
Author
Stefan Neuhuber

Submission

Institut of Networks
and Security

Thesis Supervisor

Univ.-Prof. Priv.-Doz.
DI Dr. René Mayrhofer

February, 2017

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

802.1x for home users
and guest networks

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Contents

1. Introduction . 1
1.1. Motivation . 1
1.2. Threat Model and security concerns . 2
1.3. Structure . 2

2. State of the art . 3

3. Employed Technologies and Tools . 8
3.1. OpenWrt . 8

3.1.1. Architecture . 9
3.1.2. Build System . 9
3.1.3. Flash Memory Layout . 10
3.1.4. The Unified Configuration Interface (UCI) System 13

3.2. Port-Based Authentication - 802.1x . 15
3.2.1. Primary Components . 17
3.2.2. Authentication Process . 19

3.2.2.1. Communication between Supplicant and Authenticator (802.1x) . 20
3.2.2.2. Communication between Authenticator and Authentication Server

(RADIUS) . 22
3.2.2.3. Communication between Supplicant and Authentication Server

(EAP-Method) . 23
3.3. EAPoL/EAPoW Protocol . 24

3.3.1. Packet Structure . 25
Version . 25
Type . 25
Length . 26
Packet Body . 26

3.4. Extensible Authentication Protocol (EAP) . 26
3.4.1. Packet Structure . 27

Code . 28
Identifier . 28
Length . 29

I

Data . 29
3.4.2. Packet Types . 29

EAP-Request/Response . 29
EAP-Success/Failure . 30

3.4.3. EAP-Methods . 30
3.4.3.1. Packet Structure . 31

Type . 31
Data . 31

3.4.3.2. EAP-MD5 . 31
3.4.3.3. EAP-TLS . 32
3.4.3.4. EAP-TTLS . 34
3.4.3.5. PEAP . 35

3.5. RADIUS . 37
3.5.1. Packet Structure . 37

3.6. Dynamic VLANs . 41

4. Implementation . 42
4.1. Dynamic VLAN and Guest network configuration in OpenWrt 42

4.1.1. Network configuration . 43
4.1.2. DHCP configuration . 48
4.1.3. Firewall configuration . 48
4.1.4. Wireless configuration . 49

4.2. Authentication Server configuration using FreeRADIUS 50
4.2.1. Basic configuration . 50

4.2.1.1. radiusd.conf . 51
4.2.1.2. eap.conf . 53
4.2.1.3. clients.conf . 54
4.2.1.4. Enabling additional modules . 55
4.2.1.5. SQL configuration . 55

4.2.2. Populating the User database . 56
4.2.3. Issues with FreeRADIUS on OpenWrt . 59

4.3. Web interface . 60
4.3.1. User management . 60
4.3.2. Group management . 64

February 3, 2017 Stefan Neuhuber II/85

4.3.3. Network/VLAN overview . 65
4.3.4. Portability and Modifiability . 66

4.4. Credential distribution . 67
4.4.1. Distribution via QRCodes . 68
4.4.2. Mobile application for administrators . 69

4.5. Hard- and Software requirements . 72

5. Future work . 73

6. Conclusion . 74

7. Appendix . 75
7.1. EAP-Method Types . 75
7.2. RADIUS Attribute Types . 77

III

Abstract

The vast majority of wireless home networks is secured by pre-shared key authentication

models, such as WPA2-PSK, which results in a number of security issues rooted in the

wireless protocol itself as well as the environmental conditions of home networks. Apart

from the security aspects, a user-based authentication scheme also provides better control

over by whom and when the network is accessed rather than which device is connecting to

the network. A user-based authentication scheme also allows for a more granular control of

the network and its users by enforcing certain restrictions such as access times or account

expiration. This thesis implements and discusses a WPA2-Enterprise (WPA2-802.1x EAP)

solution for wireless home networks while running all necessary components and services on a

single OpenWrt based consumer device. The implemented solution provides administrators

of wireless home networks with all the key features needed to administrate this user-based

authentication system as well as comfortable ways of distributing credentials to the user or

guest.

Abstract

Der größte Teil von drahtlosen Heim-Netzwerken werden durch pre-shared key Authen-

tifikationsmodelle abgesichert, wie z.B. WPA2-PSK, welche eine gewisse Menge an Sicher-

heitsproblemen mit sich bringen, die einerseits dem Wireless Protokoll und andererseits

den Umgebungsbedingungen von Heim-Netzwerken zugrunde liegen. Abgesehen von den

Sicherheitsaspekten, bietet ein Benutzer-basierendes Authentifikationsschema bessere Kon-

trolle über von wem und wann auf das Netzwerk zugegriffen wird, als nur welches Gerät

sich zum Netzwerk verbindet. Ein Benutzer-basierendes Authentifikationsschema erlaubt

ebenfalls eine genauere Kontrolle des Netzwerks und dessen Benutzer durch die Einführung

gewisser Restriktionen wie z.B. Zugriffszeiten oder das Ablaufen eines Kontos. Diese Arbeit

implementiert und diskutiert eine WPA2-Enterprise (WPA2-802.1x EAP) Lösung für draht-

lose Heim-Netzwerke, welche alle benötigten Komponenten und Dienste auf einem einzigen

OpenWrt basierenden Router betreibt. Die implementierte Lösung bietet Administratoren

von drahtlosen Heim-Netzwerken alle nötigen Funktionen zur Verwaltung eines Benutzer-

basierenden Authentifikationssystems als auch komfortable Möglichkeiten zur Verteilung der

Anmeldedaten von Benutzern und Gästen.

V

1. Introduction

Nowadays WPA2-PSK (Wi-Fi Protected Access - Pre-Shared Key) is the default wireless security
scheme for most home networks. Although WPA2-PSK provides a good basic protection against
unwanted access to a private network this authentication model has a series of well known weak-
nesses which may be exploited rather easily. For example, a connected device or malicious user
may sniff the traffic [1][2] of other connected devices or spoof another device MAC address and
therefore impersonate said device. Apart from WPA2-PSK’s weaknesses the human factor has
to be considered as well. Many home network administrators may most likely choose an easy to
guess password and disclose it to a considerable large amount of users such as guests or neighbors
without ever changing it. This may become a rather high risk factor to a network if we consider
the amount of foreign mobile devices roaming our private and public networks.
This thesis will address the above mentioned security issues by introducing a user-based authenti-
cation scheme (using WPA2-Enterprise/WPA2-802.1x) rather than a device based authentication
(WPA2-PSK). In addition, one of the main goals of the proposed solution should be ease-of-use,
to enable guests to connect to the network with a minimal amount of effort by the administra-
tor of the network and the guest himself. By using WPA2-Enterprise also a more detailed and
granular administration will be possible. This may enable the network’s owner/administrator to
grant every user individual access rights to portions of the network, facilitate a sort of parental
control by limiting access to certain times of day and generate temporary access for guest users.
The credentials themselves can then be generated so they expire after a certain amount of time
or they are managed by the administrator and revoked if necessary.

1.1. Motivation

The goal of this work is to provide users and administrators of home networks with the possibility
of an easy way to secure their wireless network with an 802.1x port-based authentication scheme
rather than device-based schemes like WPA2-PSK. This will introduce a more secure wireless
home environment with an additional set of features that wouldn’t be possible in a WPA2-Personal
(WPA/WPA2-PSK) based network. For example the home network’s administrator will be able
to grant individual users access to certain parts of the network as well as a self contained guest
network, generate temporary guest users and introduce a sort of parental control by limiting access
times of specific users (e.g. access to the internet is only granted between 9AM and 8PM). The

February 3, 2017 Stefan Neuhuber 1/85

main focus will therefore be on creating an 802.1x/RADIUS authentication solution that is as easy
as possible to install, administrate and use by home users and their respective guest users. Further
this solution will illustrate approaches to easily distribute user’s credentials to their corresponding
devices.
To this end all services needed to realise this 802.1x port-based authentication solution will be run
on one consumer router running OpenWrt, instead of being spread across multiple devices and
systems like this is usually the case with setups of this kind (see Section 3.2.1.). Also this solution
should provide a centralised management interface to control various aspects of the system, which
are usually also handled by a series of different standalone software solutions.

1.2. Threat Model and security concerns

WPA-Personal (WPA2-PSK) represents the most popular authentication scheme for home envi-
ronments due to it’s simpleness in administration and distribution to users. Although it provides
a good basic protection against unwanted access to a wireless network there are a series of well
known weaknesses which can rather easily be exploited [1][2]. Considering many private wireless
networks are in range of multiple households and therefore potentially malicious users this might
impose a serious security risk. Also allowing guest users to join your main network might introduce
corrupted and malicious devices to the network.
Apart from those concerns the human element is also a huge factor, considering that former guests
and potentially neighbours might disclose the wireless password to unwanted users. This becomes
even more of an issue due to the fact that most administrators of such networks choose weak
passwords (which are easy to guess or crack with dictionary attacks) and rarely change them over
time.

1.3. Structure

This work offers an overview of currently existing solutions in the area of home user guest networks
as well as technologies used by the proposed and implemented 802.1x solution and also give an
outlook on how the current implementation could be improved. These topics will be discussed in
the following chapters:

� Chapter “State of the Art”: An overview of currently existing solutions in the sector of wire-
less guest networks in general and 802.1x port-based authentication solutions in particular.

� Chapter “Employed Technologies and Tools”: This chapter represents a comprehensive

February 3, 2017 Stefan Neuhuber 2/85

collection of technologies used by the implementation of this project. It discusses OpenWrt,
port-based authentication as well as the protocols involved in realising such an authentication
scheme. This includes Extensible Authentication Protocol (EAP), Extensible Authentication
Protocol over Lan/Wireless (EAPoL/EAPoW), RADIUS (these represent the foundation of
port-based authentication) and a short overview of dynamic VLAN assignment which is used
to segment the network accordingly.

� Chapter “Implementation”: Describes and discusses the necessary steps of configuring the
router and operating system to provide the needed infrastructure for hosting the guest
network, as well as the configuration of the authentication server (FreeRadius) and all
further involved components. Further this chapter discusses the implementation of an user
interface, which allows the management of the system’s key features as well as a proposed
mobile application as an addition or alternative to the former mentioned user interface.

� Chapter “Future Work”: Provides an outlook on what could be improved or added to the
system’s current implementation.

2. State of the art

Nowadays wireless guest networks are mainly accomplished by segmenting the network via separate
SSIDs, which in turn are secured using WPA-Personal (WPA/WPA2-PSK) and potentially be
distributed to the guest user using Wi-Fi Protected Setup (WPS). Figures 1, 2 and 3 show such
an example configuration and its possibilities using a ZyXEL NBG6815 wireless router:

Figure 1: ZyXEL SSID based guest networks [3]

February 3, 2017 Stefan Neuhuber 3/85

Figure 2: ZyXEL guest network options [3]

Figure 3: ZyXEL WPS configuration [3]

February 3, 2017 Stefan Neuhuber 4/85

Depending on manufacturer and device these solutions might offer different feature sets. In the
example above the device offers possibilities for activating the guest network for a set amount
of time (Figure 1) as well as restricting the SSID’s bandwidth (Figure 2). Further it allows the
registration of devices to one specific SSID using WPS (Figure 3).

Other approaches apart WPA2-PSK involve the usage of WPA2-Enterprise (802.1x port-based
authentication). Currently existing software projects and solutions in this context can basically be
categorised into three classes: Captive Portals, Radius Management and Credential/Certificate
Distribution solutions.

Captive Portals

Captive Portals are probably the best known of those three categories, since these are solutions
most users come into contact with. They are mainly used in public places wherever an open WiFi
hotspot is available. These solutions allow the redirection of a connecting HTTP client to a sort
of gateway web-page, where users are prompted access conditions, terms of use or simply asked to
log-in with a before acquired username and password. Some of the best known Captive portals1

are probably:

� HotspotSystem,

� WiFiDog and

� CoovaChilli/Chillispot,

since these are available out of the box on devices running DD-WRT and are also part of the
OpenWrt repository, they are therefore easy to implement in a home environment.
Contrary to the proposed solution of this thesis, solutions of this kind neither provide the full
extent of security provided by a full fledged 802.1x authentication system, nor a simple enough
user and/or guest management to accommodate home users, or access to extended features
provided by RADIUS. Although some proprietary hotspot solutions like HotspotSystem Basic+2

or Socialwave3 provide similar features for guest user support they are still not viable solutions for
simple and small home networks.

1List of Captive Portals: https://goo.gl/OyIgbb
2HotspotSystem: http://www.hotspotsystem.com
3Socialwave: http://www.socialwave.at

February 3, 2017 Stefan Neuhuber 5/85

https://goo.gl/OyIgbb
http://www.hotspotsystem.com
http://www.socialwave.at

RADIUS Management

RADIUS represents the server backend and central point for authenticating and authorising users
in an 802.1x secured network. Therefore it would be desirable to manage it’s features as simple as
possible. Management interfaces like FreeRADIUS Dialup Admin4, phpRADmin5 or daloRADIUS6

are foremost created for experienced administrators and simply provide the ability to manage
various aspects of a RADIUS server. This can reach from only being able to manage users,
accounting (logging) and server preferences (FreeRADIUS Dialup Admin), to providing more
advanced features like group management, billing information and more granular access control
(daloRADIUS).
Taking into account that solutions of this kind are rather complicated to manage and only provide
a fraction of the features that this work wants to offer to a home user, this kind of software is
also not a viable choice for the proposed area of application.

Credential/Certificate Distribution

This category of software provides the end-user with an automated configuration of certificates
and user credentials for joining and configuring access to 802.1x and WPA2-Enterprise networks.
Products like SU1X7 or Cloudpath Enrollment System8 accomplish this by installing their own
deployment tools or mobile apps on the respective clients. Although these solutions offer a rather
easy way to access 802.1x networks from a wide range of devices and operating systems, they
are mostly proprietary and designed for larger company or educational networks and are simply
not designed to run on consumer hardware. Also the fact that a third party application has to be
installed to join these networks makes it not applicable for this work’s target audience.

