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Abstract

While in the past typical IT–environments were rather uniform, an emerging
trend towards alternative operating–systems like Linux can be observed nowa-
days. This has only a limited impact on small and medium-sized businesses,
but does affect large enterprises where centralized management clearly plays an
important role.

With the advent of the Internet and increased utilization of evolving technolo-
gies, companies need ways to secure their data while it’s on the move – typical
clients not only include office workers, but also field personnel. Using encryption
technologies is a logical step to secure sensitive information, but raises the ques-
tion how to incorporate these techniques into an already existing infrastructure
to provide optimal protection. This thesis aims to explore these already existing
technologies for file–based as well as full–disk encryption on the Linux platform
in terms of usability, performance and key handling, ultimately resulting in a
proof–of–concept implementation that can be incorporated into available soft-
ware products for different platforms.
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Zusammenfassung

Obwohl in der Vergangenheit die Mehrheit der IT–Landschaften durchwegs
auf Betriebssystemen aus der Windows–Familie aufgebaut waren, kann gegen-
wärtig ein Trend in Richtung alternativer Betriebssysteme wie Apple’s OS X oder
Linux beobachtet werden. Im Gegensatz zu Klein– und Mittelbetrieben stellt dies
vor allem Großunternehmen vor die Herausforderung, ein zentralisiertes Mana-
gement der IT–Infrastruktur aufrecht erhalten zu können.

Daneben stehen Unternehmen vor der Aufgabe, Daten die sich durch die Er-
findung und mittlerweile Omnipräsenz des Internets nicht mehr nur in Unter-
nehmensnetzwerken befinden gegen unbefugten Zugriff zu schützen. Ein logi-
scher Schritt um dies zu gewährleisten ist der Einsatz von Verschlüsselungsver-
fahren. Jedoch stellt sich hier wiederum die Frage, wie diese Verfahren in bereits
existierenden Umgebungen eingepflegt werden können.

Ziel dieser Arbeit ist es deshalb, ausgehend von der Verschlüsselungssoftwa-
re SafeGuard Enterprise für Windows zu evaluieren, welche Möglichkeiten es gibt,
Betriebssysteme wie Linux erfolgreich in die SafeGuard Umgebung einbinden zu
können. Im Enterprise Bereich umfasst dies nicht nur Dateiverschlüesselung an
sich, sondern auch Key Management, Datenintegrität oder Verhalten zur Lauf-
zeit. Abschließend wird ein Machbarkeitsnachweis in Form eines Dateisystems
implementiert, der vollständig kompatibel zu den SafeGuard Produkten ist.

Keywords: Linux Datei–Verschlüsselung Disk–Verschlüsselung
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CHAPTER 1
Introduction

1.1 Motivation

Early cryptography dates back thousands of years to ancient Egypt where it was used
to confuse or obscure the meaning of inscriptions. Over time, cryptography has un-
dergone fundamental changes in how it is applied – beginning from scytale trans-
position ciphers over trench codes in World War I and the world–famous Enigma
machine in World War II to a great number of available ciphers today.

The invention of the computer, its rapid development and perfection have led to
nearly all aspects of life are, at least at some extent, depending on the proper func-
tionality of such systems. Coupled with interconnected networks, cryptography has
regained attention as companies are facing the challenge of securing this ubiquitous
experience for their users and the company’s secrets on their own account. This typ-
ically implies management of user related data on the server side, but also covers all
communication channels and ultimately the secure storage of data on the client side.
In enterprise environments, these tasks are usually addressed by employing a wide
range of products. Each tool typically serves a more or less complex purpose and only
the combination thereof forms the IT infrastructure. In a heterogeneous environment
however, maintaining interoperability becomes a high priority task. Commonly, if it
comes to software support, Microsoft Windows and Apple OS X are the only fully
supported platforms. If support for Linux is available at all, solutions only exist on a
standalone basis or suffer from the lack of important features to use them in produc-
tion environments. Besides operating systems used on workstations, mobile devices
have become popular over the last couple of years. Although not covered by this
paper, terms like Bring Your Own Device (BYOD) bring new security challenges for
companies in the area of network security.

1



1. INTRODUCTION

1.2 Problem statement

Windows and OS X operating systems do not suffer from aforementioned problems
as they already have close ties to the vendor’s own products or at least incorporate
support for cryptographic toolkits in the kernel that allows easier integration of soft-
ware on those platforms. This closed nature could be interpreted as an advantage
when distributing software on those platforms, as one usually does not have to deal
with compatibility issues, but simultaneously could also be considered as a major
drawback as any public Application Programming Interface (API) could be changed,
removed or otherwise restricted.

Linux on the other hand with its open design does not have such handicaps. Inter-
faces remain stable or at least could be back–ported in case support has been dropped.
The issue here lies in the way how Linux works. The term Linux just refers to the ker-
nel itself. It’s up to the respective distribution to provide software packages for every
day’s needs.

The goal of this paper is to address the incompatibility issues. Based on a gen-
eral overview of Linux distributions, the paper will evaluate their components in
terms of usability for a cryptographic file system, ultimately resulting in a proof–of–
concept implementation, fully compatible to the existing software suite available for
Microsoft Windows and Apple OS X.

1.3 Roadmap

This section provides an brief insight of the chapters ahead. Figure 1.1 gives an initial
overview of the areas that are covered by this paper.

• Chapter 1 provides an initial overview of SafeGuard Enterprise as well as Linux.
Starting from explaining common terms like Distributions, it also elaborates on
important information like the various kernel subsystems this paper discusses
and later uses in the prototype implementation.

• Chapter 2 addresses cryptographic basics like algorithms and modes of opera-
tion of block ciphers. Furthermore it provides a first overview of how to achieve
persistent storage of sensitive information like encryption keys using native op-
erating system functionality.

Most importantly it also elaborates on the various layers the Linux kernel is
composed of. Although the goal of this paper is to provide encryption in user
space, chapter 2 serves as a guide where and how encryption is possible in
kernel space.

• Chapter 3 is rather short an just describes shared components that have been
implementation and used by all the tools resulting from this master’s thesis.

2



1.3. Roadmap

Figure 1.1: Chapter overview
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• Chapter 4 elaborates on the handling of key material and path based file en-
cryption policies as sent by the SafeGuard Enterprise Server.

• Chapter 5 covers the main goal of this paper: implementing a file system in user
space using FUSE. Since this is a rather complex task, the chapter describes each
of the file system’s components separately.

• Chapter 6 provides performance analysis of chapter 5’ file system compared to
native file operations.

1.4 Linux

The history of Linux began in 1991 when Finnish computer science student Linus Tor-
valds published his personal project – a new free operating system – on the Usenet
group “comp.os.minix”. What started as a small endeavor ended up being one of the
world’s largest open–source project with thousands of contributors around the world.
Initially designed for the Intel 80386 processor, Linux is supported on all major plat-
forms nowadays. The source code is freely available at the Linux Kernel Archives1.
Since Linux is an open source operating system with a great many of developers, its
development cycle is quite different from proprietary software. Contrary to that kind
of software, the Linux kernel code can be obtained and changed by everybody due
to its disclosed source code. Although the official source code tree is maintained by
Linus Torvalds, companies as well as ordinary end users are able to submit patches
to introduce new functionality or to fix existing bugs. This is an important factor
for companies that rely on the stability of certain kernel interfaces and features, be-
cause needed functionality could either be back–ported once removed, or submitted
to the Linux kernel code if initially missing – it simply breaks affiliation with specific
vendors.

1.4.1 Architecture

As for all computer systems, a basic set of programs is required in order to operate
the system. The most important part of this set is the Kernel. It forms the basis for
the operating system and is responsible for everything that happens on the system.
It is loaded into memory during start–up and stays there until the machine is shut
down. Due to the complexity, it is split into sub–systems, each serving a particular
purpose. Figure 1.2 shows a selection of subsystems found in the Kernel which are
also relevant for successive chapters in this paper:

System–Call Interface (SCI)
System calls are the main point of interaction between the kernel and user–space

1Located at https://www.kernel.org

4
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1.4. Linux

Figure 1.2: Selection of important Linux subsystems [Jona]

applications and are used to instruct the kernel to do privileged work on behalf
of a user process. Typical tasks are the creation of new processes or reading files
from disk. However, users typically do not interact directly with the operating
system. Instead, a common library is used for this purpose. This approach
ensures portability across POSIX compatible operating systems and dispenses
the user from setting up necessary CPU registers or system call numbers. While
there are multiple libraries available, Linux uses the GNU C Library (glibc).

Process Management (PM)
After a system has started up, the kernel will create a single user–space process
with Process Identifier (PID) 1 called init. This process persists throughout the
system’s uptime and acts as an ancestor to all other processes. The operating
system has to keep track of newly created processes and their states to facilitate
multi–tasking, as governed by the scheduler. When a new process is created
using fork() – or to be more precise, the clone() system call, Linux copies
its parent process, assigns a new PID and copies all data that persists across a
fork() call and finally starts the process.

When the process has to be destroyed, either through a signal or a call to the
exit function, the operating system cleans up existing memory mappings, per–
process data, frees kernel memory used for housekeeping and notifies the sched-
uler to run the next runnable task. Process Management also covers interaction
between processes. Linux offers various mechanisms to perform Interprocess
Communication (IPC) as explained in later chapters.

Virtual Filesystem (VFS)
To provide support for various file systems wile encapsulating specific file sys-
tem internals, Linux uses an abstraction layer known as Virtual Filesystem Switch
(VFS). Since a vast part of this paper addresses file system specifics, further in-
formation about the VFS will be given in subsection 1.4.4 “File systems”.

5



1. INTRODUCTION

Memory Management (MM)
Linux uses a memory model called Virtual Memory. This approach is useful in
multi–tasking environments as it not only provides fault isolation and infor-
mation isolation, but also acts as an abstraction layer between processes and the
physical memory and causes each task to see the full address space starting from
address 0x0 up to 232− 1 or 264− 1 respectively. When processes allocate mem-
ory, the kernel uses paging algorithms to map available physical pages into the
processes’ virtual address space. Modern CPUs provide hardware–support in
the form of Memory Management Units (MMU). The kernel itself uses buddy
allocation and slab allocation to satisfy these allocation requests.

Network
The operating system has to provide a subsystem that allows user–space ap-
plications to communicate with remote hosts. On a high–level, this support
begins with supplying necessary system calls to access those functions whereas
low–level implementations cover support for common network protocols. Fur-
thermore, there must also be functionality in place that allows the delivery of
packets to applications and vice versa.

Arch
Most of the kernel is platform–independent code, but especially during start–up
and some low–level operations later on, the kernel has to execute code specific
to the underlying hardware – the CPU in this case. The arch sub–system is
a collection of supported CPUs and their respective low–level implementation
for memory management, process creation or cryptographic operations.

Drivers
The largest portion of code in the kernel and responsible for providing hard-
ware access to applications. Linux supports three types of device drivers:

• Character devices: allow direct access to the byte stream without buffering.
Examples of character devices are the text console or serial ports.

• Block devices: allow access to data located at the underlying devices’ block
boundaries. Access to the data is cached in the kernel’s page cache. Exam-
ples of block devices are hard disks. However, a hard disk is rarely ac-
cessed using the block device directly. Instead it is mounted and accessed
through the resulting mount point.

• Network devices: allow access through the BSD socket interface and are
generally not visible in the file system.

Each driver implements a common interface, allowing the user to perform typ-
ical operations like read or write on them.

6



1.4. Linux

As can be seen in figure 1.2, all functionality is directly included in the kernel itself.
In addition, Linux provides support for Loadable Kernel Modules (LKM) that allow
adding and removing functionality from the kernel at runtime. Related commands
are lsmod to list loaded modules, modinfo to obtain additional information about a
specific module, modprobe and rmmod to load and unload modules respectively.

1.4.2 Distributions

As mentioned before, the term Linux commonly refers to the core of the operating sys-
tem. Since a computer system is of no use if only running a kernel, a fully–featured
operating system also has to provide low–level applications / libraries that interact
with the kernel itself thus making hardware access for user–space applications pos-
sible. On top of these libraries, users need applications that enable them to perform
day–to–day tasks or management utilities for installing and removing applications.

Applications are typically called packages. A package can be installed, removed
or updated by using a Package Manager. Unlike Windows, where software must be
obtained from the respective vendor’s web page, Linux collects available packages in
one location called the Package repository. All the Package Manager needs to know is
the address of such a repository and it then can provide necessary functionality for
package management. These operations usually include

• installation of new packages

• removal of packages

• upgrade of out–dated or vulnerable packages

• search for packages in the repository

• add or remove a repository

• update package list

• perform system upgrades

This greatly simplifies software management on the system itself as the Package Man-
ager also has access to all the packages’ meta–information (e.g. state or version) and
can therefore easily determine necessary steps (skip, upgrade) according to system
policies. This is also advantageous in terms of system security. Microsoft for instance
only provides automatic updates for Windows and other Microsoft products through
Windows Update. Third party software requires the user to gather and install updates
from various different sites, typically resulting in an aperiodic update cycle that puts
the system at risk. With a Package Manager on the other hand, keeping a system
up to date is quite simple and also includes security fixes, hence increasing system
security by decreasing vulnerability life span.
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The combination of the Linux kernel and a Package Manager along with a basic set
of packages is called a Linux distribution. Since updates to the kernel are published
according to a specific time window, a Linux distribution selects a specific kernel ver-
sion, maybe applies distribution–specific patches to the kernel and provides support
for that version over a longer period of time.

To date, Distrowatch2 lists nearly three hundred available distributions. Due to
the design of Linux, these distributions range from small–sized router firmwares to
operating systems for super–computers. Not all of them are suitable for this research.
Therefore, the main focus is limited to the following distributions typically encoun-
tered on a end–user workstation:

• Debian GNU/Linux

• Ubuntu

• Fedora

• Gentoo

1.4.3 Desktop environments

Since its invention, Linux had its strength in running on servers. As low resource
consumption is a must–have property on those systems, Linux has never forced its
users into a predefined system configuration to allow customization of the operating
system to one’s needs. A Command Line Interface (CLI) may be satisfactory on a
server because tasks on such a system are usually confined to configuration tasks,
but more importantly, the operator’s experience is sufficient to perform them. Typical
end–users however are greatly limited in their work if only a CLI is available.

In 1984, the X Window System (X) has been released by B. Scheifler at the MIT
as a successor to the W Window System [Sch84]. Since then, X has undergone major
rewriting and has become the de-facto standard for window management on UNIX
platforms. In the late 1990s, when the number of Linux users increased, new desktop
environments based on X were written, providing a rather uniform environment for
the user. Common desktop environments available today include:

• K Desktop Environment

• GNOME Desktop Environment

• xfce

These environments usually consist of a window manager along with libraries for
developers to provide a uniform look–and–feel for their applications. When installing

2http://www.distrowatch.com, accessed 01.12.2013
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a desktop environment, the user does not only gain window support and decorations,
but also environment–specific applications like file managers and image viewers.

A desktop environment can be obtained by downloading a distribution that al-
ready includes a specific environment or at runtime by using a Package Manager to
install necessary packages. In addition, multiple environments can be installed si-
multaneously with the desired one selected at the login screen.

1.4.4 File systems

Every operating system is of very limited use if it does not support persistent storage
of data. A file system is used to provide all that functionality. Its main task is to
organize file access and establish a mapping from the logical view of files, like seen
in a file manager to a specific, distinct layout on a block device. Figure 1.3 shows
how Linux implements file system support. By adding another layer of abstraction,
support for multiple file systems can be included in the kernel in a very efficient
way. While each file system would increase the complexity of the kernel’s API, the
Virtual File System (VFS) layer eliminates this issue by exposing only a distinct set
of functions to user–space. A file system like the Third Extended Filesystem (ext3)
can then implement its own set of functions and only expose a reference to them to
the kernel. The kernel keeps track of those structures and only has to pass user–
space requests like read or write to the appropriate function implementation. The
following simple command copies one file to another location to illustrate the power

Figure 1.3: Linux Virtual Filesystem [Jonb]
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of the VFS layer:

$ cp /mnt/file /tmp/file

First of all, Linux uses the concept of mountpoints in contrast to drive letters encoun-
tered on the Windows platform. The Filesystem Hierarchy Standard (FHS) defines
the initial folder layout, extended by user defined mountpoints. A mountpoint itself
is represented by a folder that acts as a anchor for additional volumes like mapped
network shares, removable devices and so on. Mount points can also refer to artificial
data (e.g. the proc file system) which provide information about system resources. In
addition, the VFS layer provides the necessary abstraction to attach any device with
any supported file system to the system. Referring to the previous example, /mnt and
/tmp do not necessarily refer to the same file system type. Instead, the kernel invokes
the appropriate file system function to read the source file and uses the file system’s
write function to write to the destination. This makes the concrete implementation
of both calls completely irrelevant to cp. The VFS layer also hides certain peculiarities
as the next example shows:

$ ls /mnt/USBDRIVE

This command outputs a listing of folders and files in a directory. The USBDRIVE
folder in this example refers to an externally connected hard drive. Assuming the
file system is of type File Allocation Table (FAT) the kernel needs to know about FAT
specifics so it can list the folder’s content. In case of a FAT file system it becomes
quite obvious why an abstraction layer is useful: the VFS layer uses a standardized
model of how files and folders are represented. This allows operations like "list di-
rectory content" to stay simple as it merely calls the file system’s implementation of
"list directory content". FAT doesn’t even use the inode model on disk, but this fact is
encapsulated from the kernel. It simply calls the file system’s implementation of "list
directory content" which does all the heavy–lifting and passes back the contents in a
format the VFS layer understands.

1.5 SafeGuard Enterprise

Sophos SafeGuard Enterprise is a well–established software suite for Windows server
platforms offering encryption solutions for client systems running either on Microsoft
Windows or Apple’s OS X. It can either be used standalone or Active Directory in-
tegrated. Figure 1.4 shows the components of SafeGuard Enterprise. Features ad-
dressed by this paper are the Management Center in terms of basic key management
and file and folder encryption in form of an evaluation of kernel–space and user–
space tools that can be used for encryption.

The core component of SafeGuard Enterprise is the management center. Managed
users are added either on a standalone basis or can be pulled from an Active Directory

10
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Figure 1.4: Overview of SafeGuard Enterprise, Source: Sophos internal Confluence
system

server which are then organized in containers – so-called Organizational Units. The
administrator has the possibility to assign policies to those containers. A policy in
turn is a set of commands and settings that the client enforced upon reception. While
there are several hundred settings that can be changed in the management center, the
device and file encryption policies are of most interest in this paper.

A device encryption policy interacts with the native disk encryption software on
the client. On Windows platforms, it enables BitLocker Encryption whereas on Apple
OS X it triggers disk encryption using FileVault2.

Policies that involve file encryption use a proprietary filter driver on Windows
and a virtual file system on OS X platforms. Although a filter driver (kernel module)
would be possible on Linux, this paper investigates possible user space implementa-
tions.

As one of the goals of this research is to provide compatibility to the encryption
mechanisms, file format compliance will be of utmost importance. Tables A.1, A.2
and A.3 provide an overview of the file format as used by SafeGuard Enterprise and
the resulting file system.

The research should result in a prototype of a file system implementation for
Linux platforms with the possibility of reading and writing files created by SafeGuard
components on aforementioned platforms. Furthermore, obeying to the Portable Op-
erating System Interface (POSIX) is tried whenever possible to maintain portability
not only among Linux distributions, but across all operating systems in the UNIX

11
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family. For simplicity reasons, the SOAP–based server–client communication will be
replaced by transferring simple XML documents containing necessary data. Addi-
tionally, disk encryption is also not part of this research as there is no native imple-
mentation of a on–the–fly full disk encryption under Linux.

12



CHAPTER 2
Evaluation

Chapter 1 has already outlined the foundation of this paper. Before an actual proof–
of–concept implementation of a cryptographic file system can be constructed, pecu-
liarities that stem from the nature of Linux need to elaborated in order to allow an
efficient and extensible software design. This chapter will therefore first explain fun-
damental cryptographic terms before elaborating on suitable points of entry to the
Linux operating system. The last part of this chapter outlines possible sources for
key material and how they can be incorporated in the transparent file encryption
process. The result of this chapter provides starting points for future kernel–space
encryption solutions, but also serves as groundwork for the user–space file system
implementation (“cfs”) as specified in chapter 5, a prototype fully compatible to Safe-
Guard Enterprise.

2.1 Cryptographic Algorithms

In this paper, cryptographic algorithms are encountered in various encryption layers
for file encryption, desktop–integrated keystore applications, and are part of trans-
mission protocols between key servers and their clients. Their functional principles
need to be understood in order to be able to draw conclusions about their benefits
and drawbacks. It should be noted that this chapter only evaluates software and al-
gorithms that will be encountered in already available software or in the final proto-
type as there are vast amounts of papers already available that describe cryptographic
algorithms in depth.

Key–based ciphers can be categorized in two main categories: asymmetric and
symmetric ciphers. In either case, they are used to transform plaintext into ciphertext
by applying a cryptographic algorithm. For a given plaintext P, the cipher computes a
corresponding ciphertext C by encrypting P.

C = EK1(P) (2.1)
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The reverse operation, decryption, is performed on C and yields P

P = DK2(C) (2.2)

2.1.1 Asymmetric Algorithms

or public–key cryptography covers those algorithms that use different keys for en-
cryption and decryption. The encryption key, or public key can be published and
used by third parties to encrypt messages. The holder of the corresponding private
(secret) key can then decrypt the message. Public and private key are mathematically
related, but it is computationally infeasible to derive the secret key from the known
public key due to the limitations of integer factorization and the calculation of dis-
crete logarithms.

In general, public–key algorithms can be considered more complex in terms of
required computational costs. Therefore, they are unsuitable for encrypting large
amounts of messages. A common solution for this problem is to generate a random
session key for Symmetric Algorithms and distribute it using public–key cryptogra-
phy. Bulk encryption benefits from the throughput of symmetric ciphers while key
distribution profits from the security of asymmetric algorithms in terms of key distri-
bution over insecure channels. Such systems are known as hybrid cryptosystems.

Common examples of public–key algorithms include the Digital Signature Stan-
dard (DSS), Diffie–Hellman Key Exchange, or the RSA encryption algorithm (PKCS#1).

2.1.2 Symmetric Algorithms

Symmetric Algorithms are those types of ciphers where the encryption key can be
calculated from the decryption key and vice versa, or where the same key is used in
both cases. Equations 2.1 and 2.2 simplify to

DK(EK(P)) = M (2.3)

Symmetric ciphers can be further classified in how they produce their output. Stream
ciphers produce one bit of output for each bit of input, whereas block ciphers operate
on blocks of fixed size. Throughout the software development as introduced in later
chapters, focus will be on block ciphers as they are used in various parts like file
encryption, key (un–) wrapping and integrity checking of ciphertext.

2.2 Block ciphers

A block cipher is an encryption function that operates on blocks of size specific to the
algorithm. Modern block–ciphers like Rijndael use a block size of 128 bit, whereas
older ciphers like Blowfish only use 64 bit. The block size also denotes the small-
est unit of data the algorithm can process. When used, block ciphers take an input
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block and transform it into ciphertext. In addition, the encryption process has to be
reversible, so that the ciphertext can be transformed back to its plaintext form. The
input and output of a block cipher always have the same length.

2.2.1 Blowfish

Blowfish is a Symmetric cipher designed by Bruce Schneier and described in [Sch96,
p. 336] as a fast, compact, simple, variable secure, and optimized for applications
where the key does not change often. The property “variable secure” refers to Blow-
fish’s ability to work with keys varying in size from 32 bits up to 448 bits. The Blow-
fish algorithm consists of two parts:

key expansion:
a one–time process executed prior to the data encryption that computes 18 32–
bit subkeys and four 32–bit S–Boxes with 256 entries each, giving a total of 4168
bytes of key material.

data encryption:
uses a 16 round Feistel network and pre–computed P and S–box values to gen-
erate the ciphertext. Blowfish uses a 64–bit block size per iteration.

The block size of 64–bit is the result of Blowfish’s purpose to supersede the Data En-
cryption Standard (DES) which was already 17 years old at the time of the publication
as the matching block size eased the upgrade from DES to Blowfish. To date, there
are no known attacks on Blowfish, although its use is discouraged in favour of its
successor Twofish – one of the five finalists of the Advanced Encryption Standard
contest.

2.2.2 Rijndael

Rijndael, also known as Advanced Encryption Standard (AES) since its nomination
by the National Institute of Standards and Technology (NIST) in 2001 is a block cipher
that is specified for 128–, 192–, and 256–bit keys. The algorithm consists of an initial
key schedule phase and the cipher algorithm itself. Furthermore, AES performs all
its operations on arrays called state. A state consists of 4 rows. Each row houses Nb
bytes, where Nb denotes the block size divided by 32. Hence, the state turns into a
four by four array with each cell representing exactly one byte.

The key schedule is given by [oST01]. Its purpose is the calculation of sub–keys or
round keys that are used during encryption and decryption. Depending on the used
key size, the key schedule generates either 11 keys for 128 bit, 13 keys for 192 bit, and
15 keys for 256 bit keys. The number of subkeys therefore includes an additional key.
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The cipher produces its output by subsequently applying round functions to the
state array. Rijndael uses four different operations on the input to generate the output
(from [oST01]):

1. Byte substitution using S–Boxes.

2. Shifting rows of the State array by different offsets.

3. Mixing the data within each column of the State array.

4. Adding a Round Key to the State.

These four operations make up a round in AES. As described in the specification, the
last round is performed differently as it omits step 3. The result of the encryption or
decryption operation is contained in the state array after the round functions have
been performed.

2.3 Block Cipher – Modes of operation

2.3.1 Electronic codebook Mode (ECB)

Electronic codebook (ECB) mode is one of five recommended modes of operation for
block ciphers as presented in [Dwo01]. ECB characterizes the most intuitive way of
how to encrypt data. Plain text is split into blocks of suitable size for the cipher algo-
rithm and then encrypted by applying the block cipher until all blocks are encrypted.
For a given block of plaintext Pi, the corresponding cipher block Ci is calculated using:

Ci = EK(Pi)

The resulting ciphertext is simply a concatenation of all previous cipher blocks. Due
to the fact that each block does not have any relation to other blocks, encryption and
decryption are parallelizable. Furthermore, it can be used when non–linear access to
the encrypted data is necessary. Since blocks do not influence each other, encrypting
the same data with the same key multiple times will always yield the same ciphertext.
In the domain of data encryption, this could potentially be used to identify patterns
as long as the same key is used.

Findings

Vast amount of research papers and literature exists on why ECB mode should not be
used anymore in modern software. It is only mentioned as it unintentionally (hope-
fully) became the default mode of operation for KWallet.
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2.3.2 Cipher–Block Chaining Mode (CBC)

To remedy the shortcomings of ECB mode, Cipher Block Chaining (CBC) mode adds
a mechanism to chain cipher blocks together. Unlike ECB mode, where block Pi has
no effect on subsequent blocks Pi+1..n, CBC mode uses the results of previous blocks to
modify the current block before it is fed to the block cipher by using a XOR operation.

Ci = EK(Pi ⊕ Ci−1)

It should be noted that for the case i = 0 no previous block i − 1 exists. Therefore,
CBC mode requires the use of an Initialization Vector (IV) to perform encryption of
the first plaintext block. The size of an IV is equal to the block size of the underlying
block cipher. In addition, it is highly suggested that the IV is generated using a cryp-
tographically secure pseudo-random number generator. The IV does not have to be
kept secret, as it merely is just a placeholder for the non–existing block P−1. More-
over, it also solves the problem of identical plaintexts resulting in equal ciphertexts.
For decryption, the plaintext block Pi is computed as follows:

Pi = Ci−1 ⊕ DK(Ci)

While ECB mode can be parallelized for encryption and decryption, the XOR opera-
tion in the encryption step renders parallelization for CBC encryption impossible due
to the dependency of the previous block. Decryption on the other hand can be done
in parallel as Ci−1 and Ci are both available in step i.

