat e=”Sat Nov 11 17 : 5 5 : 0 3 CET 2017 ”>

6 <message t y p e=”BT BITFIELD ”>B i t f i e l d update</ message>

7 < b i t f i e l d> . . .</ b i t f i e l d>

8 <p e r c e n t>1.2724117987275883%</ p e r c e n t>

9 </ e n t r y>

10 <e n t r y dat e=”Sat Nov 11 17 : 5 5 : 0 7 CET 2017 ”>

11 <message t y p e=”BT HAVE ”>

12 <p i e c e i n d e x=”219 ”/>

13 </ message>

14 < b i t f i e l d> . . .</ b i t f i e l d>

15 <p e r c e n t>1.2724117987275883%</ p e r c e n t>

16 </ e n t r y>

17 <e n t r y dat e=”Sat Nov 11 17 : 5 5 : 1 1 CET 2017 ”>

18 <p i e c e d o w n l o a d e d i n d e x=”49 ”/>

19 < b i t f i e l d> . . .</ b i t f i e l d>

20 <p e r c e n t>1.3302486986697513%</ p e r c e n t>

21 </ e n t r y>

22 . . .

23 <e n t r y dat e=”Sat Nov 11 18 : 1 5 : 3 3 CET 2017 ”>

24 <message t y p e=”BT HAVE ”>

25 <p i e c e i n d e x=”1588 ”/>

26 </ message>

27 < b i t f i e l d> . . .</ b i t f i e l d>

28 <p e r c e n t>11.16252168883748%</ p e r c e n t>

29 </ e n t r y>

30 </ h i s t o r y>

31 </ s h a r e h i s t o r y>

63

Chapter 5. Testing

5.2.2. Scenario 2: Single, large file

In this scenario the observed torrent will contain one big shared file of not quite 400MB

in size. This simulates the use-case of sharing films, games, or other large data. In real-

life such data usually already is packed into one single file, so in the end this scenario still

fits for the use-case. This test scenario should ensure that the implemented prototype

works correct and provides useful evidence for this scenario.

As test result it is expected that the collected evidence are correct and verified. This

also includes that the observed peer is identified correct. The collected data has to be

reassembled and verified. Because of the big sizes of the shared file, only the README

file can be restored. As the target starts download with the beginning of the test, the

history should as well contain reasonable data.

Setup

The scenario setup is defined by the torrent described in table 5.4, which contains a

README file and the movie Big Buck Bunny provided by the Blender Foundation10

licensed under the Creative Commons Attribution 3.011. Th information about the

participating BitTorrent clients are shown in table 5.5.

Attribute Value
Name bigBuckBunny
Hash 7A9939D4 CC578A5C 67E38B6E 6E2E4C6C 71447789

Total Size 397,44 MB
of Pieces 1590

Piece Size 256 kB
Files 2

Table 5.4.: bigBuckBunny.torrent

10www.blender.org
11creativecommons.org/licenses/by/3.0/

64

Chapter 5. Testing

Participant IP ISP OS Client
Observer 46.124.119.153 T-Mobile Austria Windows 10 Vuze 5.7.5.0
Target 93.82.156.213 A1 Telekom Austria Windows 10 Vuze 5.7.5.0
Source 91.119.65.135 UPC Austria Windows 7 Vuze 5.7.5.0

Table 5.5.: participants of bigBuckBunny.torrent

Result

The test run has been completed without any errors and produced the expected evi-

dences in form of XML files and two downloaded data files inside a signed ZIP package.

The test result will be discussed step by step with an interpretation in the end.

The target observation started at 17:55 on 11th of November 2017 with the BitTorrent

handshake which is shown in listing 5.12 and listing 5.13. The observation was triggered

by the pass of the special prepared filters when the target peer was discovered. The

observation stopped at 18:32 as planned after 10% (157 pieces/40MB) of the torrent

was downloaded from the target by the observer.

The received 2520 BT PIECE messages are reassembled into 157 pieces. As the

README.txt file is in one single piece, which was downloaded, it was recovered com-

pletely, as shown in 5.11. The rest of the downloaded pieces belongs to the second file

of the torrent big buck bunny 720p h264.mov, which was in addition partly compared

with the original file, shown in listing 5.9

Listing 5.9: big buck bunny 720p h264 sha1 comparison

1 P i e c e #15 & #16 o f downloaded t o r r e n t :

2 f c i v . exe −sha1 .\ b i g b u c k b u n n y p i e c e 1 5 1 6 d o w n l o a d e d . mov

3 b5006d3f2eb77dd534ea107e63430d5dcdf2dd15

4

5 C o r r e s p o n d i n g p a r t o f o r i g i n a l f i l e

6 o f f s e t = 15 p i e c e s (3840kB) , l e n g t h = two p i e c e s (512kB) :

7 f c i v . exe −sha1 .\ b i g b u c k b u n n y p i e c e 1 5 1 6 o r i g i n a l . mov

8 b5006d3f2eb77dd534ea107e63430d5dcdf2dd15

65

Chapter 5. Testing

The messages.xml file provides a summary of the collected messages, shown in listing

5.11. The sent and received messages indicated a normal BitTorrent traffic with the

only difference that the observer does not share any pieces, as expected.

From the previous mentioned messages the history.xml was created. Listing 5.14 shows

the initial completeness state of the target with 0,81% by receiving a BT BITFIELD

message. This value is updated by received BT HAVE messages or when the observer

successfully downloaded a piece. In the time period of observation the target completed

the torrent to 10.62%. The fact, that the target started at 0,81% and not with zero

or a low percentage can be explained by the peer finding processes of BitTorrent,

described in scenario 1.

As last step the created and resembled files are packed up in the 93.82.156.213.zip file,

named according to the peerId, along with the according signature file created with

the private key, shown in the previous section. As in the first scenario the signature

verifies with the provided package and public key.