Apart from those three categories of software solutions, there are a few research projects which
tried to unify most of the above mentioned aspects and extend them with additional functionality.
The paper “A Secure Wireless LAN Access Technique for Home Network” for example suggests the
creation of a custom protocol, based on EAP, to transport several authentication methods using
passwords which are changed randomly and periodically based on a counter for each authentication
method and password [4]. Some also propose the extension of EAP to support the implementation

4Dialup Admin: http://freeradius.org/dialupadmin.html
5phpRADmin: https://sourceforge.net/projects/phpradmin/
6daloRADIUS: http://www.daloradius.com/
7SU1X: https://sourceforge.net/projects/su1x/, https://goo.gl/pyHOxz
8Cloudpath ES: https://goo.gl/PSScVN

February 3, 2017 Stefan Neuhuber 6/85

http://freeradius.org/dialupadmin.html
https://sourceforge.net/projects/phpradmin/
http://www.daloradius.com/
https://sourceforge.net/projects/su1x/
https://goo.gl/pyHOxz
https://goo.gl/PSScVN

of an Intrusion Detection System (IDS), which is not only applicable for home networks but 802.1x
secured wireless networks in general [5]. Finally “A Secure Wireless LAN Access Technique for
Home Network” suggests a rather consumer friendly 802.1x authentication method using username
and password on a dedicated SSID. This solution involves the use of a captive portal and the
execution of an applet (based on SU1X mentioned above) to distribute credentials and enrol new
users [6].

February 3, 2017 Stefan Neuhuber 7/85

3. Employed Technologies and Tools

This part of the thesis will focus on discussing details about the basis technologies and tools
used to implement the in Chapter 1.1. proposed 802.1x/RADIUS authentication solution. It
represents a comprehensive collection of technologies used by the implementation of this project,
which wasn’t found this way in any literature and therefore will be collected and discussed in
this chapter. This involves the obvious components such as OpenWrt and Radius as well as the
Extensible Authentication Protocol (EAP) which provides the basis of port-based authentication.

3.1. OpenWrt

OpenWrt is a Linux based operating system for embedded devices, usually wireless routers, which
is stripped to the bare minimum to realise distribution on a wide range of systems and hardware
with a very limited amount of resources regarding CPU speed, memory and disk space (flash
memory)9. Although it is such a minimalistic system it provides the user with full access to
the filesystem and an optional package management, which allows a free customization of the
system to ones individual needs. Since the project is entirely open-source and heavily community
driven OpenWrt, at this point, supports 50 platforms (with the instruction sets AVR32, ARM,
CRIS, m68k, MIPS, PowerPC, SPARC, SuperH, Ubicom32, x86, x86-64) [8] and offers over 3500
software packages through the opkg (Open Package Management) package management system.
To allow the user an as easy as possible configuration of the system’s most important settings
OpenWrt provides the so called UCI system [9] (see section 3.1.4.). This represents the command-
line variant of the subsystem, as well as a web user interface (as of Version 8.09) which is based
on LuCI [10], a framework written in Lua. Apart from this OpenWrt also provides an extensive
build system to enable developers to easily cross-compile their software, generate cross-compile
toolchains and build customized firmware images.

9As of the release of OpenWrt 12.09 Attitude Adjustment devices with less than 16MB RAM are no longer
supported [7].

February 3, 2017 Stefan Neuhuber 8/85

3.1.1. Architecture

To provide a better understanding of an Embedded Linux System architecture and OpenWrt’s
architecture in specific, this section provides an overview of such a system’s primary components.
This kind of systems basically consist of the following elements (also refer to Table 1):

� build system

� bootloaders

� “current” mainline Linux Kernel10

� C Libraries

� userspace (Busybox11, package manager, UCI, . . .)

UCI OPKG User
Programs

BusyBox

C Libraries

Linux Kernel

Bootloader

Table 1: OpenWrt’s architecture and system components

3.1.2. Build System

OpenWrt’s Build system is a set of Makefiles that allow users to generate both a cross-compilation
toolchain and a root filesystem (“firmware images”) for embedded systems [11]. The goal of the
build system is to automate the process of configuring and compiling your own software for different
target systems by providing the instruction set architectures of several embedded systems. To

10kernel version 3.18.23 in OpenWrt Chaos Calmer 15.05
11Busybox Website: https://busybox.net/

February 3, 2017 Stefan Neuhuber 9/85

https://busybox.net/

accomplish this OpenWrt provides a Makefile system with it’s own syntax and therefore differs
from the traditional Linux Makefiles12. In the context of OpenWrt a Makefile contains meta
information about a package, how to compile, where to install binaries and copy files, and several
other options [11].
The compilation toolchain is a set of tools used to compile code and consists of:

� a compiler (usually gcc)

� binary utilities like assembler and linker (usually binutils)

� a standard C library (most Linux systems use gLibc, but musl-libc and uClibc are also a
possibility)

The buildroot itself provides four directories (tools, toolchain, package and target) to realise the
system’s build sequence as follows [11]:

tools automake, autoconf, cmake, . . .
toolchain/binutils as (assembler), ld (linker), . . .
toolchain/gcc gcc, g++, cpp, . . .
target/linux kernel modules
package core and additional “feed” packages
target/linux kernel image
target/linux/image firmware image generation

Above mentioned “feed packages” provide the user with the ability to supply his own set of
packages using Subversion, Git or directly within the according buildroot directory. By doing so
they will already appear as a package when running make menuconfig (Linux Kernel menuconfig).
The user may then choose to compile and build them directly into a firmware image or as a separate
package for later installation with opkg [12].
For further information about installation and usage regarding the build system please refer to the
official documentation13.

3.1.3. Flash Memory Layout

Since almost all embedded systems or in this case routers don’t have any mass storage, those
systems rely on flash memory to store the operating system and additional data. Generally two

12These Makefiles can still be executed using make but provide additional flags and functionality for the OpenWrt
buildroot and toolchain, such as meta data about packages.

13OpenWrt Build System HowTo: https://wiki.openwrt.org/doc/howto/build

February 3, 2017 Stefan Neuhuber 10/85

https://wiki.openwrt.org/doc/howto/build

kinds of flash memory are employed to realise this storage. The typically smaller raw NOR flash
(4MB - 16MB used in older routers) and the larger raw NAND flash memories (32MB - 256MB
used in newer devices). This raw flash storage isn’t partitioned in the traditional sense, where
information about the partitions is stored within the Master Boot Record (MBR), but rather done
by the Linux Kernel or the bootloader (for OpenWrt’s generic flash layout see Figure 4). Partitions
are simply addressed by offsets within the raw flash, but can also be named to avoid the repeated
use of start offsets [13].

Figure 4: OpenWrt’s generic flash layout [13]

Most newer routers share this generic partition scheme, which slightly differs depending on the
U-Boot implementation and System on a Chip (SoC) specific images.
As shown in Figure 4 the partitions are nested and sectioned into four layers:

Layer 0 describes the raw flash chip which is connected to the SoC [13].
Layer 1 partitions the flash space into several parts for [13]:

1. one or more partitions for U-Boot depending on implementation
(usually u-boot and u-boot-env)

2. an OpenWrt firmware partition

3. optional SoC partitions for specific firmware

Layer 2 further divides the firmware partition into [13]:

1. kernel space, which contains a twice packed Kernel binary (first with
LZMA and then again with gzip to save as much space as possible) that
is written directly to the raw flash and not part of any filesystem.
This binary is decompressed and loaded into RAM at boot time.

2. the rootfs which contains the filesystem mounted on “/”

February 3, 2017 Stefan Neuhuber 11/85

Layer 3 again divides rootfs into two partitions [13]:

1. Read only memory partition (“/dev/root”) using SquashFS which is
mounted into “/rom”

2. writable rootfs data partition using JFFS2 which holds space for addi-
tional data and changes to existing files mounted into “/overlay”

The entire root filesystem is mounted into “/” and is comprised of “/rom” and “/overlay”,
which can therefore be ignored and only “/” should be used for changes to the system. The ROM
partition mounted in “/rom” contains all basic files depending on the selected packages when
building the firmware image. It also provides default configuration files for FailSafe booting14.
Since this partition is using SquashFS15 none of the data in this mount point can be deleted
or changed in any way. Due to the use of OverlayFS [15] all changes to existing files and
additional files which are added to the device after installation are written to the writable JFFS2
partition mounted in “/overlay” which is merged with “/rom” to form the before mentioned
“/”. Therefore whenever the system is looking for a file, “/overlay” is checked first and only if
the file doesn’t exist in this partition it checks in “/rom”. This way “/overlay” simply overrides
“/rom” and creates the illusion of a writable “/” (see Figure 5) [13].

Figure 5: OverlayFS construct [16]

When a file is to be deleted that is actually within “/rom” a corresponding entry in “/overlay”
is created instead, these entries are so called whiteouts which are symlinks that behave like the
file doesn’t exist [13].

14Booting the system with a necessary set of default settings to recover from failure.
15SquashFS is a read only compressed filesystem, which uses LZMA for the compression. Since SquashFS

is a read only filesystem, it doesn’t need to align the data, allowing it to pack the files tighter thus taking up
significantly less space than JFFS2 (saving 20-30% over a JFFS2 filesystem) [14].

February 3, 2017 Stefan Neuhuber 12/85

3.1.4. The Unified Configuration Interface (UCI) System

The UCI system is intended to provide a centralized and unified interface for configuring OpenWrt’s
basic and most important system settings. Typically these are crucial settings for the functioning
of the device such as the main network interface, wireless, remote access, firewall and logging
settings. In addition to the basic system settings some third party programs such as samba or
the system’s default web server uhttpd have been made compatible with this system to facilitate
an easier way of configuring those services. The central configuration is split into several files
which are located within “/etc/config”. Each of the files contained in this directory relates to
a portion of the system which it configures. OpenWrt offers a variety of comfortable ways to
modify these files like the command line utility uci and various APIs (e.g. shell, lua, C), which is
how the system’s web interface LuCI parses and alters UCI configuration files [9].
UCI configuration files typically consist of config statements, so called sections, and several
option and/or list statements defining the actual values (see example below).

1 config 'foo ' 'bar '

2 option 'string_var ' 'value '

3 option 'boolean_var ' '1'

4 list 'collection ' 'item_1 '

5 list 'collection ' 'item_2 '

Listing 1: UCI configuration file example

� The Statement config ’foo’ ’bar’ defines a new section of the type ’foo’ and the
name ’bar’. These sections can be anonymous as well by only providing a type and no
identifier. Although the identifier being optional a section’s type is mandatory for processing
programs to decide how to handle the enclosed options.

� The lines option ’string var’ ’value’ and option ’boolean var’ ’1’ simply de-
fine values within the defined section.

� Statements starting with the keyword list define options with multiple values. Therefore
all values of list statements with the same identifier will be merged into a single list of
values.

February 3, 2017 Stefan Neuhuber 13/85

Command Line Utility (uci)

The command line utility uci provides a simple and comfortable way of parsing and modifying
UCI configuration files for developers and scripting purposes. UCI allows several operations to the
configuration files by simply addressing the corresponding file, section and option (uci <command>

<config>.<section>.<option>). After committing any changes to a configuration file the
affected service has to be restarted for the changes to take effect.
The following example shows retrieving and setting values to a configuration file:

// show all wireless interfaces

root@OpenWrt :˜# uci show wireless | grep wifi -iface

wireless .@wifi -iface [0]= wifi -iface

wireless .@wifi -iface [0]. device ='radio0 '

wireless .@wifi -iface [0]. network ='lan '

wireless .@wifi -iface [0]. mode='ap '

wireless .@wifi -iface [0]. ssid='OpenWrt5Ghz '

wireless .@wifi -iface [0]. encryption ='none '

wireless .@wifi -iface [1]= wifi -iface

wireless .@wifi -iface [1]. device ='radio1 '

wireless .@wifi -iface [1]. network ='lan '

wireless .@wifi -iface [1]. mode='ap '

wireless .@wifi -iface [1]. encryption ='psk2 '

wireless .@wifi -iface [1]. key='some_password '

wireless .@wifi -iface [1]. ssid='OpenWrt '

// set ssid of wireless interface 2

root@OpenWrt :˜# uci set wireless .@wifi -iface [1]. ssid=test

root@OpenWrt :˜# uci commit wireless

// restart wireless devices

root@OpenWrt :˜# wifi

// retrieve the newly set ssid

root@OpenWrt :˜# uci get wireless .@wifi -iface [1]. ssid

test

Listing 2: UCI example

If there are multiple anonymous rules (e.g multiple wireless interfaces as shown in Listing 2),

February 3, 2017 Stefan Neuhuber 14/85

UCI allows them to be referenced in an array-like manner. Whereas [0] returns the first and the
usage of [-1] the last one and so on. For a full set of commands please refer to the official uci

documentation and the documentation of the corresponding configuration files [9].

3.2. Port-Based Authentication - 802.1x

The following sections will give an overview of how an 802.1x port-based authentication system
is comprised, which standards and protocols are employed and how all those parts play together.
The complexity of such a system is the result of interoperability issues between all the compo-
nents used and the fact that no single standard defines all of those components. The standards
and specifications used by 802.1x are written by two different standardisation organisations, the
Institute of Electrical and Electronic Engineers (IEEE) which supplies a standard for EAPoL [17]
(Extensible Authentication Protocol over LAN) and the Internet Engineering Task Force (IETF)
who provide the RFCs for EAP [18] (and it’s methods) as well as Radius [19].
In the context of port-based authentication the term “port” has to be understood, which rep-
resents a Layer 2 (Data Link Layer) connection to a network. In a wired network this refers to
a physical port on a switch as shown in Figure 6. While the physical connection is provided by
an Ethernet cable connected to a switch’s Ethernet port (Layer 1: Physical Layer), port-based
authentication attempts to verify the identity of the connected device via Layer 2 [20].

Figure 6: Port-based Authentication via physical link [20]

February 3, 2017 Stefan Neuhuber 15/85

Ports and therefore the IEEE standard for EAPoL also apply to wireless networks, but in a wireless
LAN the “port” is an association of a client with an access point rather than a physical connection
(see Figure 7). Every access point within a wireless network periodically broadcasts a so called
802.11 beacon frame. When a wireless client boots up the surrounding area is scanned for active
access points using those beacon frames. The client then tries to associate with an access point
which involves a series of 802.11 frame transmissions between the client and the access point [21]
as shown in Figure 8.

Figure 7: Wireless LAN virtual link [20]

Wireless

Client

Access

Point

1. probe request

2. probe response

3. authentication open request

5. association request

6. association response

7. data

4. authentication open response

Figure 8: 802.11 association process

February 3, 2017 Stefan Neuhuber 16/85

After successful connection and authentication to the network, the authentication server grants
the device access and certain privileges (depending on his credentials) to the protected network
(authorization). Although introducing port-based authentication to a wired or wireless network is a
big step towards securing these networks, methods such as data encryption, intrusion detection and
access control should still be employed in order to prevent possible attacks against the network.
In addition to preventing unauthorized users from accessing the network, a 802.1x port-based
authentication system also supports the following features [20]:

� User location: Applications can easily track the whereabouts of a user or device based on
the switch or access point where the corresponding client was authenticated.

� Billing and accounting: Combining port-based authentication with billing and accounting
mechanisms enables the implementation of fee-based network access (mostly used by hotel
solutions or Internet service providers).

� Personalized access: Based on the credentials the system grants the user access to certain
parts of the network or applications.