This implies that for file encryption it is required that encrypted files are split into
small blocks each having its own initialization vector, otherwise changes made to the
beginning of a file (block Ci) would require re-encryption of the whole content as
cipher block Ci+1 depends on block Ci.

Findings

CBC is still widely used and supported by all cryptographic libraries available. A
major drawback of CBC mode is that the size of the input data must be a multiple
of the cipher’s block size which for file encryption cannot be guaranteed all the time.
Sophos SafeGuard Enterprise circumvents this problem by always using a buffer the
size of the block size with a copy of the buffer after encryption being stored in the file
header along with the exact size of the last block. A major drawback of that approach
is that the file header needs to be refreshed during encryption (if appending to the
file) and data needs to be read from the header during decryption of the last block.
This might has a negative impact on performance as it breaks sequential file access.

Padding

A common issue when working with block ciphers is the fact that input data is mostly
of arbitrary length. Block cipher modes like CBC and ECB however require that the
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length of the input is a multiple of the block size of the algorithm. Sometimes this
requirement cannot be fulfilled and the last block during encryption ends up only
partially full. As a consequence, padding has to be appended during the encryption
step to satisfy the length constraint

datalength % blocksize = 0

A mandatory property of padding is its reversibility as it has to be removed during
decryption. Zero padding for instance does not guarantee this behavior. The follow-
ing example shall illustrate:

block size
16 bytes

message
24 ’0’ bytes

padding
zero padding

padding length
8 bytes

While encryption would not cause any problems, removing the padding during de-
cryption will run into problems as the plaintext contains ’0’ bytes at the ending. It
is impossible to determine which of the zero bytes belong to the plaintext and which
are part of the added padding.

An alternative to zero padding is PKCS #7 padding as described in [Hou09]. In
this case, padding is added byte–wise. The value of each byte is defined by the total
amount of padding that has to be added. When considering the same example from
above, the padded last block would looks as follows when using PKCS #7 padding:

MM MM MM MM MM MM MM MM 08 08 08 08 08 08 08 08︸ ︷︷ ︸
padding

After decryption, the padding can be safely removed as the exact length is known. It
should be noted however that PKCS #7 requires at least 1 byte of padding. Plaintext
that ends on a block boundary therefore yields one additional block when encrypted.

Findings

Although padding would solve the problems of CBC mode as explained above, it
can’t be used during file encryption. Given a file with maybe millions of full blocks,
encrypting each one would yield a block of padding which must be stored in the file.
This only increases complexity of the read and write operations as offsets need to be
recalculated to reflect the actual position within the file with respect to padding.
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2.3.3 Counter Mode (CTR)

In contrast to ECB and CBC mode that generate ciphertext C by encrypting plaintext
P with a secret key K, Counter Mode does not encrypt the plaintext directly. Instead it
maintains an internal counter T which is then encrypted and XORed with the plain-
text. [Dwo01] describes the process as follows:

Oj = ENCK(Tj) (2.4)

Cj = Pj ⊕Oj, ∀1 ≤ j < n (2.5)

Cn = Pn ⊕MSBu(On) (2.6)

The fundamental principle of Counter Mode is given in [Smi11], which concisely
describes it as a mode that “generates a key stream and applies XOR to implement a
stream cipher.” The key stream in turn is generated by encrypting successive values
of a counter that will be increased after a block has been encrypted. With respect
to Equation 2.4, CTR mode first calculates the jth output block by encrypting the
jth counter value T. Depending on whether a full block (Equation 2.5) or a partial
plaintext block is to be encrypted (Equation 2.6), either all of the output block bits are
XORed with the plaintext or only up to the requested length. Because of Equation 2.4,
it becomes evident why [Dwo01] demands that no counter value must be reused for a
given key: in contrast to CBC mode where the cipher is applied to the plaintext, CTR
mode only encrypts a counter value - the plaintext is never processed by the block
cipher. Only the final XOR operation with the key stream yields the cipher text. Re–
using the same counter value for a given (key, counter) pair would therefore produce
the same keystream O.

C1 = P1 ⊕ F(K, T)

C2 = P2 ⊕ F(K, T)

which is equal to
C1 ⊕ C2 = P1 ⊕ P2

Additional reuse of a (key, counter) pair adds more C and P block to the equation.
Cryptanalysts can then employ various techniques to gain additional knowledge
about the ciphertext and given enough input data, maybe even decrypt it.

In the simplest case the counter value is increased by one after each round. Al-
though this might seem unorthodox and “insecure”, it does not violate the require-
ments of [Dwo01]. The benefit of using Counter Mode is therefore that padding is
no longer required as n bytes of input always produce n bytes of output. Figure 2.1
shows the basic algorithm. In addition, [Dwo01] specifies two possible ways of how
the uniqueness of the counter is ensured. For a given underlying cipher like AES, the
block size b is fixed at 16 byte or 128 bit respectively. Either the initial counter block
starts with an arbitrary value and is incremented after every round, or the counter
block is divided into two parts, a static nonce and a counter value. The specification
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Figure 2.1: CTR Mode encryption [Pac08]

does not specify how the number of bits in b is split between nonce and counter. It
should be noted however that the number of bits chosen for the counter limits the
number of blocks that can be encrypted with the given key. This might become an
issue when encrypting large amounts of data in a single file if the lower part of the
counter is chosen too small.

Findings

When using CTR mode for file encryption, care must be taken to not violate the re-
quirements of [Dwo01]. Given the fact that each file uses a random data encryption
key with the IV being derived from the current block number within the file requires
that a new IV is generated every time a block is overwritten. It is therefore recom-
mended to store a 16 byte IV on a per–block basis and generate a new random IV
upon encryption. As a result, offset and length calculations for read and write oper-
ations become more complex because the offset parameter of a read or write request
has to be mapped to its real position within the file (that is, increased by the number
of blocks before the requested offset multiplied by the block size).

2.3.4 XEX-based tweaked-codebook mode with ciphertext stealing
(XTS)

Presented in [IEE08] and approved by NIST in [Dwo10] XTS mode is described as
a mode of operation used for “encryption of a data stream divided into consecutive
equal-size data units, where the data stream refers to the information that has to be
encrypted and stored on the storage device.” XTS was specifically designed for trans-
parent encryption, which reflects in its main properties as outlined by [IEE08]:
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• It is length preserving. n bytes of plaintext generate n bytes of ciphertext, hence
no padding is required.

• Encryption and decryption must be possible on individual data units. This
property contradicts e.g. CBC mode where each cipherblock n depends on block
n− 1 during encryption.

The encryption process is shown in figure 2.2. As with Counter mode, encryption is
not directly applied to the plaintext. Instead, the index of the data unit is encrypted
using tweak key KT. The result is mixed with the block number within the data unit
to produce the tweak value. The outcome is then XORed with the plaintext before
encrypting it with AES using the data key KD and XORed again with the result of the
AES output to produce the final ciphertext.

Since the file system prototype has built–in CBC mode support, the file block size
as described before can be regarded as data unit. It should be noted however that
due to the use of two encryption keys instead of splitting an existing 32 byte key, the
effective key size for XTS if used in conjunction with AES–256 increases to 64 byte.
As outlined in [LM08], the additional encryption key does not increase security, in-
stead “the level of security would remain effectively the same.” This fact implies that
the file system prototype can only support XTS–128 without altering the SafeGuard
Enterprise header format as the header only reserves 32 byte for the encryption key.
Furthermore, XTS requires an input length of at least one full block of the underlying
cipher – 16 bytes in case of AES. This is problematic for file encryption as very small
files cannot be handled easily.

Figure 2.2: XTS Mode encryption [Pac08]
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Tweakable block ciphers

Many modes of operation using block ciphers have certain requirements re-
garding their usage to prevent attacks of various kinds. Counter and Output
Feedback more for example require the uniqueness of the initialization vec-
tor. Violating the respective restrictions will not only decrease security, it might
even break security in general. Because key setup might be an expensive oper-
ation for a given block cipher, alterations to the input, output, or both would be
a solution to mitigate attack vectors. [LRW02] however proposes a different ap-
proach by introducing tweakable block ciphers that can be regarded as extension
to “conventional” block ciphers. Tweakable block ciphers add a special value
that is cheap to calculate compared the fairly expensive key setup process. The
block cipher still provides uncertainty through its symmetric key, but due to
the tweak value also variability by embedding the tweak value in the process
of transforming data by encryption or decryption.

Ciphertext stealing (CTS) applies to the length preserving property of XTS. CTS
however is not limited to XTS. It can also be used in conjunction with ECB or CBC
mode. CTS solves the problem of partial last blocks as addressed by Padding. When
using CTS, the encryption step processes all full blocks except the last one. In case
of XTS, the last full block is then encrypted together with the remaining partial block
using two different tweak values ( [IEE08, D.5]). Figure 2.3 shows this process. The
encryption step is depicted on the left–hand side, decryption is shown on the right.
During encryption, Pm−1 denotes the last full block, Pm a partial block. The ciphertext
CC is split in two parts: CM and CP. CP is then appended to the last block Pm to
expand the partial block size to the block size of the cipher (Pm therefore stole parts of

Figure 2.3: XTS Mode Ciphertext stealing (from [IEE08, 5.3.2,5.4.2]
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the ciphertext) before applying the AES encryption. The output of the last encryption
is stored at position m− 1, whereas the partial result of CC makes up the last cipher
(partial) cipher block. On decryption, the full block Cm−1 is decrypted, which yields
the plaintext block PP. Since the size of Cm is known, PP can be split accordingly to
obtain the remaining input to the final decryption.

Findings

As will be shown later, XTS mode offers high throughput and therefore is a well–
suited candidate for file encryption. Given the fact that it requires at least one full
block during encryption special handling of operations that affect partial blocks shorter
that 16 bytes are required. In such cases using XTS mode requires chaining with
another mode that does not suffer from such restrictions, or the last block must be
padded to at least 16 bytes and the exact file size stored in the header. This approach
introduces the need to refresh the file header every time a block is added in the end
(the most common write operation) to distinguish between data and padding. This
of course breaks sequential file access and may has a negative impact on the overall
write performance.

2.3.5 Galois/Counter Mode (GCM)

An aspect of file encryption left unregarded is the authenticity of ciphertext. Modes
of operation for block ciphers discussed so far produce a certain amount of ciphertext
that is written to disk and read and decrypted on demand. Neither during encryption
nor decryption any authentication tags are generated or verified. With regards to the
fundamental principle of information security, namely Confidentiality, Integrity, and
Availability, the proposed solution only covers the former and the latter. To incorpo-
rate authenticated encryption, two approaches can be used:

1. Either employing a separate message authentication code (MAC), or

2. using a mode of operation that already incorporates authentication

Presented in [MV05], Galois Counter Mode (GCM) is an algorithm that provides “au-
thenticated encryption and authenticated decryption.” As the name suggest, GCM
uses a combination of the already presented Counter Mode (CTR) for encryption and
the Galois mode to provide authentication. Due to the use of CTR mode, the same
rules and restrictions regarding key and IV generation and usage apply.

For authenticated encryption, GCM adds a forth parameter to the input which
normally consists of a secret key, an initialization vector, and the plaintext. That ad-
ditional parameter, commonly referred to as additional authenticated data (AAD) is
then used to “protect information that needs to be authenticated, but which must be
left unencrypted” ( [MV05]). Consequently, the output of a GCM encryption yields
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the ciphertext along with an authentication tag T. GCM decryption decrypts the ci-
phertext, but also maintains a MAC value T′. Given T and T′, decryption is consid-
ered to be successful if the values match after the last block has been decrypted, hence
the ciphertext has not been altered.

Given the nature of stream ciphers which allow random access, it is implied that
only one such tag exists per file. In cases where a file is only partially decrypted, the
tag cannot be verified without decrypting the whole file. As a consequence, a similar
approach as for CBC mode can be used to make use of the authentication property.
The file will be segmented in blocks, with each block consisting of the tag value and
the encrypted data. The size of the data segment can be chosen at will, but should be
within the recommendations of [Dwo07]. Given a random offset within the file, the
file system can then calculate the corresponding segment location, decrypt the data
block and verify the tag. Consequently, depending on how much data was requested,
the verification of the tag imposes a certain amount of computational overhead as the
whole data section has to be decrypted.

An additional use of GCM mode is the replacement of the MAC field in the file
header. As can be seen in table A.1, each key slot contains an eight byte array that
is calculated by using the first eight bytes when encrypting 64 zero bytes. It is used
upon decryption to quickly determine if a given Key Encryption Key can decrypt the
Data Encryption Key that is stored in encrypted form. By using GCM mode to en-
crypt and decrypt the Data Encryption Key, calculating the MAC value will become
redundant as the GCM tag can be used to determine if decryption of an encrypted
Data Encryption Key was successful. However, changing the modus operandi of the
wrap and unwrap functions would break compatibility with existing files. There-
fore, the proof of concept implementation will simply use a new header version to
distinguish between files created with in traditional way and files using GCM mode.

Findings

In contrast to all other modes introduced in this section, GCM mode provides authen-
tication of ciphertext during decryption. Although there are other modes supporting
authenticated decryption like CCM or EAX, GCM mode is the most popular today.
Two circumstances must be considered when using GCM: clearly it is used along with
data to be authenticated, otherwise one could use CTR mode. The tag value obtained
after encryption must be embedded in the encrypted file so it can be verified upon de-
cryption. Due to the fact that the file header has a predefined size, tag values must be
appended to the block within the data section of a file. Therefore, GCM suffers from
the same limitations as CTR mode does in terms of file encryption: offset handling
and random file access become more complex as the original data is interleaved with
GCM tags. Accessing a file with an assumed block size of 512 byte at offset 1024 ac-
tually needs to access offset 1024 + 1 * GCM_PER_BLOCK_DATA. Additionally each
512 byte block only has one tag value, hence reading the first byte of a block requires
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decryption of the full block to verify the tag value.

2.3.6 Comparison of cipher modes

The previous sections have shown that there are various modes available to use for
file encryption. As the goal of this paper was to produce software that is compatible
to the SafeGuard Enterprise file format, support for CBC and CTR mode is implicitly
required. Due to the nature of CBC mode, the application already contains addi-
tional control logic to handle arbitrary I/O request, namely access to random off-
sets and handling of partial blocks. However, it is suggested that CBC mode should
only be maintained for compatibility reasons. With Intel’s introduction of the Ad-
vanced Encryption Standard New Instructions (AES–NI) for the x86 architecture and
the PCLMULQDQ instruction for carry–less multiplication of two 64-bit operands, both
described in [Gue12] and [GK12], tremendous performance improvements are no-
ticeable when performing encryption with modes that make use of these new in-
structions. The sample source code in extra/speed.c [Lor15] can be used to obtain
information about common supported block cipher modes. In its basic configuration,
it encrypts 32 MB of data and calculates the average speed over 20 runs. Table 2.1
provides an overview of achievable encryption rates for a selection of CPUs. As can
be seen, CBC mode cannot compete in terms of speed compared to other modes.
Especially GCM mode benefits greatly if AES–NI is available due to the simplified
multiplication in the Galois Field that is performed as part of the authentication step.
GCM therefore provides an acceptable trade–off between speed and security if data
integrity has to be maintained at the crypto layer instead of the software layer.

Although CTR mode offers the highest throughput among the tested modes, it
does not protect the ciphertext from manipulation. Changing a byte at offset n in the
ciphertext has a direct influence on byte n of the plaintext after decryption. Adding

Table 2.1: AES modes of operation – speed comparison

Processor Mode [MB/s]

Platform Speed [GHz] AES–NI∗ CBC CTR GCM XTS

i5-3320M 2.60
Y 369 1317 701 1290
N 212 337 335 186

M 560 2.60
Y 388 832 495 830
N 168 233 135 230

T9550 2.66 N/A 153 213 128 208
∗

disabled using export OPENSSL_ia32cap=~0x200000200000000
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CBC–MAC to counter mode, hence turning it into CCM mode, performs exactly like
CBC mode and is therefore omitted in table 2.1.

2.4 Password Expansion

Since the early days of authentication, passwords have played a major role in comput-
ing and especially cryptography. A password is usually a combination of characters,
sometimes enforced through a policy, with a certain complexity obtained by mixing
capital and lower-case letters, numeric, and special characters. To prevent brute–
force and dictionary attacks, a policy might also enforce a certain password length.
The problem in this case is the human brain. Complex passwords are easily forgotten,
therefore users tend to use strings that are easy to remember but lack the required en-
tropy in order to thwart password cracking. As a counter–measure, [Kal00] provides
Password Based Key Derivation Functions (PBKDF) to derive a cryptographically
strong key from a low–entropy password source such as user passwords. It does so
by applying a pseudo–random function such as Secure Hash Algorithm (SHA-1) to
the input along with a salt–value, repeated a certain number of times that governs
the strength of the resulting key, but which is proportional to the computation time.
Additional care must be taken on mobile phones as that number also has a direct in-
fluence on the battery charge level due to the high CPU load during the calculation.
As a conclusion, the number of rounds should be the result of:

• a policy–defined minimum value

• frequency of required computation

• available hardware resources

On some platforms, usability is a concern. In such cases it would be possible to define
the upper time bound that is acceptable for users and check if the resulting value
provides the amount of security one desires.

[TBBC10] specifies the number of rounds (iteration count) as a value “selected as
large as possible, as long as the time required to generate the key using the entered
password is acceptable for the users”.

2.5 Secure storage

As file encryption has to deal with cryptographic keys at some point, the follow-
ing chapter will address problems that arise when implementing secure storage to
maintain persistent storage of key material. First of all, it should be noted that secure
storage is not limited to the process of writing data to a persistent storage device, but
also extends to mechanisms for maintaining consistency and integrity. As mentioned
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in chapter "Desktop environments", Linux is able to run various different desktop en-
vironments. Software on Windows or OS X platforms commonly uses the kernel API
or a dedicated interface provided by the operating system to manage cryptographic
keys. On Linux however, it is up to the user to install necessary applications and
libraries. A typical installation of any desktop environment usually includes the re-
quired tools. Since K Desktop Environment and GNOME are the most common envi-
ronments, the final implementation will only cover these types, but will offer an API
that eases implementation of additional key storage providers. Furthermore, lever-
aging functionality provided natively by the desktop environment increases conve-
nience for users as dialog and input boxes have their correct icons loaded and are
also correctly themed. More importantly, the desktop environment already provides
functionality to take care of certain operations like prompting the user to enter a pass-
word for a new keyring. This may seem trivial, but the problem will become more
apparent throughout this chapter.

2.5.1 Terms

In this chapter, the term keystore refers to an implementation that offers functionality
to persistently store data. A designated API offers ways of interacting with the library
for the developer.

Each keystore consists of multiple keyrings or keychains which ultimately store the
user’s secrets. It is highly suggested that keyrings are protected using strong pass-
words. The API usually provides functions to lock and unlock keyrings as well as
to create or delete them. To read and write data from or to a keyring, it has to be
unlocked.

Additionally, when creating or opening keyrings the developer can pass the re-
quired password to the keystore or let the store itself take care of obtaining the correct
password. Such an approach most likely uses D–Bus and therefore requires that the
user’s X session is set up properly. More details will be given in section "section 2.6
“Alternative Keystores”.

2.5.2 KWallet

KWallet is the default password manager for K Desktop Environment and is equiva-
lent to the Keychain application on OS X and the Windows Vault on Windows plat-
forms.

The KWallet sub–system manages a number of wallets. By default, only the initial
wallet – kdewallet exists which gets unlocked during the users’s login process and
henceforth acts as the default destination for all newly added secrets. The KWallet
main API offers the possibility to manage existing wallets (open, close, and change
passwords) or to create new wallets. Figure 2.4 shows the KDE Wallet Manager main
page.
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Figure 2.4: KDE Wallet Manager

On–disk format

The information in the following section is taken from the package kde-runtime ver-
sion 4.11.3-1. References to source files in the following chapter are obtainable by
downloading necessary libraries. On Debian, one would use

apt-get source kde-runtime

The KWallet file format is rather simple and implemented in kwalletbackend.cc. The
backend service uses a QDataStream to manipulate data streams to and from the wal-
let. The file format is described in table 2.2. If the wallet backend needs to create new
wallets, it uses password2hash() to perform the necessary password expansion. This
function uses the user entered password and expands it according to the following
rules:

1. Perform 2000 SHA-1 rounds into “block1”

2. If password size > 16, perform another 2000 rounds into “block2”

3. If password size > 32, perform another 2000 rounds into “block3”

4. If password size > 48, perform another 2000 rounds into “block4”
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Table 2.2: KWallet: File format

Offset Size (b) Description Example

0 12 Magic number KWALLET\n\r\0\r\n (static)
12 1 Wallet major version number 0 (static)
13 1 Wallet minor version number 1
14 1 Encryption algorithm identifier 0 (Blowfish CBC)
15 1 Hash algorithm identifier 0 (SHA–1)
16 4 Number of MD5 hashes
20 n*20 MD5 hashes + NUL bytes

20+n*20 * Encrypted data
* 20 Encrypted data SHA–1 checksum

5. Depending on the password size, return hash according to table 2.3 – 2.6. The
value denotes the block number from steps 1–4.

Passwords with length ≤ 16 only generate a 20 byte key for the following Blowfish
encryption with a total of 2000 rounds of non–standard PBKDF and it further is rea-
sonable safe to assume that a user password as entered at the KWallet wallet creation
wizard is shorter than 32 characters, so most KWallets are generated according to
tables 2.3 or 2.4. Tables 2.5 and 2.6 are therefore only shown to illustrate the result
and how the custom PBKDF distributes the generated blocks over the resulting 56
byte key. However, due to the low security standards offered by KWallet, it is recom-
mended to always create wallets with a password as long as possible.

Table 2.3: KWallet: Resulting hash for password length ≤ 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1

Table 2.4: KWallet: Resulting hash for password length > 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
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Table 2.5: KWallet: Resulting hash for password length > 32

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

Table 2.6: KWallet: Resulting hash for password length > 48

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
4 4 4 4 4 4 4 4

Security

As can be seen in table 2.3 the strength of the resulting wallet secret very much de-
pends on the user entered password. In addition, the fact that the key generation
scheme does not use any salt, makes it greatly vulnerable to pre–computed rainbow
tables and brute–force attacks.

Even more worrisome code is located in the Backend::sync() function. The back-
end sets up the required initialization vector for the CBC encryption, but does com-
pletely fail to perform the encryption accordingly, thus turning CBC mode effectively
into ECB mode as seen in the following function call:

rc = bf.encrypt(wholeFile.data(), wholeFile.size())

The encrypt function that should actually perform the CBC encryption first allocates
a temporary, zeroed buffer of size equal to the input data size, XORs the buffer with
the input data (which does not modify the data at all) and finally calls

rc = _cipher->encrypt(block, len)

with the full data block instead of splitting it into blocks and encrypting them in CBC
mode.

Although not yet published in the official distribution packages, upcoming re-
leases of KWallet will include support for GNU Privacy Guard (GPG) based encryp-
tion and decryption. To support GPG, cryptographic operations have been moved
from kwalletbackend.cpp to backendpersisthandler.cpp. The newly added class
GpgPersistHandler as child of BackendPersistHandler will then be used to delegate
cryptographic operations to GPG and bypass the low–quality Blowfish code com-
pletely. The user has to enable GPG in the system preferences to make use of the new
features.
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Findings

It has been shown that the security of KWallet is somewhat unsettling. As mentioned
before, ECB mode is unsuitable for secure data storage. Additionally due to the self–
made password expansion it is suggested to collect all key material obtained from a
SafeGuard Enterprise Server in a distinct keyring and use a strong random password
to protect it. The password for the keyring can then be stored in the default login
keyring which gets unlocked upon the user’s login. It is believed that awaiting new
versions with GPG support will not bring any added benefits as the typical end user
in an enterprise environment does not have any GPG keys and has to use the default
and broken implementation anyway.

2.5.3 gnome–keyring

Found on distributions running the GNOME desktop environment like Debian and
its derivates (like xcfe or lxde) gnome–keyring is another keystore implementation.
The application is split into two parts: the library libgnome-keyring0 with the main
API for the user to interact with and a daemon gnome-keyring that handles the re-
quests from the library. The communication between the daemon and the library is
based on D-Bus.

On–disk format

The information in the following section is taken from the package gnome-keyring
version 3.4.1. Compared to KWallet, the file format is more complex, as shown in
table 2.8 but sets and preserves more keychain attributes.

During the user’s login procedure, gnome–keyring starts its initial daemon that
will wait for requests from libgnome–keyring and takes care of all necessary prompt-
ing for user–passwords.

Table 2.7: gnome–keyring entry format

Offset Size (b) Description Example

0 4 ID 1
4 4 Type 1
8 4 Number of attributes 4

Array of n attributes

0 * Attribute name "label"
* 4 Attribute type 0 (string)
* * Attribute value "mykey"
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Table 2.8: gnome–keyring file format

Offset Size (b) Description Example

0 16 Magic number GnomeKeyring\n\r\0\n (static)
16 1 Keyring major version number 0 (static)
17 1 Keyring minor version number 0 (static)
18 1 Encryption algorithm identifier 0 (AES)
19 1 Hash algorithm identifier 0 (MD5)
20 4 Keyring pretty name length = n
24 n Keyring pretty name

24+n 8 Keyring creation time 1377793344
32+n 8 Keyring modification time 1377793354
40+n 4 Keyring flags LOCK_ON_IDLE_FLAG
44+n 4 Keyring lock timeout 60
48+n 4 Keyring hash iteration count 3021
52+n 8 Keyring salt
60+n 16 unused
76+n 4 Number of entries = m
80+n * Array of m entries

* 4 Size of encrypted data
* * Encrypted data

Security

gnome–keyring uses a custom made PBKDF, implemented in egg_symkey_generate_-
simple(). This function takes the iteration count and salt from the header and gen-
erates a key and IV suitable to use with AES-128. In case the secret collection is to be
written to disk, no iteration count value exists yet, so gkm_secret_binary_write()
will generate a random number in the range of [1000, 4096]. The encryption and de-
cryption process uses CBC mode from Libgcrypt – a general purpose crypto library
to encrypt the entries in the keyring. A MD5 hash value is included to verify the
decryption process (located in the first 16 bytes of the “Encrypted data” section in
table 2.8).

While gnome–keyring has to keep sensitive information in memory, it uses the
egg_secure_*() functions to protect the memory from being swapped out to disk.
The egg-secure-memory.h interface provides a custom memory management facility
to perform secure handling of data. Additionally, free and malloc functions always
return zeroed memory areas. Blocks of memory are organized in pools of twice the
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size of PAGE_SIZE (usually 4 kB under Linux). Applications like gnome-keyring can
then use the public API functions like egg_secure_alloc() or egg_secure_realloc()
to obtain secure memory.

Findings

As is it the case with KWallet, gnome–keyring also uses a custom made key–derivation
function to protect its keyrings. Using random salts and in the best case twice as many
iterations during password derivation as KWallet does further increases the security
of persistently stored key rings as it hampers brute–force attacks. Due to these facts it
is rather fortunate that most of the Linux distributions include GNOME as their de-
fault desktop environment if they ship with a graphical user interface at all. Gnome
in turns includes gnome–keyring. Therefore, no user interaction to install additional
software is required.

2.6 Alternative Keystores – Linux IPC mechanisms

If different keystore applications are to be used or even self–implemented, a form of
inter-process communication is needed in order to allow a graphical user interface
to interact and exchange information with a persistent storage driver. The following
section introduces a number of common UNIX inter-process facilities.

The * character in the following section should be substituted with one of three
possible values: msg for message queues, sem for semaphores, and shm for shared
memory segments.

*get()
creates a new resource of type *

*ctl()
perform control operations on the resource of type *. Operations include infor-
mation retrieval about the resource, removal, or the setting of resource–specific
options.