The test run completed successfully and so are the results. All single steps of evidence

extraction were working correct and without any problems. As expected the single

README file could be restored. Only the distribution of the downloaded pieces of the

movie file varies so much, that with nearly 10% of the video file no video player was

able to even show parts of the movie.

With the collected evidence it can be proven, that the target made the files

big buck bunny 720p h264.mov and README.txt public available. In addition listing

5.14 shows that the target was still downloading pieces from other sources, which are

later downloaded and successfully verified by the observing client.

66

Chapter 5. Testing

Listing 5.10: bigBuckBunny info.xml

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 < i n f o>

3 <h e a d e r>

4 <p e e r>

5 < i p>9 3 . 8 2 . 1 5 6 . 2 1 3</ i p>

6 < i d />

7 <dat e>Sat Nov 11 17 : 5 5 : 5 0 CET 2017</ dat e>

8 < c l i e n t />

9 </ p e e r>

10 <t o r r e n t>

11 <name>bigBuckBunny</name>

12 < i n f o h a s h>epk51MxXilxn44tubi5MbHFEd4k=</ i n f o h a s h>

13 </ t o r r e n t>

14 </ h e a d e r>

15 < f i l e − l i s t>

16 < f i l e complete=”t r u e ”

17 name=”README. t x t ”

18 s i z e=”771 b y t e s ”>

19 <p r o g r e s s p i e c e−count=”1 ” t o t a l−p i e c e−count=”1 ”/>

20 <s t a r t−t ime>Sat Nov 11 17 : 5 5 : 5 7 CET 2017</ s t a r t−t ime>

21 <end−t ime>Sat Nov 11 17 : 5 6 : 3 3 CET 2017</end−t ime>

22 </ f i l e>

23 < f i l e complete=” f a l s e ”

24 name=”b i g b u c k b u n n y 7 2 0 p h 2 6 4 . mov ”

25 s i z e=”416751190 b y t e s ”>

26 <p r o g r e s s p i e c e−count=”157 ” t o t a l−p i e c e−count=”1590 ”/>

27 <s t a r t−t ime>Sat Nov 11 17 : 5 6 : 3 3 CET 2017</ s t a r t−t ime>

28 <end−t ime>Sat Nov 11 18 : 3 2 : 0 9 CET 2017</end−t ime>

29 </ f i l e>

30 </ f i l e − l i s t>

31 <t ime−s e r v e r o f f s e t=”−0.4631321430206299 ”

32 t ime−s e r v e r=”at . p o o l . ntp . org ”/>

33 <to r−e x i t−node− l i s t

34 u r l=”h t t p s : // check . t o r p r o j e c t . o rg / e x i t−a d d r e s s e s ”/>

35 </ i n f o>

67

Chapter 5. Testing

Listing 5.11: bigBuckBunny messages-summary

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 <messages>

3 <h e a d e r> . . .</ h e a d e r>

4 <messages−summary>

5 <t o t a l−message−count>5379</ t o t a l−message−count>

6 <in−message− l i s t −summary>

7 < s i z e>2694</ s i z e>

8 <message−t y p e count=”1 ” i d=”AZ HANDSHAKE”/>

9 <message−t y p e count=”1 ” i d=”BT BITFIELD ”/>

10 <message−t y p e count=”1 ” i d=”AZ PEER EXCHANGE ”/>

11 <message−t y p e count=”159 ” i d=”BT HAVE ”/>

12 <message−t y p e count=”1 ” i d=”BT HANDSHAKE”/>

13 <message−t y p e count=”10 ” i d=”BT ALLOWED FAST ”/>

14 <message−t y p e count=”1 ” i d=”BT UNCHOKE”/>

15 <message−t y p e count=”2520 ” i d=”BT PIECE ”/>

16 </ in−message− l i s t −summary>

17 <out−message− l i s t −summary>

18 < s i z e>2685</ s i z e>

19 <message−t y p e count=”1 ” i d=”AZ HANDSHAKE”/>

20 <message−t y p e count=”1 ” i d=”BT BITFIELD ”/>

21 <message−t y p e count=”1 ” i d=”BT INTERESTED ”/>

22 <message−t y p e count=”157 ” i d=”BT HAVE ”/>

23 <message−t y p e count=”2525 ” i d=”BT REQUEST ”/>

24 </ out−message− l i s t −summary>

25 </ messages−summary>

26 <in−message− l i s t> . . .</ in−message− l i s t>

27 <out−message− l i s t> . . .</ out−message− l i s t>

28 </ messages>

68

Chapter 5. Testing

Listing 5.12: excerpt bigBuckBunny in-message-list

1 <in−message− l i s t>

2 <message i d=”BT HANDSHAKE”>

3 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

4 <t ime>1510419354428</ t ime>

5 <d e s c r i p t i o n>

6 BT HANDSHAKE o f d a t a I D : . . .

7 </ d e s c r i p t i o n>

8 <p a y l o a d> . . .</ p a y l o a d>

9 </ message>

10 <message i d=”AZ HANDSHAKE”>

11 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

12 <t ime>1510419354429</ t ime>

13 <d e s c r i p t i o n>

14 AZ HANDSHAKE from . . .

15 </ d e s c r i p t i o n>

16 <p a y l o a d> . . .</ p a y l o a d>

17 </ message>

18 <message i d=”BT BITFIELD ”>

19 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

20 <t ime>1510419354608</ t ime>

21 <d e s c r i p t i o n>BT BITFIELD</ d e s c r i p t i o n>

22 <p a y l o a d> . . .</ p a y l o a d>

23 </ message>

24 <message i d=”BT UNCHOKE”>

25 <dat e>Sat Nov 11 17 : 5 5 : 5 5 CET 2017</ dat e>

26 <t ime>1510419355772</ t ime>

27 <d e s c r i p t i o n>BT UNCHOKE</ d e s c r i p t i o n>

28 </ message>

29 . . .