3.2.1. Primary Components

Until now port-based authentication systems were shown from a rather generic perspective, but
in fact there are a number of components and protocols found in the 802.1x specifications which
are involved in realising such systems. As Figure 9 constitutes, this kind of authentication system
primarily consists of supplicants, authenticators and authentication servers.

Figure 9: 802.1x primary components

February 3, 2017 Stefan Neuhuber 17/85

Supplicant is a client device that requests access to a network and needs
to be authenticated. To be recognized as a valid supplicant
the client has to implement 802.1x and a certain EAP-Method
(further details on EAP and EAP-Methods can be found in
Chapter 3.4.). The communication between supplicant and
authentication server is accomplished via EAP as transport
protocol and a specific EAP-Method to facilitate the actual
authentication mechanism (see Section 3.2.2.3.).
Whereas the supplicant and authenticator are communicating
via 802.1x EAPoL which encapsulates the EAP-Method frames
as data (see Section 3.2.2.1.).

Authenticator The authenticator is a Layer 2 device, usually a switch or access
point. It functions as a “security gate” between the supplicant
and the protected network, blocking all traffic except EAPoL
encapsulated frames until the authentication process is com-
plete (Figure 1016). This device is also responsible for the
communication between supplicant and authentication server
by taking the EAP-Method data from the EAPoL frames and
encapsulating it into RADIUS frames (see Section 3.2.2.2.).

Figure 10: 802.1x port control [22]

16AAA and 802.1X Authentication:
https://networklessons.com/security/aaa-802-1x-authentication/

February 3, 2017 Stefan Neuhuber 18/85

https://networklessons.com/security/aaa-802-1x-authentication/

Authentication Server As described above the supplicant and authenticator commu-
nicate about the authentication, where at some point the au-
thentication server will request credentials from the supplicant.
According to the credentials offered by the supplicant the au-
thentication server then either grant or deny the client access
to the protected network (see Section 3.2.2.). The 802.1x
standards and specifications don’t demand any particular type
of authentication server, but nearly all solutions use RADIUS.

3.2.2. Authentication Process

A typical authentication progression passes through the following steps (also see Figure 11):

1. Initialization: On connection of a new client/supplicant the physical port on the switch
is set active and put into an unauthorized state. As long as the port is in this state only
802.1x traffic is allowed and passed on, all other traffic will be dropped.

2. Initiation: During this phase the authenticator periodically sends EAP Identity request
frames to a multicast MAC address, which the supplicants listen to. Upon receiving said
frame the client responds with an EAP Identity response frame which contains an identifier
for the supplicant (e.g. User ID). The authenticator then further encapsulates this EAP
Identity response frame in a RADIUS Access-Request packet which is forwarded to the
authentication server.
This process can also be initiated by the supplicant with the sending of an EAPoL-Start
frame to the corresponding authenticator, which in turn responds with an EAP Identity
request frame.

3. Negotiation: After receiving former mentioned RADIUS Access-Request packet the au-
thentication server sends a RADIUS Access-Challenge encapsulated reply to the authen-
ticator, which contains an EAP authentication request specifying a certain EAP-Method
(e.g. EAP-TLS). The authenticator then encapsulates the EAP authentication request in
an EAPoL frame and forwards it to the supplicant, which can now use the specified EAP-
Method.

4. Authentication: Once the authentication server and supplicant have agreed on an EAP-
Method a series of EAP requests and responses are sent between them (relayed by the

February 3, 2017 Stefan Neuhuber 19/85

authenticator), until the authentication server responds with either EAP-Success or EAP-
Failure (encapsulated in the according RADIUS Accept-Access or RADIUS Accept-Reject
packet). In case of successful authentication the switch port will be put into an “authorized”
state and therefore allow normal traffic. This state persists until an EAP-Logoff message is
sent by the supplicant and the port is put back into an “unauthorized” state.

Supplicant Authenticator

EAPoL Start

EAP Identity request

EAP Identity response

EAP Authentication response

EAP Success/Failure

EAP Authentication request

Authentication
Server (RADIUS)

RADIUS Access-Request

RADIUS Access-Accept/Reject

RADIUS Access-Challenge

RADIUS Access-Request

Port Authorized until EAPoL-Logoff

SSL Tunnel

1

2

3

4

Figure 11: 802.1x authentication process

The following sections will discuss the communication between every single component (supplicant,
authenticator and authentication server) in further detail.

3.2.2.1. Communication between Supplicant and Authenticator (802.1x)

The 802.1x standard (EAPoL) only applies to the communication between supplicant and authen-
ticator and therefore is only a part of a 802.1x port-based authentication system, which also makes
use of other protocols such as RADIUS. As defined in the 802.1x standard, EAPoL encapsulates
EAP frames as data to facilitate the communication between supplicant and authenticator by
adding several fields (Version, Type and Length) to EAP. Chapter 3.3. will explain this encapsu-
lation in further detail. Figure 12 shows the communication explained in section 3.2.2. in further
detail to illustrate the process and encapsulation of EAP frames.

February 3, 2017 Stefan Neuhuber 20/85

Figure 12: Communication between supplicant and authenticator[20]

By sending EAPoL frames of type “0” the involved devices signal that this frame is carrying an
EAP frame as data. Whether the recipient is the supplicant or the authenticator the receiving
device simply removes the EAPoL header and processes the encapsulated EAP frame according
to its type which may be one of the following:

� Request

� Response

� Success

� Failure

Whereby the supplicant can only issue response frames and the authenticator may only perform
Request, Success and Failure frames.
If a link between a supplicant and the authenticator becomes active (after initial EAPoL commu-
nication is completed), the authenticator sends an EAP Identity Request to the supplicant. At
this point only EAP traffic will be forwarded to the protected part of the network (see Figure 11).
After confirming the supplicants identity, the supplicant and the authentication server will start
communicating based on their negotiated EAP-Method. From here on out the authenticator
merely acts as a translator between supplicant and authentication server until the authentication

February 3, 2017 Stefan Neuhuber 21/85

server authorises or rejects the supplicant. This far only the communication involving EAPoL Type
“0” frames for carrying EAP data was discussed. For establishing and maintaining the connection
between supplicant and authenticator serveral other EAPoL frames outside the scope of EAP are
necessary, including the following (as shown in Figure 12):

� EAPoL-Start

� EAPoL-Logoff

� EAPoL-Key

� EAPoL-ADF-Alert

To initiate the EAPoL connection the supplicant sends an EAPoL-Start frame, which causes the
authenticator to immediately respond with an EAP Identity request. This has to be done by
the supplicant since the authenticator has no means of detecting when the supplicant comes
online. As mentioned earlier 802.1x (i.e. EAPoL) applies to Layer 2 in order to prevent the
supplicant from connecting to the protected network [20]. To accomplish integration on Layer
2 level, 802.1x takes advantage of access control mechanisms offered by 802.1D, which defines
MAC bridges (including Spanning Tree and Bridging) [23]. Since 802.1D is required in all 802
LANs (including Ethernet and Wi-Fi), 802.1x works with any kind of LAN. In addition 802.1x
makes use of the addressing reserved for the 802.1D Spanning-Tree Protocol, in particular the
group address 01:80:C2:00:00:03 is used to facilitate 802.1x communications17. This address is
also referred to as 802.1x Port Access Entry (PAE) address. As a consequence all 802 based
devices (NICs, switches, access points, . . .) are equipped to receive and process frames sent to
this group address[20].

3.2.2.2. Communication between Authenticator and Authentication Server (RADIUS)

The communication between authenticator and authentication server is achieved by using RADIUS
(see Figure 11). This involves the following RADIUS frame types:

� Access-Request

� Access-Accept
17By using a packet sniffer and filtering for the MAC address 01:80:C2:00:00:03 all 802.1x communications can

easily be traced.

February 3, 2017 Stefan Neuhuber 22/85

� Access-Reject

� Access-Challenge

optional (if Accounting is configured):

� Accounting-Request

� Accounting-Response

To establish communication the authenticator takes the EAP-Method data from an EAPoL frame
(sent by the supplicant), encapsulates it into a RADIUS Access-Request frame and passes it on
to the authentication server. Upon receiving an Access-Request the authentication server checks
if the authenticator’s IP address and shared secret match the server’s expected values. If those
values match, the RADIUS Access-Request will be processed accordingly, if not the server simply
remains silent and doesn’t respond in any way. After processing the RADIUS Access-Request the
authentication server sends EAP-Method data to the authenticator (encapsulated into a RADIUS
Access-Challenge frame), which again the authenticator will relay to the supplicant via EAPoL.
According to the outcome of the EAP-Method exchange between supplicant and authentication
server, the server transmits the corresponding RADIUS Access-Accept or Access-Reject frame.
Which in turn is converted into an EAPoL Success or Failure frame by the authenticator and
forwarded to the supplicant.

3.2.2.3. Communication between Supplicant and Authentication Server
(EAP-Method)

The communication of supplicant and authentication server realises the actual authentication
process. As Figure 13 shows this is accomplished by exchanging EAP-Method data, which contain
various elements, such as the supplicants credentials. Depending on the chosen credential type
(username/password, encryption keys, . . .), certain EAP-Method implementations are required,
such as:

� MD5 challenge

� One-Time Passwords

Additionally there is a vast variety of proprietary and RFC-based Methods available (e.g. EAP-
TLS, EAP-TTLS, LEAP, EAP-FAST, . . .). Chapter 3.4. will discuss the most commonly used
methods in further detail.

February 3, 2017 Stefan Neuhuber 23/85

Figure 13: Communication between supplicant and authentication server[20]

3.3. EAPoL/EAPoW Protocol

The EAPoL protocol provides a Layer 2 communication between a supplicant and an authenticator
to prevent the supplicant from connecting to a network protected by a port-based authentication
system. As defined in the 802.1x standard [17] EAPoL provides mechanisms to realise EAP
communications over LANs. To accomplish this, EAPoL adds additional headers to EAP packets
in order to create specialised packet types, which transport these EAP packets as data. Figure 14
illustrates this encapsulation process within an 802.1x port-based authentication system.

Figure 14: EAPoL encapsulation[20]

The primary objective of 802.1x communications is to transport EAP-Method data, which facil-
itates the actual authentication process. The by the supplicant and authentication server nego-
tiated EAP-Method defines the actual EAP-Method data. EAP packets (typically Request and
Response packets) in turn transport the EAP-Method protocol and data. EAPoL then carries
the EAP packets, and 802.3 (Ethernet) or 802.11 (Wi-Fi) frames again transport the EAPoL

February 3, 2017 Stefan Neuhuber 24/85

packets [20]. Depending on the corresponding transport protocol we then either talk about:

� EAPoL (Extensible Authentication Protocol over LAN) or

� EAPoW (Extensible Authentication Protocol over Wireless)

3.3.1. Packet Structure

As already mentioned in Section 3.2.2.1., EAPoL adds three additional fields to an EAP packet
as a header (see Figure 15). These header fields are essential for integrating with LANs and
transporting EAP packets. The subsequent sections explain these fields in further detail.

Figure 15: EAPoL packet structure

Version

The Version field identifies the EAPoL protocol version supported by the EAPoL packet’s sender.
The length of this field is one byte and for 802.1x implementations this field always contains the
value “0000 0010”18 (Hex “02”).

Type

The Type field, with a length of one byte, describes the type of packet being sent by either the
supplicant or authenticator. Table 2 shows the various types and their values. EAPoL doesn’t
define any other values at this point which allows for future extension.

18All values are unsigned.

February 3, 2017 Stefan Neuhuber 25/85

Packet Type Value (Hex)

EAP Packet 00

EAPoL-Start 01

EAPoL-Logoff 02

EAPoL-Key 03

EAPoL-ASF-Alert 04

Table 2: EAPoL Type field values

Length

The Length field provides two bytes for storing the length of the Packet Body. The value stored
in this field represents the length of the payload in number of bytes. For example a value of
“0000 0000 1010 1010” defines a Packet Body field size of 170 bytes. A zero value in this field
signals that the according EAPoL packet doesn’t contain any payload, which is the case with
EAPoL-Start and Logoff packets. With the length of two bytes EAPoL could theoretically provide
a payload size of 65535 bytes, which is restricted by the limitations of the according link transport
protocol, i.e. Ethernet (IEEE 802.3) or Wi-Fi (802.11).

Packet Body

The Packet Body represents the payload portion of an EAPoL packet. This payload is only present
in the following types of EAPoL packet types:

� EAP-Packet

� EAP-Key

� EAP-ASF-Alert

The Packet Body contains exactly one EAP packet if the type is EAP-Packet. For the EAPoL-Key
type a single Key Descriptor and in the case of an EAP-ASF-Alert type, exactly one ASF-Alert
packet.

3.4. Extensible Authentication Protocol (EAP)

The Extensible Authentication Protocol, or EAP, was originally designed for PPP (Point-to-Point
Protocol)[24] to provide an additional authentication phase after the link was established. It

February 3, 2017 Stefan Neuhuber 26/85

is also a general-purpose authentication protocol which supports a number of authentication
methods such as Kerberos, token/smart card, one-time passwords (OTP) and public key authen-
tication [25]. Figure 16 shows a layered structure of other protocols involved with EAP and some
of the most commonly used EAP-Methods in the Authentication Layer, including EAP-MD5,
EAP-TLS, EAP-TTLS. For further details about these methods please refer to Section 3.4.3.

Figure 16: EAP layers[25]

3.4.1. Packet Structure

An EAP packet header (as shown in Figure 17) includes the following fields:

� Code

� Identifier

� Length

� Data

February 3, 2017 Stefan Neuhuber 27/85

Figure 17: EAP packet header

The subsequent sections will further describe these field types and their values.

Code

Analog to EAPoL Type fields, the EAP Code field describes a one byte long type of an EAP packet.
Table 3 shows the various types and their corresponding values. At this point EAP doesn’t specify
the use of any other values, which may be used for future extension. Refer to Section 3.4.2. for
descriptions of the packet types.

Packet Type Value (Hex)

EAP-Request[18] 01

EAP-Response[18] 02

EAP-Success[18] 03

EAP-Failure[18] 04

EAP-Initiate[26] 03

EAP-Finish[26] 04

Table 3: EAP Code field values

Identifier

The Identifier field (one byte length) facilitates a mechanism to match EAP-Response packets to
their corresponding EAP-Requests. If the EAP-Request is sent by the authentication server to
the supplicant the identifier value may be set to “0000 1010”, then the supplicant will in turn
respond with an EAP-Response packet with it’s identifier set to the same value. Additionally
the authenticator uses the same identifier values when forwarding EAP packets. Therefore each

February 3, 2017 Stefan Neuhuber 28/85

transmission uses a new identifier value.