The resources created from one of the IPC instruments are commonly identified by
a system–wide unique key, which can be of arbitrary value. To allow applications to
work on the same resources, it is mandatory to use the same key for both applications.
Therefore, the key value is derived from a combination of an arbitrary pathname and
identifier through the ftok() function. According to the manual page, this function
“convert[s] a pathname and a project identifier to a System V IPC key.” Since the
keys have to to be equal, the input to ftok() also has to be same in both cases. The
pathname specified under ident must be existing and accessible as ftok() internally
uses the stat() system call to derive the key. In addition, each IPC mechanisms has
a set of permissions of type struct ipc_perm as shown in listing 2.1 attached to it.
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Snippet 2.1: IPC permissions
1 struct ipc_perm {
2 uid_t cuid; /* creator user ID */
3 gid_t cgid; /* creator group ID */
4 uid_t uid; /* owner user ID */
5 gid_t gid; /* owner group ID */
6 unsigned short mode; /* r/w permissions */
7 };

Using the creator and owner fields, access to the queue can be further restricted.

2.6.1 System V Message Queues

A message queue is an IPC mechanism provided by the kernel to exchange messages
between processes. Typical operations performed on queue objects are msgsnd() to
add an item to the end of the queue and msgrcv() to remove the head of the queue.
Access to the queue is granted if the user performing the operation has write per-
missions for msgsnd() or read permissions for msgrcv(). A queue is identified by
a positive message queue identifier. Application can provide this identifier to the send
and receive operations to submit and retrieve objects of arbitrary type from the queue.
The object is of arbitrary type, but should follow the base form shown in listing 2.2.

Snippet 2.2: Message queue object format
1 struct msgbuf {
2 long mtype; /* message type, must be > 0 */
3 char mtext[1]; /* message data */
4 };

It is also possible to submit messages of length 0, hence submitting a structure that
only consists of the mtype field. Both msgsnd() and msgrcv() are blocking calls as long
as IPC_NOWAIT was not specified in the msgflg parameter. In terms of programming,
the

int msgsnd (int msqid, const void *msgp,
size_t msgsz, int msgflg);

function is used to append a message to the queue. The msgsz parameter specifies the
size of the data in msgp, excluding the size of the mtype field. If there is sufficient space
available, the call succeeds immediately, otherwise the behavior depends on whether
the IPC_NOWAIT flag was set or not. If set, the call fails with EAGAIN, otherwise it blocks
until items have been removed and more space becomes available. On the receiving
side, the function

int msgrcv (int msqid, void *msgp, size_t
msgsz, long msgtyp, int msgflg);
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will remove the head of the queue and places the result in the buffer msgp of size
msgsz. The msgtyp parameter can be used to specify which type of message should
be removed.

2.6.2 System V Semaphore Sets

Semaphores are a vital part of multi–threaded applications and are one of the most
fundamental principles when it comes to critical sections and resource utilization.
Basically, a semaphore is a counter. Initially, the counter value is set to an arbitrary
number. Every time a user requests access to a resource, the counter is decreased
by one. When the user has finished his work, the counter is increased by one. As
long as the counter is nonzero, the process continues working. When the counter
reaches zero, which means there are no more resources available, the user has to wait
until another user has finished his work and thus increased the counter. Therefore,
semaphores are useful when there is more than one resource to manage. A mutex is a
special semaphore with a maximum counter value of one. It is therefore useful when
implementing critical regions1. Linux manages semaphores in terms of set. As before,
the call semget() creates or retrieves such a set of n semaphores. To manipulate one
or more items in a set, Linux provides two central functions:

int semctl (int semid, int semnum,
int cmd, ...);

is used to perform control operations on the set. Operations include retrieval, re-
moval, information gathering about the semaphore counter values, and also the abil-
ity to set the counter values, as a newly created set of semaphores initially has unde-
fined values. When the semaphore set is configured, one can use

int semop (int semid, struct sembuf *sops,
unsigned nsops);

to perform aforementioned operations on the set. An operation is characterized by a
struct sembuf as described in listing 2.3.

Snippet 2.3: Semaphore operation
1 struct sembuf {
2 unsigned short sem_num; /* semaphore number */
3 short sem_op; /* semaphore operation */
4 short sem_flg; /* operation flags */
5 };

The sem_op value determines the action that should be taken for this operation. If its
value is

1A block of code that must not be executed concurrently
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> 0 the value is added to the counter and the call returns immediately.

= 0 the caller is suspended until the semaphore counter reaches zero.

< 0 if the semaphore counter is greater than |sem_op|, add this value to the counter
(effectively substracting it) and return immediately. If the counter is less than
sem_op, wait until the counter increases.

The operations performed by semop() are atomically, which means that either each
single operation succeeds or none of them is performed, the previous state is restored,
and and error is returned. nsops determines, how many struct sops have to be
performed. The smallest set obtainable by semget() is one.

2.6.3 System V Shared Memory Segments

Until now, processes used their own memory segments which remained isolated and
inaccessible to other processes. When information exchange between processes is
needed, IPC primitives like sockets or pipes have to be used to send and receive data.
Another way of achieving the same goal is the usage of shared memory segments. A
segment can be obtained by using shmget() which also takes a size argument. This
call is similar to the malloc() system call. If the call succeeds, the memory segment
has been created, but is still inaccessible until the application attaches it to its own
address space using the shmat system call.

The return value of shmat can then be casted to the desired type and data writ-
ten to to the memory segment. As shared memory is mostly used in some sort
of producer–consumer environment, access to the memory has to be synchronized
through primitives like semaphores to avoid data corruption.

When the process has finished its work, the memory segment has to be detached
from the address space using the shmdt system call. It should be noted that the system
call performs the detaching, but it still exists and the underlying memory in still use.
Therefore, another call to shmctl() with the operation set to IPC_RMID is necessary to
free the memory page. The actual destruction of the segment will be delayed until
the attach/detach counter reaches zero, that is, when all applications have detached
the segment from their respective address space. The advantages of using KWallet
and gnome–keyring are clearly their native integration into the desktop environment
they are written for and their out-of-the-box functionality.

2.6.4 D–Bus

Although there are other libraries available, cfs will only support KWallet and gnome–
keyring. This section however should introduce the required interfaces if one wants
to use custom keystore implementations. This is important as events that require user
interaction become problematic to handle and a certain logic has to exist that is able
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to attach to the current X session to prompt the user for input2. Due to the architec-
ture of cfs as introduced in later chapters, launching applications from background
applications with no additional user context brings the question of how to find and
connect to the user’s desktop session to display a graphical interface.

D–Bus or dbus provides an open–source inter-process communication layer for
applications. It was originally designed and published by Red Hat Inc. and is now
actively maintained by the freedesktop3 community. D–Bus extends the primitive
inter-process communication facilities that are typically available under Linux like
socket, pipes, or shared memory. It is installed by default on virtually any worksta-
tion that runs a graphical user interface. The core architecture of dbus includes two
messaging buses:

System bus
A system–wide messaging bus that allows any application to export services
that any other application can use. Only one instance of a system bus exists at
runtime.

Session bus
A per user / per session bus. For each X login, a new session bus is created for
applications to communicate.

The dbus architecture offers more flexibility than Linux’ built–in IPC mechanisms.
[Pal05] and [PCL+03] describe the design of dbus as based on the following entities:

Message
The most fundamental concept of dbus is a message. It is comprised of a header
and a body with a maximum size of 128 megabyte. The header describes en-
dianness, message type, flags, and body size, but also contains an array of
(key, value) pairs that characterize the recipient.

Object
An abstract representation of an object in the given language (e.g. Qt object,
GLib object). Instead of identifying an object through its address in memory,
dbus uses object paths to refer to a specific instance. This makes it possible to
work on object without mandatory knowledge of how the object is handled at
the remote side.

Object path
An identifier for an object instance. A format path is similar to a file system path
and has the format /org/myapp/settings/windowstyle. The message header
does include the recipient’s object path in the header fields too. For separation
purposes, one can use a namespacing schema for applications – e.g. object paths

2for example creating or unlocking a wallet
3http://www.freedesktop.org
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starting with /org/kde/ are used to identify applications part of the K Desktop
Environment project.

Methods & signals
An object would be worthless if one cannot interact with it. Therefore, dbus
provides the concept of methods. Methods are identified by a name (e.g. Set)
with optional parameters and may return a value. Signals on the other hand are
automatically initiated by the object on a certain condition (e.g. onChange) and
broadcasted on the bus. Interested parties may catch those events.

Interface
A named set of functions and methods, identified by a name with format org.-
myapp.setting.

Service
Registered by an application during start–up. A service is identified on the bus
by a unique name, e.g. org.myapp.setting. A powerful feature of dbus is the
support of service activation: if an application executes a call on a non–existing
service, dbus has the ability to map the service to an application and start it.

To get an overview of what an ordinary Linux installation includes, one can use qdbus
[--system] and dbus-monitor to inspect the buses. The system–bus typically lists
services like Avahi4 or UPower5. The session–bus on the other hand provides noti-
fication daemons (org.freedesktop.Notifications) or access to the user’s keyrings
through org.gnome.keyring or org.kde.kwalletd. The actual services provided de-
pend on what packages have been installed on the system.

For languages with static binding like C however, a dbus object needs to be de-
clared at compile-time as the compiler needs to “see” its definition. To obtain nec-
essary definitions, libdbus-glib-1-dev provides dbus-binding-tool. It uses XML–
style to describe objects including their methods, signals, and interfaces. Listing 2.4
shows an example that can be used as input to dbus-binding-tool to generate a
C header file. A detailed description of the Introspection Data Format is given by
[PCL+03]. The method GetInt32 as specified in line 5 for example expects a match-
ing C function gint32 setting_get_int32(Setting *s).

Snippet 2.4: Sample Introspection file
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <node name="/org/myapp/Setting">
3 <interface name="org.myapp.Setting">
4 <annotation name="org.freedesktop.DBus.GLib.CSymbol" value="setting" />
5 <method name="GetInt32">

4D–Bus capable implementation of DNS service discovery and multicast. http://avahi.org
5Successor to the Hardware Abstraction Layer (HAL). Exposes an interface to power sources cur-

rently present on the bus. http://upower.freedesktop.org
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6 <arg type="u" name="val" direction="out">
7 <annotation name="org.freedesktop.DBus.GLib.ReturnVal" value=""/>
8 </arg>
9 </method>

10 <method name="pGetInt32">
11 <arg type="u" direction="out" />
12 </method>
13 <method name="SetInt32">
14 <arg type="u" name="val" />
15 <arg type="u" direction="out" >
16 <annotation name="org.freedesktop.DBus.GLib.ReturnVal" value="err"/>
17 </arg>
18 </method>
19 </interface>
20 </node>

An interface to custom keystore implementation would then consist of a prompter
service to prompt the user for input as well as accessor functions to the keystore’s
data like passwords or certificates.

Findings

It is highly recommended to use native keystores like KWallet or gnome–keyring to
permanently store data in keyrings. If it is unavoidable to have custom protocols
and interfaces in place, dbus seems to be the most widely pre–installed Inter–Process
Communication and Remote Procedure Call facility among the most common Linux
distributions. However, various implementation attempts of simple interfaces have
shown that due to the complexity of the standard and peculiarities of software imple-
mentations (libdbus or glib’s GIO GDBus) it is advisable to use one of the aforemen-
tioned facilities.

2.7 The Virtual File System Layer

Linux supports a variety of file systems. Due to the fact that each of them requires a
different implementation and operates on different (internal) data, directly including
them in the kernel would bring major drawbacks:

• A wealth of different data structures scattered across the whole I/O subsystem.

• Important data structures like a struct inode would need a union type that
includes a member for each supported file system to allow each of them to store
auxiliary data. The size of the union would be governed by the file system with
the largest amount of auxiliary data. This approach wastes a lot of memory,
especially when considering the number of inode structures loaded in memory
at a given time.
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• Re–implementation of common features for each file system.

As a consequence, the Virtual File System (VFS) layer was introduced to provide an
abstraction layer to file systems. The result is a common interface for all file related
functions with the VFS merely acting as a dispatcher that forwards system calls to
specific file system implementations. The VFS layer is build around four major data
structures:

struct superblock
Refers to a mounted file system. For disk–backed volumes, the structure con-
tains volume–specific information. On NTFS partitions, it is referred to as Mas-
ter File Table (MFT).

struct inode
Carries general information about a file system object like a file or a folder. Data
associated with this structure includes ownership, size, permissions, various
access timestamps and an inode number that is used to uniquely identify the
file object within the file system.

struct dentry
Links inode objects to path names. dentries do not exist on disks, but are kept
in memory to speed up path lookups. Each dentry has a parent dentry, a name,
and an inode associated with it.

struct file
Denotes the link between a process and an inode. Maintains information that
are specific to the process, not the file itself like access mode or current offset.

The result of the introduced abstraction layer is denoted as the common file model of
Linux and the interaction between the components is depicted in figure 2.5. File sys-
tem implementations like ext3 or FAT are required to follow this model. When con-
sidering the FAT file system, the power of VFS becomes more evident as these types
of file systems do not use the concept of inodes. Instead, they must be constructed
on demand. The VFS layer however does not need to take this implementation detail
into account. It simply forwards a read() call to FAT which will then perform all
necessary operations to get the job done. An example shall illustrate:

Userspace
read(int fd, ...)

System call
read(int fd, ...) in read_write.c

VFS call
vfs_read(struct file *file, ...) in read_write.c
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VFS dispatch
do_sync_read(struct file *file, ...) in read_write.c

VFS dispatch
file->f_fops->read(file, ...) in read_write.c

FAT call
read() function specified in struct file_operations in fat/file.c

In addition, the common file model does not only apply to files and directories. If
a socket is to be created using the socket() system call, an (anonymous) inode is
created. Instead of assigning file system operations as seen in the example above,
the kernel assigns socket_file_ops to the inode’s f_ops field. This makes it possible
to use the read and write system calls on socket just like on ordinary files as they
eventually translate to the appropriate functions suitable for inode types. Therefore,
the VFS also brings convenience as it unifies the exposed I/O API to userspace.

2.7.1 dentry cache

Because I/O operations are performed on a frequent basis and require vast amounts
of directory traversals and name lookups, the kernel tries to perform these operations
as quickly as possible. Functions that operate on pathnames first need to translate
them into dentry objects. That is, for a given path like /bin/echo, a dentry object for

Figure 2.5: Interaction between processes and VFS objects [BC05]
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the root /, a dentry for the subdirectory bin and lastly for the echo entry need to be
generated. It is therefore reasonable to keep dentry objects in memory while they are
in use. Additionally, it makes sense to keep them even longer in memory as users
tend to repeatedly access files. In such cases the corresponding dentry objects would
be re–constructed multiple times which can be easily avoided by keeping them in a
cache. As described by [BC05], the kernel’s dentry cache consists of two kinds of data
structures:

• A set of dentry objects, separated by their state

• A hash table to maintain a mapping from paths to dentries

In addition, the cache also maintains a Least Recently Used (LRU) list that contains
dentry objects that are not in use. If the system is under pressure and running low on
memory, the kernel frees those dentry objects.

2.7.2 File systems

The VFS layer provides all necessary abstraction to hide specific file system imple-
mentations from callers. However, as each request eventually passes through a dis-
tinct file system, the VFS needs references to the functionality a specific file system
provides. To allow file systems to announce their presence, the VFS offers two func-
tions:

register_filesystem
The kernel maintains a list of known file systems. This function adds a given
file system described by a single parameter of type struct file_system_type
to the list.

unregister_filesystem
Removes a given file system from the list.

During registration, the file system provides a structure containing its name along
with pointers to functions that can read and discard a superblock. Once the file sys-
tem has been registered, it can be used when invoking the mount system call. During
system startup, the kernel will automatically mount the root directory (/) that con-
tains applications and initialization scripts to ensure proper functioning. At runtime,
either as a result of scripts or directly performed by users, additional devices can be
mounted and linked to directories below the root directory. The destination directory
of a mount operation is known as mountpoint. As a consequence, the content of the
destination directory is hidden as long as a device is mounted, including its subdirec-
tories. During application execution, the root directory may differ from the real root
directory of a system as applications can make use of the chroot system call to define
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what they consider as their root directory. Changing the root directory of a process
does not affect other processes or the system itself.

A file system by itself does not trigger any events. Instead, its operations are in-
voked as a result of system calls concerning the VFS layer. As the following sections
contain specific information about file system internals that typically refer to the file
system in a mounted state, it shall now be explained how this state is achieved. The
life of a mountpoint starts by executing the system call mount(). This call takes a
source device, a destination mountpoint and a set of mount flags and options and
passes them on to the kernel. The do_mount function in namespace.c performs sanity
checks on the parameter, but also checks if the user is allowed to mount a file system.
Before the file system is actually mounted, security_sb_mount will check that the
user has permission to mount a device. This call will translate to either a Tomoyo6 or
SELinux7 function call. Eventually, do_new_mount is invoked that performs a series
of operations. First, vfs_kern_mount() is called which executes the mount() function
each file system has to expose. The returned dentry object refers to the new root direc-
tory. This function also takes care of reading superblock objects from disk (through
mount_bdev). After the superblock has been set up, do_add_mount adds the mount
point to the current process’ namespace which completes the mount operation. After
that, the mounted file system is ready to serve VFS requests issued from well–known
system calls like open, read, write, close and so forth.

Findings

Although the goal of this research is a file system in userspace, it is highly recom-
mended that the prototype implementation cfs is moved to kernel space when using it
in production. As has been shown, the VFS layer is very powerful and further already
contains other stackable file systems that sit between the VFS and other mounted file
systems which can and should be used as a starting point. Additionally, from a file
system’s view, the VFS layer has limited complexity due to its location on top of facil-
ities like the block layer or the device mapper compared to other kernel subsystems.
Because the VFS layer already provides multiple default implementations of read of
write, new file systems can focus on what is known as address space operations
that handle pages instead of file chunks. Cryptographic operations should become
simpler due to aligned access.

6a Linux kernel security module by the NTT Data Corporation which implements Mandatory ac-
cess control (MAC).

7man 8 selinux descibes SELinux as “an implementation of a flexible mandatory access control
architecture in the Linux operating system.”
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2.8 Kernel–space Encryption

The following chapter will outline facilities in the Linux kernel that are useful for
developing a cryptographic file system. Starting with an overview of generic APIs
that give access to often used functionality, the main part of this chapter will address
possible starting points when deploying kernel space file systems.

As the VFS layer already provides a sophisticated structure for various file sys-
tems, it is possible to implement encryption directly in kernel space. Figure 2.6 pro-
vides a basic overview of the VFS layer along with components participating in I/O
handling. Due to the fact that the kernel has access to each device on the machine, en-
cryption can be efficiently performed not only on a per–files basis, but also on block
devices. This implies that for file encryption, a file system needs to be implemented.
It has to be compiled either as a module or directly included in the kernel, where the
former is preferred as it does not require any kernel source code modifications. At
runtime, users are then able to make use of the file system by mounting it to a direc-
tory. With regards to the VFS layer, major parts of the implementation however need
to address the issue of interacting with the underlying block device. Consequently,
file encryption would only take place in a rather small part of the file system. The rest
would cover inode and superblock management and interacting with the VFS layer.
As a result, cryptographic file systems can be implemented on top of already existing
ones, with the advantage being that they only have to process data in term of cryp-
tographic operations and can safely ignore how the underlying file system handles
passed data.

2.8.1 Crypto API

During the development of Linux version 2.6, a new API has been added to the kernel
to address cryptographic tasks. Mainly developed by Herbert Xu, it was originally
used to provide cryptographic support for IPSec. Due to its generic design however,
systems like the WiFi stack or file systems also started to utilize its functionality.

On the highest implementation level, the API supports three types of algorithms:
ciphers, digest and compressions. Out–of–the box supported ciphers are Rijndael
and RC4; supported digests include MD5, SHA–1, SHA–224, and SHA–256; and sup-
ported compressions are LZS and Deflate. Block cipher modes of operations as pre-
sented in section 2.3 are created automatically for supported algorithms.

As for file systems, algorithms that should be accessible through the Crypto API
need to be registered as well. A module that implements a certain algorithm can use
crypto_register_alg at load time to announce its presence. If it has to be removed,
crypto_unregister_alg will perform the reverse operation. At runtime, the kernel
exposes a list of available algorithms under /proc/crypto8.

8One can read that list using cat /proc/crypto
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Figure 2.6: Linux Layered file system access [BC05]

The Crypto API operates on units of pages and performs all of its work in so–
called scatter–gather operations, which denotes a process where data from multiple
sources is processed by a single function call. Applications that perform read and
write tasks typically run into similar problems as one has to issue multiple calls to
read data into different buffers. This approach however adds additional overhead
for each operation as each read or write call invokes a system call which entails a
switch to kernel space, additional data copying operations and so on. An example is
given below:

1 struct header {
2 uint16_t h_version;
3 uint32_t h_length;
4 uint32_t h_datalen;
5 } hdr;
6

7 uint8_t *data;
8

9 /* set up header and data */
10

11 write(fd, &hdr, sizeof(hdr)); /* write the header */
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12 write(fd, data, hdr.h_datalen); /* write the content */

While this example contains valid code, the two write syscalls add additional over-
head at runtime. In cases where fd is connected to a socket, additional packets may
be sent across the network even though they would fit in one. Sending data of such
a type can be tedious as it results in poor performance and parsing complexity as it
requires intermediary memory and the use of memcpy. Although the packets arrive in
the order they were sent, additional packets may have been interleaved by the kernel
which requires additional logic on the server–side.

To remedy additional costs and complexity, one can use vectored read and writes
as illustrated in the following code snippet:

1 struct header {
2 uint16_t h_version;
3 uint32_t h_length;
4 uint32_t h_datalen;
5 } hdr;
6

7 uint8_t *data;
8

9 /* set up header and data */
10

11 struct iovec to_send[] = {
12 { .iov_base = &hdr, .iov_len = sizeof(hdr) },
13 { .iov_base = data, .iov_len = hdr.h_datalen }
14 };
15 writev(fd, to_send, sizeof(to_send) / sizeof(to_send[0])); /* send both */

which only requires one system call and further performs the operation in an atomic
manner.

With respect to the Crypto API, [Mor03] emphasizes once again that the “primary
purpose of scatter-gather in the kernel is to avoid unnecessary copying of data.” Data
in kernel space could stem from different sources and need to be processed fast and
efficiently. For instance incoming traffic from network cards at 10 GBit/s that needs
to be decrypted should not be copied to different locations until decryption is per-
formed. In such cases the Crypto API needs to process data as fast as possible.

When it comes to encrypting data from user space, pointers to data are passed
to kernel space. Before encryption can be performed, the address needs to be trans-
lated to a page address. The kernel provides virt_to_page and offset_in_page that
translate a buffer of a given length into a scatterlist. If translated, one can use the
main API which consists of the following functions to lookup and instantiate crypto
algorithms:

crypto_find_alg
Tries to find a given algorithm
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crypto_alloc_base
Finds and allocates an algorithm. The find routine first tries to locate an already
loaded algorithm. If unsuccessful, it loads the module containing the algorithm.
Otherwise the crypto manager is invoked to construct one on the fly.

crypto_alloc_cipher
Instantiates a cipher.

crypto_alloc_hash
Instantiates a hash algorithm.

crypto_alloc_comp
Instantiates a compression algorithm

Although the naming might be confusing, this API also allows access to hash and
compression algorithms like LZO (Lempel–Ziv–Oberhumer compression).

2.8.2 Key Management

With the crypto API in place, subsystems have a single point to contact if they need
to perform cryptographic tasks. Naturally, if it comes to encrypting and decrypting
data, key material has to be supplied to conduct the operation. The key management
facility however is not limited to cryptographic keys. Due to its generic nature it
permits the storage and lookup of any token that follows a certain structure.

In kernel space, a key is always instantiated using a key type. As for each service
provider, specific register and unregister functions exist. For key types, one can use
register_key_type and unregister_key_type. However, a type has to be created in
kernel space. It is not possible for user space applications to register their own key
types. Registered key types carry a set of operations that take care of key specifics like
instantiation, read, update or destruction. A key type is represented by a structure
key_type as defined in key-type.h and partially shown in listing 2.5.

Snippet 2.5: Kernel key type
1 struct key_type {
2 const char *name;
3 size_t def_datalen;
4 int (*instantiate)(struct key *key, ...); /* Create a new key */
5 int (*update)(struct key *key, ...); /* Modify a key */
6 long (*read)(const struct key *key, ...); /* Read key data */
7 [...]
8 };

As can be seen, above-mentioned functions operate on struct key as defined in
key.h. This structure represents an arbitrary token with the following properties:

1. a unique serial number
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2. an owner

3. a set of permissions

4. an expiration date

5. a type and description

6. an arbitrary payload

In addition, each user has a structure key_user assigned that keeps track of allocated
resources as shown in listing 2.6.

Snippet 2.6: Kernel keyring users
1 struct key_user {
2 atomic_t usage; /* for accessing qnkeys & qnbytes */
3 atomic_t nkeys; /* number of keys */
4 atomic_t nikeys; /* number of instantiated keys */
5 kuid_t uid;
6 int qnkeys; /* number of keys allocated to this user */
7 int qnbytes; /* number of bytes allocated to this user */
8 [...]
9 };

A set of keys is commonly referred to as keyring. By default, various keyrings exist
with the most important ones being:

• thread-specific: each thread has its own keyring. During search operations,
thread–specific keyrings are searched first.

• process-specific: each thread group (process) has its own keyring as well. It is
searched if a secret was not found in a thread–specific keyring during search
operations. Note: process-specific keyrings are replaced during fork and exec.

• session-specific: persists across fork and exec even if exec executes a set-UID
or set-GID binary.

• UID-specific: each user has its own keyring. It is accessible across all processes
running as the same UID the keyring was created for.

User–space applications have access to keys stored in a keyring by using various
system calls introduced along with the keyring API as defined in keyctl.c:

add_key(type, description, payload, length, keyring)
Create a new key or keyring. To create a new keyring, type has to be set to
keyring and the value of description specifies its name. New keys can be cre-
ated by using user as type followed by a unique name in the description pa-
rameter. The newly added key will be linked to the keyring keyring. If a key
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with description description already exists, it will either be updated if the key
type provides an update() function or replaced. The keyring keyring must
be present already. Further, custom key types that have been registered using
register_key_type also denote accepted values for the type parameter.

request_key(type, description, callout, destination)
Searches keyrings for a key of type type that matches description. If no key
could be found and callout is set, the user–space application /sbin/request-key
will be called with callout as the first argument to construct a key. Otherwise
an error is returned.

keyctl(option, ...)
Multi–purpose function to manipulate key rings. A total of 17 options is cur-
rently available. They range from common options like search and read up to
the manipulation of timeout settings or keyring merging.

Due to the complexity of the key management system, well–commented example
source code is included in extra/key_mgmt. Especially with the use of the callout
parameter during request_key, a kernel space encrypting file system has a powerful,
yet easy way of requesting keys from user space. In such cases, the kernel facility
would only be used for keeping track of keys while user space is responsible for
obtaining them from various sources. With regards to section Secure storage, it allows
the connection between user space key storage facilities for permanent storage with
kernel space secure management of keys while they are in use.

Findings

The kernel’s crypto API is very powerful as it already provides support for all state–
of–the–art ciphers and hashes. Kernel modules can rely on their presence and don’t
need to provide their own implementations. Due to their presence in the mainline
kernel they automatically receive maintenance. This is very important as it leads to
very performant implementations. Using

grep -rn crypto_register_ /src/linux/arch/x86/crypto

where /src/linux refers to the root directory of the Linux kernel source code, it
can be seen that numerous algorithms are registered. Those algorithms make use of
hardware features like AES–NI or SSE which further increase their performance.

A limitation of the kernel keyring is that it only exists in kernel space. This im-
plies that a reboot for example empties the keystore and it must be re–constructed as
necessary from user–space. As mentioned in chapter "Secure storage", one needs a
combination of KWallet or gnome–keyring and the kernel keyring.
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2.8.3 Device–Mapper

The device mapper forms the basis for the underlying encryption layer dm–crypt. It
is a framework in the Linux kernel available since version 2.6. Commonly, it allows
the mapping of a block device onto another, therefore acting as a low–level volume
manager. When establishing such a mapping, the device mapper creates virtual block
devices that can be used in I/O operations. Before elaborating on the nature of dm–
crypt, the environment it is operating in needs to be understood.