30 <message i d=”BT PIECE ”>

31 <dat e>Sat Nov 11 17 : 5 5 : 5 7 CET 2017</ dat e>

32 <t ime>1510419357017</ t ime>

33 <d e s c r i p t i o n>

34 BT PIECE data f o r p i e c e #1589 :0−> ;16383

35 </ d e s c r i p t i o n>

36 <p a y l o a d> . . .</ p a y l o a d>

37 </ message>

38 . . .

39 </ in−message− l i s t>

69

Chapter 5. Testing

Listing 5.13: excerpt bigBuckBunny out-message-list

1 <out−message− l i s t>

2 <message i d=”AZ HANDSHAKE”>

3 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

4 <t ime>1510419354479</ t ime>

5 <d e s c r i p t i o n>

6 AZ HANDSHAKE from . . .

7 </ d e s c r i p t i o n>

8 <p a y l o a d> . . .</ p a y l o a d>

9 </ message>

10 <message i d=”BT BITFIELD ”>

11 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

12 <t ime>1510419354479</ t ime>

13 <d e s c r i p t i o n>BT BITFIELD</ d e s c r i p t i o n>

14 <p a y l o a d> . . .</ p a y l o a d>

15 </ message>

16 <message i d=”BT INTERESTED ”>

17 <dat e>Sat Nov 11 17 : 5 5 : 5 4 CET 2017</ dat e>

18 <t ime>1510419354631</ t ime>

19 <d e s c r i p t i o n>BT INTERESTED</ d e s c r i p t i o n>

20 </ message>

21 <message i d=”BT REQUEST ”>

22 <dat e>Sat Nov 11 17 : 5 5 : 5 6 CET 2017</ dat e>

23 <t ime>1510419356423</ t ime>

24 <d e s c r i p t i o n>

25 BT REQUEST p i e c e #1589 :0−> ;16383

26 </ d e s c r i p t i o n>

27 <p a y l o a d>AAAGNQAAAAAAAEAA</ p a y l o a d>

28 </ message>

29 . . .

30 </ out−message− l i s t>

70

Chapter 5. Testing

Listing 5.14: bigBuckBunny history.xml

1 <?xml v e r s i o n=”1 . 0 ” e n c o d i n g=”UTF−8 ”?>

2 <s h a r e h i s t o r y>

3 <h e a d e r> . . .</ h e a d e r>

4 <h i s t o r y>

5 <e n t r y dat e=”Sat Nov 11 17 : 5 5 : 5 4 CET 2017 ”>

6 <message t y p e=”BT BITFIELD ”>B i t f i e l d update</ message>

7 < b i t f i e l d> . . .</ b i t f i e l d>

8 <p e r c e n t>0.8176100628930818%</ p e r c e n t>

9 </ e n t r y>

10 <e n t r y dat e=”Sat Nov 11 17 : 5 6 : 0 6 CET 2017 ”>

11 <message t y p e=”BT HAVE ”>

12 <p i e c e i n d e x=”66 ”/>

13 </ message>

14 < b i t f i e l d> . . .</ b i t f i e l d>

15 <p e r c e n t>0.8176100628930818%</ p e r c e n t>

16 </ e n t r y>

17 . . .

18 <e n t r y dat e=”Sat Nov 11 17 : 5 6 : 3 3 CET 2017 ”>

19 <p i e c e d o w n l o a d e d i n d e x=”1589 ”/>

20 < b i t f i e l d> . . .</ b i t f i e l d>

21 <p e r c e n t>0.8805031446540881%</ p e r c e n t>

22 </ e n t r y>

23 . . .

24 <e n t r y dat e=”Sat Nov 11 18 : 3 2 : 2 2 CET 2017 ”>

25 <message t y p e=”BT HAVE ”>

26 <p i e c e i n d e x=”219 ”/>

27 </ message>

28 < b i t f i e l d> . . .</ b i t f i e l d>

29 <p e r c e n t>10.628930817610064%</ p e r c e n t>

30 </ e n t r y>

31 </ h i s t o r y>

32 </ s h a r e h i s t o r y>

71

6. Summary and Conclusion

This chapter summarizes this thesis results and describe problems and possible exten-

sion of the implemented prototype.

6.1. Summary

This thesis provides a prototype implementation for evidence collection in BitTorrent.

It is implemented as a plugin in Vuze, a modern BitTorrent client. To collect useful

evidence an external time source is included. Filters for IPs and countries achieve, that

only interesting peers are added for observation. When observing a target the complete

network traffic between the target and the plugin is stored with timing information.

After collecting enough traffic, defined by a threshold, pieces and files are restored. In

addition files containing the collected evidence as XML are created. Finally all files are

packed and signed to obtain tamper proof evidence.

6.2. Conclusion

The intention of this thesis is, that not all current solutions for evidence collection in

P2P networks are that reliable and complete as possible for the use in court. With the

prototype implementation there is an example how to tackle the discussed problems

in current solutions. It claims not to be the best or most efficient solution, but it

considers the criticism points in evidence collection, and show how to do it better.

72

Chapter 6. Summary and Conclusion

The tests, running within the two test scenarios, showed the full functionality of the

prototype. So all steps of the process of evidence collection, work as expected with

all requirements. The resulting evidence produced by the two tests, are admissible,

authentic, complete, and reliable and therefore fulfill the chain of custody.

A limitation of the collected evidence is the usability in court, in terms of verification

of shared files. In the nature of BitTorrent pieces are not shared as block per file, but

distributed over the complete torrent. This means that it is very unlikely to download

connected blocks of files. There are clients which are able to to this but it is not usual

for non streaming clients. In consequence it depends on the court if the verification of

a small part, a bigger continuously parts, or even the whole file is needed to see the

file as identified and shared.