Length

The two byte long Length field contains the length of the entire EAP packet (including Code,
Identifier, Length and Data fields). For example a length value of “0000 1000 0110 1101” indicates
a total length of 2157 bytes, resulting in an EAP Data field of the length of 2153 bytes (2157
bytes minus 4 header bytes). Since the EAP Length field describes the length of the entire packet
it’s value is equal to the value of the EAPoL Length field, which in comparison only contains the
length of its data field.

Data

Just as the EAPoL Data field this field has a variable length and may also be none existent
depending on the packet’s type. The value of the Code field (described above) defines how the
Data field’s value is to be interpreted.

3.4.2. Packet Types

EAP-Request/Response

Figure 18 illustrates the structure of EAP-Request and EAP-Response packets. Request packets
are used by the authenticator to communicate with the supplicant to request the Identity of the
supplicant or deliver EAP-Method data (see Figure 11). Response packets on the other hand serve
the supplicant’s communication with the authenticator to send EAP-Method data or credentials
requested by the authentication server.

Figure 18: EAP-Request/Response packet format

EAP specifies a set of EAP types to define the structure of EAP-Request and EAP-Response
packets. This EAP type dictates what data the EAP packet carries and is represented in the

February 3, 2017 Stefan Neuhuber 29/85

EAP-Method packet’s Type field (see Section 3.4.3.). Table 4 shows a set of standards-based
EAP types which must be supported by all EAP implementations.

EAP Type Value (Decimal)

Identity 1

Notification 2

NAK 3

MD5-Challenge 4

Table 4: Standards-based EAP types

For a full list of valid type values and their RFC references please refer to Table 7 in Appendix
Section 7.1.

EAP-Success/Failure

Based on the outcome of the EAP-Method communication between supplicant and authentication
server the authenticator my issue either EAP-Success or EAP-Failure packets to the supplicant.
Figure 19 shows the packet format for Success and Failure packets. Since those packets simply
function as notification packets the Length field in these packets is set to “00” (Data field length
is zero bytes) and therefore don’t contain an EAP Data field.

Figure 19: EAP-Success/Failure packet format

3.4.3. EAP-Methods

EAP-Methods communication represents the primary communication mechanism between a sup-
plicant and an authentication server within a 802.1x port-based authentication system. Meaning
that the EAP-Method realises the actual authentication process, whereas EAPoL and RADIUS

February 3, 2017 Stefan Neuhuber 30/85

merely serve the transport of EAP-Method data between the involved parties. The subsequent
sections will discuss the packet structure as well as the most commonly used EAP-Method types,
such as EAP-MD5, EAP-TLS, EAP-TTLS and PEAP.

3.4.3.1. Packet Structure

All EAP-Method packets consist of a two fields, a Type and Data field (see Figure 20).

Figure 20: EAP Method packet format

Type

The one byte EAP-Method Type field describes a specific EAP-Method, some of which are defined
by RFC 3748[18] (EAP specification) and have to be implemented by all EAP implementations
(see Table 4). Apart from this standards-based EAP Types there are many other types that
are proprietary and/or optional (see Table 7). The value of this Type field determines what the
encapsulating EAP packet will carry. For Example a value of “21” indicates that the EAP-Method
data is relevant to EAP-TTLS authentication processes.

Data

The EAP Data field contains the data for the corresponding EAP-Method type, such as credentials
or certificates. For instance an EAP Data field of the Identity type (indicated by a value of “1” in
the type field, see Tables 4 and 7) would carry credentials to implement an authentication process
between supplicant and authenticator.

3.4.3.2. EAP-MD5

EAP-MD5 uses challenge handshake authentication protocol (CHAP) which represents a challenge-
response process for the user authentication between supplicant and authentication server. This
one-way authentication method allows for a simple authentication through the use of a user and

February 3, 2017 Stefan Neuhuber 31/85

password, where the password’s MD5 hash is stored by the authentication server. The authenti-
cation process is implemented as a three-way handshake between supplicant and authentication
server (see Figure 21) after receiving the initial RADIUS Access-Request and EAP Identity ex-
change between supplicant and authenticator (see Figure 11).

Figure 21: EAP-MD5 three-way handshake [20]

The authentication server requests the users password by sending a RADIUS Access-Challenge to
the supplicant, which responds with the password hash using an EAP Authentication response
which is further encapsulated into a Radius Access-Request. Upon receiving this request the
authentication server either grants or denies the supplicant access to the protected part of the
network.
Finding: From a security standpoint MD5 is not suitable for public and wireless networks since the
password hashes can easily be sniffed, which allows for a derivation of the original password and
therefore compromises the networks security [27]. Also this method doesn’t provide neither server
nor mutual authentication and supplicant authentication only via password hash (see Table 5).
Therefore this method was deemed as unsuitable for the proposed scenario.

3.4.3.3. EAP-TLS

EAP-TLS (Transport Layer Security) provides a mutual authentication (opposing to EAP-MD5
which is only one-way), whereby both the supplicant and authentication server have to prove their
identities. For this purpose EAP-TLS uses public key cryptography, which may involve smart
cards, key tokens or digital certificates. The following and Figure 22 describe the EAP-TLS
authentication process in more detail:

February 3, 2017 Stefan Neuhuber 32/85

1. The authenticator sends an EAP Identity request packet to the supplicant.

2. in turn the supplicant responds with an EAP Identity response packet which contains the
connecting client’s user ID.

3. The authenticator then forwards this identity response to the authentication server by en-
capsulating it into a RADIUS Access request packet.

4. The server then sends an EAP-TLS start packet to the supplicant, which initiates a TLS
Records client-server handshake and certificate exchange.

5. The supplicant responds with EAP-Response packets of the EAP-TLS type, with the data
field containing one or more TLS records such as:

� Client Hello (to initiate handshake)

� Client certificate (optional)

� Client Key exchange

� Change cipher

� Finished

6. According to the supplicants messages the authentication server sends EAP-Request packets
to the client, containing a set of the following TLS records:

� Server-Hello

� TLS certificate

� Client certificate request (optional)

� Server done

� Change cipher

� Finished

7. After the server has sent it’s last EAP request, the supplicant sends one more EAP-TLS
message, which is empty, to signal the end of the handshake.

8. To conclude the handshake the authentication server finally sends an EAP-Success packet.
Should any of the steps fail or an error occur, the server would have sent an EAP-Failure
packet at the time the problem was detected.

February 3, 2017 Stefan Neuhuber 33/85

Supplicant Authenticator
Authentication

Server (RADIUS)

EAP Identity response

(User ID)

EAP Identity request

RADIUS Access request

(User ID)

EAP-TLS start packet

TLS Records

(handshake and certificate exchange)

TLS Records

(handshake and certificate exchange)

.

.

.

.

EAP Success/Failure

Figure 22: EAP-TLS authentication process

For further information about EAP-TLS and it’s authentication process please refer to RFC 2716
(PPP EAP TLS Authentication Protocol)[28].
Finding: As a consequence of certificate usage on both the supplicants and the authentication
server the administrative effort is very high in larger networks, since the certificates have to be
deployed on every new device that needs to be integrated into the network. Also for a home
network environment, the distribution of certificates for each device and especially guest users
represents an unacceptable amount of effort needed by both the administrator and guest user
alike to temporary register devices.

3.4.3.4. EAP-TTLS

EAP-Tunneled Transport Layer Security (EAP-TTLS) is similar to EAP-TLS, in the sense that
both are certificate-based mutual authentication systems. However EAP-TTLS only requires a
certificate on the server side. Supplicants can still be authenticated by using certificates (as with
EAP-TLS) but usually authenticate themselves through a password, which greatly reduces the
administrative effort needed to manage a port-based authentication system.
EAP-TTLS negotiations are comprised of two phases:

TLS handshake phase authenticate the supplicant with the authentication server by
using certificates (as described in Section 3.4.3.3.)

February 3, 2017 Stefan Neuhuber 34/85

TLS tunnel phase authentication of the supplicant using any non-EAP proto-
col [25]

Finding: Although this method already offers the possibility to authenticate the supplicant with
username and password without the need for a client side certificate, it was dismissed due to the
fact that EAP-TTLS wasn’t supported natively by Microsoft until Windows 8.1. Devices running
Windows XP, Vista, 7 and Windows Phone 8 do not support this authentication method without
third-party software [29]. Therefore this method would greatly restrict the range of supported de-
vices. Apart from these compatibility issues EAP-TTLS also has some significant security issues
which allow for a number of attacks [30][31].
Further information about EAP-TTLS and it’s versions can be found in RFC 5281 (EAP-TTLSv0)[32]
and the Internet draft of EAP-TTLSv1 [33].

3.4.3.5. PEAP

Protected EAP is similar to EAP-TTLS and doesn’t require certificates on the supplicants, only
on the authentication server. Same as EAP-TTLS, it also comprised of two phases. In phase
one a TLS session is negotiated and established between supplicant and authentication server (as
described before). In the second phase (tunnel phase) all EAP messages are encrypted using the
key negotiated in phase one. Hence the basic idea of EAP-TTLS and PEAP is identical, with the
difference that PEAP is only capable of using EAP protocols (e.g. EAP-MS-CHAP-V219 [34])
whereas EAP-TTLS allows the usage of both EAP and non-EAP protocols [25]. When using
this authentication method within an wireless LAN, typically the the authentication server will be
authenticated by a supplicant based on the servers certificate and a secure TLS tunnel established.
The supplicant itself is then authenticated by using username and password, which at this point
is protected by the TLS tunnel [25].
Finding: This method will be employed in the implementation portion of this thesis, to provide
the user with the capability of authentication via username and password (see Section 4.2.1.).
PEAP is also supported by all established Microsoft operating systems and therefore offers the
widest range of devices access to networks secured by this method.

19Encapsulates MS-CHAP-V2 within EAP

February 3, 2017 Stefan Neuhuber 35/85

To conclude this section about EAP and it’s various methods, Table 5 again provides an overview
and comparison of the discussed authentication mechanisms.

EAP-MD5 EAP-TLS EAP-TTLS PEAP

Server
authentication

No
Public key
(certificate)

Public key
(certificate)

Public key
(certificate)

Supplicant
authentication

Password hash

Public key
(certificate or
token/smart
card)

Certificate,
EAP, non-EAP
protocols

Certificate or
EAP protocols

Mutual
authentication

No Yes Yes Yes

Dynamic key
delivery

No Yes Yes Yes

Basic protocol
architecture

challenge /
response

Establish TLS
session and
validate
certificates for
both client and
server

1. Establish
TLS between
client and TTLS
server
2. Exchange
attribute - value
pairs between
client and server

1. Establish
TLS between
client and server
2. Run EAP
exchanges over
TLS tunnel

Server
certificate

No Required Required Required

Client
certificate

No Required Optional Optional

Protection of
user identity

No No
Yes, protected
by TLS

Yes, protected
by TLS

Table 5: Comparison of authentication mechanisms [25]

February 3, 2017 Stefan Neuhuber 36/85

3.5. RADIUS

As already discussed in Chapter 3.2., RADIUS protocols present the primary communication
mechanism between authenticator and authentication server by transporting EAP-Method data
(see Chapter 3.4.) in a certain encrypted format. 802.1x and EAP don’t necessarily require
RADIUS as an authentication server, but since RADIUS is the most popular and is also used in
the implementation part, this thesis will only focus on RADIUS as an authentication server for
the port-based authentication system.

3.5.1. Packet Structure

All RADIUS packets share the same structure, which is made up of the five fields: Code, Identifier
Length, Authenticator and RADIUS Attribure (see Figure 23).

Figure 23: RADIUS packet structure

The subsequent sections describe those fields and their values in further detail.

Code

The one byte RADIUS code field describes the type of the RADIUS packet. Table 6 shows
the various packet types and their corresponding values. At which “Accounting” packets are
optional and are only sent if accounting is active/configured and “Status” packets are still in an
experimental state [19].

February 3, 2017 Stefan Neuhuber 37/85

Packet Type Code

RADIUS Access-Request 1

RADIUS Access-Accept 2

RADIUS Access-Reject 3

RADIUS Accounting-Request 4

RADIUS Accounting-Response 5

RADIUS Access-Challenge 11

Status-Server 12

Status-Client 13

reserved 255

Table 6: RADIUS Code field values

Identifier

The RADIUS Identifier field is similar to the EAP Identifier field, which makes it possible to match
RADIUS Access-Challenge packets to their corresponding Access-Request packets. The Identifier
field of a RADIUS Access-Request packet sent by the authenticator may contain the value “0000
1010”, as a result the authentication server’s corresponding RADIUS Access-Challenge packet
also holds this value within it’s Identifier field. In addition the authenticator uses the same field
value if the same Access-Request packet has to be retransmitted.

Length

The two byte long RADIUS Length field describes the length of the entire RADIUS packet including
the fields Code, Identifier, Length, Authenticator and RADIUS Attribute. Just like EAP and
EAPoL before, the total possible length of a RADIUS packet is restricted by the link transport
protocol, i.e. Ethernet (IEEE 802.3) or Wi-Fi (802.11).

Authenticator

The Authenticator field contains a value according to the RADIUS packet type that is being
sent, i.e. request (RADIUS Access-Request) or response (RADIUS Access-Accept/Reject, Access-
Challenge) packets.

February 3, 2017 Stefan Neuhuber 38/85

Authenticator Request Contains a random 16 byte string, which is combined with
the shared secret configured in the authenticator and
authentication server and then put through a MD5 hash to
again create a 16 byte value. This value is then XORed with
the user’s password. This result is then carried by the
RADIUS Access-Request packet within the RADIUS Attribute
field (User-Password attribute). Additionally the Request
Authenticator value changes if the Identifier field is changed.

Authenticator Response Is part of RADIUS Access-Accept/Reject and
Access-Challenge packets. The Response Authenticator field
is simply a MD5 hash of the entire corresponding RADIUS
Access-Request packet plus the shared secret (see Figure 24).

Figure 24: Authenticator field structure and content

Finding: Taking into account that Access-Requests encrypted using the configured shared secret
and the connection is secured by TLS the password can be stored as cleartext on the server side.
Further information about user and password storage can be found in Chapter 4..

Attribute

The RADIUS Attribute field contains the actual data communicated between the authentication
server and authenticator. The RADIUS specification itself [19] and vendor documentation de-
fine a vast number of attributes used by RADIUS (see Table 8 in Appendix Section 7.2. and

February 3, 2017 Stefan Neuhuber 39/85

RFC 2865 [19]). As shown in Figure 25 each Attribute field is again divided into three sub-fields:
Type, Length and Value.