As previously explained, the VFS layer handles I/O requests from user space and
invokes file system specific operations to handle these request. As a result, code com-
plexity in the VFS layer is moved towards specific file systems. The very same prin-
ciple holds true for I/O facilities underneath the VFS layer.

To increase I/O performance, Linux uses a facility called the page cache that aims
to reduce the number of disk I/O by storing data in memory that would otherwise
require rather expensive read–in from an underlying device. When issuing read re-
quests, the kernel checks if the page cache already contains data for a given file and if
so, returns it immediately. Likewise, write operations are first inserted into the page
cached and the associated pages are marked dirty. Regardless of the operations, the
page cache needs to sync its dirty pages with the block device eventually. It does so
by submitting a struct bio to the generic block I/O layer, which holds an array of
pointers to memory pages that need to the written to disk. It should be noted that the
write operations are performed asynchronously. The sender of a write request has no
knowledge about when data is finally written to disk. Therefore, the submitter has to
specify a callback function bi_end_io that is invoked when the request has been pro-
cessed. As depicted in figure 2.7, the submitted bio objects are inserted in the request
queue of the block driver. In case of the device mapper, the bio objects are cloned and
the bi_end_io callback is changed to the device mapper’s end–of–IO handler. This is
necessary as the device mapper may need to perform special end–of–IO actions that
would otherwise be impossible to carry out. Furthermore, in case of software raid
targets, the bio object has to be written to multiple devices, so an I/O operation is
only considered to be successful if all objects have been written.

Depending on the scheduling strategy of the underlying device, requests might
further undergo reordering or coalescing to maximize throughput9.

As mentioned above, the device mapper creates virtual block devices and acts as
a common framework for filters (targets). A filter has access to the request data and is
able to replicate or modify it while it passes the filter. Common targets supported on
recent kernel versions include:

dm–zero
Acts similar to /dev/zero. That is writes are discarded and reads always return

9this strategy is implemented by I/O schedulers which can be viewed and changed by reading or
writing to /sys/block/sdX/queue/scheduler.
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Figure 2.7: Linux Device Mapper [Vel08]
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byte value 0x00.

dm–raid
Implements a software Redundant Array of Independent Disks (RAID) target
that supports RAID levels 1 (mirroring), 10 (striped mirrors), 4 (dedicated parity
disk), 5 (block-level striping with distributed parity), and 6 (block-level striping
with double distributed parity).

dm–crypt
Provides transparent encryption using the kernel crypto API.

dm–multipath
Allows the configuration of multiple I/O paths between server nodes and stor-
age arrays, therefore increasing availability and performance.

In addition, it is possible to stack device mapper targets. For instance, using the crypt
target to encrypt data, but further utilize the RAID target to distribute data to various
locations.

Due to the location of the dm–crypt target in the File I/O hierarchy, block de-
vice encryption offers the fastest I/O rates as there is very little overhead in the pro-
cess. Furthermore, without knowledge of the encryption key, virtually no informa-
tion about the file system or individual data is exposed to a third party. Drawbacks
of such a solution include:

• The partition must be pre–allocated. Resizing might become a tedious task.

• Each file is encrypted with the same key.

• Backup applications typically access files once the partition has been mounted.
This implies that the files will be backed up in the clear, therefore requiring
additional encryption for the backup itself.

To perform cryptographic tasks, the dm–crypt target uses the kernel Crypto API as
introduced in the previous section. In addition, starting from version 1.6, supported
cipher modes for the userspace tool cryptsetup can also be benchmarked to select
a cipher that yields maximum I/O rates when reading and writing from the target
device. On Linux, one can use cryptsetup benchmark to start the evaluation.

2.8.4 LUKS

Initially when using the dm–crypt target, a password is used to derive a master key.
Each time the volume is mounted, the user needs to enter that very same password
again to unlock the volume as no information about cryptographic properties is writ-
ten to disk. As explained in section 2.4 “Password Expansion”, user passwords either
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suffer from low entropy that weakens or nullifies the benefits gained through encryp-
tion, or if satisfying rather complex password policies, end up on a post–it note on
the screen which has the same effect. Therefore, a standard for an on–disk format
for encrypted hard drives known as the Linux Unified Key Setup (LUKS) has been
developed. Described in [Fru11], LUKS introduces a dedicated area at the beginning
of partitions to store information needed in order to regain access to encrypted data.
The main header used by LUKS is outlined in table 2.9. Each key slot is comprised of
various fields as shown in table 2.10.

The user supplied password is used during the initial partition setup to encrypt
the randomly generated master key that is used for bulk data encryption. Further,
the header includes a checksum of the master key to decide whether a given user
password decrypted the master key successfully during the mount operation. A total
of eight user keys can be set to allow access to the encrypted data.

An interesting feature of LUKS is the handling of key changing events. Com-
monly, if a password is to be changed, the old values are simply replaced with new
content. The problem however arises when using modern hard disks as they han-
dle inaccessible sectors due to aging differently compared to obsolete models. Bad
blocks are simply remapped to spare sectors. Due to the small size of the master key
however (typically 16 or 32 bytes), such a remapping would affect the whole key as
it easily fits into one sector which would then become inaccessible and may be recov-
erable during a forensic examination. Therefore, LUKS artificially inflates the size of
the master key to distribute it across multiple sectors. When later erasing the key, the
probability of destroying a single part of the key increases with the number of stripes.

Table 2.9: LUKS header layout

Offset Size (b) Description Example

0 6 Magic value {’L’, ’U’, ’K’, ’S’, 0xBA, 0xBE }
6 2 Header version 1
8 32 Cipher name "aes"

40 32 Cipher mode "cbc-essiv:sha256"
72 32 Hash algorithm specification "sha1"

104 4 Offset of bulk data 2056
108 4 Number of key bytes 32
112 20 Master Key checksum 0x19 0x90 0x3B . . .
132 32 Master Key salt 0x9C 0x86 0x7A . . .
164 4 Iteration count for PBKDF 48375
168 40 Key unique identifier 691b2e50-. . .
208 384 Storage for eight key slots
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Table 2.10: LUKS key slot layout

Offset Size (b) Description Example

0 4 Slot state information 0x00 0xAC 0x71 0xF3
4 4 Iteration count for PBKDF 193814
8 32 Salt for PBKDF 0x68 0xEC 0xB3 . . .

40 4 Key Material offset 8
44 4 Number of anti–forensic stripes 4000

As a generic hash function like SHA–1 is used to inflate the key, a single missing piece
is sufficient to render the recovery process pointless.

To ease the setup of LUKS encrypted partitions, the cryptsetup tools have been
extended to support LUKS volumes. On Linux, one can use a variety of commands
as described in man 8 cryptsetup to create and mount volumes, but also to manage
key slots. These operations cover addition, removal, and key change of specific slots
in the LUKS header.

Encrypting a partition is made easy using the aforementioned cryptsetup tools.
The following example demonstrates the use of dm–crypt and LUKS on a loop device:

1. dd if=/dev/urandom of=/tmp/secret.img bs=1M count=16 creates a 16 MB file
that will hold the encrypted data

2. losetup /dev/loop0 /tmp/secret.img associates the file with a virtual block
device

3. cryptsetup options luksFormat /dev/loop0 will prompt for a password and
write the header to disk (or to the container file in this case).

4. cryptsetup luksOpen /dev/loop0 lo_file0 opens the LUKS device and cre-
ates a mapping in /dev/mapper.

5. mkfs.ext4 /dev/mapper/lo_file0 initializes a file system on the given device.

6. mount /dev/mapper/lo_file0 /mnt mounts the container to the given location.

I/O operations on the mountpoint will then result in data being encrypted and de-
crypted on the fly as they pass through the block I/O layer. As mentioned before,
LUKS supports up to eight key slots for a given container. These keys can be added
and removed using one of the following commands:

• cryptsetup luksAddKey /dev/loop0

• cryptsetup luksRemoveKey /dev/loop0
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• cryptsetup luksChangeKey /dev/loop0

• cryptsetup luksKillSlot /dev/loop0 slot number

Table 2.11 shows various options that can be used during creation of the encrypted
container / partition in step 3. Built–in defaults can be viewed by issuing cryptsetup
–help at the command line.

Findings

LUKS is an ideal solution for disk encryption as it hides as many properties of the par-
tition as possible. Without unlocking the volume, an adversary can only learn very
little about stored information. However, on a workstation encrypted partitions are
unlocked most of the time as the user is using them. Due to the fact that encryption
on the device mapping layer does not offer per file encryption, any user with ap-
propriate UNIX permissions has access to encrypted files. In terms of performance,
encryption within the device mapping layer would be desirable.

A major drawback of LUKS is that it does not support on–the–fly initial encryp-
tion like Apple’s FileVault or Microsoft’s BitLocker do. Instead, the volume must be
reformatted which is something the user does not want, but that is exactly what is
necessary if full disk encryption should be supported on the SafeGuard Linux client
if a policy for full disk encryption should be enforced.

2.8.5 eCryptfs

The enterprise Cryptographic Filesystem for Linux (eCryptfs) is an encrypting file
system situated in the VFS layer of the kernel. It provides transparent file encryp-
tion on top of existing file systems. The term enterprise refers to its design goal of
versatile key management through the support of multiple key material sources such
as Trusted Platform Module (TPM) or the GnuPG keyring [Hal05]. Figure 2.8 shows
the components involved in the file encryption process. On module load, eCryptfs
registers itself as a file system with the kernel VFS layer and allows users to mount
directories. When data is accessed, eCryptfs passes the data on to the underlying file
system (the lower file system) while performing necessary cryptographic operations
on the data. Due to the fact that eCryptfs is a stackable file system, it has access to

Table 2.11: Sample LUKS creation options

Name Description Example

cipher Selects the cipher algorithm to use aes-xts-plain64
key-size Specifies the key size 256
uuid UUID for device to use "a random string"
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Figure 2.8: eCryptfs architecture [Hal07]

individual files. Compared to dm–crypt, this allows a per–file encryption with both
a random encryption key and initialization vector.

For key management, eCryptfs maintains a bi–directional communication chan-
nel with the per–user user–space daemon ecryptfsd. Figure 2.9 shows the encryption
and decryption process that is performed when receiving system calls like read or
write. As there is virtually no documentation of eCryptfs available, this section shall
also serve as a guide for further implementations. This should especially be helpful if
the prototype as introduced in chapter 5 “Development of user–space encryption us-
ing FUSE” is moved to kernel space to achieve better I/O rates. References to source
code encountered in this section refer to source code shipped with the Linux kernel
under fs/ecryptfs if not stated otherwise.

Figure 2.9: eCryptfs crypto overview [Hal07]
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As mentioned before, support for eCryptfs can either be obtained by inserting the
kernel module ecryptfs using insmod or modprobe, or by compiling a kernel with sup-
port directly included10. Recent kernel versions however already include a module
for ecryptfs.

Initialization

The Initialization routines of eCryptfs are located in main.c and perform a series of
initialization routines:

• create a series of caches for authentication tokens, file headers, dentries, and
inode structures

• create various entries in /sys that can be used to obtain information about the
state of eCryptfs.

• start a kernel thread that is used to access inodes in the lower file system.

• initialize the messaging system. That is, set up data structures that contain in-
formation about ecryptfsd sessions in user space. In addition, a miscellaneous
device is created in /dev that is used to communicate with these daemons.

• The file system is made available for mounting using register_filesystem.

As long as no directory is mounted using eCryptfs, the file system does not perform
any actions. To make use of it, one has to mount a file system.

mount.ecryptfs /tmp/1 /mnt

will make the contents of /tmp/1 available under /mnt. Files accessed through /mnt
will therefore be encrypted and decrypted on the fly. This also becomes obvious when
creating empty files in /mnt using the touch command. While the files show a size of
0 bytes when inspecting /mnt, /tmp/1 shows that each of them already contains data.
This is the result of eCryptfs having already generated random file encryption keys
and initialization vectors and has written that information in the file header.

eCryptfs I/O

As with all file systems, the functionality of eCryptfs is accessed through multiple
sets of callbacks invoked by the VFS layer when file I/O needs to be performed. The
mount system call as stated before will initialize a struct superblock object that will
carry two important pointers to the following data structures:

10directly included refers to kernel builds with CONFIG_ECRYPT_FS set to ’Y’ instead of ’m’.
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superblock operations s_op
Superblock operations are used to perform low–level file system operations like
creating or destroying an inode. Additionally, they include methods to read and
write to and from inode objects.

dentry operations s_d_op
dentry objects represent the file system tree structure as can be seen with tools
like ls and further contain a link to an underlying inode object.

When user space applications use VFS system calls like open or stat, the VFS
layer needs to lookup the dentry structures within the dcache, or if not found
there, construct one. The dentry operations a file system has to specify provides
functions for the dentry cache to keep information up to date. Since eCryptfs is
stacked on top of an existing file system, it simply relays the call to the lower
dentry – e.g. an ext3 inode.

Additional to the superblock operations, eCryptfs also has to inform the VFS layer
how to handle common operations like read or write system calls. It does so by set-
ting the inode’s file operation pointer to a set of callbacks that implement the main
eCryptfs logic. The VFS can then simply call the file’s read or write functions which
in turn trigger the encryption or decryption of a page when necessary. It should be
noted however that cryptographic operations take place on a per page basis. Since
the VFS contains lots of complexity, the call stacks for both read and write are shown
in Tables 2.12 and 2.13. To maintain state information between calls, eCryptfs uses
the structure ecryptfs_crypt_stat, defined in ecryptfs_kernel.h. This structure

Table 2.12: eCryptfs read method

Level Name Description

1 read system call read from a file (descriptor)
2 vfs_read does some sanity checks and invokes the

file system’s read method
3 do_sync_read synchronous read
4 ecryptfs_read_update_atime eCryptfs’ read method as specified in the

struct file_operations
5 generic_file_aio_read generic file system read routine
6 do_generic_file_read generic file read routine
7 filemap_fault read in file data for page fault handling (if

page is not mapped)
8 ecryptfs_readpage relay call to the lower file system
9 ecryptfs_decrypt_page Performs the actual decryption
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Table 2.13: eCryptfs write method

Level Name Description

1 write system call write to a file (descriptor)
2 vfs_write does some sanity checks and invokes the file

system’s write method
3 do_sync_write synchronous write
4 generic_file_aio_write write data to a file

[. . . ]
11 generic_writepages walk the list of dirty pages and writepage() all

of them
12 __writepage Wrapper; calls the file system’s writepage
13 ecryptfs_writepage Encrypts a single page
14 ecryptfs_encrypt_page Performs the actual encryption . . .
15 ecryptfs_write_lower . . . and passes it on to the lower file system

contains the actual Data Encryption Key, the initialization vector and the used cipher
along other bookkeeping information to keep track of the lower inode. A common
technique also employed by eCryptfs is C inheritance to extend the kernel’s inode
structure. Generally, the kernel does not (need to) know any specifics about a file sys-
tem. Instead, it merely requires file system functions to return a data structure it can
understand. In case of inode creation, it expects a struct inode. Since eCryptfs or
any other file system might want to store additional data within an inode, a method
is needed to satisfy both the kernel’s API and the file system’s information require-
ments. In C++, one would use class inheritance and polymorphism to accomplish
this setup. In C however, these techniques do not exist, therefore another approach
must be used.

Snippet 2.7: Data inheritance in C
1 /* A VFS inode as understood by the kernel */
2 struct inode {
3 dev_t i_rdev;
4 loff_t i_size
5 umode_t i_mode;
6 [...];
7 };
8

9 /* An eCryptfs inode with additional data */
10 struct ecryptfs_inode {
11 unsigned char ei_key[];
12 unsigned char ei_iv[];
13 struct inode ei_ino;
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14 };
15

16 /* Called by the VFS layer - expects a VFS inode */
17 struct inode *ecryptfs_new_inode(void)
18 {
19 struct ecryptfs_inode *ino = ...;
20 return &ino->ei_ino;
21 }
22

23 /* Used by eCryptfs to get the cipher key from an VFS inode */
24 unsigned char *ecryptfs_key_ptr(struct inode *i_ptr)
25 {
26 struct ecryptfs_inode *ei_ptr;
27

28 ei_ptr = container_of(i_ptr, struct ecryptfs_inode, ei_inode);
29 return ei_ptr->ei_key;
30 }

The container_of macro is a very common macro used throughout the kernel that is
defined as follows:

Snippet 2.8: The container_of macro
1 #define container_of(ptr, type, member) \
2 ({ \
3 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
4 (type *)( (char *)__mptr - offsetof(type,member) ); \
5 })

As can be seen in Listing 2.8, the macro takes a pointer to a struct inode, the name of
the parent structure and its own name within the parent. It then uses the offsetof
macro on the memory layout as depicted in Figure 2.10 to calculate the offset of the
requested member and subtracts this value from the supplied pointer. It should be
noted however that this technique only works if the “superclass” inode is within the
memory range of the “subclass” ecryptfs_inode and is therefore not a pointer.

Before data may be read or written, the corresponding file needs to be created or
opened. [Hal05, Fig. 2] outlines the process of creating new files. The actual content
of a file is further preceded by the file header. Table 2.14 describes the full file header
as created by ecryptfs_write_headers_virt. The information is taken from a com-
ment block preceding the function. The packet set starting at offset 26 is described
by [CDFT98] and in the current eCryptfs version is either a Tag 3 (Symmetric-Key
Encrypted Session-Key) or a Tag 11 (Public-Key Encrypted Session Key) packet and
contains the Data Encryption Key in encrypted form. When opening an eCryptfs
encrypted file, the header is parsed to re-gain the encrypted Data Encryption Keys.
eCryptfs then uses the kernel keyring API to locate a Key Encryption Key that can be
used to decrypt the Data Encryption Key (DEK). At this point, the Kernel’s request_-
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Figure 2.10: container_of macro – memory layout

Table 2.14: eCryptfs file header

Offset Size Description

0 8 Unencrypted file size
8 8 Special marker (magic value)

16 1 Header version
17 2 Reserved
19 1 Additional flags
20 4 Extent size
24 2 Number of header extents at front of file
26 x Begin RFC 2440 authentication token packet set

key function as introduced in subsection 2.8.2 “Key Management” can be used to
obtain a key from userspace applications.

File I/O as handled by eCryptfs is based on unit sizes of extent. The size of an
extent is determined by the page size of the host creating the file (commonly 4096
bytes on Linux). Cryptographic operations are performed using vectored I/O with
scatterlists on units of full pages, thus an eCryptfs encrypted file is always a multi-
ple of page size in size with the exact length being stored and refreshed in the file
header. In the current version, multiple ciphers are supported11 with AES-128 being
the default.

2.9 User–space Encryption

User–space encryption covers those parts of encryption that are handled entirely by
applications under control of a user of the system. A basic example of file encryption

11the full list is available in crypto.c or when mounting a file system using mount.ecryptfs
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is a program that takes three parameters: a secret key and input and output file. It
reads the file, encrypts it with the secret key and writes the result to the specified
output. Consequently, those applications are characterized by their simplicity, but at
the same time they provide the least flexibility if the situation changes.

The goal of using encryption is to ensure confidentiality. In enterprise environ-
ments a policy might be in place to enforce encryption of valuable data. If aforemen-
tioned applications are used, there exists no possibility to ensure that written data has
been encrypted. It is up to the user to utilize appropriate applications to encrypt data.
Furthermore, even if file encryption is performed, data has already been written to
disk before encryption took place. Additionally, even if the source file is deleted, sen-
sitive content may remain on disk. To securely erase affected sectors on disk, special
procedures described by standards like [KRSS14] and [NSA14] have to be used.

Another aspect of file encryption is the achieved performance. When using sim-
ple file encryption tools, data has to be written, then encrypted using a special tool
that needs to read the very same information once more, process it and write the re-
sults back to disk. Afterwards it may then has to use a multiple rounds / multiple
overwriting pattern to securely erase the source data. The performance loss is pro-
portional with the data size to be encrypted and if secure overwrite is performed,
increases even more per round. In addition, while the operation is in progress, the
file occupies twice its original size on the hard drive. Memory consumption also has
a direct influence on the overall performance. Clearly, those tools are therefore not
suitable for enterprise file encryption as disadvantages outweigh advantages.

Aforementioned tools operate on the highest possible layer of file handling. They
take actions after files have been stored. Due to their functioning they have to redo
most of the work. With respect to the Linux Filesystem architecture as presented in
section section 2.7 “The Virtual File System Layer”, performant and secure encryp-
tion is only possible for software located within the VFS layer. Tools in userspace
simply do not and cannot offer the granularity for file handling that is needed in
order to perform the required tasks efficiently. With reference to figure 2.6, an alter-
native would only be possible to operate in kernel space. As a consequence, ordinary
system users would be unable to benefit from performant file system as mounting of
such file system requires system administrator privileges.

2.9.1 FUSE – Filesystem in User Space

To remedy restrictions implied by having to use the mount system call, FUSE pro-
vides a more powerful way of data handling as opposed to plain userspace tools.
From a high–level point of view, FUSE is a two–part application that operates in both
kernel space and user space. As stated in [FUS11], this approach makes it possi-
ble to “implement a fully functional file system in a userspace program.” A general
overview is illustrated in figure 2.11. In contrast to simple file encryption tools, the
encryption layer can be implemented as a standalone file system in user space. FUSE
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Figure 2.11: FUSE Architecture
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allows the registration of a set of function pointer callbacks that will be used to hook
into well–known system calls like open() or read(). Consequently, data streams to
the underlying file system pass through the file system and can be manipulated on a
per–byte basis.

libfuse

Custom file system implementations do not communicate with the FUSE kernel mod-
ule directly. Instead, libfuse is used in user–space to set up a bi–directional communi-
cation channel with the kernel module. File systems are then registered via libfuse
by a call to fuse_main(), which expects a set of callbacks of type struct fuse_-
operations. This structure, defined in fuse.h can be understood as a set of instruc-
tions to libfuse which can then invoke the correct function if a operation is performed
on one of the files located in the FUSE file system. An excerpt of struct fuse_-
operations is provided in listing 2.9.

Snippet 2.9: FUSE operations - sample
1 struct fuse_operations {
2 int (*getattr) (const char *, struct stat *);
3 int (*open) (const char *, struct fuse_file_info *);
4 int (*read) (const char *, char *, size_t, off_t,
5 struct fuse_file_info *);
6 int (*write) (const char *, const char *, size_t, off_t,
7 struct fuse_file_info *);
8 [...]
9 int (*release) (const char *, struct fuse_file_info *);

10 };

The fuse_main() function sets up a communication channel by either performing a
mount() system call if supported or by calling fusermount. The result is an open file
descriptor for the FUSE character device /dev/fuse as exposed by the kernel module.
Eventually, the library enters fuse_session_receive_buf() which receives events
from the kernel module and passes them on to fuse_session_process_buf(). The
function parses the event and invokes one of the users supplied callback functions.
The result is then written back to the file descriptor which in turn allows the kernel
to report a status back to the application that originally performed the call.

fuse.ko

fuse.ko denotes the kernel modules that needs to be present in order to use custom
file systems through libfuse. Since FUSE has been merged into the mainline kernel
version 2.6.14, the module is present on all recent versions. This is important as the
use of proof–of–concept implementation does not require modifying kernel source
code, although the user mounting the file system has to a member of the group fuse
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as the character device exposed by the module has its permissions set to 0660, thus it
does not allow arbitrary users to read from the device.

The FUSE file system residing in kernel space follows the same implementation
rules with regards to the VFS layer as any other file system. It has to register itself us-
ing register_filesystem during its initialization and unregister_filesystem dur-
ing unloading. Once it has been initialized, users can use the fusermount command
to mount file systems of type FUSE as long as they are in the fuse group12.

FUSE at runtime

The simplest yet fully functional file system implementation using FUSE would just
relay all calls to the underlying file system. For demonstration purposes, the relfs
(relay file system) shall serve as an example file system throughout this chapter, ac-
companying explanations.

A basic file system shall at least offer the functionality to obtain directory listing
through ls and to work with ordinary files. Special files like pipes or sockets are not
supported.

When creating a file system, the primary ingredient is the fuse_operations struc-
ture as mentioned before.

Snippet 2.10: RelFS main
1 int main(int argc, char **argv)
2 {
3 struct fuse_operations relfs_ops;
4 return fuse_main(argc, argv, &relfs_ops, NULL);
5 }

Because no operations are specified in relfs_ops, the file system is not yet functional.

Snippet 2.11: RelFS getattr function
1 static int relfs_getattr(const char *path, struct stat *sb)
2 {
3 return (stat(path, sb) ? -errno : 0); /* Issue stat() system call */
4 }
5

6 int main(int argc, char **argv)
7 {
8 struct fuse_operations relfs_ops = {
9 .getattr = relfs_getattr

10 };
11 return fuse_main(argc, argv, &relfs_ops, NULL);
12 }

12one can use the id command to find out if this is the case. Otherwise fusermount will give the
error Operation not permitted due to the permissions of the character device /dev/fuse
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The getattr function is used extensively by FUSE due to in–kernel caching of meta
data. Therefore this function is called quite frequently to obtain up to date informa-
tion about files. This is important as encrypted files may require additional compu-
tation after having performed stat on them. An example would be eCryptfs where
the actual file size is stored in the header, whereas the file size is always a multiple of
page size. The file system should report the exact file size as there might are applica-
tions that perform stat on the file and then try to read exactly the amount of bytes
returned by stat and treat any other result as error.

To enable directory listing, one has to implement the opendir, readdir and closedir
functions.

Snippet 2.12: RelFS directory function
1 static int relfs_opendir(const char *path, struct fuse_file_info *fi)
2 {
3 DIR *dp = opendir(path);
4 if (!dp)
5 return -errno;
6 fi->fh = (uintptr_t)(void *) dp;
7 return 0;
8 }
9

10 static int relfs_closedir(const char *path, struct fuse_file_info *fi)
11 {
12 return (closedir((DIR *) fi->fh) ? -errno : 0);
13 }
14

15 static int relfs_readdir(const char *path, void *buf, fuse_fill_dir_t filler,
16 off_t offset, struct fuse_file_info *fi)
17 {
18 DIR *dp = (DIR *) fi->fh;
19 struct dirent *de;
20

21 de = readdir(dp);
22 if (!de)
23 return -errno;
24

25 do {
26 if (filler(buf, de->d_name, NULL, 0) != 0)
27 return -ENOMEM;
28 } while ((de = readdir(dp)) != NULL);
29

30 return 0;
31 }
32

33 int main(int argc, char **argv)
34 {
35 struct fuse_operations relfs_ops = {
36 .getattr = relfs_getattr,
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37 .opendir = relfs_opendir,
38 .releasedir = relfs_closedir,
39 .readdir = relfs_readdir
40 };
41 return fuse_main(argc, argv, &relfs_ops, NULL);
42 }

Although the file system can still not handle any file operations, the functionality im-
plemented so far already outlines all functionalities also needed for file I/O. As can
be seen in the *dir functions, the FUSE library passes a fuse_file_info structure
parameter. That parameter will be used to maintain state information across multi-
ple calls to different function callbacks. The fh (file handle) field is large enough to
hold a pointer to arbitrary data. cfs will use this field to keep a pointer to associated
cryptographic metadata like keys or initialization vectors.