6.2.1. Problems and Solutions

During the implementation of the plugin prototype there arose some problems which

had to be solved.

Vuze Documentation

Starting implementing a small plugin for Vuze is really easy. On the developers wiki

from Vuze12 there is a plugin development guide available which describes step by step

what to do and what is possible. There is even a repository with example plugins and

other plugins used in Vuze to look after example code. The problems arose when rarely

used functions of the Vuze plugin API where used, because the Java documentation

itself is almost a self explanation of the variables and methods without giving more

information of the usage and functionality. This sometimes leads to a ”try and error”

development to get the right methods or listeners when searching a specific functionality

of Vuze.

12wiki.vuze.com

73

Chapter 6. Summary and Conclusion

Extension of BitTorrent protocol

By the implementation of the message reassembler, it is required to extract the shared

data out of a BT PIECE message. So the given ByteBuffer has to be split up in a

leading meta data section and a shared data section. In the original standard this split

point is fixed, but not in the Azureus messaging protocol13, a BitTorrent extension of

Vuze where the length of the meta section is of variable length. As all Vuze installations

use this extension when communicating which each other, the prototype has to support

it as well. Sadly, there is no out of the box solution to decode the message and get

this specific split point to separate the data. So a own method had to be implemented

to compute the variable padding section of each message, to get the exact split point.

Multithreading

Inside Vuze the business logic the user interface and the plugins run in different threads,

which makes perfectly sense from the view of an software architect. During the im-

plementation there were two problems with conflicting thread access and shared data.

The first problem was showing changes in the UI originated inside Vuze, like adding

torrents. So the source of a change is Vuze, the data is in the plugin, which is shown

in the UI. It was hard to separate the different thread accesses and also the choice

of the data structure was not the best. The second problem was when accessing the

ByteBuffer of received messages. As Vuze and the prototype want to process the data

this access had to be synchronized. It was hard to identify the problem, because the

exception was not useful in this case and there were no hints in the documentation

6.3. Possible Extensions

The implemented prototype in this thesis is only a very basic version for evidence

collection in P2P networks. There are many possible optimizations and extensions

13wiki.vuze.com/w/Azureus messaging protocol

74

Chapter 6. Summary and Conclusion

regarding the functionality and usability, which are not directly covered. Three of

them are described in detail.

Optimize the download strategy

As mentioned in the conclusion, with the BitTorrent protocol usually files are not

downloaded continuously. This can cause a very wide spread distribution of the single

pieces. But this behavior depends on the piece download strategy of the specific

clients. In the simplest case pieces are downloaded by their order, which is, as an

example, perfect for streaming a movie to start watching without having the whole

file. Also thinkable would be a random order, but this strategy is also not optimal in

term of availability and speed of a torrent. The most clients use implementations of

the rarest piece first strategy, which keeps a BitTorrent swarm healthy. In reference to

this thesis it would be thinkable to implement a download strategy to download specific

files continuously until a threshold is reached. So it would be possible to download

to a certain, usable degree, or even whole files for better verification, and especially

presentation.

Removing downloaded data from torrent

In the current implementation the BitTorrent process is not influenced by the plugin,

with the only exception of intercepting outgoing BT PIECE messages. In consequence

the complete download and disk storing of pieces is covered by Vuze. To remove

already downloaded and verified pieces from the torrent, access to the diskmanager is

needed, which is not provided by the Vuze plugin API. There are ways to access it,

but for compatibility and simplicity only the plugin API was used in this thesis. There

are other possible solutions to intercept or tamper incoming BT PIECE messages, but

that would have a huge side effect on the health of a peer. That is because a peer

continuously sending incorrect data, or allegedly does not send requested pieces at all,

will be dropped.

75

Chapter 6. Summary and Conclusion

Compare files with the external provided original files

The verification if files are bit wise identical, or even parts of them, is trivial by hash

values or direct comparison. But as digital files with the same content can be stored in

various formats and compressions it is a non trivial task to compare a file by its content.

So as a possible extension all files of an observed torrent could be downloaded and

verified by a third party. This ”original” files are then available in the plugin to have a

reference to check and verify all random pieces, or even single messages.

76

Bibliography

[1] The biggest ever bittorrent leak: Mediadefender internal emails go pub-

lic. https://torrentfreak.com/mediadefender-emails-leaked-070915/, September

2007.

[2] LG Köln Urteil vom 31. Oktober 2012 - Az. 28 O 306/11.

https://openjur.de/u/611182.html, 2013.

[3] Bittorrentspecification. https://wiki.theory.org/BitTorrentSpecification, February

2017.

[4] Plugin Development Guide. https://wiki.vuze.com/w/Plugin Development Guide,

February 2017.

[5] Holger Bleich. Redtube-Abmahnungen: Gericht ging Briefkastenfirma auf den

Leim. https://heise.de/-2103801, January 2014.

[6] Eoghan Casey. Digital Evidence and Computer Crime. Academic Press, 2004.

[7] Ole Damm. LG Hamburg: Ausdruck der Ermittlungsfirma beweist nicht

illegales Filesharing. http://www.damm-legal.de/lg-hamburg-ausdruck-der-

ermittlungsfirma-beweist-nicht-illegales-filesharing, August 2009.

[8] European Court of Justice (Second Chamber). Judgement from 26.04.2017 -

c-527/15, April 2017.

[9] LG Berlin. Urteil vom 03.05.2011, Az. 16 O 55/11, 2011.

[10] LG Hamburg. Urteil vom 14.03.2008 - Az. 308 O 76/07, 2008.

77

Bibliography

[11] LG Köln. Urteil vom 31.10.2012 - az. 28 o 306/11, October 2012.

[12] Georg Linhard. Sicherheitsaspekte von Peer-to-Peer Netzwerken. mathesis, Jo-

hannes Kepler University, October 2006.