Figure 25: RADIUS Attribute field structure

Type Defines the type of content transported by the RADIUS Attribute field. As
mentioned before RFC 2865 [19] defines a basic set of values for the Type
field (see Table 8). Further types of attributes like the “EAP-Message”
are defined by RFC 2284 [35] (PPP Extensible Authentication Protocol),
which encapsulates EAP packets (and therefore EAP-Method data) sent
between authentication server and authenticator.

Length The Length field contains the full length of the RADIUS Attribure field,
including the length of the Type, Length and Value sub-fields.

Value Depending on the defined type the Value field may hold different kinds of
data types, such as:

� Text (UTF-8 encoded characters)

� String (binary data)

� IP Address (32 bit value)

� Integer (32 bit unsigned value)

� Time (Unix time20)

For further details about RADIUS protocols please refer to RFC 2865 (Remote Authentication
Dial In User Service, RADIUS) [19].

20Number of seconds since 00:00:00 UTC, January 1, 1970

February 3, 2017 Stefan Neuhuber 40/85

3.6. Dynamic VLANs

Dynamic VLANs or rather Dynamic VLAN Assignment allows the RADIUS server to dynamically
assign a VLAN to a supplicant that requests 802.1x authentication through that server. The
corresponding VLANs have to be configured on the RADIUS server via RADIUS attributes as
well as on the authenticator (switch) to guarantee successful authentication of a supplicant.
The RADIUS server attributes required to accomplish Dynamic VLAN Assignment are defined in
RFC 2868 [36] (RADIUS Attributes for Tunnel Protocol Support), of which the following three
attributes have to be configured by the authentication server to guarantee a functioning setup:

Tunnel-Type RADIUS Attribute field type “64”. Should be set to VLAN.
Tunnel-Medium-Type RADIUS Attribute field type “65”. Should be set to 80221.
Tunnel-Private-Group-Id RADIUS Attribute field type “81”. This value will be set to

the corresponding VLAN ID or VLAN name.

Apart from letting RADIUS assign users dynamically to networks, the usage of VLANs would also
allow the introduction of Quality of Service (QoS) for each VLAN through OpenWrt itself. This
can be done by using OpenWrt’s qos scripts. This package only represents one possibility
of accomplishing QoS in OpenWrt, although qos scripts is the most comfortable one since it
offers direct LuCI support (luci-app-qos) [37].
For more information about the configuration of Dynamic VLANs please refer to the documenta-
tion of the specific implementation of the RADIUS server, which in context of this work will be
FreeRADIUS22.

21On FreeRADIUS configurations this value is IEEE-802
22FreeRADIUS Documentation: http://freeradius.org/doc/

February 3, 2017 Stefan Neuhuber 41/85

http://freeradius.org/doc/

4. Implementation

This part of the thesis will focus on the implementation and the configuration within OpenWrt
necessary to accommodate the in Section 1.1. proposed solution. Further this chapter discusses
several problems encountered during the configuration and implementation as well as their impact
on the final result. For this project it was decided to segment the network via VLANs rather than
separate SSIDs for the individual networks to provide a more consistent administration and avoid
user confusion by offering multiple SSIDs. This solution will therefore benefit from additional
features offered by RADIUS as well as the security aspects of VLANs.

4.1. Dynamic VLAN and Guest network configuration in OpenWrt

One of the main features required for this solution is the ability to dynamically assign VLANs
to users depending on their credentials. To this end the router operating system had to support
dynamic VLAN assignment, which led to some restrictions on the hardware as well as of the
software side of things. Although it was technically possible to enable dynamic VLAN support
on OpenWrt, it wasn’t natively included until the release of version 15.05 Chaos Claimer. Up
to this release modifications to several system files regarding hostapd (authenticator for IEEE
802.11 networks) had to be made to enable this feature, which resulted in having to manually
compile firmware images for the users corresponding hardware. For the full set of necessary
changes please refer to OpenWrt changesets r4347323, r4278724, and r4187225. Due to the fact
that neither a manual compilation of the firmware image nor the installation of a custom image
would be a viable solution for the consumer, the minimum requirement of OpenWrt was simply
set to version 15.05 to guarantee the easiest and most stable installation and configuration of
the system. The configuration necessary to create a working dynamic VLAN and therefore guest
network is spread across four different files within /etc/config provided by OpenWrt’s Unified
Configuration Interface System (see Section 3.1.4.):

� network

� dhcp

� firewall
23Changeset r43473: https://dev.openwrt.org/changeset/43473/
24Changeset r42787: https://dev.openwrt.org/changeset/42787/
25Changeset r41872: https://dev.openwrt.org/changeset/41872/

February 3, 2017 Stefan Neuhuber 42/85

https://dev.openwrt.org/changeset/43473/
https://dev.openwrt.org/changeset/42787/
https://dev.openwrt.org/changeset/41872/

� wireless

The subsequent sections will describe the purpose of these files as well as the configuration needed
to create an initial wireless guest network.

4.1.1. Network configuration

OpenWrt’s network configuration can be found in /etc/config/network. It provides the ability
of defining interface configurations, switch VLANs as well as network routes [9]. In order to
generate a working dynamic VLAN environment, two types of sections provided by this file are
needed. The switch or rather the switch vlan subsections allow for partitioning the switch
into VLANs and the interface section, which allows us to create logical networks that serve as
containers for IP addresses, physical and virtual interfaces, aliases for firewall rules and so on.
The first step towards ensuring a working configuration of this kind is to modify the existing
default VLAN (VLAN ID 1) called “lan” to tag the traffic going to the CPU port, which means,
changing the default configuration of the corresponding switch vlan section. This is necessary
due to the fact that the virtual switch and therefore all switch ports are connected to the CPU
through one physical port (see Figure 26).

Figure 26: Router and switch structure [38]

February 3, 2017 Stefan Neuhuber 43/85

The default network configuration file regarding this section looks like:

1 config switch_vlan

2 option device 'switch0 ' # corresponding virtual switch

3 option vlan '1' #VLAN ID

4 option vid '1' #VLAN ID (overrides " option vlan ")

5 option ports '0 1 2 3 4' #ports to be (un)tagged , disabled

To tag the traffic towards the CPU port (in case of the development router26 this is port 027) this
section needs to be changed to:

1 config switch_vlan

2 option device 'switch0 ' # corresponding virtual switch

3 option vlan '1' #VLAN ID

4 option vid '1' #VLAN ID (overrides " option vlan ")

5 option ports ’0t 1 2 3 4’ #ports to be (un)tagged , disabled

NOTE: This port might already be tagged on some devices and therefore could be skipped if
this is the case. On the test router (Zyxel NBG6716) this wasn’t the case and port 0 had to be
’tagged’.

Next the default interface itself needs to be changed to accommodate the now tagged VLAN
traffic, therefore the physical interface (in this case eth0) needs to be converted into a virtual
interface, which means changing the interface section with the default alias “lan” from:

1 config interface 'lan '

2 option ifname 'eth0 ' # physical or virtual interface

3 option force_link '1' # Specifies whether ip address ,

4 #route , and optionally gateway

5 #are assigned to the interface

6 # regardless of the link

7 #being active

8 option type 'bridge ' #If set to " bridge ", a bridge

9 # containing the given ifnames

26Zyxel NBG6716
27The number of the of the CPU port on the switch can vary between different routers but should usually be

port 0.

February 3, 2017 Stefan Neuhuber 44/85

10 #is created

11 option proto 'static ' # Enables static adresses

12 option netmask '255.255.255.0 ' # Netmask

13 option ipaddr '192.168.1.1 ' #IP address

To a version where the interface represents the corresponding VLAN ID:

1 config interface ’vlan1’

2 option ifname ’eth0.1’ # physical or virtual interface

3 option force_link '1' # Specifies whether ip address ,

4 #route , and optionally gateway

5 #are assigned to the interface

6 # regardless of the link

7 #being active

8 option type 'bridge ' #If set to " bridge ", a bridge

9 # containing the given ifnames

10 #is created

11 option proto 'static ' # Enables static adresses

12 option netmask '255.255.255.0 ' # Netmask

13 option ipaddr '192.168.1.1 ' #IP address

Here two important changes have to be made to ensure that the 802.11 authenticator (hostapd)
can match the default vlan and attach users to it. First the alias of the interface has to be changed
from lan to vlan1 and second the physical interface eth0 is converted into a virtual interface
to represent the VLAN ID, in this case eth0.1. Additionally the IP addresses for all VLANs were
chosen in a way that the third octet represents the ID of the corresponding VLAN. For example
in the case of a VLAN with ID 30, “option ipaddr” would be ’192.168.30.1’.

NOTE: Due to the fact that the primary network interface was changed from lan to vlan1 the
DHCP (/etc/config/dhcp , see Listing 3) as well as the FIREWALL (/etc/config/firewall,
see Listing 4) confgiuration have also be updated accordingly to avoid locking the user out of the
router.

February 3, 2017 Stefan Neuhuber 45/85

1 config dhcp ’vlan1’

2 option interface ’vlan1’ #List of interfaces to listen on ,

3 # configured in network

4 # configuration

5 ...

Listing 3: Default DHCP configuration change

1 config zone

2 option name ’vlan1’ # Unique zone name

3 option network ’vlan1’ #List of interfaces attached to zone

4 ...

5

6 config forwarding

7 option src 'vlan10 ' # Specifies the traffic source zone

8 option dest 'wan ' # Specifies the destination zone

9

10 ...

Listing 4: Default Fireweall configuration change

Now that the main interface and default VLAN are reconfigured, the guest VLAN and its corre-
sponding virtual interface can be added. Therefore new switch vlan and interface sections
for VLAN ID 10 are added:

1 config switch_vlan

2 option device 'switch0 ' # corresponding virtual switch

3 option vlan '10' #VLAN ID

4 option vid '10' #VLAN ID (overrides " option vlan ")

5 option ports ’0t’ #ports to be (un)tagged , disabled

6 #(port 0 is tagged , rest disabled)

7

8 config interface 'vlan10 '

9 option ifname 'eth0 .10' # physical or virtual interface

10 option type 'bridge ' #If set to " bridge ", a bridge

11 # containing the given ifnames

12 #is created

February 3, 2017 Stefan Neuhuber 46/85

13 option proto 'static ' # Enables static adresses

14 option ipaddr '192.168.10.1 ' #IP address

15 option netmask '255.255.255.0 ' # Netmask

Listing 5: Guest network configuration

For this guest network only the CPU port (Port 0) is tagged and all other ports are disabled
(see Figure 27) to only grant access to the internet and no other portions of the network for this
VLAN.

Figure 27: Default and Guest VLANs

NOTE: The number of the VLAN can be specified by two parameters, option vlan and option

vid (see Listing 5). VID (option vid) is associated with a VLAN and is by default the same
as the number of the VLAN (option vlan), but vlan can be overridden by vid so, for example
VLAN 11 could be renamed to VLAN with ID 20 (see Listing 6) [38].

1 config switch_vlan

2 option device 'switch0 ' # corresponding virtual switch

3 option vlan '11' #VLAN ID

4 option vid '20' #VLAN ID (overrides " option vlan ")

Listing 6: Overridding VLAN ID

February 3, 2017 Stefan Neuhuber 47/85

4.1.2. DHCP configuration

Now that the VLAN and the corresponding interface are configured, the guest network interface
can be provided with options from the internal dhcp server. The configuration file responsible for
this can be found at /etc/config/dhcp. To provide the before configured virtual interface with
dhcp capabilities, a new dhcp section has to be added to the dhcp configuration file. Listing 7
shows an example for the previously configured guest network.

1 config dhcp 'vlan10 '

2 option interface 'vlan10 ' #List of interfaces to listen on

3 option start '50' # Specifies the offset from the

4 # network address

5 option limit '100' # Specifies the size of the

6 # address pool

7 option leasetime '12h' # Specifies the lease time of

8 # addresses handed out to clients

Listing 7: DHCP configuration

In this example the value of option interface refers to the alias of the virtual interface cre-
ated in Listing 5 (config interface ’vlan10’), option start indicates the starting IP ad-
dress within the IP range provided by the virtual interface (in this case the starting IP would
be 192.168.10.50) and option limit ’100’ restricts the maximum number of clients being
permitted to connect to this particular interface or VLAN.

4.1.3. Firewall configuration

To ensure that the now created guest network is routed properly, a so called firewall zone and
the appropriate forwarding rule for this zone need to be added to the firewall configuration
(/etc/config/firewall). Listing 8 shows the configuration for our example VLAN with ID
10.

1 config zone

2 option name 'vlan10 ' # Unique zone name

3 option input 'ACCEPT ' # policy for incoming zone traffic

4 option output 'ACCEPT ' # policy for outgoing zone traffic

5 option forward 'REJECT ' # policy for forwarded zone traffic

6 option network 'vlan10 ' #List of interfaces attached to zone

February 3, 2017 Stefan Neuhuber 48/85

7

8 config forwarding

9 option src 'vlan10 ' # Specifies the traffic source zone

10 option dest 'wan ' # Specifies the destination zone

Listing 8: Firewall guest network configuration

This example creates a firewall zone with name vlan10 and connects it to the interface with
the same name which was created before during the network configuration (see Section 4.1.1.).
Furthermore all traffic from the source network vlan10 is forwarded to the wan firewall zone and
therefore to the router’s WAN interface.

4.1.4. Wireless configuration

Finally to provide users with the ability to actually access the guest network, new SSIDs have to be
created on the according wireless interfaces in OpenWrt’s wireless configuration (/etc/config/

wireless). Listing 9 provides an example wireless interface configuration with dynamic VLAN
support and WPA2-Enterprise (WPA2-EAP) enabled.

1 config wifi -iface

2 option device 'radio1 '

3 option mode 'ap '

4 option ssid 'SomeSSID '

5 option encryption 'wpa2 '

6 option auth_server '127.0.0.1 '

7 option auth_port '1812 '

8 option auth_secret 'testing123 '

9 option dynamic_vlan '2'

10 option vlan_tagged_interface 'eth0 '

11 option vlan_bridge 'br -vlan '

12 option vlan_naming '0'

Listing 9: Wireless configuration

To enable these features a few specific options have to be set in the according wireless in-
terface section. WPA2-Enterprise is configured by setting encryption ’wpa2’, auth server

’127.0.0.1’ (authentication server will be running on the device itself), auth port ’1812’

(RADIUS default port) and auth secret ’testing123’ (default RADIUS shared secret, this

February 3, 2017 Stefan Neuhuber 49/85

should be changed accordingly). The configuration regarding WPA2-EAP can also be done via
OpenWrt’s own webinterface LuCI. Lastly the actual dynamic VLAN capability needs to be enabled
by setting dynamic vlan ’2’ (value ’2’ indicates that a VLAN ID is required and authentication
is rejected by the RADIUS server if it is not supplied through the according RADIUS attributes,
see Sections 3.6. and 4.2.2.), vlan tagged interface ’eth0’ (Interface on which the CPU
port was tagged, see Section 4.1.1.), vlan bridge ’br-vlan’ (defines the VLAN Bridge naming
scheme) and vlan naming ’0’ (defines how a vlan id is checked, in this case vlan<ID>).