If the file system is now compiled into a binary, it has to be linked to the FUSE
shared library that is already installed on the system13.

cc main.c -lfuse -o relfs

The resulting binary can then be started as follows:

./relfs <mountpoint>

Given an arbitrary, empty directory as mountpoint, a new entry should be visible
when issuing the mount command in a terminal. cd’ing into that directory and exe-
cuting ls should also already output directory entries. In the case of relfs, it outputs
the content of the root directory / because the paths passed to the callback functions
are relative to the mountpoint. To create a mapping between a mountpoint and its
source directory, one has to maintain his own path to the root directory and prepend
the path to each path parameter passed one of the callbacks. Since maintaining such
a mapping is a common task, FUSE offers built-in support through the subdir module:

./relfs -omodules=subdir,subdir=/tmp /mnt

Again, cd’ing into the mount directory /mnt and issuing ls will now list the content of
the /tmp directory as the path parameter to the opendir callback will have the string
as specified for the subdir command line parameter prefixed. Additional command
line parameters available for the FUSE mount call are listed on the man page man 8
mount.fuse. Important parameters used in the prototype are

fsname
Specifies the file system name

13One can use the distributions package manager to install libfuse2 – e.g. aptitude install
libfuse2 on Debian
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use_ino
Honor the st_ino field in kernel functions getattr and fill_dir

auto_umount
Automatically unmount the file system on process exit

large_reads and max_read=N
raises the maximum buffer size passed to the read function to N bytes

big_writes and max_write=N
raises the maximum buffer size passed to the write function to N bytes

modules=subdir
automatically prepend a given string to all functions that take a path parameter

allow_other
allow access to other users

default_permissions
enable permission checking by kernel

The parameters allow_other in conjunction with default_permissions are impor-
tant if the file system should grant access to users different from the user who mounted
the file system. By default, only the mount user has access to files through the mount-
point, not even the root user can bypass the access checks. Specifying allow_other
lifts that check and causes FUSE to forward permission checks to the file systems
access function. Due to the complexity of such a security sensitive operation, one can
further specify default_permissions to enforce permission checks within the kernel.
Therefore, the combination of both parameters determine if a file system needs to
implement the access function.

The parameters large_reads and big_write directly influence how much data
will be passed to the file system’s read and write functions. Their values should
range between 4 KB (one page on most Linux systems) and 128 KB (the maximum
supported size in the kernel). Not providing these parameters results in read and
write calls defaulting to requests being issued with sizes of 4 KB, which significantly
degrades performance as shown by [RG10]. These numbers reflect the execution time
needed when writing a 16 MB file for varying values for the max_write parameter.
As can be seen, big_write plays a major role when it comes to performance. The
reason behind the improvement is that less write calls need to be issued for a given
buffer to be written. When only a native file system like ext4 is used, the operation
triggers only two mode switches – to and from kernel mode. When writing to a FUSE
mounted file system, the kernel needs to perform a mode switch to kernel mode,
copies the data to the kernel’s page cache, but it also needs to forward the data to
libfuse which in turn copies the data and sends it to the FUSE file system.
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Figure 2.12: FUSE performance [RG10]

2.10 Interim results

This chapter has outlined the foundation for implementing the prototype file system
cfs. Introduced cipher algorithms have been evaluated in terms of speed and their
area of application, which is important when it comes to modes of operation that
turn a block cipher into a stream cipher as there are properties that must be followed
in order to protect encrypted information in a proper way.

The evaluation of persistent storage facilities was limited to two of the most pop-
ular applications encountered on the typical end–user desktop machine. A circum-
scribed source code audit has revealed the weaknesses of KDE’s default password
store KDE, nevertheless it should be supported as it is widely used and a transition
concerning the on–disk format towards a compliant GPG based format is being de-
veloped by the time of writing this thesis.

The required basis for supporting alternative / stand–alone persistent storage fa-
cilities has been introduced in form of D–Bus as a form of extended inter-process
communication system.

The rest of this chapter was devoted to elaborating on the various layers of the
Linux kernel where one can employ techniques to perform data encryption. Al-
though not implemented, the respective sections should serve as a source of infor-
mation if the resulting software as introduced in the next chapters should be im-
plemented in–kernel or if full–disk encryption support should be added. To further
aid in the transition, the naming of functions and interfaces and the architecture of
the prototype itself will try to resemble as much as possible from Linux kernel, so
the user–space implementation serves as a fully functional basis for further develop-
ment.
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CHAPTER 3
Development of shared component

While the next chapters describe the implementations of specific applications, the
following sections aim to address functionality shared among them. The goal during
their implementation was to provide a single service while keeping dependencies to
other tools and libraries as low as possible to allow their inclusion in other projects as
they offer useful functionality.

3.1 Configuration file reader

libcfg provides an API to read values from a given configuration file. Currently, the
underlying library is libconfig1 as it is easy to use and runs with low memory con-
sumption. Applications can utilize the header file located at cfg/cfg.h to make use
of the interface. libconfig uses a simple language that makes up a configuration.

Values
Scalar values of type integer, long long, double, or string.

Settings
A simple name = value; or name : value; pair.

Groups
One or more settings enclosed in curly brackets: { setting . . .}.

Arrays
Similar to groups, but each member setting must be of scalar values of the same
type. Array members are enclosed in square brackets, but an array is not re-
quired to have any members.

1libconfig is a very compact and easy to use library to process configuration files. More information
and documentation is available at http://www.hyperrealm.com/libconfig/
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Lists
Group of items enclosed in round brackets. Lists can contain ordinary settings,
groups, arrays, or other lists.

Comments
Lines starting with # are ignored entirely. /* ... */ excludes a comment from
normal text while // excludes till the end of the line.

A sample configuration file conforming to the above mentioned grammar can be seen
in listing 3.1.

Snippet 3.1: libconfig grammar
1 # A comment line
2 server = {
3 hostname = "192.168.1.1";
4 port = 443;
5 use_ssl = true;
6 };
7

8 /* A list of user credentials */
9 http_users = (

10 { user = "foo"; pass = "abc"; },
11 { user = "bar"; pass = "def"; }
12 );
13

14 custom_msg = ( // Below is an array - comment until EOL
15 { lang = "en"; msg = [ "Error", "Warning", "Notice" ]; },
16 { lang = "de"; msg = [ "Fehler", "Warnung", "Hinweis" ]; }
17 );

Currently, libcfg only provides access to scalar values and groups. The interface ex-
posed to read configuration files consists of the following functions:

cfg_init()
Initializes a new configuration object and reads in the configuration file speci-
fied.

cfg_free()
Releases any resources associated with the previously obtained configuration
object, which also includes any values obtained through earlier calls to cfg_-
get_* as the storage for those variables is internally managed by libconfig.

cfg_reload()
Reloads a previously initialized configuration object. This function can be called
if the used configuration file has been changed and new values should be read
in by the application.

72



3.2. Event logging

cfg_get_type()
Looks up the setting identified by key and setting path ident and stores the
value in (*value). The path is a dot–concatenated sequence of names describ-
ing the location of a value. If the value is part of an array or a list, square brack-
ets can be used to specify the exact position. Currently implemented values for
type are int, int64 and char *.

cfg_last_err()
If cfg_init() or cfg_reload() return an error, this function can be used to ob-
tain a textual description of the last error that has occurred in libconfig.

3.2 Event logging

As all of the applications introduced in the following chapters typically run as dae-
mons in the background, hence without a terminal attached, they need a way to re-
port errors to the user to allow appropriate actions to be taken. liblogger provides
an easy to use interface that allows applications to log messages to multiple logging
backends.

Before messages can be sent to a logging sink, an application has to call msg_-
sink_add() to add a specific logger to the logging chain. The parameters passed to
this function are used to customize the logging sink.

type
Sink identifier. Supported types include LOGGER_FILE to log to an open file de-
scriptor, LOGGER_SYSLOG for logging to the syslog daemon and LOGGER_RSYSLOG
for logging to a remote syslog daemon over a network connection.

verbosity
Defines the verbosity level that is used in the msg_debug() to decide whether to
discard the message or pass it on to the underlying logging backend.

mask
A bitmask specifying the events the sink is responsible for. With the mask pa-
rameter, an application can define multiple logging sinks, with each handling
a different type of message. This feature comes in handy during software roll-
out. While warnings and debug output are just sent to the local syslog facility,
errors can be forwarded to a centralized rsyslog server to accumulate and iden-
tify potential problems users may encounter. Sinks that should receive all log
messages can specify the special value MSG_LVL_ALL.

...
The last set of parameters to the msg_sink_add() function is a list of sink–
specific options, terminated by a special NULL sentinel value. The number of

73



3. DEVELOPMENT OF SHARED COMPONENT

arguments and their type are defined in the respective init() function of the
sink.

The different logging sinks are organized in a double linked list protected by a read–
write lock to allow concurrent threads accessing it. Each logging backend defines
an identifier enum logger and a struct logger_ops as defined in logger-backend.h
and shown in listing 3.2.

Snippet 3.2: Logger backend functions
1 struct logger_ops {
2 int (*open) (va_list ap);
3 void (*close) (void);
4 void (*log_info)(const char *fmt, va_list args);
5 void (*log_warn)(const char *fmt, va_list args);
6 void (*log_error)(const char *fmt, va_list args);
7 void (*log_fatal)(const char *fmt, va_list args);
8 void (*log_debug)(const char *fmt, va_list args);
9 };

The open() function is called by msg_sink_add() before adding it to the sink chain. If
it returns a non–zero value, it will not be added to the chain and an error is returned
to the caller instead. close() is invoked when msg_sink_clear() is called to clear
all logging sinks or msg_sink_del() to remove a specific one. The rest of the func-
tions contained in the structure are used to log messages with a particular log level.
Upon invocation of the proper msg_* function, the message is passed to each logging
backend that has previously set the appropriate log level in its mask parameter.

Note:

log_fatal is declared with __attribute__((noreturn)). It can be used in
cases where an application suffers from a critical condition and needs to be
terminated. It should be noted that when an application is dealing with sen-
sitive information, it should not use log_fatal directly. Instead, a wrapper
function should be provided that erases sensitive information before calling
msg_fatal() to terminate itself.

file logging

When called with type set to LOGGER_FILE, the logging sink will expect the following
parameter to be specified:

char *ident
Identifier that makes up the first part of a log message. Can be set to the appli-
cation’s name for example.
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int is_fd
Species whether the third parameter is referring to an open file descriptor or a
file pointer of type FILE *.

(FILE * | int) out
File descriptor or file pointer that refers to the stream the log messages should
be sent to.

The logging functions will then output a message with the following format:

[ident] level: message

syslog logging

LOGGER_SYSLOG expects the following input for the open() function:

char *ident
Identifier that makes up the first part of a log message. Can be set to the appli-
cation’s name for example.

int options
Specifies a bitmask of zero or more options from msg.h combined by a logical
OR operation.

int facility
Selects the syslog facility. In addition, /etc/rsyslog.conf can be used to assign
a certain facility to a specific log file to prevent multiple liblogger users from
writing to the same log file.

It should be noted that the defined values in msg.h reflect the values defined by
syslog.h so they can be passed as–is to the respective syslog functions.

rsyslog logging

The rsyslog logger can be used to send log messages generated by applications to be
sent to a remote syslog server. Parameters for the open() function are as follows:

char *ident
Identifier that makes up the first part of a log message. Can be set to the appli-
cation’s name for example.

int options
Specifies a bitmask of zero or more options from msg.h combined by a logical
OR operation.
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int facility
Selects the syslog facility. In addition, /etc/rsyslog.conf can be used to assign
a certain facility to a specific log file to prevent multiple liblogger users from
writing to the same log file.

char *hostname
Specifies the hostname of the remote server.

char *port
Specifies the port where the remote server is listening.

type
Selects whether to use TCP or UDP when establishing a connection to the re-
mote server.

Upon initialization, the open() function resolves the hostname and tries to establish
a connection to hostname:port. When invoked through one of the log_* functions,
the sink composes messages according to RFC 3164.

PRI
A numeric value that combines the facility identifier and the message priority
level into a single value. It is calculated using as PRI = 8 * facility + priority.

HEADER
The first part of the header contains the current timestamp in the format of
Mmm dd hh:mm:ss. The timestamp is followed by a whitespace and the host-
name of the current machine.

MSG
The rest of the message is composed of a string identifying the creator of the
message and the user supplied message as passed during one of the msg_* func-
tions. If the flag MSG_FLAG_USERNAME was set during open(), the name of the
current user will be embedded in the log message.

A sample log message as generated by logger–rsyslog and sent to remote hosts is
shown below. The priority level of 165 reflects the facility LOCAL4 with a severity level
of notice as defined in syslog.h.

<165>Jan 3 17:41:13 logger-rsyslog Could not fork
(from user foobar)

3.3 Generic object caches

Generic object caches can be used to efficiently store and retrieve items from a cache.
As will be shown in later chapters, object caches play a central role for file and pass-
word management. Their use is rather simple and mostly limited to two functions:
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an insert() function that inserts a given (key, value) pair into the cache and a find()
function that finds a value given its key. As the cache should be usable by different
applications that typically use different types of data, the goal was to allow an appli-
cation to define its own data types and only use the cache as storage to keep track of
pointers to the supplied data.

3.3.1 Key format

Any application using the cache should not be concerned about how the cache man-
ages its data. Internally, the cache has various options to keep track of data supplied
by clients which will be outlined briefly:

• Arrays

• Lists

• Search trees

• Hash tables

The object cache is implemented in lib/ocache.c and currently uses hash tables to
manage keys. To be more precise, the library in use is uthash2.As mentioned above,
the cache should be usable by different applications with varying key format require-
ments, so it should be unaware of any specific data. For this purpose, an item as
managed by the item cache consists only of data shown in listing 3.3.

Snippet 3.3: Object cache – Base structure
1 struct ocache_handle {
2 struct UT_hash_handle hh;
3 };

With a given (key, value) pair, the cache further needs a way to copy and compare
keys, but also provide a way to the application to access the data it once stored into
the cache. Therefore, each cache user has to define a structure according to listing 3.4
that provides necessary information for the cache in order to handle its items.

Snippet 3.4: Callback operations for item caches
1 typedef void (*oc_foreach_cb)(struct ocache_handle *handle, void *u);
2

3 struct ocache_operations {
4 void *(*get_key_desc)(struct ocache_handle *handle, unsigned int *k_len);
5 };

2A very simple to use hash table implementation for C. It only consists of one header file and is
implemented using only preprocessor macros. More information, documentation and examples are
available at https://troydhanson.github.io/uthash/
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If the application has implemented the get_key_desc callback, it can make use of the
public API located in include/cfs/ocache.h.

The typical workflow starts with creating a new cache using ocache_create()
which returns a handle to an object cache. The application then has access to a num-
ber of functions:

ocache_insert(struct ocache *cache, struct ocache_handle *handle)
Adds an item to the cache. Uses the get_key_desc to get a pointer to the key, but
also the length of the key. If an item with the same key was already contained
in the cache, it will be removed. The given key is inserted and the previously
contained object is returned to the caller. Based on the return value, the caller
can determine if that has happened.

ocache_tryinsert(struct ocache *cache, struct ocache_handle, *handle)
Behaves exactly like ocache_insert, except that if an item with the same key
was already contained in the cache, no action is performed and an error is re-
turned to the caller with errno being set to EEXIST.

ocache_remove(struct ocache *cache, struct ocache_handle *handle)
Removes a given handle from the cache.

ocache_for_each(struct ocache *cache, oc_foreach_cb cb, void *u)
Calls the given callback function cb along with arbitrary information supplied
in u for each cached object. This function is deletion safe, therefore the callback
function cb is allowed to remove an item from the cache. The key value must
not be modified. This function for instance can be used to remove all expired
values from the cache with one function call.
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CHAPTER 4
Development of a generic keystore

interface

Based on the findings as presented in chapter 2.5 ”Secure storage“, including key
management directly in the file system is not expedient. From a philosophical stand-
point, this is justifiable as it violates the fundamental principle of UNIX: Keep it short
and simple. [Ray03] goes one step further and introduces a series of design rules that
are vital especially for new software as they allow easier code maintenance and ease
the implementation of enhancements:

Rule of Modularity
Simple components should represent the application baseline. Well–defined in-
terfaces act as connectors between the components. This allows changes to re-
main isolated which results in easier components upgrades / replacements.

Rule of Composition
Applications should not be built as a complicated monolithic block, but instead
split among multiple applications with a simple, textual, stream-oriented data
format.

Rule of Separation
This rule is today’s equivalent of the Model–View–Controller pattern. It sug-
gests that a piece of software is easier to maintain, enhance, and test if it is
decoupled from other parts of the software. interfaces from engines.”

Rule of Simplicity
It is preferable to use a simple approach to solve complex problems instead of
over–complicating the implementation. This makes it easier for other people to
read, maintain and extend the code and lowers the chance of introducing logical
errors and software bugs.
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When looking at the typical Linux desktop it becomes quite obvious why these rules
have a right to exist. The kernel itself is divided into multiple subsystems with dis-
tinct interfaces. Changes in how processes are handled (for example replacing the
scheduler) do not affect I/O operations. Likewise, loadable kernel modules can ex-
tend the kernel’s functionality without interfering with any subsystems. The “Rule
of Simplicity” becomes obvious when looking at Linux’ source code. Even without
knowledge of the “big picture” one can tell what a function does almost immediately
as they are short and simple.

Due to the success of Linux, following the aforementioned rules should result in
a simple yet easy to understand, maintain and enhance prototype. The key man-
agement was separated from the file system introduced in the next chapter and im-
plemented in an abstract base class. The interface to specific keystores like gnome–
keyring or KWallet will be provided by connectors which can be built on a per–host
basis. The base class PasswordStore acts as an abstract interface, providing only three
functions related to key material:

find
Find a key in the keystore given its identifier

add Add a (identifier, key) pair to the keystore

batchAdd
Add a collection of (identifier, key) pairs to the keystore

In the given implementation, connectors for gnome–keyring and KWallet are present
in classes PasswordStoreGnome and PasswordStoreKde. By default, these stores op-
erate on a collection (gnome–keyring) / wallet (KWallet) named according to the
value of PASSWORD_STORE_NAME, defined in PasswordStore.hpp, with a default value
of “keyd”.

4.1 Keystore Interface

PasswordStoreGnome uses the interface provided by gnome–keyring as described in
gnome-keyring.h. On instantiation, the constructor PasswordStoreGnome() verifies
that a communication with gnome–keyring is possible using gnome_keyring_is_-
available(). This is important as it would not make sense to keep retrying querying
the daemon if it is not present on the system or suffers from a critical condition itself.
Subclasses of PasswordStore therefore provide an init() function with return type
InitResult to reflect this circumstance. Possible values include INIT_TEMP_FAIL and
INIT_PERM_FAIL to indicate temporary or permanent failure. In either case, the call-
ing application can then take appropriate actions – permanent failure would typically
result in application termination, whereas temporary errors would just cause the ap-
plication to retry the request after a certain amount of time. In addition, the Init()
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function also verifies the presence of the default store that is used for querying and
adding keys. If no such store exists, it will try to create it.

As the name suggests, the find() function uses a given Globally Unique Identi-
fier (GUID) to find the corresponding key entry. A key entry however does not nec-
essarily imply a single password string in the keystore. Instead, gnome–keyring uses
attribute lists to make up the entries. Supported attributes are strings and unsigned
integer types. Although not currently in use, these attributes could be used to store
additional information about a key datum. For security reasons, this might include
an age timestamp to enforce periodical refreshment of certain keys which otherwise
has to be stored and synchronized in a different location.

Before keys can be looked up in the keystore, one needs to add key material to
the store. Ignoring the fact of how this material is obtained for now, the Add() func-
tion adds a single key entry to the keystore using gnome_keyring_item_create(). If
multiple keys have to be added at once, one can use BatchAdd() which expects a key
bundle as input parameter and adds each key of this bundle to the store using Add().

Find and add functions use the return type QueryResult to indicate whether the
operation was successful (OK), failed (FAIL), or did not return any result (NOENT) in
case of Find().

PasswordStoreKde provides exactly the same functionality, but the KDE environ-
ment requires the application to provide additional information about itself in an
KApplication object. This information will be displayed when the user receives a
prompt to set a password for a newly created wallet or an existing one needs to be
unlocked. The information is also helpful to the user as it helps to categorize the re-
quest, so the user knows, what is going on and where the request is coming from and
why.

Note:

Subclasses of PasswordStore use a special class SecureString to handle sen-
sitive information. This class is similar to the standard string class and inter-
nally uses a combination of such a std::string object and the Linux system
call mlock() to protect the information stored within. Although one could ar-
gue that mlock() is not secure as is does not guarantee that the data will not
be swapped out to disk in this case, it is neglectable here as the focus is on the
secure removal of the data after it is of no use anymore. The functionally pro-
vided by mlock() addresses swapping data out to disk, but since the keystore
application is of a short lifetime, the Linux page replacement algorithm will not
swap the page to disk anyway.

Once the password has been retrieved from the store, the questions of where it
came from and how it is returned to the application still remains. As the goal of this
paper was to investigate multiple methods of encryption, the source of the request
could either originate from user–space or kernel–space and even there, multiple file
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systems or applications could be implemented and thus be the origin of the request.
For example, when FUSE volumes are mounted during start–up using /etc/fstab
and the mount option allow_other1 was listed in the mount options, the permission
handling of FUSE will act in a slightly different way: user root and other users are
given access according to the permissions associated with the files in that directory,
therefore honoring UNIX file permissions. As a result, the keystore–interface should
be as flexible as possible to handle such situations.

As a first step, the keystore–interface was implemented as a daemon process. This
allows arbitrary request sources to be handled properly by providing a common entry
point to the requester’s keystore. As mentioned above, the source of the request is
arbitrary and therefore assumed unknown. To handle different mount options, the
daemon needs to be able to react to different requests appropriately. Internally, a
request is a C structure as shown in listing 4.1.

Snippet 4.1: Key daemon Lookup request
1 struct lookup_request {
2 char type; /* ’P’ or ’G’ */
3 uint32_t len; /* Length of the data field */
4 uid_t uid; /* UID of the requesting user */
5 gid_t gid; /* GID of the requesting user */
6 char data[]; /* Data: Path (’G’) or GUID (’G’) */
7 }

The type field governs the nature of the request and indicates the content of data. Its
value is one of

’P’ data field contains a path or

’G’ data field contains a GUID

Different type values are the result of different file operations. A creat system call
typically causes a type value of ’P’ as the GUID for a given path has to be resolved
before a password can be obtained for it, whereas opening a file results in a type
’G’ look–up as an existing GUID is read from the file header and a key needs to
be found for it. These settings are typically configured in the SafeGuard Enterprise
Management Console. The client received those mappings (“policies”) and applies it
when a file needs to be created.

The uid and gid fields are used by the requesting application to describe the
sender. In the case where a normal user mounts and uses the file system, the val-
ues are identical to the uid and gid of that user, but if the volume was mounted with
e.g. FUSE and allow_other, the values reflect the real identity of the requester, not the

1man 8 mount.fuse states that “this option overrides the security measure restricting file access
to the user mounting the file system. So all users (including root) can access files. This option is by
default only allowed to root”
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application running the file system. Access to the file system however is always con-
ducted using the effective user identity of the mount process. As a result, when using
system calls that create files and folders (creat, symlink, and mkdir), their owner will
always reflect the effective user and group identities of the mount process. The user
under which the file system is mounted therefore needs access to all files that should
be accessible to other users through the mountpoint. However running it as non-root
user makes it impossible for the mount process to change owners and permissions
on newly created files. New files will therefore always belong to the user running the
file system.

As a consequence, the keystore–interface needs to be able to communicate across
different session as the mount process may be running under user A whereas access is
performed by user B. In such cases the key lookup becomes quite complex. Initially,
the daemon has to be started by either a user or at start–up. When an application
starts, Linux assigns the effective user identifier (UID) which will then determine
access permissions on file systems.

Linux users and groups

Each process under Linux has 3 pairs of (user, group) IDs assigned to it. When
the process starts, the real user and group are set to the user who executed it.
If the program uses setuid, the effective user and group are set according to
the file’s owner, otherwise they are equal to the real user and group IDs. Saved
UIDs are used for set–uid programs to temporarily drop privileges to do some
work and then later regain elevated privileges by re–using the values from the
saved UID and GID fields.
Since setuid applications run with privileges of their owner, not the user who
started them. This could potentially be harmful, so their use should be avoided
or restricted to applications that can easily be security–audited. Lastly, file sys-
tem UID and GID are used for file system access checks. They are usually equal
to the effective UID and GID. Changing these values requires superuser privi-
leges though.

As a result, the keystore–interface faces the problem of the user accessing files is
not necessarily the user who started the key–store application. This raises the ques-
tion of how the keystore–interface is able to access the right store for a given user. As
it runs as a background process with limited permissions and capabilities, it does not
have the ability to impersonate the accessing user’s home directory in order to open
the wallet and retrieve the requested keys. A first solution to this problem would
be to increase the permissions of the daemon process, but this violates the principle
of least privilege and causes the daemon to run with root privileges at all times. As
mentioned earlier, running the daemon setuid root would also solve the problem,
but could potentially cause security vulnerabilities, especially when the complexity
of the application increases. On the other hand, setuid programs typically run with
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low privileges to do most of the work and increase / drop their privileges as needed.
This approach is exactly what is needed here, but will be solved in a different, more
flexible way. The keystore–interface is simply split into two parts: a daemon, run-
ning with lower privileges to resolve and map policies to the requests and a second
daemon that received these requests and performs actual look–ups. From a security
point of view, this setup is optimal as all components run with least privileges, hence
lowering the possibilities of exploitable vulnerabilities.

4.2 Architecture

Figure 4.1 shows the resulting architecture for the key–store interface. What seems to
be a rather complex solution for the aforementioned problems, simultaneously solves
all problems in a very clean and efficient way.

The component keyd is the main entry point for any given application requesting
key material. If necessary, it first performs a path–to–guid mapping for a given “P”
request. It then passes the request on to keyd-runas which performs the actual lookup
in either KWallet or gnome–keyring. As the name suggests, keyd-runas will imper-
sonate the user which is trying to access his keystore. To be able to do that, keyd-runas
requires root privileges. As mentioned before, this would be a violation of the prin-
ciple of least privilege, but keyd-runas only performs very little work until it sets its
privileges to the user and group ID as requested.

When a request is received, keyd offers two possibilities of how to resolve the user
sending the request:

As resolved
keyd uses the information provided by the kernel to determine the connecting
users. This approach is recommended due to the trustworthiness of the kernel.
To resolve the user ID of the socket connection, keyd uses getsockopt() with the
option SO_PEERCRED on socket level SOL_SOCKET. When successful, this function
call fills a structure of type struct ucred as shown in listing 4.2. keyd then
checks if the credentials match the IDs specified in the request. Non–matching
values are an indicator of malicious requests and therefore discarded.

As sent
keyd uses the values the client has sent. This is of course not very trustworthy as
the client could send arbitrary values, but sometimes this behavior is required
as the sender could not be determined correctly by the kernel. This is the case
when FUSE is mounted with allow_other. Even though user Y is accessing the
data, the FUSE process is running under UID X. Using aforementioned function
getsockopt(), the returned structure would therefore return the ID of user X.
The discrepancy of the values in struct ucred and the IDs in the request would
therefore always cause the data to be discarded. If FUSE is operated in that way,
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Figure 4.1: Keystore–interface architecture
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the configuration directive use_ucred in section socket in the configuration file
of keyd should be set to 0.

Snippet 4.2: struct ucred
1 struct ucred {
2 pid_t pid; /* PID of sending process */
3 uid_t uid; /* UID of sending process */
4 gid_t gid; /* GID of sending process */
5 };

When the request has been fully received, keyd performs some initial sanity checks
and invokes a handler for the given type of request. A request handler points to a
function of the following type:

int (*req_handler)(lookup_request *, lookup_result **)

Currently, secret_for_guid() and secret_for_type() are implemented to handle
“G” and “P” request. Since these functions have access to the request data, the secret_-
for_type() handler could easily be extended to perform source–specific operations
and support further types of sources. Eventually, all handlers call the do_key_-
lookup() function to initiate the key lookup through keyd-runas.

4.3 Keystore–Interface message passing

To limit the impact of software bugs and exploitability, keyd is running with limited
privileges. When clients connect to the socket, the only information keyd can obtain
about the client are its credentials. Normally, daemons make use of system calls like
setuid() and seteuid() to impersonate a particular user, perform a specific task,
report the result, and then exit. In this case however, this is not possible due to the
restricted privileges of the keyd user. Therefore, the software has been split into two
parts: keyd to perform the policy mapping and keyd–runas to query the desktop envi-
ronment’s native key store to obtain key material.