[13] Marlom A. Konrath, and Marinho P. Barcellos, and Rodrigo B. Mansilha. Attack-

ing a swarm with a band of liars: evaluating the impact of attacks on bittorrent.

2007 7th International Conference on Peer-to-Peer Computing, 00:37–44, 2007.

[14] Jerry Norton and Heinrich Nagel. evidence. Encyclopedia Britannica, May 2017.

[15] Bettina Nunner-Krautgasser and Philipp Anzenberger. Evidence in Civil Law -

Austria. Institute for Local Self-Government and Public Procurement Maribor,

2015.

[16] Ole Damm. LG Berlin: Die Ermittlung von IP-Adressen für Filesharing-

Abmahnungen kann unzuverlässig sein / Eine Krähe hackt der anderen ein

Auge aus. http://www.damm-legal.de/lg-berlin-die-ermittlung-von-ip-adressen-

fuer-filesharing-abmahnungen-kann-unzuverlaessig-sein-eine-kraehe-hackt-der-

anderen-ein-auge-aus, November 2012.

[17] Sandvine. Global internet phenomena report 1h 2013. Global Internet Phenomena,

page 13, 2013.

[18] Sandvine. Global internet phenomena 2015 asia - pacific & europe. Global Internet

Phenomena, page 3, 2015.

[19] Michael Sonntag. Introduction to computer forensics. JKU, 2012.

[20] The Java Tutorials. Lesson: Generating and verifying signatures.

https://docs.oracle.com/javase/tutorial/security/apisign/index.html, 2015.

[21] Wikipedia. Vuze — wikipedia, the free encyclopedia, 2017. [Online; accessed

25-May-2017].

[22] Kai Hwang Xiaosong Lou. Collusive piracy prevention in p2p content delivery

networks. IEEE Transactions on Computers, 58:970 – 983, February 2009.

78

Lebenslauf

Persönliche Daten:
Name: Alexander Lemmé BSc
Anschrift: Lorch 7
 4470 Enns
Telefon: 0650/8933389
Mail: lemme@gmx.at
Geburtsdatum: 8.10.1989 in Linz
Familienstand: ledig
Staatsbürgerschaft: Österreich

Schulausbildung:
2013 - 2018 Master Studium Network & Security an der Johannes Kepler Universität Linz

2009-2013 Bachelor Studium Informatik an der JKU Linz

22. Juni 2009 Reife- und Diplomprüfung mit gutem Erfolg

2004 - 2009 HTL Traun für Kommunikations- und Informationstechnologie

2000 - 2004 Bundesrealgymnasium Enns

1996 - 2000 Volksschule Enns

Bisherige Tätigkeiten:
Seit Juni 2016 Softwareentwickler bei CGM Arztsysteme Österreich GmbH

August & September 2013 Ferialarbeit bei CGM Arztsysteme Österreich GmbH

Mai 2013 Bachelorarbeit : „Regelbasiertes Reasoning zur Erstellung eines
Lebenslaufs auf Basis von Facebook & LinkedIn“ beim Projekt
TheHiddenU am Institut für Telekooperation

1.August - 30.November 2012 Projektpraktikum beim Projekt TheHiddenU am Institut für
Telekooperation

22.August - 28.August 2011 Ferialarbeit am Institut RICAM

1.März - 30.Juni 2010 Arbeit während des Semesters am Institut RICAM

16.Juli - 31.Juli 2009 Ferialarbeit am Institut RICAM

1.Juli - 31.Juli 2008 Schulpraktikum am Institut RICAM

2.Juli - 27.Juli 2007 Schulpraktikum am Institut RICAM der Österreichische Akademie
der Wissenschaften: Unterstützung des Systemadministrators

3.Juli - 31. Juli 2006 Siemens Transportation Systems Wien

Aktivitäten:
Seit 2010 Jugendleiter bei der Pfadfindergruppe Enns

2.-6. September 2015 Live-Ticker GAC World Tour, Austrian Open, Wels für unas media productions

31.März - 7.April 2014 Live-Ticker ITTF Spanish Open, Almeria für unas media productions

Sonstiges:
Führerschein Klasse B

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich

gemacht habe. Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten

Textdokument identisch.

Linz, February 2018

80

A. Appendix

A.1. info.xsd

Listing A.1: info.xsd

1 <x s : s c h e m a a t t r i b u t e F o r m D e f a u l t=” u n q u a l i f i e d ”

2 e l e m e n t F o rm D e f a u l t=” q u a l i f i e d ”

3 x m l n s : x s=”h t t p : //www. w3 . org /2001/XMLSchema ”>

4 <x s : e l e m e n t name=”i p ” t y p e=” x s : s t r i n g ”/>

5 <x s : e l e m e n t name=”i d ” t y p e=” x s : s t r i n g ”/>

6 <x s : e l e m e n t name=”dat e ” t y p e=” x s : s t r i n g ”/>

7 <x s : e l e m e n t name=” c l i e n t ” t y p e=” x s : s t r i n g ”/>

8 <x s : e l e m e n t name=”name ” t y p e=” x s : s t r i n g ”/>

9 <x s : e l e m e n t name=”i n f o h a s h ” t y p e=” x s : s t r i n g ”/>

10 <x s : e l e m e n t name=”p e e r ”>

11 <xs :complexType>

12 <x s : s e q u e n c e>

13 <x s : e l e m e n t r e f=”i p ”/>

14 <x s : e l e m e n t r e f=”i d ”/>

15 <x s : e l e m e n t r e f=”dat e ”/>

16 <x s : e l e m e n t r e f=” c l i e n t ”/>

17 </ x s : s e q u e n c e>

18 </ xs :complexType>

19 </ x s : e l e m e n t>

20 <x s : e l e m e n t name=”t o r r e n t ”>

21 <xs :complexType>

22 <x s : s e q u e n c e>

23 <x s : e l e m e n t r e f=”name ”/>

81

Appendix A. Appendix

24 <x s : e l e m e n t r e f=”i n f o h a s h ”/>

25 </ x s : s e q u e n c e>

26 </ xs :complexType>

27 </ x s : e l e m e n t>

28 <x s : e l e m e n t name=”p r o g r e s s ”>

29 <xs :complexType>

30 <x s : s i m p l e C o n t e n t>

31 <x s : e x t e n s i o n base=” x s : s t r i n g ”>

32 <x s : a t t r i b u t e t y p e=” x s : s h o r t ”