This concludes the basic network and guest network configuration of the router, which now allows
the authentication server to be configured and enabled for the corresponding wireless radios and
SSIDs.

4.2. Authentication Server configuration using FreeRADIUS

This section of the thesis will cover the basic configuration of the authentication server, in this case
FreeRADIUS, as well as the necessary steps to enable features needed to realise the requirements
to the final system discussed in Chapter 1.1. Furthermore the configuration of the SQL portion
will be discussed as well as the initial population of the FreeRADIUS specific MySQL database.
Lastly this section will cover issues encountered with FreeRADIUS specific to OpenWrt.

4.2.1. Basic configuration

The configuration of the FreeRADIUS authentication server is split into five main files:

radiusd.conf handles the configuration of the RADIUS daemon, i.e. the
connection to the authentication server itself (listening ports,
trusted foreign IP addresses or Ethernet ports), logging and
including additional configuration files if needed.

eap.conf provides the ability to configure several EAP-Method types
(see Section 3.4.3.) for the authentication process as well as
the required certificates.

clients.conf governs a list of authenticators which are eligible to commu-
nicate with the authentication server.

sites/default contains the default policies for the authentication process.
It also provides the ability to enable modules for additional
features.

February 3, 2017 Stefan Neuhuber 50/85

sql.conf realises the configuration of the SQL module and holds the
SQL server’s connection data.

The subsequent sections will illustrate the necessary changes to these files to accomplish a working
configuration with MySQL support and the features asked for in Chapter 1.1.

4.2.1.1. radiusd.conf

This represents the server’s main configuration file. Here three sections need to be changed.
First the “listen” section needs to be changed to only listen to the localhost for authentication
packets. Listing 10 shows the parameters needed to accomplish this.

1 listen {

2 # Type of packets to listen for.

3 # Allowed values are:

4 # auth listen for authentication packets

5 # acct listen for accounting packets

6 # proxy IP to use for sending proxied packets

7 # detail Read from the detail file. For examples , see

8 # raddb/sites - available /copy -acct -to -home - server

9 # status listen for Status - Server packets .

10 # For examples ,

11 # see raddb/sites - available / status

12 # coa listen for CoA - Request and Disconnect - Request

13 # packets . For examples , see the file

14 # raddb/sites - available /coa

15 #

16 type = auth

17 ipaddr = 127.0.0.1

18 port = 0

19 # interface = br -vlan1

20 interface = lo # optional

21 ...

22 }

Listing 10: radiusd.conf listen section

Setting “port = 0” causes the server to listen to it’s default port which is provided by “/etc/

services”. Also the parameter ”interface = br-vlan1 needs to be made inactive, else the

February 3, 2017 Stefan Neuhuber 51/85

RADIUS daemon won’t respond to requests. Further due the fact that the RADIUS server is only
needed locally it doesn’t need to be bound to any interface at all, but can optionally be bound to
the loopback interface (interface = lo).

Secondly the “log” section will be modified to provide more information about the authentication
process. This is mainly done to provide this information to the webinterface later on and for
debugging purposes (see Listing 11).

1 log {

2 ...

3 auth = yes

4 # rest remains unchganged

5 ...

6 }

Listing 11: radiusd.conf log section

Lastly the “modules” section has to be changed so that the eap, sql and any additional modules
are loaded (see Listing 12).

1 modules {

2 # Modules are initialized ONLY if they are

3 # referenced in a processing section , such as authorize ,

4 # authenticate , accounting , pre/post -proxy , etc.

5 $INCLUDE ${ confdir }/ modules /

6

7 # Extensible Authentication Protocol

8 # For all EAP related authentications .

9 $INCLUDE eap.conf

10

11 # Include another file that has the SQL - related configuration

.

12 $INCLUDE sql.conf

13 ...

14 }

Listing 12: radiusd.conf modules section

February 3, 2017 Stefan Neuhuber 52/85

4.2.1.2. eap.conf

As already mentioned this file handles the configuration of the preferred EAP-Method which in
this case will be PEAP (see Section 3.4.3.3.). To enable this authentication method a view
changes have to be made to the “tls” and “peap” subsections of the eap section. Listing 13
shows the changes for providing the server with the necessary certificate files, which were created
beforehand.

1 eap {

2 ...

3

4 tls {

5 # Configuration Directory

6 confdir = /etc/<some directory >/CA

7 # Certificates

8 certdir = ${ confdir }

9 # Certificate Authority

10 cadir = ${ confdir }

11 # Private Key data

12 private_key_password = <password >

13 private_key_file = ${ certdir }/ server .pem

14 # Certificate file

15 certificate_file = ${ certdir }/ server .pem

16 # Certificate Authority file

17 CA_file = ${cadir }/ca.pem

18 # DiffieŰHellman cipher file

19 dh_file = ${ certdir }/dh

20 random_file = ${ certdir }/ random

21 # Certificate Authority path

22 CA_path = ${cadir}

23

24 ...

25 }

26

27 peap {

28 # The tunneled EAP session needs a default

29 # EAP type which is separate from the one for

30 # the non - tunneled EAP module .

31 # MS - CHAPv2 is recommended as this is the

February 3, 2017 Stefan Neuhuber 53/85

32 # default type supported by Windows clients .

33 default_eap_type = mschapv2

34 ...

35 }

36 ...

37 }

Listing 13: eap.conf eap section

4.2.1.3. clients.conf

To provide the authenticator with the ability to actually communicate with the authentication
server, it needs to exist within clients.conf. Since in this case the authenticator will be
the device itself it is only necessary to configure the client/authenticator labelled “localhost”.
Listing 14 shows the required parameters to be set.

1 client localhost {

2 ipaddr = 127.0.0.1

3 secret = <shared secret >

4

5 # Older Clients my not include a Message - Authenticator in an

6 # Access - Request packet . Therefore to also support older

7 # clients this should be set to "no"

8 require_message_authenticator = no

9

10 nastype = other

11 ...

12 }

Listing 14: client.conf localhost section

After setting these parameters the hostapd process and the wireless interface configured in Section
4.1.4. can finally communicate with the authentication server.

February 3, 2017 Stefan Neuhuber 54/85

4.2.1.4. Enabling additional modules

Additional FreeRADIUS modules can be enabled in /etc/freeradius2/sites/default by un-
commenting the appropriate lines within the authorize section. To facilitate the features de-
scribed in Section 1.1., namely “Account Expiration” and a “Login Time Restriction”, the modules
expiration and logintime have to be installed and activated (see Listing 15).

1 authorize {

2 ...

3 expiration

4 logintime

5 ...

6 }

Listing 15: sites/default authorize section

4.2.1.5. SQL configuration

The MySQL configuration for FreeRADIUS is spread across two files, radiusd.conf (already
handled in Section 4.2.1.1.) and /etc/freeradius2/sites/default. The second part in
“sites/default” concerns the sections authorize, accounting and session (see Listing 16).

1 authorize {

2 ...

3 # Look in an SQL database . The schema of the database

4 # is meant to mirror the "users" file.

5 sql

6 ...

7 }

8

9 # Accounting . Log the accounting data.

10 accounting {

11 # Log traffic to an SQL database .

12 sql

13 }

14

15

16

February 3, 2017 Stefan Neuhuber 55/85

17 # Session database , used for checking Simultaneous -Use.

18 session {

19 radutmp

20 sql

21 }

Listing 16: sites/default sql configuration

Enabling the sql parameter in the accounting section isn’t necessarily required since Accounting
won’t be used but should be enabled nevertheless to avoid possible errors should Accounting be
required in the future.

4.2.2. Populating the User database

Now that the authentication server is completely configured, the MySQL database holding the
users information can be populated with the initial users, groups and other relevant data. The
FreeRADIUS MySQL database consists of the following tables to represent the data which per
default would be stored within the “users” file:

� radcheck

� radreply

� radgroupreply

� radusergroup

� radgroupcheck

� radacct

� radpostauth

Out of those seven tables only the first five are used for the purpose of this work. The ta-
bles radacct and radpostauth are handling, as the names suggest, Accounting and Post-
Authentication RADIUS attributes which aren’t used in this case.

February 3, 2017 Stefan Neuhuber 56/85

To illustrate how these tables are used and what data they contain, a few groups and users are
created. As a first step three different groups with their corresponding RADIUS attributes are
inserted into the table radgroupreply, see Listing 17 below.

mysql > select * from radgroupreply ;

+----+--------------------+-------------------------+----+----------+

| id | groupname | attribute | op | value |

+----+--------------------+-------------------------+----+----------+

| 1 | guest | Tunnel -Type | = | VLAN |

| 2 | guest | Tunnel -Medium -Type | = | IEEE -802 |

| 3 | guest | Tunnel -Private -Group -ID | = | 10 |

| 4 | FullAccess | Tunnel -Type | = | VLAN |

| 5 | FullAccess | Tunnel -Medium -Type | = | IEEE -802 |

| 6 | FullAccess | Tunnel -Private -Group -ID | = | 1 |

| 7 | ParentalControl_1 | Tunnel -Medium -Type | := | IEEE -802 |

| 8 | ParentalControl_1 | Tunnel -Type | := | VLAN |

| 9 | ParentalControl_1 | Tunnel -Private -Group -ID | := | 10 |

+----+--------------------+-------------------------+----+----------+

Listing 17: Group definitions

Two of these groups, “FullAccess” and “guest”, will be part of the default installation of this
project, whereas “ParentalControl 1” only exists for testing and illustration purposes later on. Each
group is defined by three RADIUS attributes, Tunnel-Type, Tunnel-Medium-Type and Tunnel-
Private-Group-ID which allow for a dynamic vlan assignment (for further information about these
attributes please refer to Section 3.6. and RFC 2868 [36]). These groups are responsible for
assigning their respective users the according vlan, i.e. the group “guest” will assign vlan 10
(which was configured in Section 4.1.) to all guest users and all “FullAccess” users will be
granted access to the default vlan.
Next users are created within the table radcheck, which basically holds the username and all
attributes that need to be checked before granting a user access to a network. These attributes
include the password, expiration date as well as the login time (see Listing 18).

February 3, 2017 Stefan Neuhuber 57/85

mysql > select * from radcheck ;

+----+-----------+--------------------+----+------------------+

| id | username | attribute | op | value |

+----+-----------+--------------------+----+------------------+

| 1 | admin | Cleartext - Password | := | password |

| 44 | g -82842 | Cleartext - Password | := | h7352 |

| 45 | g -82842 | Expiration | := | 6 May 2016 12:28 |

+----+-----------+--------------------+----+------------------+

Listing 18: User definitions

NOTE: The passwords can be stored as “Cleartext” due to the reasons described in Sec-
tion 3.5. Further the usage of the “MD5-Password” attribute would prohibit FreeRADIUS from
using MsChapv2 or any CHAP authentication for that matter [39].

Finally each of the users created above is assigned to a group within table radusergroup.

mysql > select * from radusergroup ;

+-----------+--------------------+----------+

| username | groupname | priority |

+-----------+--------------------+----------+

| admin | FullAccess | 1 |

| g -82842 | guest | 1 |

+-----------+--------------------+----------+

Listing 19: User to Group assignment

In some cases like the in Listing 17 defined group “ParentalControl 1” an additional table is
needed, since this group requires a group wide check attribute to realise the login time restriction
for it’s users (see Listing 20).

mysql > select * from radgroupcheck ;

+----+--------------------+------------+----+-------------+

| id | groupname | attribute | op | value |

+----+--------------------+------------+----+-------------+

| 1 | ParentalControl_1 | Login -Time | := | Al0800 -2000 |

+----+--------------------+------------+----+-------------+

Listing 20: Group wide attributes

February 3, 2017 Stefan Neuhuber 58/85

In this example the value “Al0800-2000” indicates a daily access to the groups corresponding
network between 08:00 and 20:00. For further information about the Login-Time attribute and
it’s values please refer to the FreeRADIUS documentation28.
Additionally, if there should be user without any group affiliations, all data that is usually held in
radgroupreply needs to be stored on a user instead of group basis, which is done by the table
radreply (see Listing 21).

mysql > select * from radreply ;

+----+----------+-------------------------+----+----------+

| id | username | attribute | op | value |

+----+----------+-------------------------+----+----------+

| 1 | test | Tunnel -Type | = | VLAN |

| 2 | test | Tunnel -Medium -Type | = | IEEE -802 |

| 3 | test | Tunnel -Private -Group -ID | = | 10 |

+----+----------+-------------------------+----+----------+

Listing 21: Groupless user’s reply section

NOTE: Users without a group are automatically assigned to the guest network (see Section 4.3.1.).

4.2.3. Issues with FreeRADIUS on OpenWrt

During the course of the installation and configuration of FreeRADIUS a few issues with the sup-
port of SQL came to light. First off FreeRADIUS or rather the sql package needed (freeradius2

-mod-sql) to enable SQL support from OpenWrt’s repository is missing all files except the main
SQL configuration file mentioned earlier. These missing files have been taken from an installation
on a Debian system and will be included within the final OpenWrt package. Further FreeRADIUS2
is missing the support for SQLite, which would have saved resources on the device compared to
using a MySQL database (also see section 4.5. for Hard- and Software requirements). This is not
an issues specific to OpenWrt but in general. The support of SQLite is now part of FreeRADIUS3
which isn’t part of any official repository yet and therefore not a viable solution for this project,
since it would have to be compiled for each platform individually.

28FreeRADIUS Special attributes used in the users file: http://wiki.freeradius.org/config/Users#
special-attributes-used-in-the-users-file

February 3, 2017 Stefan Neuhuber 59/85

http://wiki.freeradius.org/config/Users#special-attributes-used-in-the-users-file
http://wiki.freeradius.org/config/Users#special-attributes-used-in-the-users-file

4.3. Web interface

To finally provide the administrator/owner of a wireless home network with the ability to easily
manage the before configured system, a rather simple web based administration interface was
implemented. Which allows for creating and managing users, guests and groups, provides an
overview of all existing networks/vlans and an authentication and error log. The subsequent
sections will elaborate on how the former mentioned functionality is implemented and how to
actually operate this web interface.

4.3.1. User management

The user management page provides the administrator with an overview of all existing users and
currently active guests as well as their current group affiliation. It also allows for the creation of
additional users and guests, as well as the editing, deletion and displaying of detailed information
of existing ones (see Figure 28).