In this scenario, messages need to be exchanged between the components at four
different locations:

client→ keyd interface
The main entry point for the client. keyd expects messages in a particular format
as described by listing 4.1.

keyd→ keyd–runas interface
When messages have been received, parsed and found valid, keyd will submit
the query to keyd–runas using a System V message queue.
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keyd–runas→ keyd interface
Due to the fact that keyd and keyd–runas are two different processes, results need
to be communicated back to keyd. The IPC mechanisms used to perform the data
exchange are System V shared message segments for the data and semaphore
sets to maintain synchronization between the processes.

keyd→ client interface
When keyd–runas signaled completion, keyd needs to send the result to the client.
This happens over the same socket connection as in the client→ keyd interface.

When keyd is started, it performs some initialization tasks that also include the cre-
ation of the message queue. It then submits a simple helo packet as shown in list-
ing 4.3.

Snippet 4.3: keyd helo message
1 struct keystore_helo {
2 long mtype;
3 pid_t pid;
4 };

The reason for sending this message is to force clients to not directly “speak” to keyd–
runas as it is running with root privileges which could be considered a security risk
if the interface is accessible to other applications. The mtype field of the helo message
has to be set to KEYSTORE_MTYPE_HELO. The field pid is simply set to the return value of
getpid(). As long as keyd–runas has not received any helo message, the submission
of any messages other than of type helo will result in application termination due
to security considerations. Otherwise, for each received message, the sender’s PID
will be checked against the saved helo PID. A mismatch also results in application
termination.

Note:

The pid field of struct keystore_helo has to be set to the PID of keyd as keyd–
runas will check this value against the msg_lspid field of struct msqid_ds as
obtained through msgctl() for option IPC_STAT

After the initial helo has been received, lookup requests as described in listing 4.4
can be submitted to keyd–runas.

Snippet 4.4: keyd lookup message
1 struct keystore_request {
2 long mtype; /* Message type */
3 uid_t uid; /* Requesting user’s UID */
4 gid_t gid; /* Requesting user’s GID */
5 key_t sem_key; /* Key used to attach the semaphore for signaling */
6 key_t shm_key; /* Key used to attach the shared memory segment */
7 size_t shm_size; /* Size of the allocated shared memory segment */
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8 size_t guid_len; /* Length of the guid field */
9 char guid[]; /* GUID to lookup in the keystore */

10 };

Before sending such a keystore_request to keyd–runas, keyd has already performed
some preliminary work. This is done to concentrate complex operations in code ex-
ecuted with lower privileges and to detect and inform the client as soon as possible
about errors.

When generating a keystore_request, keyd sets the value of mtype to KEYSTORE_-
MTYPE_REQ to indicate that this is a lookup request. The uid and gid fields reflect the
identity of the user that performed a file system operation that requires key material.
sem_key and shm_key are the return values of the ftok() function. These values will
be used by keyd–runas to obtain the same semaphore and shared memory segment
as keyd uses. After data has been placed in the shared memory of size shm_size,
the semaphore returned by semget(sem_key) will be used by keyd–runas to signal
completion to keyd, which was put in blocked state by the operating system when it
invoked the semop() call.

In terms of pseudo–code, the interaction between keyd and keyd–runas is handled
as shown in table 4.1. It should be noted that keyd uses the timed variant of semop().
This is useful, because if errors in keyd–runas occur, the point where the semaphore
is signaled is never reached, so keyd would not be able to drop the connection by
itself, as it is blocked by the operating system. The semtimedop() makes sure that
keyd will be awakened by the kernel after a configurable period of time. One can use
the configuration setting runas_timeout in section keyd of the keyd configuration file
to control the timeout.

Table 4.1: Keyd / Keyd–runas interaction – pseudo code

keyd keyd–runas

msgsnd(req)
msgrcv(req)

semtimedop() (wait)
keystore lookup
shmat(shm_key)
copy result to shared memory
shmdt(shm_key)
semop() (post)
exit

shmat(shm_key)
send result to client
IPC cleanup

88



4.4. External keyring sources

4.4 External keyring sources

A question left unanswered so far is: where do key rings initially come from? In
case the application has just been newly installed on a host, keyd is able to interact
with keystores and create collections and wallets, but the actual key material is not
yet stored on the host. Moreover, the origin of a lookup request could also be a user
opening a file that was encrypted on a different host with a key the user does not
have on the machine he is currently logged in. Least likely the reason for a not found
key could also be a damaged KWallet or GNOME keyring.

In any case, the Find() function of a keystore connector returns the status code
NOENT. If this status code is encountered, keyd uses the keystore_fetch_external()
function to connect to a key server and receive a key bundle owned by the requesting
user. An external server is described by a structure as shown in listing 4.5.

Snippet 4.5: Description of external key servers
1 struct trusted_host {
2 const char *hostname; /* DNS name or IP address */
3 const int port; /* TCP port to connect to */
4 const char *keyring_path; /* Remote location of the keyring */
5 const char *cacert_loc; /* Location of a SSL certificate chain
6 for certificate validation */
7 const char fingerprint[(2*FP_LEN) + 1]; /* SSL fingerprint */
8 const char *name; /* Pretty name for logging purposes */
9 };

The first two members are self–explanatory, and simply indicate the DNS hostname
or IP address and port where the key ring should be retrieved from. The name field is
used in log messages and denotes the “pretty name” of the respective key server. The
keyring_path field specifies a path on the server where the key ring can be found.
During development, this string was set to a PHP script2 that will redirect the user to
an Extensible Markup Language (XML) document containing a list of keys. The XML
document uses a rather simple structure as it is only used for testing purposes. Its
structure is denoted in listing 4.6. In production environments, this data is typically
sent by the SafeGuard Enterprise server in a different format.

Snippet 4.6: XML structure for key rings
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <sg:keyring xmlns:sg="http://www.olorenz.org/KeyRing">
3 <sg:user-record>
4 <sg:name>John Doe</sg:name>
5 </sg:user-record>
6 <sg:key-record>
7 <sg:guid>9b69b8d3c1dfaeba2d53164c361b72be</sg:guid>

2PHP or PHP: Hypertext Preprocessor is a server–side scripting language mostly used for web de-
velopment.
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8 <sg:data>yjx2XvNwqFsPVQLBekNDTy3f</sg:data>
9 </sg:key-record>

10 <sg:key-record>
11 ...
12 </sg:keyring>

The owner of the key ring is currently used only for logging purposes, but it would
also be possible to verify the returned string against the value of the pw_gecos field
which is returned by getpwnam() and getpwuid(). This would most likely require the
use of external user databases like LDAP to keep all information synchronized.

Ultimately, keyd uses libcurl to retrieve the keyring from the server. libcurl is a
widely used library supporting vast amounts of protocols and features3 as it would
otherwise be required to implement HTTPS capabilities. Upon connection establish-
ment, keyd uses curl’s curl_easy_getinfo() function with the option CURLINFO_-
CERTINFO to check if the server certificate matches the expected value specified in the
struct trusted_host. Mismatches are a fatal error and lead to keyd giving up on the
key ring retrieval, even though further key server are specified in the trusted_hosts
array.

When the data has been received from the server, keyd uses libxml to parse the
data into a valid struct key_bundle. The underlying C structures are presented in
listing 4.7.

Snippet 4.7: Keyd key structures
1 struct key {
2 char *guid; /* Global Unique Identifier */
3 char *secret; /* The actual password */
4 struct list_head next; /* Next password in list */
5 };
6

7 struct key_bundle {
8 char *owner_name; /* Name of the owner */
9 struct list_head keys; /* List of struct key */

10 };

A bundle is simply a linked–list of keys with an additional owner field. The key
bundle can then be passed to the BatchAdd() function to add all contained keys to
the keystore. The previous Find() call will be restarted to check if the requested key
was contained in the received key bundle.

3A comprehensive list of features is available under http://curl.haxx.se/docs/features.html
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CHAPTER 5
Development of user–space encryption

using FUSE

This chapter will elaborate on the implementation details of the FUSE file system cfs.
The result will be a user–mountable file system fully compatible with the already
existing SafeGuard Enterprise file format as described in tables A.1, A.2, and A.3.

5.1 Layout

FUSE requires file systems to register a structure containing pointers to functions that
will be called whenever events occur in the exposed file system. Therefore they act
as entry points to the file system. Additionally, these callback functions are similar
to the traditional system calls and also named accordingly. During the file system’s
initialization, the structure containing the callbacks is passed to FUSE in its fuse_-
main() function.

Due to the complexity of the file system, it has been split into the following sub-
systems. Each of them is explained in greater details in this chapter, concluding with
an overview of how the interfaces between them are designed.

File manager
The file manager provides functionality to access the underlying file system and
also maintains a cache of frequently used files to speed up meta data deserial-
ization.

Password manager
This subsystem is primarily used to provide access to key materials previously
received from a key store provider or an external key server.

Memory management
The memory management functionality allows efficient memory management
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and object caching for frequently used objects. This chapter will elaborate why
it is needed and how the file system benefits from its caching capabilities.

Crypto core
As the name suggest, this facility is a high–level interface to the OpenSSL crypto
functions used to encrypt and decrypt data

Anti–mountpoint bypassing
Whenever the original folder has to stay intact, it is possible that the user saves
his files to the wrong directory. The anti–mountpoint bypass daemon ensures
that files are stored to the correct location and therefore prevent information
exposure and policy violations.

The various sub–systems are initialized when FUSE starts up. The file system op-
erations that are passed to the fuse_main() function contain a pointer to an init()
function that will take care of this task. Even though the initialization task could be
done in a different location, FUSE advises to do it in the init() function as threads
that would be started beforehand would be killed when the FUSE file system forks
and daemonizes itself1. When the file system has started up, it waits for incoming
tasks from the FUSE kernel module in the fuse_session_loop() function.

A FUSE file system can be operated with only a few functions inside the struct
fuse_operations being present, which in turn limits the capabilities of the file sys-
tem. However, this approach can be used to iteratively extend the implementation.
Starting from the implementation of e.g. readdir() and open() calls, one can suc-
cessively add needed functionality until all desired features are fully functional. It
should be noted that not all of the callbacks are actually needed to provide all needed
functionality. Read-only file systems for instance do not need a write method. How-
ever, the file system resulting from this research will be used in many different situa-
tions so it is mandatory to implement all 47 callbacks provided by the FUSE library.

FUSE path names

Functions provided in the struct fuse_operations usually have one or more
char *path parameters. These parameters are filled by FUSE using the relative
path of a file or directory. It is therefore required to translate this path to an ab-
solute path on the underlying file system by prepending the root directory the
FUSE mountpoint is responsible for. To accomplish the translation, one has to
implement a function that simply concatenates the two strings, and has to call
this function each time one of the FUSE callbacks is executed. A cleaner solu-
tion can be achieved by loading the subdir module before calling fuse_main()
which results in all FUSE callbacks already receiving the absolute file system
paths. The prototype will use latter approach.

1This would not be a problem if the file system is launched with the foreground option (-f) set
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One of the most crucial functions to FUSE file systems is the getattr() function.
FUSE uses it to obtain meta–information about files. Therefore, this function is called
quite frequently and should therefore be short and efficient.

5.2 File management sub–system

The purpose of a file system is to operate on files and give users access to stored
information. Cryptographic file systems enhance the access part by introducing an
additional, mostly transparent layer of encryption between the user and the storage
backend. In case of the FUSE file system implementation, the file manager is used to
provide all necessary functions to allow a user to access his data and perform day
to day tasks on files. The API offers functions similar to the traditional system calls
like creat, rename, or unlink. The reason why this functionality is outsourced to a
sub–module becomes evident when one reflects about how files are usually used on
a computer. Typically, users make use of graphical file managers to maintain their
files. These programs provide lots of information to users, e.g. file names, file size,
date of last access and so on. When a directory is opened, the file manager iterates
over all files in the folder and typically uses the stat() system call to obtain this
information from the operating system, more specifically the underlying file system.
In kernel–space, files are represented by a structure defined in fs.h: struct inode.
This structure holds all information the kernel needs in order to perform requested
operations on the file itself. Internally, the kernel uses a hash table to provide caching
functionality, thus increasing the performance of the system. In case of the graphical
file manager, the kernel makes use of that cache when the user navigates through the
folder structure as files and folders entries must be displayed repeatedly. The kernel
does not request the inode information from the underlying file system, instead, the
cached data is returned to the user. A file manager can then use the information
obtained through the stat() system call to populate its user interface.

When it comes to encrypted files however, the information as cached by the kernel
might not be of much use to the user. File–name encryption for example requires the
file system implementation to perform a transformation (e.g. decryption) each time
the folder is opened and the file manager needs to display the file’s name. In addition,
opening a file multiple times would increase memory consumption of the file system
itself and also the amount of delay the user experiences when the file manager has to
display information about the file to the user as necessary transformations have to be
performed each time.

As a consequence, the file management sub–system is built around two caches.
These are used to store meta–information about opened files and allow the file man-
ager to quickly return information when requested by FUSE. As will be shown later,
the process of deserializing a file header is a complex and tedious process, so both
caches are used to minimize access time by keeping deserialized data in memory
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while the files are in use. The active cache contains items that are currently in use by
users. That is, when a process has already called open() and is now in the process of
reading or writing data, but has not yet called close(). After the file has been closed,
it will be moved to the inactive cache and remains there for a configurable amount of
time. During this step, all sensitive information is removed from memory, but data
structures are left intact to allow a fast reconstruction of necessary crypto data when
the file is used again. This could happen after the user used save and close on a text
document in an editor, but keeps navigating through his files in a file manager.

Both the active and the inactive cache make use of the generic item cache as in-
troduced in section 3.3 “Generic object caches”. Commonly, the path of a given file
would be sufficient to use for a cache key, as it is unique and already provided by
FUSE when actions on files need to be performed. cfs however uses cache keys that
are comprised of the device identifier that contains the file and the inode number of
the file itself as obtained by the stat() system call as shown in listing 5.1.

Snippet 5.1: File manager cache key
1 struct fileman_cache_key {
2 dev_t st_dev; /* File device number */
3 ino_t st_ino; /* File inode number */
4 };

While it would seem more natural to use the path of a file as key for the cache item,
using device and inode numbers offers two important advantages:

Lower memory consumption
Regardless of the path of a given file, cache keys use a constant amount of mem-
ory of 12 bytes on 32–bit platforms and 16 bytes on 64–bit platforms.

Simpler file handling
When a file is renamed, its device and inode numbers do not change. As a result,
the cache key does not change and no operation has to be performed in the cache
itself. However, auxiliary information of the file needs to be updated. The same
holds true if directories are renamed, although refreshing cached items is a more
complex task in such a case as the change needs to be propagated throughout all
cached data. This is due to the fact that the file has path information associated
required for password lookups.

The data structure stored along with a key and obtainable by item_cache_lookup()
is shown in listing 5.2. It contains housekeeping information about the underlying file
in a first layer in struct vfile and cryptographic information in struct ocbfile.

Snippet 5.2: File manager cache item
1 struct vfile {
2 struct ocbfile file;
3 atomic_t refcnt;

94



5.2. File management sub–system

4 time_t last_used;
5 atomic_t pending_unlink;
6 int no_recache;
7 pthread_rwlock_t rwlock;
8 int valid;
9 };

The file manager manages these vfile objects in one of the two caches. While they are
in use, the vfile object is contained in the active cache, with the refcnt field being
> 1 to prevent deletion. If the file is closed, the refcnt reaches zero and the vfile
object is moved from the active to the inactive cache. The object resides there until a
configurable amount of time has elapsed. This expiration timer is used to shorten the
amount of time needed to re–open a file. An open() call on a file goes through the
following steps:

1. Generate a cache key given the file’s path.

2. Query the active cache. If a file could be found, return a handle to it.

3. Query the inactive cache. If a file could be found, move it to the active cache
and return a handle to it.

4. Load the file header from disk and attempt to deserialize it. If successful, insert
it into the active cache and return a handle to it.

Particularly cache hits in step 2 and 3 result in a significant decrease of the latency of
the open() operation, as lookups are typically fast operations on caches. In case the
file has to be loaded from disk, prompting the user to unlock his keystore (if it is not
cached anymore) might add further delay.

Moreover, two distinct caches are useful if the file manager caches contain a large
number of files, because the scan for expired objects would take additional time. Dur-
ing the scan, the cache has to be protected by a mutex to avoid inconsistent data struc-
tures. The locking adds additional delay to the lookup operation as the mutex_lock()
operation blocks until the mutex is unlocked by the scanning thread.

5.2.1 Serialization and Deserialization

The file manager operates on a layer close to the system calls creat(), open(), and
close(). When the file system is mounted, both caches are empty and operations
requested by users result in one of the three aforementioned system calls to satisfy
the request.

Creating encrypted files

When a file needs to be created, the file manager uses vfile_get_new() to create a
new vfile object. By the time of creation, the only associated data with the object is
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the path of the underlying file. The file manager then uses this path information to
generate a cache key comprised of the device ID and inode number of the file and
inserts it into the active cache. This immediately allows concurrent access to the file
as it is visible to other users by the time the insertion completes and the cache mutex
is released. Otherwise, the cache mutex needs to be held until the vfile object has
been fully constructed; an approach which is highly discouraged as it could take a
long time to retrieve the key material from the user’s keystore, perform necessary
key expansion (e.g. PBKDF), and write the file encryption header to disk.

The file header used by the file system is identical to the header used by SafeGuard
Enterprise, hence providing full compatibility between the software products. An
interface to read and write headers is located in ocbfeheader.h. It strictly follows the
file header specification as outlined in appendix A. For file creation, ocbfeheader_-
write() can be used to write the header content to disk.

Endianness

When dealing with data types spanning more than one byte in memory, their
representation can be of two different kinds: little endian and big endian. In-
ternally, memory is managed in cells, with each being accessible by an index
called address. If an application wants to store a 32–bit integer value, four con-
secutive cells will be occupied. On little endian platforms like Intel processors,
the most significant byte is stored on the lowest address, whereas on big endian
platforms like Motorola, the least signification byte will be assigned to the low-
est address. In terms of C programming, the problem becomes evident when
considering the following example:

uint32_t i = 123; /* equal to 0x7B */
uint32_t i_le = htole32(i); /* convert to LE */
uint32_t i_be = htobe32(i); /* convert to BE */

When printing the values, i will be printed as 123. On the Intel platform, i_le
is equal to i, but i_be evaluates to a large number for the simple reason that
0x7B is interpreted as the most significant byte out of the four, thus leading to a
32–bit integer of value 0x7B000000.

For each multi–byte value, the function uses the TO_HD_VAL macro along with the
bit–size of the number2. Depending on the architecture the software is built on, the
compiler might remove the calls due to optimization steps. Nevertheless, the output
of this function is important because it ensures a consistent file format across different
hardware platforms. Furthermore, after passing through this layer, the software does
not have to deal with endian issues as it is ensured that data is in host byte order before
the function is called and in little endian afterward.

2When reading the header, one can use FROM_HD_VAL, which performs the inverse operation
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At this point, the header is ready to be written to disk. Two steps are required to
do so:

1. header_write_prep() ensures that there is enough space available on the disk
by using posix_fallocate(). This function may expands the underlying file
and guarantees that subsequent writes do not fail due to the lack of disk space.

2. header_write_data() writes the header that consists of the following main in-
formation to disk. For a detailed header description, refer to appendix A.

a) Copyright information

b) Generic meta–information. Data includes header version, magic value,
block size for cipher operations.

c) Key Storage Area that contains initialization vector and key count.

d) Cryptographic information about the file. This includes the encrypted data
encryption key, its identifier and human readable name as well as a de-
scription about the used cipher algorithm to allow decryption of the used
Data Encryption Key when opening the file.

After the header has been written to disk, the application returns to the file man-
ager. At this point the active cache contains a new entry. All necessary information is
available to perform any operation the user might requests. If an error has been en-
countered during this process, the underlying file is deleted and an error is returned
to the kernel. Otherwise, the application returns a unique handle to the FUSE kernel
module which in turn associates this information with the in–kernel inode structure
of the file. The calling application will receive an ordinary file descriptor as usually.

Opening an encrypted file

First of all it should be noted that the following description only applies to files that
were not found in the active or inactive cache. This happens if a file has never been
opened before or its cached meta–information has expired due to inactivity.

Opening an already existing file requires deserialization of the file’s header. First,
the raw file header needs to be read into a buffer, which is done by calling ocbfeheader_-
read(). This function tries to read up to FE_HEADER_SIZE bytes (4096) starting at offset
FE_HEADER_OFFSET (0) within the file. The term up to is important here, because pre–
existing files could be smaller than the header size and would be impossible to open
if a return value less than FE_HEADER_SIZE of the read() system call would be treated
as an error. For files larger than FE_HEADER_SIZE, ocbfeheader_read() performs en-
dian correction and verifies magic values contained in the header to make sure that
the data read into the buffer belongs to an encrypted file. In any case other than the
successful verification of the buffer, the error number is set to ENOMSG to indicate that
data of the desired type could not be parsed.
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Once returned to the file manager it inspects the return value of the read call which
governs the next steps. If the error number is ENOMSG, the file is treated as plaintext.
All operations on such a file are simply relayed to the underlying file system without
any modification. This behavior can be observed when opening unencrypted files
that have not been created by this software, but copied into the root directory directly.
Otherwise, the file manager evaluates the headerVersion field in the base structure
of the header and tries to find a parser for this header version using ocbfile_get_-
parser(). If a parser was available, its new() function will be invoked to deserialize
the header. If an error was encountered during this process, it is returned to the kernel
which in turn forwards the error number to the calling application. Otherwise, the
application returns to the file manager which inserts it into the cache and returns a
unique handle to the kernel.

5.3 Password management

A central part of file handling with encrypted files is the management of sensitive
information for cryptographic operations like symmetric keys. When new files are
created, necessary encryption keys and initialization vectors need to be generated.
Opening files results in the deserialization and decryption of data. In any case, the
secure storage of sensitive information must be ensured. This is important as file sys-
tems are long–running processes, which might results in the operating system swap-
ping unneeded pages out to disk, which in turn may lead to information exposure.

As a first step, one can use memory locking functions like mlock() to lock pages
in memory and prevent the operating system from swapping out affected pages to
disk. mlock() has two important properties that must be taken into account when
dealing with sensitive data:

Unit size
Memory affected by mlock() and mlockall() is divided in units of size PAGE_-
SIZE, typically 4 kB on modern processors when not operating in huge or large
page size mode.

Stackability
Calls to mlock() and mlockall() do not stack, which causes a page that has
been locked several times to be unlocked by a single call to munlock().

Both properties interfere with secure storage when considering the life time of the
file system. Suppose memory for an AES key has to be allocated. In C, one would
use malloc(32) to obtain the memory for a 256–bit key from the operating system.
If additional keys need to be stored, the procedure is repeated. The return value of
malloc() is a pointer to a memory region of the requested size. In hexadecimal repre-
sentation, this value can be represented as e.g. 0x1980010. Further calls to malloc(32)
could yield pointers of equidistant values.
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Recalling the fact that mlock() operates on whole pages, the results of a series of
malloc() calls could look like the following table:

Pointer address Page address

0x1980010 0x1980000
0x1980040 0x1980000
0x1980070 0x1980000

with the page address being calculated as

page_addr = pointer & (~(PAGE_SIZE - 1))

As can be seen, multiple memory allocations result in multiple memory segments
located on the same memory page if the requested memory is small enough. Calling
mlock() after each allocation would work perfectly, but as soon as the first pointer
is unlocked by using munlock(), all other pointers on the same page are unlocked as
well. This circumstance reduces the benefits gained by using mlock() to nothing.

A first solution would be the use of posix_memalign() instead of malloc() while
keeping track of used page addresses for later reuse to reduce the memory footprint
of the software. On Linux however, the default limit of locked memory is 64 kB. With
a page size of 4 kB, the process would only be able to store up to 16 encryption keys
in memory until running out of memory. Furthermore, the approach would not be
of much use as it also requires additional memory management to use the remaining
space on a page or without memory management, wastes a lot of memory due to an
encrypted key being much smaller than a page (typically 32 byte for a key and 4096
byte for a page).

A better and also implemented approach would be to divide each page into slots
and use some sort of housekeeping to keep track of the status of each slot. This al-
lows easy management of memory as the issue of stackable locking is of no concern
any more. Further, the allocated memory is utilized in a much more efficient way as a
page of 4 kB can be used to store up to 128 keys. With a default limit of 64 kB of locked
memory, the total amount of keys lockable in memory results in 2048. Of course, the
real number of data that can be stored is below that limit as necessary housekeeping
information also occupies memory. As a result, the password management subsys-
tem maintains a series of caches as described in subsection 5.4.1 “Slab allocator” that
are used to securely store sensitive information and to prevent the operating system
from swapping the memory out to disk which could be a potential information leak
if the hard drive is not encrypted.

The second area of use for the password management is the retrieval of key ma-
terial from the key daemon keyd as described in chapter section 4.2 “Architecture”.
Password lookups are initiated through one of two functions: ocbsecret_for_path()
and ocbsecret_for_guid(). The former function is typically used when a file is to be
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created and the file’s path is the only available information. It is sent to keyd which
uses its mapping policy to translate the path into a key identifier and tries to find a
match for it in the user’s keystore. The latter is used to open a file where a valid key
identifier is already contained in the file header. It is also sent to keyd, which in this
case does not have to perform a mapping, but forwards the key directly to keyd–runas
instead to get a key from the keystore.

Both functions eventually call ocbsecret_get_from_store(). This function un-
dertakes a series of steps to obtain passwords for either forward–mappings of file
system paths to key identifiers, or the reverse mapping of key identifier to password.
In any case, the result is a password as obtained from a keystore by keyd and keyd–
runas. The interface between the password manager and the keyd communicator is
based on the opaque structure keyd_comm_handle. When a password has to be looked
up, keyd_get_handle() is the first function to start the procedure by obtaining such
a handle. Because a connection needs to be established to keyd’s unix domain socket,
keyd_set_opt() with option KEYD_COMM_PATH can be used to adjust the path the com-
municator is trying to connect to. Ultimately, the function calls keyd_get_secret()
to establish a connection with keyd, send the request and then wait for a response.
To avoid indefinite waiting and thus a not responding process, the time the func-
tion waits for a response can be configured separately by using keyd_set_opt() with
option KEYD_COMM_RECV_TIMEOUT on the handle before invoking keyd_get_secret().
By default, a value of 60 seconds will be used. The result of a lookup operation is a
struct ocbsecret as shown in listing 5.3

Snippet 5.3: ocbsecret data structure

1 struct ocbsecret {
2 unsigned char *secret; /* Password content */
3 size_t len; /* Length of secret field */
4 time_t last_used; /* Timestamp of last usage */
5 char *guid; /* Identifier for the secret */
6 size_t guid_len; /* Length of the identifier */
7 pthread_rwlock_t rwlock; /* Read/write lock for concurrent access */
8 atomic_t refcnt; /* Reference counter */
9 mem_cache_t *cache; /* Cache the secret is stored in */

10 };

If the password manager receives a secret, it will insert it in the appropriate password
cache. Each secret has two keys linking to it: the path a secret is valid for and a key
identifier.
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Key mappings

SafeGuard Enterprise uses path based policy mappings. When the password
manager receives a request for a given path, it strips off the part behind the last
“/” as two files in the same directory would map to the same policy anyway.
Doing so prevents some lookups as the password for a given path might be
already contained in the cache in consequence of previous lookups.

The number of caches the password manager maintains depends on KEYD_PASSWD_-
MIN_LENGTH and KEYD_PASSWD_MAX_LENGTH with default values of 8 and 64 respec-
tively, but can be overridden by the configuration values pass_min_len and pass_-
max_len respectively in the configuration file in section passman. During applica-
tion startup, create_secure_storage() will take these values and set up an array
of caches for the specified range. Each cache supports a specific object size that is
in the range pass_min_len and pass_max_len and that is a power of two. After a
password has been received from keyd, its length will be converted to an index in the
secure_storage array. The password manager then allocates an object from the cache
at secure_store[index] and stores the secret.

Note:

The caches created by create_secure_storage() have the special self–defined
flag SLAB_PROTECTED set. As will be shown in section subsection 5.4.1 “Slab
allocator”, this flags is used to automatically lock allocated pages in memory
and prevent the operating system from swapping them out to disk.