33 name=”p i e c e−count ”

34 use=”o p t i o n a l ”/>

35 <x s : a t t r i b u t e t y p e=” x s : s h o r t ”

36 name=”t o t a l−p i e c e−count ”

37 use=”o p t i o n a l ”/>

38 </ x s : e x t e n s i o n>

39 </ x s : s i m p l e C o n t e n t>

40 </ xs :complexType>

41 </ x s : e l e m e n t>

42 <x s : e l e m e n t name=”s t a r t−t ime ” t y p e=” x s : s t r i n g ”/>

43 <x s : e l e m e n t name=”end−t ime ” t y p e=” x s : s t r i n g ”/>

44 <x s : e l e m e n t name=” f i l e ”>

45 <xs :complexType>

46 <x s : s e q u e n c e>

47 <x s : e l e m e n t r e f=”p r o g r e s s ”/>

48 <x s : e l e m e n t r e f=”s t a r t−t ime ” minOccurs=”0 ”/>

49 <x s : e l e m e n t r e f=”end−t ime ” minOccurs=”0 ”/>

50 </ x s : s e q u e n c e>

51 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

52 name=”complete ”

53 use=”o p t i o n a l ”/>

54 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

55 name=”name ”

56 use=”o p t i o n a l ”/>

57 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

58 name=” s i z e ”

82

Appendix A. Appendix

59 use=”o p t i o n a l ”/>

60 </ xs :complexType>

61 </ x s : e l e m e n t>

62 <x s : e l e m e n t name=”h e a d e r ”>

63 <xs :complexType>

64 <x s : s e q u e n c e>

65 <x s : e l e m e n t r e f=”p e e r ”/>

66 <x s : e l e m e n t r e f=”t o r r e n t ”/>

67 </ x s : s e q u e n c e>

68 </ xs :complexType>

69 </ x s : e l e m e n t>

70 <x s : e l e m e n t name=” f i l e − l i s t ”>

71 <xs :complexType>

72 <x s : s e q u e n c e>

73 <x s : e l e m e n t r e f=” f i l e ”

74 maxOccurs=”unbounded ”

75 minOccurs=”0 ”/>

76 </ x s : s e q u e n c e>

77 </ xs :complexType>

78 </ x s : e l e m e n t>

79 <x s : e l e m e n t name=”time−s e r v e r ”>

80 <xs :complexType>

81 <x s : s i m p l e C o n t e n t>

82 <x s : e x t e n s i o n base=” x s : s t r i n g ”>

83 <x s : a t t r i b u t e t y p e=” x s : f l o a t ”

84 name=” o f f s e t ”/>

85 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

86 name=”time−s e r v e r ”/>

87 </ x s : e x t e n s i o n>

88 </ x s : s i m p l e C o n t e n t>

89 </ xs :complexType>

90 </ x s : e l e m e n t>

91 <x s : e l e m e n t name=”i n f o ”>

92 <xs :complexType>

93 <x s : s e q u e n c e>

83

Appendix A. Appendix

94 <x s : e l e m e n t r e f=”h e a d e r ”/>

95 <x s : e l e m e n t r e f=” f i l e − l i s t ”/>

96 <x s : e l e m e n t r e f=”time−s e r v e r ”/>

97 </ x s : s e q u e n c e>

98 </ xs :complexType>

99 </ x s : e l e m e n t>

100 </ x s : s c h e m a>

A.2. history.xsd

Listing A.2: history.xsd

1 <x s : s c h e m a a t t r i b u t e F o r m D e f a u l t=” u n q u a l i f i e d ”

2 e l e m e n t F o rm D e f a u l t=” q u a l i f i e d ”