Figure 28: User management

Adding a new guest user will result in the creation of a new user affiliated with the group “guest”
and an expiration time of four hours from the time of creation. Additionally a QRCode based on
this users credentials will be generated to potentially allow an easier distribution of user data to

February 3, 2017 Stefan Neuhuber 60/85

the guest (for additional information about credential distribution please refer to Section 4.4.).
The generation of guest credentials is handled by the the class “CGenerator” (see Listing 22),
which creates a new username starting with “g-” and a suffix based on the current time (e.g.
“g-103456”, possible collisions are avoided when generating the user) as well as a five character
long password starting with a random letter followed by four random digits. These username and
password are chosen to be rather short and simple in order to minimise the guests effort when
entering his credentials manually (which will be the default case). Additionally since the guests
are only valid for four hours and are regularly deleted this shouldn’t impose any security risks.

1 class CGenerator {

2

3 private $username ;

4 private $password ;

5

6 function createGuest () {

7 $this -> username = "g-" . date("Gis");

8 return $this -> username ;

9 }

10

11 function generatePasswd (){

12 $letters = array_merge (range('a', 'z'), range('A', 'Z'));

13 $this -> password = $letters [$this ->crand (0, 51)] . $this ->crand

(1000 ,9999) ;

14 return $this -> password ;

15 }

16

17 function createQRCodeFrom ($ssid , $uname , $passwd){

18 $qrstr = 'TXT:WIFI:S:' . $ssid . ';T :802.1 x EAP;U:'. $uname .'

;P:'. $passwd . ';; ';

19 exec(" qrencode -s 8 -l H -c -m 0 -t SVG -o ./ cache/ qrcode .svg

'" . $qrstr . "'");

20 }

21

22 function crand($min , $max){

23 $range = $max - $min;

24 if ($range < 1) return $min;

25 $clog = ceil(log($range , 2));

26 // number of bytes

February 3, 2017 Stefan Neuhuber 61/85

27 $byte_len = (int)($clog / 8) + 1;

28 // length in bits

29 $bit_len = (int)$clog + 1;

30 // set all relevant bits to 1

31 $cutoff = (int)(1 << $bit_len) - 1;

32 do{

33 $random = hexdec (bin2hex (openssl_random_pseudo_bytes (

$byte_len)));

34 // filter irrelevant bits

35 $random = $random & $cutoff ;

36 } while ($random > $range);

37 return $min + $random ;

38 }

39 }

Listing 22: Guest user credential generation

Further this class offers the generation of a QRCode appropriate to a given SSID (SSID of the
802.1x network) and credentials generated beforehand. This is accomplished by creating a string
using the following scheme:

WIFI:S:<SSID >;T :802.1 x EAP;U:<USERNAME >;P:<PASSWORD >;;

The substring WIFI informs the barcode scanner that this string contains network connection
data and therefore should communicate with the devices network manager to add a new wireless
connection with the security setting set to the value described by T (WEP, WPA, 802.1x EAP)
within the QRCode string. Based on this string a QRCode is created using the tool “qrencode”,
which is provided by OpenWrt’s repository and based on “libqrencode”.

Figure 29 shows the creation of a new user, which allows creating users with a specific group
affiliation as well as the two optional parameters “Expiration” and “Access Time”. The expiration
can be provided in either hours or days (e.g. 2h or 4d), if left blank the account won’t expire until
deleted or revoked by the administrator. Access Time has to be provided in a 24h format and will
result in a daily login time restriction within the given timeframe.

February 3, 2017 Stefan Neuhuber 62/85

NOTE: Users with no group affiliation (Group = NONE) are automatically assigned to the guest
network by the Web Interface to avoid unwanted access to the main network.

Figure 29: Create user

Additionally this page allows to show a users details, including the actual expiration date and time
as well as the QRCode generated for this specific user (see Figure 30).

Figure 30: User details

February 3, 2017 Stefan Neuhuber 63/85

4.3.2. Group management

Similar to the user management page, the group management provides an overview of all existing
groups and their currently configured VLAN, as well as the ability to add further groups and edit
and delete existing ones (see Figure 31).

Figure 31: Group management

Figure 32 shows the group creation interface which allows the adding of additional groups with a
specific VLAN configured on the device. Optionally groups, just like users, can be created with
an “Access Time” parameter to realise a daily login time restriction on a group basis (e.g. for
enforcing a sort of parental control).

Figure 32: Create group

February 3, 2017 Stefan Neuhuber 64/85

4.3.3. Network/VLAN overview

The Network/VLAN page simply provides an overview of all existing VLANs, as well as details
about physical/virtual interface, IP address and netmask of each VLAN (see Figure 33). Addi-
tionally it provides a tutorial for adding further VLANs using OpenWrt’s own web interface LuCI
with links to the corresponding locations.

Figure 33: Network/VLAN overview

The ability to manage VLANs wasn’t implemented here to avoid possible inconsistencies with
OpenWrt’s own network configuration. Also the default installation will offer VLANs for most
cases. Further a more granular VLAN configuration will require detailed knowledge about the
network’s configuration and infrastructure. Therefore implementing this functionality would un-
necessarily complicate the interface for the average user.

Additionally this interface includes an error and authentication log to provide an overview of
the most recent activity. This is done by simply parsing and filtering FreeRADIUS’s log file
(radius.log).

February 3, 2017 Stefan Neuhuber 65/85

4.3.4. Portability and Modifiability

To guarantee a certain degree of portability and extensibility the entire web interface was written
in PHP which should allow for the widest range of compatibility regarding host devices and oper-
ating systems and therefore allows for a rather uncomplicated port to other WRT derivatives such
as dd-wrt29. The PHP interpreter also provides the least overhead in terms of flash memory, when
considering alternatives such as python which provide a similar feature set (also see Section 4.5.
for Hard- and Software requirements). To realise a port to dd-wrt the current implementation of
the class uci, which handles the communication with OpenWrt’s configuration interface (see Sec-
tion 3.1.4.), would have to be replaced with an implementation for dd-wrt’s equivalent NVRAM.
Due to the fact that NVRAM isn’t as uniform as UCI across different devices and dd-wrt at it’s
current state lacks the support for dynamic VLAN assignments, the implementation of this port
was defined as out of scope of this thesis. In it’s current state the implementation of the above
mentioned uci class (Listing 23) only provides capabilities for retrieving network information using
OpenWrt’s command line configuration interface and could easily be extended to accommodate
more functionality should this be required in the future.

1 class uci{

2

3 ...

4 /*

5 * Return array of existing VLAN IDs

6 */

7 function getVlanIDs (){

8 $str = shell_exec ('uci show network ');

9 $pattern = "/. vid = '([0 -9]+) '/";

10 if (preg_match_all ($pattern ,$str ,$out)){

11 $vlans = array_unique ($out [1]);

12 natsort ($vlans);

13 return array_values ($vlans);

14 }

15 else return null;

16 }

17

18 /*

19 * Returns the virtual interface name

29http://www.dd-wrt.com/

February 3, 2017 Stefan Neuhuber 66/85

http://www.dd-wrt.com/

20 */

21 function getVlanIfaceName ($vlanID){

22 $str = shell_exec ('uci show network ');

23 $pattern = "/\.(\w+) \. ifname ='eth [0 -9]+\." . $vlanID . " '/";

24 if (preg_match_all ($pattern ,$str ,$out)){

25 return $out [1][0];

26 }

27 else return null;

28 }

29

30 ...

31 }

Listing 23: Class uci

Also the connection to the database is handled by a separate class which should make it easy to
change to a different database backend, such as SQLite, in the future.

4.4. Credential distribution

The implemented solution is not only intended to make it as easy as possible for the administrator
of a home network to generate and handle credentials for guest users but also to provide fast and
easy ways to distribute them to the guest user. Further it has to be as easy as possible for the guest
user to connect to the network to accept a different and maybe more complicated authentication
method. Due to the fact that most wide spread authentication distribution methods, such as WPS,
are incompatible with 802.1x authentication methods and the intention of not having the guest
install a third party application (which is the case with some proprietary solutions) to communicate
with the system it was decided to have the user enter his credentials manually or provide a QRCode
containing said credentials and network information to deliver them to the target device. Since in
many cases users will have to setup the connection and enter their credentials manually (e.g. on
none mobile devices or depending on the operating system), the generated credentials have been
chosen in a rather short manner (see Section 4.3.1.), which shouldn’t impose any security risks
since guest users are in their separate VLAN and are only temporary users with a rather short
expiration time of four hours.

February 3, 2017 Stefan Neuhuber 67/85

4.4.1. Distribution via QRCodes

The distribution of user credentials and network information via QRCodes is meant to further
alleviate the process of connecting new users to the network. During the course of the implemen-
tation of this feature a few issues arose. First and foremost creating network connections through
QRCodes is only possible on Android devices, since other mobile operating systems like iOS or
Windows Phone don’t allow third party applications access to the network manager, therefore
Bar-/QRCode scanners on these systems will interpret a wifi QRCode pattern (see below) as plain
text and display it accordingly.

WIFI:S:<SSID >;T:< Network type >;P:< PASSWORD ;;

On Android devices the need for “802.1x EAP” as the network type and an additional field for
the username (see proposed string below) this led to another set of problems on the client side.

WIFI:S:<SSID >;T :802.1 x EAP;U:<USERNAME >;P:<PASSWORD >;;

Since most QRCode scanners for Android are based on ZXing’s open source barcode scanner
project30 and ZXing’s wifi pattern parser doesn’t support “802.1x EAP” networks the proposed
pattern will not work as intended. This is rooted in the fact that the 802.1x support within
the Android’s network manager changed between versions 4.0 and 4.3, therefore ZXing won’t
implement support for 802.1x networks in favour of supporting a wider range of devices and
Android versions.
Considering these issues, it was decided to keep the proposed string in it’s current state but to add
a preamble (see Listing 24) so it would be interpreted as text across all platforms until barcode
scanners would support the required network type.

TXT:WIFI:S:<SSID >;T :802.1 x EAP;U:<USERNAME >;P:<PASSWORD >;;

Listing 24: Final QRCode string

30Official ZXing project home: https://github.com/zxing/zxing

February 3, 2017 Stefan Neuhuber 68/85

https://github.com/zxing/zxing

4.4.2. Mobile application for administrators

To provide an alternative to the web interface and therefore further ease the process of creating
and distributing guest/user credentials this thesis proposes a mobile application for administrators
using the implemented solution. Although a mobile application is out of scope of this thesis, a basic
version was implemented as a prove of concept and to propose a possible form of communication
between the application and the web interface.
Figure 34 shows a proposal of a minimalistic interface allowing the user to generate new guests and
add further users to the system, as well as display the created users credentials and corresponding
QRCode.

Figure 34: Minimalistic application interface

To accomplish a communication with the web interface it was decided to encapsulate the user data
into JSON objects and deliver them to the PHP implementation of the web interface via HTTP
POST. Listing 25 shows the format of the JSON object as well as the necessary steps to create

February 3, 2017 Stefan Neuhuber 69/85

a readable string for the PHP implementation on the server side. For reasons of simplification at
this point the application only generates HTML output and displays it in a simple WebView (see
Figure 34).

1 private String postRequest (String httpUrl) {

2

3 ...

4

5 /* Create and POST JSON object */

6 URL url = new URL(httpUrl);

7 JSONObject jo = new JSONObject ();

8 jo.put("uname", " testusr ");

9 jo.put(" passwd ", " atest123 ");

10 jo.put(" passwd_conf ", " atest123 ");

11 jo.put("group", " FullAccess ");

12 jo.put(" expiration ", "10h");

13 jo.put(" AT_from ", "08:00");

14 jo.put("AT_to", "16:00");

15 String json = jo. toString ();

16

17 connection = (HttpURLConnection) url. openConnection ();

18 connection . setRequestMethod ("POST");

19 connection . setFixedLengthStreamingMode (json. getBytes (). length);

20 connection . setRequestProperty ("Content -Type", " application /json;

charset =utf -8");

21 connection . setRequestProperty ("X-Requested -With", "

XMLHttpRequest ");

22 connection . connect ();

23

24 ...

25 /* retrieve HTML response and output to WebView */

26 ...

27 }

Listing 25: Client side

On the server side (Listing 26) the JSON string generated by the client is being read and decoded
(json decode) which in turn results in an array of key, value pairs. After decoding, the necessary
information is extracted and the usual database operations are performed to create the user.

February 3, 2017 Stefan Neuhuber 70/85

Subsequently an array (of key, value pairs) with the data relevant to the user is created and again
encoded into a JSON string (json encode) and delivered back to the client.

1 /* create user data from JSON object */

2

3 if ($_SERVER [" REQUEST_METHOD "] == "POST"){

4 $jsonIn = file_get_contents ('php :// input ');

5 $js = json_decode ($jsonIn);

6

7 if (check if decoded array is valid){

8 $username = $js ->{'uname '};

9 $password = $js ->{'passwd '};

10 $password_conf = $js ->{'passwd_conf '};

11 $group = $js ->{'group '};

12 $expiration = $js ->{'expiration '};

13 $time_from = $js ->{'AT_from '};

14 $time_to = $js ->{'AT_to '};

15

16

17 /* database operations */

18

19 ...

20

21 /*

22 * Responding JSON Object fields :

23 * uname Username

24 * passwd Password

25 * group Groupname

26 * expiration Expiration Time

27 * AT_from starting Access Time

28 * AT_to ending Access Time

29 * error Error message

30 */

31

32 /* create and encode responding JSON string */

33

34 $response ['uname '] = $username ;

35 $response ['passwd '] = $password ;

36 $response ['group '] = $group ;

37 $response ['expiration '] = $date;

February 3, 2017 Stefan Neuhuber 71/85

38 $response ['AT_from '] = $time_from ;

39 $response ['AT_to '] = $time_to ;

40 $response ['error '] = $error_msg ;

41

42 echo json_encode ($response);

Listing 26: Server side

NOTE: This basic implementation is just to be viewed as a proposal for possible future work.

4.5. Hard- and Software requirements

The implemented solution has a few demands regarding software to be installed from OpenWrt’s
repository as well as specific features provided by the operating system itself. The following list
provides an overview of the required software to run this implementation:

� OpenWrt 15.05 or higher

� FreeRADIUS2

� MySQL server

� PHP5

� Webserver (uhttpd preinstalled by OpenWrt)

� OpenSSL utilities

� A full featured 802.1x / WPA / EAP / RADIUS authenticator and Supplicant (wpad)

� QR-Encoder (qrencode)

A minimum of OpenWrt 15.05 is required due to need of dynamic VLAN assignment support
(see Section 4.1.). Having the newest version of the operating system installed as well as some
additional software and services, also resulted in a higher demand on the hardware side:

� OpenWrt 15.05 compatibility

� 16MB or more flash memory

� 64MB RAM (current implementation uses about 34MB)

February 3, 2017 Stefan Neuhuber 72/85

� CPU depending on architecture 300 - 400MHz (OpenWrt’s current minimum requirement)

The high demand on RAM results from the system having to run FreeRADIUS and MySQL on the
device. Whereas FreeRADIUS requires 6% and MySQL about 9 to 10% of the above mentioned
34MB of RAM (see Figure 35).