To allow applications access to the retrieved passwords, the password manager
provides accessor functions to its users. Defined in passman.h, their functionality
includes:

ocbsecret_lock()
Because applications might request access to data concurrently, the lock() ap-
plies a read lock on the secret to protect it from being freed while the informa-
tion is in use. The data must not be modified.

ocbsecret_unlock()
Signals completion by unlocking the read lock.

ocbsecret_get_guid_locked()
As the name suggest, this function returns a constant pointer to the key identi-
fier. The data must not be modified.

ocbsecret_get_secret_locked()
Returns the length of the secret along with a constant pointer to its storage. The
data must not be modified.
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ocbsecret_unref()
Releases the secret. This entails updating the last_used timestamp and de-
creasing the reference counter. It is not safe to keep a reference to the secret as
it might gets released due to the expiration timer. Further access will therefore
might cause a segmentation fault and application termination.

5.4 Memory management

Memory management as used in the FUSE file system serves two purposes: increas-
ing performance by keeping frequently used structures allocated in memory and to
allow sub–systems that deal with sensitive information like encryption keys to se-
curely store them in memory.

5.4.1 Slab allocator

One of the main tasks a kernel has to perform is memory management. Due to its
high importance, the kernel tries to conduct it as efficiently as possible to achieve low
internal memory fragmentation and to speed up the process of memory allocation.
For userspace applications, memory allocation is a simple three step operation:

1. Allocate memory using one of the malloc() functions

2. Manipulate the content of the returned memory portion

3. Return the memory to the operating system by calling free()

For the kernel however, memory allocation is a much more tedious task. It has to
keep track of a virtual addresses, their affiliation to certain processes and it might
also has to perform swapping of underlying pages to and from disk when physical
memory is tight. But the kernel does not only satisfy request from user–space. The
kernel occupies memory for itself through file system operations, incoming network
packets and various other events that happen dynamically. To efficiently provide
memory for those operations, the Linux kernel employs an algorithm known as slab
allocator as described in [Bon94]. When performing a specific task, the size argument
to malloc() is of constant value in many cases, as the same data structures have
to be allocated repeatedly (e.g. a struct inode in file system code). When following
the aforementioned three step approach, necessary constructors and destructors have
to be executed each time an object is requested, which needlessly slows down the
allocation process.

The slab allocator renders these steps superfluous as it does not really free objects
when the user returns memory to the allocator. Instead, it keeps objects cached in an
initialized state to satisfy subsequent requests for the same object type in a shorter
amount of time. For the user, the three step allocation scheme remains identical,
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Figure 5.1: Slab allocator overview [Bon94]

except the fact that a cache needs to be created and deleted during application startup
and shutdown respectively. The memory an initialized object is stored in is called
a slab. A slab is a continuous region of memory of size n ∗ PAGE_SIZE, where n
denotes the order of the cache. As shown in figure 5.1, a slab can be in one of three
states: empty, partially full, or full. Allocating and freeing objects from the cache
therefore does not necessarily involve the operating system at all. In cases where slabs
are available on the free or partially free list, the request can be satisfied immediately.
Only when both lists are empty, the cache needs to allocate pages from the operating
system. The slab allocator as implemented in slab.c provides the following functions
to facilitate memory management:

mem_cache_create()
Creates a new cache for object of size according to the size parameter and adds
it to the global cache list. It calculates the amount of object that fit on a slab and
sets cache–global variables on the cache itself.

mem_cache_destroy()
Attempts to destroy a cache. If there are still objects allocated on a slab con-
tained in the cache, it will return the error EBUSY. Otherwise it unlinks the cache
from the global cache list and frees all associated slabs.

mem_cache_alloc()
Allocates a object from the given cache, but also allocate memory from the op-
erating system in case all slots are occupied.

mem_cache_free()
Returns an object to the cache
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Initially, storing meta–information is the sole memory consumption of an empty
cache. When applications allocate memory in this state, the request cannot be sat-
isfied immediately. In this case, the cache has to grow. It does so by allocating PAGE_-
SIZE << order of memory using posix_memalign(). Figure 5.2 shows the result of
the cache grow process. Each slab contains a slab descriptor structure as seen in
listing 5.4 at the beginning of the memory region to ensure efficient management of
newly created slabs.

Snippet 5.4: slab descriptor structure
1 typedef struct slab_s {
2 struct list_head list; /* List this slab belongs to */
3 void *s_mem; /* Pointer to the 1st object */
4 unsigned int inuse; /* Number of allocated objects */
5 mem_bufctl_t free; /* Location of free objects */
6 } slab_t;

The list field specifies which list (empty, partially full, or full) the slab belongs to.
inuse simply stores the number of active items in the slab and will be used to quickly
determine if the slab has become empty or full as a result of mem_cache_alloc() or
mem_cache_free(). If so, the slab will be moved from one list to another and the list
field is updated accordingly. The two other members are used to keep track of object
slots. s_mem is a pointer to the first available slot. As seen in figure 5.2, it points right
after the last mem_bufctl_t. The area between the slab_t structure and the actual
object storage contains an array of mem_bufctl_t entries that are used to keep track
of free items. When the slab is created, the array of bufctl’s will be consecutively
numbered as shown in listing 5.5 as part of mem_cache_init_objs().

Snippet 5.5: slab allocator slab initialization
1 void mem_cache_init_objs(mem_cache_t *cachep, slab_t *slabp)
2 {
3 int i;
4

5 for (i = 0; i < cachep->num; i++)
6 slab_bufctl(slabp)[i] = i + 1;
7

8 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
9 slabp->free = 0;

10 }

This code sets up a chain that links the bufctl’s, with the free field pointing to the
first available item. When an allocation has to be performed,

Figure 5.2: Slab allocator – slab layout
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slabp->s_mem + slabp->free * cachep->objsize

yields the address of the next available slot. Since the slot pointed to by free is now
in use, the field also needs to be updated according to

slabp->free = slab_bufctl(slabp)[slabp->free]

When an object is returned to the cache, the bufctl corresponding to the slot number
has to be updated, otherwise the slot would be lost as no other bufctl is referring to
it, thus making it impossible to allocate it. Given a pointer to an object in the slab,

(objp - slabp->s_mem) / cachep->objsize

calculates the slot number within the slab. With that information, the corresponding
bufctl can be updated accordingly using

slab_bufctl(slabp)[objnr] = slabp->free
slabp->free = objnr

hence turning memory allocation into a last in – first out allocator.
As applications keep allocating and freeing from the allocator, it might runs out

of memory and needs to allocate more slabs from the operating system. Over time,
this could lead to numerous slabs on the free list being unused and memory would
be wasted. To remedy that problem, the slab allocator contains a component that
examines the caches and tries to free slabs that are not used any more. The cache
reaper is initialized in the mem_cache_init() function and periodically calls mem_-
cache_reap(). This function performs the following checks:

• If the cache is marked SLAB_NO_REAP or is currently growing, skip it

• Count how many pages could be freed

• If REAP_PERFECT or more pages could be freed, free half of the slabs from the
free list

• Otherwise keep looking for a candidate that yields the most memory when free-
ing half of the slabs from the free list

The reaper runs every 10 seconds as memory consumption is not an issue for the
FUSE file system. Such situations can only arise when e.g. a large number of files
is copied to a directory and the file manager needs to allocate corresponding vfile
structures. However, if the reaper has freed more than REAP_THRESH pages, its sleep
time will be reduced by 50% until a minimum of two seconds is reached. After the
caches have been drained sufficiently, its sleep time will grow back to REAP_SLEEP_-
TIME.

A log entry as reported on request by the FUSE file system may contain an entry
like the following:
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Name objsize nr_objs active allocs grown reaped

vfile_cache 184 21 8174 16386 781 304

The line gives information about the file manager’s vfile cache. As these objects are
used quite frequently, the file manager uses a slab cache to speed up their allocation.
Furthermore, during cache creation, mem_cache_estimate() has calculated that for a
given size of 184 byte each, 21 vfile objects will fit on a slab of size 4096. 232 bytes or
5.6% are used for bookkeeping. On a 64–bit platform, 32 byte of that will be occupied
by the slab descriptor as seen in listing 5.4. The rest of 200 bytes is used for the
bufctl array as depicted in figure 5.2. 21 objects require 21 bufctls, therefore occupying
additional 84 bytes. The remaining 116 bytes are not used. The next number indicates
the currently active (allocated) objects for this cache. 16386 objects were allocated
consecutively which caused the slab allocator to grow this cache 781 times. Since
half of the objects have been freed already, causing the allocator to move the slabs
to the slab_free list, the cache reaper gave back 304 pages to the operating system.
It should be noted that the reaper does not merge slabs. If 21000 objects had been
allocated and every other object is freed, the cache would still occupy 1000 pages as
the slabs would remain on the slab_partial list.

When creating a cache using mem_cache_create(), one can specify a bitmask of
flags for cache creation. One of those flags is SLAB_PROTECTED. Facilities like the pass-
word manager or the crypto system can use this flag to instruct the cache to automat-
ically perform a call to mlock() after additional pages have been allocated. With the
slab allocator in place, its users can utilize the amount of locked memory compared
to the initial approach. Furthermore, it can be used as an ordinary memory allocator
by not specifying the SLAB_PROTECTED flag during creation.

5.5 Crypto core

So far, the user was able to mount the file system and perform open and close op-
erations on files through the file manager, which also took care of caching of meta–
information and file opening or creation on the underlying file system. Clearly, a file
system is of no use if it does not support any data manipulation operation. Therefore,
this chapter will explain how the read() and write() callbacks are implemented, but
also the internal interfaces to the file and password manager.

The crypto system takes over right after the file manager has finished its work.
The starting point is a valid vfile object in the open() functions which was returned
by the file manager. Until now, all introduced data structures did not carry any in-
formation that maps them to a particular user, because they are valid throughout the
system and not bound to any particular user. They are maintained in a global cache
with access for all users on the system. The cryptographic context as introduced
shortly however is assigned to a specific transaction. It is the file system’s equivalent
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of a file descriptor. Similar to the well–known system calls which use the file descrip-
tor as their first argument, the cryptographic context is then automatically passed to
functions by FUSE. The context is obtained after the file manager has returned a valid
vfile object by using ocbfile_state_init(). As the name suggest, this function ini-
tialized the state and assigns it to the user. The information a state carries are shown
in listing 5.6.

Snippet 5.6: Context structure
1 struct vstate {
2 int fd; /* fd to underlying file */
3 uid_t uid; /* user ID */
4 gid_t gid; /* group ID */
5 dev_t dev; /* device ID of the underlying file */
6 ino_t ino; /* inode number of the underlying file */
7 struct ocbfile *file; /* pointer to the cached meta-data */
8 void *crypto_state; /* cryptographic information */
9 crypto_cleaner_t cleaner; /* cleanup function */

10 };

fd is the file descriptor that refers to the underlying file and that has been obtained
by the file manager through open() or creat().

uid, gid, dev, ino
can be used to ensure that the state belongs to a transaction in later calls to
read() or write(). Mainly used for debugging purposes to verify that the state
information is intact.

file
link to the file that holds all information that are file–global and used for cryp-
tographic operations: initialization vector, encryption key, and block size.

crypto_state
since multiple file versions could require different state information, this field
contains version–dependent information.

cleaner
function pointer that cleans up crypto_state when the context is not needed
any more.

Upon creation, the file member is set using ocbfile_ref() and during deletion
freed using ocbfile_unref(). This approach increments refcnt in the vfile object
and ensures that the base vfile structure is not released and deleted while there is
state information attached to it.

If the file header parser invoked by the file manager was successful, it has assigned
a set of functions to the vfile object before it returned. These functions will now be
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used by the crypto system to set up a version depended state that will handle all
crypto operations performed on this file.

Snippet 5.7: Crypto operations
1 struct crypto_ops {
2 int (*get_version)(void);
3 void (*state_free)(void *state);
4 int (*state_init)(void **state, const void *cipher,
5 void *key, const struct ocbkey_ops *key_ops,
6 size_t block_size, int fd);
7 ssize_t (*read)(void *state, struct io_request *req);
8 int (*write)(void *state, struct io_request *req);
9 int (*truncate)(void *state, off_t size);

10 };

Listing 5.7 shows the operations provided by each crypto handler. init() and free()
are used to create and delete states, whereas the last three functions are equal to the
identically named system calls. After ocbfile_state_init() has created the state
with common information about the file, it will invoke the state_init() function to
initialize necessary cryptographic context on a per transaction basis and assigns it to
the crypto_state member in the vstate structure.

5.5.1 Crypto states

If a file has been opened and the user issues a write system call, a buffer has to be
supplied that holds the data that needs to be written to the file. Depending on the
size of that buffer, the kernel might split the write into several calls and invokes the
FUSE write callback only with a chunk of that buffer until all data has been written to
disk. It is therefore the file system’s responsibility to handle each junk independently
and guarantee the correct handling of data split across several write requests. In
addition, required data structures remain the same on a per–file basis, so leaving
them initialized from one call to another saves time due to their already initialized
state.

5.5.2 File meta–information

Irregardless whether a file has been opened or newly created, the crypto subsystem
maintains a structure ocbkey for each file. The structure holds information necessary
to initialize a crypto state if a new transaction on the file is issued.

Snippet 5.8: Per–file cryptographic data
1 struct ocbkey {
2 struct ocbfile *file; /* Associated file */
3 byte_t *dek; /* Data encryption key */
4 mem_cache_t *dek_cache; /* Secure cache for the DEK */

108



5.5. Crypto core

5 size_t dek_len; /* Length of the encryption key */
6 byte_t iv[FE_IV_MAX_LENGTH]; /* Initialization vector */
7 byte_t mac[FE_MAC_NULLW_SIZE]; /* MAC for key decryption */
8 byte_t blob[FE_DEK_BLOB_SIZE]; /* Encrypted encryption key */
9 const void *cipher; /* Associated cipher */

10 char *symbolic_name; /* Symbolic name of this key */
11 char *kek_id; /* ID of this key */
12 int locked; /* Blob needs to decrypted to get DEK */
13 struct fe_padding *pad_hdr; /* Padding header for the last block */
14 };

On file creation, the crypto system generates a new DEK and initialization vector for
the file. crypto_rand() can be called to obtain a certain amount of random data that
is suitable for initialization vectors and data encryption keys, as long as the strong
parameter is set to a non–zero value. Internally, the function uses the OpenSSL library
to produce random bytes by calling RAND_bytes().

OpenSSL:

OpenSSL is a widely used library with support for all major operating systems.
According to [Pro], it describes itself as “a collaborative effort to develop a robust,
commercial–grade, full–featured, and Open Source toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as
a full-strength general purpose cryptography library.” Due to its availability is was
the first choice during development as it eases porting the software to other
platforms.
The library implements all cipher suits currently approved by NIST along with
their modes of operation. Currently, the cipher used throughout the application
is the AES. The mode of operation depends on the intended goal in a particular
situation but uses one of the modes as described in chapter section 2.3 “Block
Cipher – Modes of operation”.

The data encryption key is stored in non–swappable memory to prevent the raw
key to be written to disk. It does so by maintaining SLAB caches for common key sizes
as described in section 5.4.1. Since AES–256 has a 32 byte key size, the most important
one is the ocbkey32_cache. While the file is open and referenced, the content of the
key remains in memory. When the last reference to the file is closed however, the file
manager transfers it to the inactive cache, where it remains until it is either reused or
deleted as a consequence of its expiration.

Because crypto information could remain in memory for a longer period of time,
keeping the DEK in memory can be considered a risk and should therefore be avoided
(which is also the reason why there is no inactive cache for passwords like there is for
vfile objects). Furthermore, the DEK has to be recoverable when the file is opened
again, therefore it is written to disk along with other information when the file header
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is exported. The procedure of initializing file meta–data involves several stages, split
into the following series of events:

1. An empty ocbkey is created. Random data is obtained by calling crypto_rand()
to generate a DEK and IV.

2. The known file path is sent to the password manager which in turn forwards
the path as a type P request to keyd.

3. If keyd reports an error, file generation stops and control is returned to the file
manager which reports the error to the user.

4. Otherwise the result of the password lookup includes the user’s password along
with an identifier. The password will undergo a key expansion process that
yields the Key Encryption Key (KEK).

5. The random DEK is encrypted using the KEK and stored in the blob field. The
cipher used is AES in CBC mode.

The resulting meta–information is kept in memory, but also written to disk by the
time the header is exported using ocbfeheader_write() as all necessary information
is already generated and can be returned as is. A more complex scenario arises if
a header is to be deserialized as a result of a ocbfeheader_read() invocation. The
function reads the header from disk and passes the header to the crypto subsystem
where the above-mentioned process has to be reverted to obtain a decrypted version
of the DEK.

1. An empty ocbkey is created. The IV is copied to the key object. The encrypted
DEK is stored in the blob field.

2. The key identifier is read from the header and passed to the password manager
which then issues a type G request to obtain the user’s password.

3. If keyd reports an error, file deserialization is aborted and an error is returned to
the user.

4. Otherwise the user password undergoes the very same key expansion that gives
the same KEK as used for encryption.

5. The DEK is recovered by decrypting the blob using the KEK and stored in the
dek field.

The locked field in an ocbkey object indicates the state of the DEK. If locked is true,
DEK memory is allocated, but does not contain valid data. Attempts to obtain the
key will result in an additional request to the password manager in order to be able
to decrypt it. Because the file manager keeps passwords cached, it is possible that it
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can return a password immediately. Otherwise, a request to key is issued to obtain the
user’s password. The locked field changes during a vfile transition from the active to
the inactive cache or vice versa.

5.5.3 IO operations

The main task for the crypto subsystem is the handling of read and write opera-
tions on the underlying file. These functions are invoked when an application issues
read() and write() system calls respectively. In the FUSE file system, the user issued
calls are transformed to io_requests as seen in listing 5.9.

Snippet 5.9: IO request
1 struct io_request {
2 off_t offset; /* Offset to write to */
3 byte_t *data; /* Data to be written */
4 size_t len; /* Size of the data */
5 };

Before IO requests are written to disk, the data has to be processed by an encryption
algorithm. Currently, CBC mode as described in chapter 2.3.2 is supported to provide
compatibility with SafeGuard Enterprise. Before elaborating on how read and write
operations are implemented, it should be noted that generally there is no “correct”
way for applications to read and write data. An application may

1. Allocate a large buffer

2. Read up to size(buffer) from the file

or

1. stat() the file to be read

2. Allocate a buffer to hold the entire file

3. Read the file

4. (optional) verify that the read call returned st_size bytes of data to ensure suc-
cess.

or

1. Open the file for reading

2. mmap the file into the processes’ virtual memory. See man 2 mmap for additional
details.

3. Access the file on a per–page basis as the operating system loads and unloads
content from the file.
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Because the file system should not constrain applications, there should be no assump-
tions about how an application performs its IO. Each request has to be treated inde-
pendently. As far as the second example is concerned, if an application performs the
optional verification of the read system call, it matches the return value of read() to
the file size it has obtained through stat(). The stat() call is relayed to the file sys-
tem which in turn stats the underlying file and because each file contains an encryp-
tion header, it simply subtracts the header size from the st_size field. This behavior
is implemented in the vfile layer. The vfile layer is however not aware of the underly-
ing encryption scheme used. Depending on the used block cipher mode, additional
data in the form of padding or additional authenticated data (AAD) might be present.
The vfile layer therefore passes a stat() call on to the crypto layer which is then able
to calculate the exact file size.

Despite the file size issues, applications might also issue IO requests to arbitrary
offsets within the file. From an application’s point of view, a request to a certain
offset within the file is perfectly valid, but the following example should illustrate
the implications of random access for a cryptographic file system:

file size
1 MB

operation
read

offset
8008

length
48

With regards to CBC mode, the request cannot be satisfied directly. As can be seen
in figure 5.3, the length of the request is a multiple of the AES block size of 16 byte, the
access happens on a – with respect to the block size – unaligned offset. Therefore, the
offset has to be rounded down to the nearest block boundary (8000 in this example)
and the length of the read request has to be extended to 64. After decryption, spare
data needs to be discarded securely before the final outcome is returned to the user.
The situation gets even worse if the previous request changes to a write operation.
As for the read operation, data needs to be aligned, read into a buffer, replaced, and
finally written to the underlying file. Due to the usage of CBC mode, the replacement
causes all blocks from number 500 onwards to become invalid as each block n acts
as initialization vector for block n + 1. Given a 1 MB file with a total of 6656 blocks,
this circumstance requires the re–encryption of 6156 full blocks. In the worst-case
scenario, write access happens at offset 0, the consequence being that the whole file
needs to be rewritten in order to propagate the change throughout the file. Clearly,
this approach suffers from major drawbacks as unnecessary crypto operations slow

Figure 5.3: IO request – read access
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down the process and additional disk IO might increases degradation of hard drives,
especially if solid–state drives are used.

As a counter–measure, the file is divided into blocks of constant size. A block itself
is an isolated unit within the file. Changes in one block do not affect other blocks. In
addition, each block possesses an individual initialization vector, derived from the
random per–file IV. Applied to the previous example with a block size of 512, the
following steps have to be taken to read data according to the request:

1. The request offset is rounded down to the nearest 512 byte block boundary.
Dividing the aligned offset by the file block size yields the block number.

2. Based on the per–file initialization vector, a block IV is calculated for this par-
ticular block.

3. The block is decrypted.

4. The result is truncated to meet the request and returned.

For read operations, the application of file segmentation does not bear immediate
benefits. For write operations however, the decryption process only affects blocks
depending on the length parameter of the request.

1. The request offset is rounded down to the nearest 512 byte block boundary and
divided by the file block size to get the block number.

2. Based on the per–file initialization vector, a block IV is calculated.

3. If the offset does not match a file block boundary, the whole block is decrypted.

4. The affected portion of the decrypted buffer is overwritten with the new data.

5. The block is re–encrypted and written to disk.

6. If the request spans additional blocks, the procedure is repeated until all new
data has been processed.

Using internal file segmentation therefore has less impact on the overall throughput
of the write operation itself and the underlying hard drive. Compared to the initial
write request where the affected position was at offset zero and required rewriting of
the entire file, segmentation only affects one block. In addition, IO throughout might
also increase if the number of affected blocks is relatively small as disk fragmentation
is of no concern.
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Read requests

A read request is the result of a user invoking the read() system call. The FUSE
library will relay the call to the specified FUSE callback along with the crypto state
as explained in the previous section. The file system will verify that the state is valid
and eventually call ocbfile_read().

Since it could be possible for a multi–threaded file system that multiple users are
accessing the same file concurrently, each file is protected by a read–write lock which
in this case is locked for reading.

read–write locks

A read–write lock is a synchronization primitive used in multi–threaded pro-
gramming. It is used to protect common data from concurrent modifications.
On Linux, read–write locks can be used if the application is linked with the
POSIX library pthread.
A read–write lock is particularly useful if data is read more often than it is
written. In such cases, the application can allow users to perform reads concur-
rently. Using a mutex would be possible, but it limits the number of users with
access to the data to one. A read–write lock grants multiple users concurrent
access as long as they happen read–only leading to higher throughput. Write
access suffers from the same penalties mutexes do.
If a lock is locked for writing, each lock–to–read request is simply delayed and
the thread is put to sleep. The same applies to the lock being locked for reading
an a lock–to–write request occurs. Sleeping threads will be woken when a re-
spective unlock occurs (refer to man 3 pthread_rwlock_unlock for additional
information about Linux’ implementation and especially how waiting threads
are prioritized).

Write requests

The complexity of the write operation mainly depends on the parameters passed to
the write() function. Especially the offset parameter that specifies where in the file
the access has been requested directly influences which work has to be done by this
function. In the simplest case the offset as well as the size parameters are a multiple
of the block size. Then data is encrypted, written to disk and the operation returns.

In all other cases, the final write operation is preceded by a read operation that
reads in partial blocks that are then overwritten with the new data.

Truncate requests

Depending on the desired size of the file, truncate requests are satisfied by either
writing additional zeros to the file using the crypto write() function as introduced
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before or by trimming the file to the next lower block size boundary and appending
a partial block – also reusing the crypto write() method. This way, the truncate
operation does not add any complexity to the software.

5.6 Mountpoint bypassing

File systems using FUSE usually take a single path as their last argument that tells
the kernel module where in the file system hierarchy the to–be–created file system
should be mounted. The generic nature of FUSE does not impose any restrictions or
requirements on the file system’s features. Instead, it just forwards all requests to the
respective callback functions and reports the results back to the calling application.

Since running the file system presented in this paper to enforce certain company
policies, circumventing encryption is a major problem. However, the data the file
system exposes is not artificial, thus it must eventually persist all data passed to it on
a physic medium which leads to two folders being present on the system:

• A folder that has been specified when the file system was started. This folder
performs transparent file en– and decryption (e.g. ~/Documents_SECURE).

• A folder all data is read from and written to when it is processed by cfs (e.g.
~/Documents).

Especially for untrained users this could pose as a risk as it is likely they do not
understand how to handle this situation correctly. Things like “Save as”, “Open”,
“Recent files” and so on initially still refer to the wrong files (under ~/Documents).
The problem is point–blank the existence of two folders with the same files in it.
Therefore, cfs uses another technique to get along with only one folder in the file
system: using the at extended system calls where appropriate (e.g. openat() instead
of open(). These system calls require a file descriptor and a relative path to function.
FUSE already provides the relative path. The file descriptor is obtained by opening
the path specified when cfs is invoked. The file system is then mounted to the same
location. All operations use the file descriptor that still refers to the original folder.
Tools like ls or graphical file managers only display one folder.

If for some reason this technique does not work, one has to manually track changes
to the original directory and encrypt files after they have been closed.

Since version 2.6.13, the Linux kernel offers a powerful and efficient facility to
monitor changes to directories and files through inotify. To make use of that notifica-
tion mechanism, an application registers a set of events it is interested in for a specific
directory. Due to the fact that the obtained watch descriptor is not watching a directory
recursively, each directory along a given file system tree has to be watched separately.

inotify will be used to monitor changes to the root folder of the FUSE file system.
Recalling file meta–information caching in the the file manager subsystem, it becomes
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obvious that changes to files in the root directory are only of interest if the affected
files are not cached yet. When a file is to be manipulated, the user has to perform at
least a three step approach to do so:

1. open() a file

2. write() data to the obtained file descriptor

3. close() the file

When performed on a file through the exposed FUSE mountpoint, step 1 will already
trigger caching of meta–information. By the time a file is closed as seen in step 3, two
possible situations can occur:

• the meta–information has been cached already. It is assured that the requested
operation was performed on the FUSE mountpoint and file encryption has been
performed.

• the cache does not contain any information about the file. This is an indica-
tor that the write() operation was performed on the root directory rather than
on the FUSE mountpoint because the file system did not see a corresponding
open() operation.

In the latter case, the mountpoint watchdog needs to detect this policy violation and
move the file to the same location with the write occurring on the FUSE mountpoint
to enforce file encryption.

Snippet 5.10: notifyd info structure
1 typedef struct notifyd_handle notifyd_handle_t;
2

3 struct notifyd_callbacks {
4 void (*on_start)(void *u);
5 void (*on_stop)(void *u);
6 void (*on_close)(const char *path, void *u);
7 };
8

9 struct notifyd_info {
10 char *root; /* root directory to watch */
11 void *priv_data; /* user data */
12 struct notifyd_callbacks callbacks; /* struct of callbacks */
13 notifyd_handle_t *handle; /* opaque handle */
14 };

When the file system is started, it passes its root folder to notifyd_init() using a
struct notifyd_info as described in listing 5.10. The priv_data member is a pointer
to arbitrary data that will be available in all callbacks. The callback structure itself
allows an user (the file manager in this case) to register a set of functions that will be
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invoked when certain events are picked up by the watchdog. on_close() is the most
important callback as it will be used to ensure that a file has really been encrypted.

Initializing the watchdog is done by calling notifyd_init() with an info structure
set up appropriately. If successful, the watchdog will return an opaque notifyd_-
handle_t in info->handle that can be passed to notifyd_stop() to shut down the
watchdog.