3 x m l n s : x s=”h t t p : //www. w3 . org /2001/XMLSchema ”>

4 <x s : e l e m e n t name=”i p ” t y p e=” x s : s t r i n g ”/>

5 <x s : e l e m e n t name=”i d ” t y p e=” x s : s t r i n g ”/>

6 <x s : e l e m e n t name=”dat e ” t y p e=” x s : s t r i n g ”/>

7 <x s : e l e m e n t name=” c l i e n t ” t y p e=” x s : s t r i n g ”/>

8 <x s : e l e m e n t name=”name ” t y p e=” x s : s t r i n g ”/>

9 <x s : e l e m e n t name=”i n f o h a s h ” t y p e=” x s : s t r i n g ”/>

10 <x s : e l e m e n t name=”p e e r ”>

11 <xs :complexType>

12 <x s : s e q u e n c e>

13 <x s : e l e m e n t r e f=”i p ”/>

14 <x s : e l e m e n t r e f=”i d ”/>

15 <x s : e l e m e n t r e f=”dat e ”/>

16 <x s : e l e m e n t r e f=” c l i e n t ”/>

17 </ x s : s e q u e n c e>

18 </ xs :complexType>

19 </ x s : e l e m e n t>

20 <x s : e l e m e n t name=”t o r r e n t ”>

21 <xs :complexType>

22 <x s : s e q u e n c e>

84

Appendix A. Appendix

23 <x s : e l e m e n t r e f=”name ”/>

24 <x s : e l e m e n t r e f=”i n f o h a s h ”/>

25 </ x s : s e q u e n c e>

26 </ xs :complexType>

27 </ x s : e l e m e n t>

28 <x s : e l e m e n t name=”message ”>

29 <xs :complexType>

30 <x s : s i m p l e C o n t e n t>

31 <x s : e x t e n s i o n base=” x s : s t r i n g ”>

32 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

33 name=”t y p e ”/>

34 </ x s : e x t e n s i o n>

35 </ x s : s i m p l e C o n t e n t>

36 </ xs :complexType>

37 </ x s : e l e m e n t>

38 <x s : e l e m e n t name=” b i t f i e l d ” t y p e=” x s : f l o a t ”/>

39 <x s : e l e m e n t name=”p e r c e n t ” t y p e=” x s : s t r i n g ”/>

40 <x s : e l e m e n t name=”p i e c e d o w n l o a d e d ”>

41 <xs :complexType>

42 <x s : s i m p l e C o n t e n t>

43 <x s : e x t e n s i o n base=” x s : s t r i n g ”>

44 <x s : a t t r i b u t e t y p e=” x s : s h o r t ”

45 name=”i n d e x ”

46 use=”o p t i o n a l ”/>

47 </ x s : e x t e n s i o n>

48 </ x s : s i m p l e C o n t e n t>

49 </ xs :complexType>

50 </ x s : e l e m e n t>

51 <x s : e l e m e n t name=”e n t r y ”>

52 <xs :complexType>

53 <x s : s e q u e n c e>

54 <x s : e l e m e n t r e f=”message ”

55 minOccurs=”0 ”/>

56 <x s : e l e m e n t r e f=”p i e c e d o w n l o a d e d ”

57 minOccurs=”0 ”/>

85

Appendix A. Appendix

58 <x s : e l e m e n t r e f=” b i t f i e l d ”/>

59 <x s : e l e m e n t r e f=”p e r c e n t ”/>

60 </ x s : s e q u e n c e>

61 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

62 name=”dat e ”

63 use=”o p t i o n a l ”/>

64 </ xs :complexType>

65 </ x s : e l e m e n t>

66 <x s : e l e m e n t name=”h e a d e r ”>

67 <xs :complexType>

68 <x s : s e q u e n c e>

69 <x s : e l e m e n t r e f=”p e e r ”/>

70 <x s : e l e m e n t r e f=”t o r r e n t ”/>

71 </ x s : s e q u e n c e>

72 </ xs :complexType>

73 </ x s : e l e m e n t>

74 <x s : e l e m e n t name=” h i s t o r y ”>

75 <xs :complexType>

76 <x s : s e q u e n c e>

77 <x s : e l e m e n t r e f=”e n t r y ”

78 maxOccurs=”unbounded ”

79 minOccurs=”0 ”/>

80 </ x s : s e q u e n c e>

81 </ xs :complexType>

82 </ x s : e l e m e n t>

83 <x s : e l e m e n t name=” s h a r e h i s t o r y ”>

84 <xs :complexType>

85 <x s : s e q u e n c e>

86 <x s : e l e m e n t r e f=”h e a d e r ”/>

87 <x s : e l e m e n t r e f=” h i s t o r y ”/>

88 </ x s : s e q u e n c e>

89 </ xs :complexType>

90 </ x s : e l e m e n t>

91 </ x s : s c h e m a>

86

Appendix A. Appendix

A.3. messages.xsd

Listing A.3: messages.xsd

1 <x s : s c h e m a a t t r i b u t e F o r m D e f a u l t=” u n q u a l i f i e d ”

2 e l e m e n t F o rm D e f a u l t=” q u a l i f i e d ”

3 x m l n s : x s=”h t t p : //www. w3 . org /2001/XMLSchema ”>

4 <x s : e l e m e n t name=”i p ” t y p e=” x s : s t r i n g ”/>

5 <x s : e l e m e n t name=”i d ” t y p e=” x s : s t r i n g ”/>

6 <x s : e l e m e n t name=”dat e ” t y p e=” x s : s t r i n g ”/>

7 <x s : e l e m e n t name=” c l i e n t ” t y p e=” x s : s t r i n g ”/>

8 <x s : e l e m e n t name=”name ” t y p e=” x s : s t r i n g ”/>

9 <x s : e l e m e n t name=”i n f o h a s h ” t y p e=” x s : s t r i n g ”/>

10 <x s : e l e m e n t name=”p e e r ”>

11 <xs :complexType>

12 <x s : s e q u e n c e>

13 <x s : e l e m e n t r e f=”i p ”/>

14 <x s : e l e m e n t r e f=”i d ”/>

15 <x s : e l e m e n t r e f=”dat e ”/>

16 <x s : e l e m e n t r e f=” c l i e n t ”/>

17 </ x s : s e q u e n c e>

18 </ xs :complexType>

19 </ x s : e l e m e n t>

20 <x s : e l e m e n t name=”t o r r e n t ”>

21 <xs :complexType>

22 <x s : s e q u e n c e>

23 <x s : e l e m e n t r e f=”name ”/>

24 <x s : e l e m e n t r e f=”i n f o h a s h ”/>

25 </ x s : s e q u e n c e>

26 </ xs :complexType>

27 </ x s : e l e m e n t>

28 <x s : e l e m e n t name=” s i z e ” t y p e=” x s : s h o r t ”/>

29 <x s : e l e m e n t name=”message−t y p e ”>

30 <xs :complexType>

31 <x s : s i m p l e C o n t e n t>

32 <x s : e x t e n s i o n base=” x s : s t r i n g ”>

87

Appendix A. Appendix

33 <x s : a t t r i b u t e t y p e=” x s : s h o r t ”

34 name=”count ”

35 use=”o p t i o n a l ”/>

36 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

37 name=”i d ”

38 use=”o p t i o n a l ”/>

39 </ x s : e x t e n s i o n>

40 </ x s : s i m p l e C o n t e n t>

41 </ xs :complexType>

42 </ x s : e l e m e n t>

43 <x s : e l e m e n t name=”t o t a l−message−amount ”

44 t y p e=” x s : s h o r t ”/>

45 <x s : e l e m e n t name=”in−message− l i s t −summary ”>

46 <xs :complexType>

47 <x s : s e q u e n c e>

48 <x s : e l e m e n t r e f=” s i z e ”/>

49 <x s : e l e m e n t r e f=”message−t y p e ”

50 maxOccurs=”unbounded ”

51 minOccurs=”0 ”/>

52 </ x s : s e q u e n c e>

53 </ xs :complexType>

54 </ x s : e l e m e n t>

55 <x s : e l e m e n t name=”out−message− l i s t −summary ”>

56 <xs :complexType>

57 <x s : s e q u e n c e>

58 <x s : e l e m e n t r e f=” s i z e ”/>

59 <x s : e l e m e n t r e f=”message−t y p e ”

60 maxOccurs=”unbounded ”

61 minOccurs=”0 ”/>

62 </ x s : s e q u e n c e>

63 </ xs :complexType>

64 </ x s : e l e m e n t>

65 <x s : e l e m e n t name=”t ime ” t y p e=”x s : l o n g ”/>

66 <x s : e l e m e n t name=” d e s c r i p t i o n ” t y p e=” x s : s t r i n g ”/>

67 <x s : e l e m e n t name=”p a y l o a d ” t y p e=” x s : s t r i n g ”/>

88

Appendix A. Appendix

68 <x s : e l e m e n t name=”message ”>

69 <xs :complexType>

70 <x s : s e q u e n c e>

71 <x s : e l e m e n t r e f=”dat e ”/>

72 <x s : e l e m e n t r e f=”t ime ”/>

73 <x s : e l e m e n t r e f=” d e s c r i p t i o n ”/>

74 <x s : e l e m e n t r e f=”p a y l o a d ” minOccurs=”0 ”/>

75 </ x s : s e q u e n c e>

76 <x s : a t t r i b u t e t y p e=” x s : s t r i n g ”

77 name=”i d ”

78 use=”o p t i o n a l ”/>

79 </ xs :complexType>

80 </ x s : e l e m e n t>

81 <x s : e l e m e n t name=”h e a d e r ”>

82 <xs :complexType>

83 <x s : s e q u e n c e>

84 <x s : e l e m e n t r e f=”p e e r ”/>

85 <x s : e l e m e n t r e f=”t o r r e n t ”/>

86 </ x s : s e q u e n c e>

87 </ xs :complexType>

88 </ x s : e l e m e n t>

89 <x s : e l e m e n t name=”messages−summary ”>

90 <xs :complexType>

91 <x s : s e q u e n c e>

92 <x s : e l e m e n t r e f=”t o t a l−message−amount ”/>

93 <x s : e l e m e n t r e f=”in−message− l i s t −summary ”/>

94 <x s : e l e m e n t r e f=”out−message− l i s t −summary ”/>

95 </ x s : s e q u e n c e>

96 </ xs :complexType>

97 </ x s : e l e m e n t>

98 <x s : e l e m e n t name=”in−message− l i s t ”>

99 <xs :complexType>

100 <x s : s e q u e n c e>

101 <x s : e l e m e n t r e f=”message ”

102 maxOccurs=”unbounded ”

89

Appendix A. Appendix

103 minOccurs=”0 ”/>

104 </ x s : s e q u e n c e>

105 </ xs :complexType>

106 </ x s : e l e m e n t>

107 <x s : e l e m e n t name=”out−message− l i s t ”>

108 <xs :complexType>

109 <x s : s e q u e n c e>

110 <x s : e l e m e n t r e f=”message ”

111 maxOccurs=”unbounded ”

112 minOccurs=”0 ”/>

113 </ x s : s e q u e n c e>

114 </ xs :complexType>

115 </ x s : e l e m e n t>

116 <x s : e l e m e n t name=”messages ”>

117 <xs :complexType>

118 <x s : s e q u e n c e>

119 <x s : e l e m e n t r e f=”h e a d e r ”/>

120 <x s : e l e m e n t r e f=”messages−summary ”/>

121 <x s : e l e m e n t r e f=”in−message− l i s t ”/>

122 <x s : e l e m e n t r e f=”out−message− l i s t ”/>

123 </ x s : s e q u e n c e>

124 </ xs :complexType>

125 </ x s : e l e m e n t>

126 </ x s : s c h e m a>

90

	Introduction
	Motivation
	Definitions
	Objective
	BitTorrent-protocol

	Theoretical background
	Collecting evidence
	Definitions of evidence
	Evidence collection in P2P-networks

	BitTorrent
	History
	Functionality
	Data structure
	.torrent file content
	Tracker
	Peer Protocol

	Current Solutions
	Existing approaches
	Screenshots
	Client-logging
	Specialized software and services

	Exemplary lawsuits
	Screenshots as failure
	Screenshots as success
	False-Positives

	Prototype implementation
	Requirements
	Extensible BitTorrent-client
	Data traffic
	Evidence
	Features

	Vuze
	Vuze plugin system

	Process of evidence collection
	Time synchronization
	Target picking
	Target observation
	Extract evidence
	Store evidence

	Evidence viewer
	ZIP file verification
	XML viewer

	Testing
	Test setup
	Configuration
	Test environment

	Test scenarios and results
	Scenario 1: Multiple files with small size
	Scenario 2: Single, large file

	Summary and Conclusion
	Summary
	Conclusion
	Problems and Solutions

	Possible Extensions

	Bibliography
	Lebenslauf
	Eidesstattliche Erklärung
	Appendix
	info.xsd
	history.xsd
	messages.xsd