Interacting with inotify requires an application to first obtain a unique inotify in-
stance through inotify_init(). The returned file descriptor can then be used in sub-
sequent calls to inotify_add_watch() and inotify_rm_watch() to add and remove
watch descriptors to and from files and folders respectively. A watch descriptor is
a unique number (per inotify instance) that allows the application to keep track of
where in the file system the event was triggered. Because the file system most likely
already contains existing files, the watchdog has to walk through the file system struc-
ture starting at the given root directory and install a watch for each encountered di-
rectory. The notifyd subsystem performs those steps in the notifyd_init() function.
First, notifyd installs a watch descriptor for the root directory and adds the the value to
the item cache. It then uses notifyd_scan_recursive() to recursively walk through
the file tree and install watch descriptors for the preexisting folders.

5.6.1 Watch descriptor management

When inotify events for files are received, the watch descriptor refers to the parent
directory of the file, as notifyd does not watch single files for performance reasons.
Therefore, it has to keep track of where the watch descriptor of an event refers to in
the file system. A simple solution would be to store a mapping between watch de-
scriptors and file system paths and perform lookups if a file event occurs. As mem-
ory consumption of an application should always be kept as low as possible, this
approach seems unrewarding as the stored path information would carry a lot of re-
dundancy when performing such a mapping. When a new subdirectory s is created
in an already monitored directory d with path p, the application has to store the new
watch descriptor wd(d) along with the path of that folder which consists of the path
p of the parent folder and the name of the subdirectory s. In case of the notifyd_-
init() function, this process has to be repeated for each encountered directory along
the path. Given a root directory with a large amount of subdirectories, keeping track
of full paths therefore requires a lot of memory, especially if directories have long
names (e.g. when a certain naming scheme for folders is required) and a lots of sub-
directories. A different approach has to be chosen to reduce the memory footprint of
notifyd in order to allow versatile usage.

Until now, notifyd keeps track of full paths so that for a given wd the corresponding
path can be easily recovered. Appending the event name to that path yields the full
path of an event in very few steps. As mentioned before, the path of a directory carries
a lot of redundancy, so optimization should address primarily the path handling.
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When walking the directory tree specified by the root parameter in notifyd_scan_-
recursive(), the information available in each function call consists of the parent
directory and the current directory name. Passing the concatenation of those two
paths to inotify_add_watch() yields a new watch descriptor for the current directory
which is then added to the cache.

Note:

There is a certain upper limit for open watch descriptors. The limit applies to
real UIDs which could cause less than limit watch descriptors being available
if other applications running with the same UID already make use of inotify.
The default limit for inotify watch descriptors can be obtained by running the
following command on a terminal:

$ cat /proc/sys/fs/inotify/max_user_watches

If notifyd is running out of watch descriptors for a large root directory to mon-
itor, the limit can be temporarily raised by echoing an appropriate value to
max_user_watches or permanently set by adjusting fs.inotify.max_user_-
watches in /etc/sysctl.conf.

When traversing the directory, the obtained watch descriptor is not preserved as
it is not needed because all paths are available at any time. Therefore, as a first op-
timization, the watch descriptor for a directory is passed along the path. Table 5.1
shows the resulting recursive function calls up to a level of three below the root. As
can be seen in table 5.1, the cache data contains the full path of an entry. Another
approach to recover the full path is the following algorithm:

Snippet 5.11: notifyd recursive path builder
1 function build_path(wd, path)
2 {
3 if wd == -1

Table 5.1: notifyd recursive cache set up

Level pd parent path entry cache key (wd) cache data

0 -1 NULL root 1 root
1 1 root s1 2 root/s1
2 2 root/s1 s2 3 root/s1/s2
3 3 root/s1/s2 s3 4 root/s1/s2/s3
2 2 root/s1 s4 5 root/s1/s4
3 3 root/s1/s4 s5 6 root/s1/s4/s5
1 1 root s6 7 root/s6
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4 return
5

6 path = prepend(entry(wd), path)
7 return build_path(pd(wd), path)
8 }
9

10 function get_path(pd, entry, path)
11 {
12 path = entry
13 return build_path(pd, path)
14 }

Using the pseudo code of listing 5.11 makes tracking of full paths superfluous, as they
can be rebuilt on demand. The downside of applying the path recovering algorithm
emerges when deleting directories. As only the watch descriptor wd for the parent
directory and the name of the deleted directory name are available, first the full path
of the parent directory parent_path has to be rebuilt, which simultaneously yields the
parent watch descriptor pd. With that information, the whole cache has to be scanned
for an item with name equal to name and parent watch descriptor equal to pd. When
recursively deleting folders, the deletion process starts with the leaf nodes and from
there back up to the top directory, therefore causing the application of the rebuild al-
gorithm and cache scanning for each directory, as no direct mapping between paths
and watch descriptors is kept. However, recursive folder deletion can be considered
a rare event, so the additional work might be neglectable for shallow directory struc-
tures. In other cases, when memory consumption is not an issue, an additional cache
could be kept to maintain forward mappings from paths to watch descriptors. If both
options are not applicable, the FUSE file system has to forbid directory removal en-
tirely by simply returning an error from the rmdir() function callback. File removal
is then only possible through the root directory where the encrypted data resides.

5.6.2 Event handling

After an initial set of watch descriptors has been installed by walking the direc-
tory structure through notifyd_scan_recursive(), notifyd has to wait for incoming
events dispatched by the kernel. As this call blocks until events are available, notifyd
has to outsource this task to a dedicated thread. When events are queued by inotify,
the read() call on the inotify file descriptor will return and the events will be avail-
able in the supplied buffer. The format of events as emitted by inotify is is described
in listing 5.12.

Snippet 5.12: inotify event structure
1 struct inotify_event {
2 int wd; /* Watch descriptor */
3 uint32_t mask; /* Mask of events */
4 uint32_t cookie; /* Unique cookie */
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5 uint32_t len; /* Size of name field */
6 char name[]; /* Optional null-terminated name */
7 };

The wd field will contain the watch descriptor the event occurred in. mask specifies
the event that has happened in wd. The cookie field is used to link two related events.
This is needed when watching for rename events for example. Both the MOVED_FROM
and MOVED_TO events will have the same cookie value in order for an application to
ascertain their affiliation. The name member carries the name of the affected file when
the wd refers to a directory. Otherwise its content is empty and len is 0. Since only
directories are watched, the name field will always be set.

When reading from the inotify file descriptor, multiple events may have been re-
turned. notify_process() walks through the buffer and for each event performs a
certain action:

event type action

create file discard
create directory notifyd_dir_create()
delete file discard
delete directory notifyd_dir_delete()
close file notifyd_file_closed()

• If a directory has been created (mask = IN_CREATE), it is added to the list of
watched directories and to the inotify instance using inotify_add_watch().

• If a directory has been removed (mask = IN_DELETE), it is removed from the list
of watched directories and from the inotify instance using inotify_rm_watch().

• If a file has been closed (mask = IN_CLOSE_WRITE), the callback function on_-
close() will be called. Note: The watchdog will react on the close flag, because
waiting on the modify flag for instance would maybe interrupt an ongoing write
operation when the file is moved.

The on_close() callback is implemented with the following prototype:

void (*on_close)(const char *path, int isdir)

By default, the callback is set to fileman_notifyd_cb(). This function first translates
the path to a cache key and performs a lookup in the cache. If the lookup is success-
ful, the write operation went through the FUSE mountpoint and no action needs to
be taken. Otherwise, fileman_move_dirty() is called to move the unencrypted file
through the mountpoint to the same location to trigger file encryption. It should be
noted that the file cannot be simply moved through the mountpoint as the mount-
point itself reflects the file and folder structure of the root directory the file is already
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contained in. Doing so would therefore overwrite the original file and lead to infor-
mation loss. To illustrate the situation, the following steps were performed by the
user or occurred as a result of them:

1. File system mounted with root directory ~/root to FUSE mountpoint ~/fuse.

2. Storage of a file foo.txt to ~/root/dira/dirb/foo.txt, hence bypassing file
encryption and possibly violating policies.

3. notifyd picks up the event, cannot find a corresponding file in the file manager
cache, and therefore attempts to move the file.

4. fileman_move_dirty() is called with the path ~/root/dira/dirb/foo.txt (dirty
path).

5. Since both the root directory and the FUSE mountpoint are known, the clean
path is simply a replacement option that yields ~/fuse/dira/dirb/foo.txt.

6. As both paths refer to the same underlying file, the file cannot be moved at this
time. fileman_move_dirty() uses the dirty path as input to a hash function (e.g.
SHA–1) and prepends the dirty path excluding the file name which produces the
dirty random path of the following form: ~/root/dira/dirb/{sha–1 hash}.

7. As all needed information is available at this time, the file at dirty path is re-
named to dirty random path using rename() to allow the creation of the file
foo.txt.

8. The file at dirty random path is copied to clean path using the sendfile() syscall
as a simple rename() would cause an EXDEV error because source and destina-
tion folder are not located on the same file system which is a requirement of
rename().

9. The file at dirty random path is deleted using the unlink() syscall.

10. The file at clean path is now encrypted.

5.6.3 Known issues

Although inotify provides an easy way to monitor for certain events, various tests
have shown that especially folder creation is prone to drop events if they occur in a
timely manner. A simple example will illustrate:

shell 1: $ inotifywait -e create -r /tmp
shell 2: $ cd /tmp && mkdir d d/d d/d/d d/d/d/d
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which results in the following output in shell 1: /tmp/ CREATE,ISDIR d. The created
directories under d/ are not captured by inotify and therefore lost. The inotify man
page3 addresses this issue by advising newly created directories to be scanned recur-
sively immediately after a watch descriptor for the top directory has been obtained.
Further tests have shown that this improves the situation, but does not completely
solve the problem. Especially when an application performs exhaustive folder and
file manipulation4, the immediate recursive scan of a newly created directory may
takes place before sub-directories have been created, which will always end in a race
condition. It should be noted that manual folder creation and deletion through a file
manager is not affected by this circumstance as the time between two mkdir() calls is
sufficient to install required watch descriptors.

Since the goal of the mountpoint watchdog is to monitor files and enforce encryp-
tion policies, unreliable file operation detection is unsatisfactory as events happening
in unmonitored folders would simply be unnoticed. With inotify, the problem cannot
be solved completely and no guarantee can be made that all events in a monitored
directory are actually captured by notifyd.

5.6.4 fanotify

An alternative to inotify would be the use of fanotify, which provides the same inter-
face as inotify, that is an fanotify_init() function that obtains a new file descriptor
to a new fanotify instance and fanotify_mark() that adds a fanotify mark on a file
system object. As for inotify, fanotify transfers events as shown in listing 5.13 to
userspace by sending them on the file descriptor obtained by fanotify_init(). The
application can then use read() on the descriptor to obtain the events.

Snippet 5.13: fanotify event structure
1 struct fanotify_event_metadata {
2 __u32 event_len; /* length of the data for this event and the offset
3 to the next event in the buffer */
4 __u8 vers; /* fanotify API version number */
5 __u8 reserved; /* reserved */
6 __u16 metadata_len; /* length of the structure */
7 __aligned_u64 mask; /* bitmask describing the event */
8 __s32 fd; /* file descriptor for the object being accessed */
9 __s32 pid; /* PID of the process that caused the event */

10 };

When using inotify, events contain a watch descriptor and a name which requires the
application to keep track of mappings between path names and watch descriptors to
resolve a given watch descriptor to a file system path. With fanotify however, the
application receives an already opened file descriptor to the object itself. Using the

3obtained by running man 7 inotify in a shell.
4for example when unzipping a file with lots of files and subfolders
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Linux system call readlink(), it is possible to obtain the file system path, hence ren-
dering the required mapping redundant. Besides the file flags known from inotify,
fanotify supports the additional flags FAN_OPEN_PERM and FAN_ACCESS_PERM. In addi-
tion, fanotify enables the application to mark directories with the FAN_ACCESS_PERM
flags set. This allows an application to receive events when a file is to be opened by
a process. The monitoring application can then send an appropriate reply as shown
in listing 5.14 to fanotify using write() on the file descriptor obtained by fanotify_-
init() before control is returned to the requesting application, therefore facilitating a
basic access control mechanism.

Snippet 5.14: fanotify permission reply
1 struct fanotify_response {
2 __s32 fd; /* file descriptor */
3 __u32 response; /* access permission,
4 either FAN_ALLOW or FAN_DENY */
5 };

As the goal of the watchdog is to prevent direct access to the root directory, a different
approach is possible with fanotify. As can be seen in listing 5.13, the event data incor-
porates the PID of the application that has caused the event. A policy that enforces
file encryption on the root directory would therefore be reducible to

if pid(sender) == pid(file system)
return FAN_ALLOW;

else
return FAN_DENY;

because file operations on the underlying root directory are always caused by the
process running the FUSE file system. If the reported PID differs from the known PID
of the FUSE file system, it is assured that the write operation did not pass through the
mountpoint.
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CHAPTER 6
Runtime performance

The following chapter will evaluate the FUSE file system in terms of performance.
For this purpose, the command line utility generate_random_files, located in the
extra/ directory of cfs [Lor15] has been used to generate large quantities of random
files. The command line tool has been run three times to generate enough files to
simulate an ordinary office environment with a large amount of relatively small files
and only a minor portion exceeding the 16 Megabytes mark. In terms of file encryp-
tion policies, the runtime tests simulate an initial encryption of the user’s Documents
folder. Moreover, a large amount of small files is an ideal basis for benchmarks as they
cause a magnitude of copy operations to and from userspace (over the FUSE socket),
but also mode switches from kernel to user mode. In addition, these operations also
cause context switches from the processes that issued the system call to the FUSE file
system and another one in the opposite direction.

Table 6.1 gives an overview of the randomly generated files that will serve as basis
for further benchmarks. Benchmark times for write operations are generated using cp
-r source destination. Additionally, prior to each test run, the commands

sync; echo 3 > /proc/sys/vm/drop_caches

were issued to free the pagecache and cached dentries and inodes to avoid getting
tainted results due to caching.

6.0.1 Test setup

The following test results were generated on an ordinary office workstation. The
system was composed of the following components:

CPU
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 threads

125



6. RUNTIME PERFORMANCE

Table 6.1: Sample files generated for benchmarking

File size

Dirs1 Files2 Levels Minimum Maximum Total
16 48 3 4 KB 4 MB 40 GB
16 48 3 4 MB 16 MB 16 GB
16 48 3 16 MB 64 MB 16 GB

348 26931 3 80 GB
1 Directories per level
2 Files per (sub–) directory

Important CPU Instructions
as reported by grep flags /proc/cpuinfo: [. . . ] ht pclmulqdq aes [. . . ]

Memory
8 GB PC3–12800, 1600 MHz

HDD
Western Digital Blue WD10EZEX 1TB 7200 RPM 64MB Cache SATA 6.0Gb/s

Operating System
Debian Linux, Kernel version 3.16

IO scheduler
Completely Fair Queuing (CFQ)

The 1 TB drive has been split into three partitions: 10GB for the base system and two
100GB ext4 formated partitions for the actual tests. The rest of the drive is unused.

The file system tests start with a plain copy operation and add one layer of com-
plexity per test case. Additionally, each test case is run five times in order to gather
consistent results. Data was recorded using the pidstat command. The keys in the
graphs are comprised of the operation itself (cp), the application gathering the results
(pidstat) and the round number. The mean values in Figure 6.5 were calculated by
computing the average value of rounds one to five for each log entry of the pidstat
command. This approach has been chosen because from Figures 6.2 to 6.4 the du-
ration was almost identical and differences neglectable. The complete test case suit
including the script that produced the output in the following graphs can be found
in the tests directory of [Lor15].
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Figure 6.1: Performance: raw
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Performance result: raw

In this test case, cfs is not used at all. Instead a plain copy operation is measured in
order to set the baseline for further tests.

As can be seen in figure 6.1, the copy operation brings no surprises. The load
in user space (%usr) is mostly zero as all of the processing is done entirely in kernel
space (%sys). The CPU is fully utilized on all cores and the data transfer rate oscillates
at around 90 MB/s.

Performance result: FUSE passthrough

The first step is to use FUSE and simply pass all operations through to the underlying
file system. Figure 6.2 shows the associated graphs. The first thing that should be no-
ticed is that the speed does not drop at all. Instead, both the time spent in userspace
as well as kernel space increases. This is a logical consequence of how FUSE works.
When cp needs to write data to the destination, it is copied to kernel space, then sent
over the FUSE device to cfs which in turns issues another system call that performs
the same operation on the underlying file system and data needs to be copied once
again. Since the CPU and memory are fast enough, the performance penalty is effec-
tively non-existent.

Performance result: FUSE memcpy–encryption

The test case with the results shown in figure 6.3 introduces the first layer of encryp-
tion. Although it is just a simple memcpy operation, it introduces additional logic in
cfs: write operations are split into chunks of 512 byte. For each block a initializa-
tion vector is generated and furthermore, non–aligned access to files is aligned to
block boundaries. This could potentially cause a read operation on the underlying
file to read a partial block, overwrite them with new data and write the result back
to disk. Therefore, the userspace load rises insignificantly due to memcpy, system load
increases due to additional file reads and copying from underlying files.

Performance result: FUSE AES256–CBC–encryption

The last test case performs AES–CBC encryption of all data passing through the file
system. While the load in kernel space does not increase significantly compared to
the previous test case (because the same logic applies with regards to block read–back
from the underlying file), the encryption operation dramatically increases the load in
user space. This is not a problem on a workstation, but on a battery–driven device
like a laptop it has a significant impact on battery life. Moreover, as can be seen in
figure 6.4, the write speed only drops marginally. This is an indicator that the CPU is
fast enough to perform encryption.
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Figure 6.2: Performance: FUSE passthrough
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Figure 6.3: Performance: FUSE memcpy–encryption
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Figure 6.4: Performance: FUSE AES256–CBC encryption

131



6. RUNTIME PERFORMANCE

Performance result: Comparison

Figure 6.5 shows the mean values per test case in an all–in–one plot for easier com-
parison. As stated in the beginning of this chapter, the mean values are simply the
sums over all y axis values divided by the number of runs (five in this case). Due
to similar duration of the test cases, this should not be a problem but evens out any
spikes that are caused by other processes, caching or hardware peculiarities.
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Figure 6.5: Performance: Comparison
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CHAPTER 7
Conclusion

The last chapters have shown that it is definitely possible to provide all the software
that is needed in order to achieve file format compatibility across the major operat-
ing systems in use today. Starting from a preliminary overview of available and ap-
proved cryptographic algorithms and modes, it was suggested that newer releases of
the file system should take advantage of Intel’s new instruction and switch to modes
like CTR or XTS to speed up the encryption process. Especially modes that do no
require padding should be preferred as they do not require the file system to rewrite
the padding information on the hard drive – an operation that definitely has a neg-
ative impact on performance as it requires the drive to mechanically reposition its
heads. Although the benchmarking results as presented in the previous chapter were
expected to be better, they provide a reference implementation for further improve-
ments nevertheless.

Regarding persistent storage on Linux using one of the default key stores, one
should mind the specifics and restrictions of the software. As has been pointed out,
it might pay off to even analyze their source code and identify weaknesses. This cir-
cumstance however simultaneously shows the significant advantage Linux has over
proprietary software. Source code for most of the components is commonly available
and can be used to identify problems.

Introducing various inter-process communication facilities not only available on
Linux, but all POSIX systems, a high level architecture has been developed that serves
as a common entry point for access to users’ key material. Having this facility in
place, it does not really matter any more where requests for key material come from.
For this paper, it is a file system running entirely in userspace, but instead or even
simultaneously it could also be an in–kernel file system.

The FUSE–based file system has been developed with full compatibility to already
existing software for the Windows and Mac OSX operating system in mind. Although
this aspect was not explicitly in scope of this research, Sophos expressed their interest
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in this feature for the proof–of–concept implementation – primarily for demo pur-
poses.

Because the compatibility layer is basically limited to the file format of the header
and therefore established quite easily, focus had been shifted to other crucial areas
such as secure handling of sensitive information while it is being kept in memory.
The code therefor is mostly based on the Linux kernel’s implementation of the SLAB
allocator.

A different area investigated was proper caching of metadata and file size correc-
tion. Both are equally important as operations on a file system occur quite often and
parsing a rather complex header structure needlessly slows down the user’s experi-
ence.

A problem identified but not fully resolved it the fact that users can bypass a FUSE
mountpoint and therefore file encryption in general. As the file system implementa-
tion merely is a prototype implementation, it is suggested that the file system should
be moved to the kernel’s virtual file system layer for production use. The benefit of
doing so would be increased performance while still being able to perform encryp-
tion on a per file basis. Additionally, it brings the advantage of the cryptographic file
system being stacked on top of an ordinary file system, hence making it impossible
for userspace to bypass encryption.
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APPENDIX A
SafeGuard Enterprise file format

The following tables describe the on–disk header format used by SafeGuard Enter-
prise file encryption. The header is creating during file creation and written to disk.
The only information altered during the lifetime of a file is the padding header at the
end of the header as it always reflects that last, possibly partial block of the file.

The header consists of three distinct sections. Table A.1 describes a key that is
used to initialize a block cipher will all relevant information.

As mentioned before, the last block of the file most likely does not end on a block
boundary. Therefore, padding information has to be kept to reconstruct the block
upon alteration. Table A.2 shows the padding header used to maintain that kind
of information. It should be noted that the header size is fixed. It is therefore not
possible to use a different block size than the predefined 512 byte blocks.

The largest part of the header is located right at the beginning of a file. The main
header is used to identify SafeGuard encrypted files by using various magic values,
but also to describe the cipher that produced the file along with a series of cipher keys
as described in detail in Table A.1.

Table A.1: SGN key format

Offset Size (b) Description

0 258 GUID of the key encryption key
258 2 Unused
260 4 Size of wrapped data encryption key
264 100 Wrapped data encryption key
364 8 Checksum
372 8 Unused
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A. SAFEGUARD ENTERPRISE FILE FORMAT

Table A.2: SGN padding header format

Offset Size (b) Description

3560 4 Padding identifier
3564 4 Unused
3568 8 Offset
3576 4 Padding size
3580 4 Flags
3584 512 Data

Table A.3: SGN file format

Offset Size (b) Description

0 128 Copyright string
Base structure

128 4 Base structure identifier
132 4 Size of base structure
136 4 Header version number
140 4 Owner identifier
144 4 Encryption mode
148 4 Block size
152 8 Unused

Key storage area

160 4 Key storage area identifier
164 4 Size of key storage area
168 32 Initial vector
200 8 Unused
208 2 Number of key entries
210 2 Filler bytes
212 * Array of keys (A.1)

3560 536 Unused or padding header (A.2)

142



Glossary

A

AES

A block cipher designed by Vincent Rijmen and Joan Daemen and winner of the
AES selection process held by NIST in 2001. Today it is the most encountered
cipher.

API

An Application Programming Interface (API) is usually a collection of functions
and data types exported by libraries that other applications and libraries can use
to access certain functionality of the library that implements the interface..

Asymmetric cryptography

Asymmetric cryptography or public–key cryptography denotes a process where
each party is in possession of a key pair. The public part should be distributed
among the recipients, whereas the private part remains secret and is used to
decrypt messages previously encrypted with the associated public key.

C

CBC

A cipher mode for block ciphers. It uses the output of the previous block and
XORs it with the current block as input for the cipher during encryption.

CLI

A type of User–Computer–Interface that is solely based on textual input and
output.

CTR

A mode of operation for block ciphers. The ciphertext stream is produced by
XORing input with an encrypted keystream. This mode basically turns a block
cipher into a stream cipher.

143



GLOSSARY

D

DEK

The key used for symmetric cryptography.

E

ECB

A mode of operation for block ciphers. The ciphertext stream is produced by
simply concatenating subsequent output blocks of the cipher.

F

FHS

The Filesystem Hierarchy Standard, specified and maintained by the Linux
Foundation provides information used by Unix distribution developers, pack-
age developers and system implementers about directory structures and con-
tents.

G

GCM

A mode of operation for block ciphers that provides confidentiality and in-
tegrity checking by maintaining an internal hash value that can be used upon
decryption to verify the integrity of the regained plaintext..

GNOME

A desktop environment written in C, C++, Python, Vala, Genie, JavaScript.

GPG

GPG is an open–source implementation of the OpenPGP standard as defined
by RFC4880 and provides encryption and digital signatures for data and com-
munication. It also includes key management and is widely used, especially
among the Linux community.

I

IV

Used in cipher chains as input for the first block ⊕ operation, as no previous
block exists.

K
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Glossary

K Desktop Environment

Precisely KDE Software Compilation denotes a desktop environment written in
C++ (Qt) and C.

KEK

Key used to encrypt the DEK.

Kernel

The core of the operating system. It has complete control over the system, con-
trols the hardware and interacts indirectly with the user for various tasks (e.g
process creation, file I/O, . . . ).

L

Linux distribution

Collection of packages combined with a Linux kernel release.

M

MMU

Hardware unit that performs translation from virtual addresses to physical ad-
dresses as they pass through.

P

Package Manager

A collection of tools to install, remove or upgrade packages on a Linux distri-
bution.

Package repository

Collection of packages.

PBKDF

Applies a pseudo–random function to the user input along with a salt multi-
ple times – typically >= 4096 as this number provides a good balance between
security benefits and speed penalties.

PID

A positive number used to uniquely identify a process.

POSIX

The Portable Operating System Interface is a family of standards specified by
the IEEE to maintain compatibility between operating systems.
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GLOSSARY

S

SHA-1

A cryptographic hash function designed by the NSA. It produces a 160 bit out-
put after 80 rounds of Merkle–Damgård construction.

Symmetric cipher

Symmetric ciphers use the same key for encryption and decryption. Unlike Asym-
metric cryptography, it is of uttermost importance that the secret key remains
secret as each individual in possession of the key is able to decrypt the cipher-
text.

V

VFS

An API layer in the Linux kernel that acts as an abstraction layer and dispatcher
for file system operations..

W

W Window System

Precursor of the X, originally developed at Stanford University.

X

X

A client–server specification for device-independent windowing operations on
bitmap display devices.

XTS

A cipher mode for block ciphers originally designed for hard drive encryption
where the sector size does not necessarily have to be dividable by the block size
of the cipher. Today it is widely supported including dm–crypt, geli or Apple’s
FileVault.
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List of Abbreviations

A

AES

Advanced Encryption Standard. See Glossary: AES.

API

Application Programming Interface. See Glossary: API.

C

CBC

Cipher Block Chaining mode. See Glossary: CBC.

CLI

Command Line Interface. See Glossary: CLI.

CTR

Counter Mode. See Glossary: CTR.

D

DEK

Data Encryption Key. See Glossary: DEK.

DES

Data Encryption Standard.

E

ECB

Electronic codebook mode. See Glossary: ECB.

ext3

Third Extended Filesystem.
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LIST OF ABBREVIATIONS

F

FAT

File Allocation Table.

FHS

Filesystem Hierarchy Standard. See Glossary: FHS.

FUSE

Filesystem in User–Space.

G

GCM

Galois Counter Mode. See Glossary: GCM.

GPG

GNU Privacy Guard. See Glossary: GPG.

GUID

Globally Unique Identifier.

H

HAL

Hardware Abstraction Layer.

I

IPC

Interprocess Communication.

IV

Initialization Vector. See Glossary: IV.

K

KEK

Key Encryption Key. See Glossary: KEK.

L
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List of Abbreviations

LKM

Loadable Kernel Module.

LUKS

Linux Unified Key Setup.

M

MMU

Memory Management Unit. See Glossary: MMU.

N

NIST

National Institute of Standards and Technology.

P

PBKDF

Password Based Key Derivation Function. See Glossary: PBKDF.

PID

Process Identifier. See Glossary: PID.

POSIX

Portable Operating System Interface. See Glossary: POSIX.

R

RAID

Redundant Array of Independent Disks.

S

SHA-1

Secure Hash Algorithm. See Glossary: SHA-1.

U

UID

user identifier.
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LIST OF ABBREVIATIONS

V

VFS

Virtual File System. See Glossary: VFS.

X

X

X Window System. See Glossary: X.

XML

Extensible Markup Language.

XTS

XEX-based tweaked-codebook mode with ciphertext stealing. See Glossary: XTS.
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