Figure 35: Memory intensive processes

Therefore a switch to SQLite and FreeRADIUS3 might free up enough memory for the system to
run on devices with only 32MB of RAM.

5. Future work

While this thesis already implements a rather lightweight and simple to use 802.1x authentication
solution there is still room for improvement and additional features in the future. First and
foremost an upgrade from FreeRADIUS2 to FreeRADIUS3, as it becomes available in OpenWrt’s
software repository, would lower the hardware requirements significantly due to the possibility of
introducing SQLite as the database backend. Which in turn may result in the support of a wider
range of devices.
Also the current string used to generate the QRCodes should be modified accordingly if future
versions of barcode scanners should start to support 802.1x EAP network types.
By adding further FreeRADIUS modules and their attribute support it would also be easily possible
to introduce further functionality such as bandwidth restrictions of groups or individual users31.
Since especially bandwidth might be an issue in home environments with data rates often not
exceeding 20 Mbps.

31FreeRadius Server How to: http://itnetwork-infrastructure.blogspot.co.at/2012/01/
freeradius-server-how-to-install-part-2.html?m=1

February 3, 2017 Stefan Neuhuber 73/85

 http://itnetwork-infrastructure.blogspot.co.at/2012/01/freeradius-server-how-to-install-part-2.html? m=1
 http://itnetwork-infrastructure.blogspot.co.at/2012/01/freeradius-server-how-to-install-part-2.html? m=1

Further porting the current implementation to other WRT derivatives would be an option as
soon as the necessary features (e.g. dynamic VLAN assignment) become available on the target
operating systems.
Lastly, since the implementation of the current mobile application is just to be seen as a proposal,
implementing a version which covers the full set of features provided by the current web interface
would be the biggest enrichment to the implemented solution.

6. Conclusion

This thesis designed and implemented an 802.1x authentication solution for home users which
can be installed and run on a consumer router. The solution should provide a very user-friendly
and easy to use interface for administrators of home networks as well as uncomplicated ways for
guest users to join the implemented wireless guest network. The administration interface offers
all necessary key features of a 802.1x authentication system such as user and group management
as well as a network overview and some simple logging. Further an interface for a possible mobile
application (for administration and distribution purposes) was proposed which could provide an
even more comfortable way of interacting with the system in the future.
The higher complexity and requirements of WPA2-802.1x based authentication models compared
to WPA2-PSK, which results in a tradeoff between security and usability, was minimised by a
number of factors. Firstly the use of as many lightweight components as possible to ensure the
support of a wide range of devices with limited (hardware) resources. A simple and user-friendly
administration interface for quickly generating new temporary guest users and administrating
permanent ones. To encourage user acceptance, guest user credentials were chosen to be rather
short but still with the length of default passwords (ten to fifteen characters) used for WPA2-PSK
secured networks. Provided that generated guest users are only valid for a short period of time
this shouldn’t impose a risk to security.
For administrators of wireless home networks who wish to have a more granular control over their
network or simply want an increase in security, the provided solution will make it possible to do
so with little effort and no additional hardware other than a consumer router.

February 3, 2017 Stefan Neuhuber 74/85

7. Appendix

7.1. EAP-Method Types

EAP-Method Value (Decimal) RFC
Identify 1 RFC 3748
Notification 2 RFC 3748
NAK (Response Only) 3 RFC 3748
MD5-Challenge 4 RFC 3748

OTP, One Time Password 5
RFC 2289
RFC 3748

GTC, Generic Token Card 6 RFC 3748
Allocated 7

Allocated 8

RSA Public Key Authentication 9

RSA Public Key Authentication 10

KEA 11

KEA-VALIDATE 12

EAP-TLS Authentication Protocol 13 RFC 5216
Quest Defender Token 14

RSA Security SecurID EAP 15

Arcot System EAP 16

Cisco-LEAP 17

EAP-SIM, GSM Subscriber Identity Modules 18 RFC 4186
SRP-SHA-1 Part 1 19

SRP-SHA-1 Part 2 20

EAP-TTLS, EAP Tunneled TLS Authentication
Protocol

21 RFC 5281

Remote Access Service 22

EAP-AKA, EAP method for 3rd Generation Au-
thentication and Key Agreement

23 RFC 4187

EAP-3Com Wireless 24

February 3, 2017 Stefan Neuhuber 75/85

EAP-Method Value (Decimal) RFC
PEAP, Protected EAP 25

MS-EAP-Authentication (EAP/MS-CHAPv2) 26

EAP-MAKE, Mutual Authentication w/Key Ex-
change

27

CRYPTOCard 28

PEAPv0/EAP-MSCHAPv2 29

DynamID 30

Rob EAP 31

EAP-POTP, Protected One Time Password 32 RFC 4793
MS-Authentication-TLV 33

SentriNET 34

EAP-Actiontec Wireless 35

Cogent Systems Biometrics Authentication EAP 36

AirFortress EAP 37

EAP-HTTP Digest 38

SecureSuite EAP 39

DeviceConnect EAP 40

EAP-SPEKE 41

EAP-MOBAC 42

EAP-FAST, EAP Flexible Authentication via Se-
cure Tunneling

43
RFC 4851
RFC 5421
RFC 5422

ZLXEAP, ZoneLabs EAP 44

EAP-Link 45

EAP-PAX, EAP Password Authentication eX-
change

46 RFC 4746

EAP-PSK, EAP Pre-Shared Authentication and
Key Establishment

47 RFC 4764

EAP-SAKE, EAP Shared-secret Authentication
and Key Establishment

48 RFC 4763

February 3, 2017 Stefan Neuhuber 76/85

EAP-Method Value (Decimal) RFC
EAP-IKEv2 49 RFC 5106
EAP-AKA, Improved EAP method for 3rd Gen-
eration Authentication and Key Agreement

50

EAP-GPSK, EAP Generalized Pre-Shared Key 51 RFC 5433
Available via review by designated expert 52-191 RFC 3748
Reserved for allocation via standards action 192-253 RFC 3748
Expanded Type 254 RFC 3748
Experimental 255 RFC 3748

Table 7: EAP-Method types

7.2. RADIUS Attribute Types

RADIUS Attribute Name Attribute Number
User-Name 1
User-Password 2
CHAP-Password 3
NAS-IP-Address 4
NAS-Port 5
Service-Type 6
Framed-Protocol 7
Framed-IP-Address 8
Framed-IP-Netmask 9
Framed-Routing 10
Filter-Id 11
Framed-MTU 12
Framed-Compression 13
Login-IP-Host 14
Login-Service 15
Login-TCP-Port 16

February 3, 2017 Stefan Neuhuber 77/85

RADIUS Attribute Name Attribute Number
(unassigned) 17
Reply-Message 18
Callback-Number 19
Callback-Id 20
(unassigned) 21
Framed-Route 22
Framed-IPX-Network 23
State 24
Class 25
Vendor-Specific 26
Session-Timeout 27
Idle-Timeout 28
Termination-Action 29
Called-Station-Id 30
Calling-Station-Id 31
NAS-Identifier 32
Proxy-State 33
Login-LAT-Service 34
Login-LAT-Node 35
Login-LAT-Group 36
Framed-AppleTalk-Link 37
Framed-AppleTalk-Network 38
Framed-AppleTalk-Zone 39
(reserved for accounting) 40-59
CHAP-Challenge 60
NAS-Port-Type 61
Port-Limit 62
Login-LAT-Port 63

Table 8: RADIUS Attributes defined by RFC 2865[19]

February 3, 2017 Stefan Neuhuber 78/85

List of Figures

1 ZyXEL SSID based guest networks [3] . 3
2 ZyXEL guest network options [3] . 4
3 ZyXEL WPS configuration [3] . 4
4 OpenWrt’s generic flash layout [13] . 11
5 OverlayFS construct [16] . 12
6 Port-based Authentication via physical link [20] 15
7 Wireless LAN virtual link [20] . 16
8 802.11 association process . 16
9 802.1x primary components . 17
10 802.1x port control [22] . 18
11 802.1x authentication process . 20
12 Communication between supplicant and authenticator[20] 21
13 Communication between supplicant and authentication server[20] 24
14 EAPoL encapsulation[20] . 24
15 EAPoL packet structure . 25
16 EAP layers[25] . 27
17 EAP packet header . 28
18 EAP-Request/Response packet format . 29
19 EAP-Success/Failure packet format . 30
20 EAP Method packet format . 31
21 EAP-MD5 three-way handshake [20] . 32
22 EAP-TLS authentication process . 34
23 RADIUS packet structure . 37
24 Authenticator field structure and content . 39
25 RADIUS Attribute field structure . 40
26 Router and switch structure [38] . 43
27 Default and Guest VLANs . 47
28 User management . 60
29 Create user . 63
30 User details . 63
31 Group management . 64
32 Create group . 64

79

33 Network/VLAN overview . 65
34 Minimalistic application interface . 69
35 Memory intensive processes . 73

List of Tables

1 OpenWrt’s architecture and system components 9
2 EAPoL Type field values . 26
3 EAP Code field values . 28
4 Standards-based EAP types . 30
5 Comparison of authentication mechanisms [25] 36
6 RADIUS Code field values . 38
7 EAP-Method types . 77
8 RADIUS Attributes defined by RFC 2865[19] . 78

Listings

1 UCI configuration file example . 13
2 UCI example . 14
3 Default DHCP configuration change . 46
4 Default Fireweall configuration change . 46
5 Guest network configuration . 46
6 Overridding VLAN ID . 47
7 DHCP configuration . 48
8 Firewall guest network configuration . 48
9 Wireless configuration . 49
10 radiusd.conf listen section . 51
11 radiusd.conf log section . 52
12 radiusd.conf modules section . 52
13 eap.conf eap section . 53
14 client.conf localhost section . 54
15 sites/default authorize section . 55
16 sites/default sql configuration . 55
17 Group definitions . 57

80

18 User definitions . 58
19 User to Group assignment . 58
20 Group wide attributes . 58
21 Groupless user’s reply section . 59
22 Guest user credential generation . 61
23 Class uci . 66
24 Final QRCode string . 68
25 Client side . 70
26 Server side . 71

References

[1] R. Moskowitz, “The intra-psk attack,” 2003, wiFi Net News [Online; Status 10/21/2015].
[Online]. Available: http://wifinetnews.com/archives/2003/11/weakness in passphrase
choice in wpa interface.html

[2] G. Haris, Wireshark: How to Decrypt 802.11, 2015, [Online; Status 10/21/2015]. [Online].
Available: https://wiki.wireshark.org/HowToDecrypt802.11

[3] Zyxel knowledge base. [Online]. Available: https://kb.zyxel.com/KB/searchArticle!
gwsViewDetail.action?articleOid=012595&lang=EN

[4] J.-A. Lee, J.-H. Kim, J.-H. Park, and K.-D. Moon, “A secure wireless lan access technique
for home network,” in 2006 IEEE 63rd Vehicular Technology Conference, vol. 2, May 2006,
pp. 818–822.

[5] T. S. Kim, Y. K. Kim, B. B. Lee, S. W. Ryu, and C. H. Cho, “Designs of a secure wireless
lan access technique and an intrusion detection system for home network,” in Networked
Computing and Advanced Information Management, 2008. NCM ’08. Fourth International
Conference on, vol. 1, Sept 2008, pp. 318–324.

[6] S. Onno, R. Gelloz, O. Heen, and C. Neumann, “User-based authentication for wireless
home networks,” in Consumer Electronics - Berlin (ICCE-Berlin), 2012 IEEE International
Conference on, Sept 2012, pp. 218–220.

[7] Openwrt attitude adjustment (12.09 final) release notes. [Online]. Available: https:
//forum.openwrt.org/viewtopic.php?id=43764

February 3, 2017 Stefan Neuhuber 81/85

http://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_ interface.html
http://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_ interface.html
https://wiki.wireshark.org/HowToDecrypt802.11
https://kb.zyxel.com/KB/searchArticle!gwsViewDetail.action?articleOid=012595&lang=EN
https://kb.zyxel.com/KB/searchArticle!gwsViewDetail.action?articleOid=012595&lang=EN
https://forum.openwrt.org/viewtopic.php?id=43764
https://forum.openwrt.org/viewtopic.php?id=43764

[8] Openwrt website. [Online]. Available: https://wiki.openwrt.org

[9] The uci system. [Online]. Available: https://wiki.openwrt.org/doc/uci

[10] Luci wiki. [Online]. Available: https://github.com/openwrt/luci/wiki

[11] Openwrt build system. [Online]. Available: https://wiki.openwrt.org/about/toolchain

[12] F. Fainelli, “The openwrt embedded development framework,” 2008. [Online].
Available: http://www.victek.is-a-geek.com/Repositorios/Linksys/Firmware/OpenWRT/
presentation.pdf

[13] The openwrt flash layout. [Online]. Available: https://wiki.openwrt.org/doc/techref/flash.
layout

[14] The uci filesystem. [Online]. Available: https://wiki.openwrt.org/doc/techref/filesystems

[15] N. Brown. Overlay filesystem. [Online]. Available: https://www.kernel.org/doc/
Documentation/filesystems/overlayfs.txt

[16] Overlayfs in practice. [Online]. Available: https://docs.docker.com/engine/userguide/
storagedriver/overlayfs-driver/

[17] “Ieee standard for local and metropolitan area networks–port-based network access control,”
IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004), pp. 1–205, Feb 2010.

[18] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, “Extensible
authentication protocol (eap),” Internet Requests for Comments, RFC Editor, RFC
3748, June 2004, http://www.rfc-editor.org/rfc/rfc3748.txt. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc3748.txt

[19] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote authentication
dial in user service (radius),” Internet Requests for Comments, RFC Editor,
RFC 2865, June 2000, http://www.rfc-editor.org/rfc/rfc2865.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2865.txt

[20] J. Geier, Implementing 802.1 X security solutions for wired and wireless networks. John
Wiley & Sons, 2008.

February 3, 2017 Stefan Neuhuber 82/85

https://wiki.openwrt.org
https://wiki.openwrt.org/doc/uci
https://github.com/openwrt/luci/wiki
https://wiki.openwrt.org/about/toolchain
http://www.victek.is-a-geek.com/Repositorios/Linksys/Firmware/OpenWRT/presentation.pdf
http://www.victek.is-a-geek.com/Repositorios/Linksys/Firmware/OpenWRT/presentation.pdf
https://wiki.openwrt.org/doc/techref/flash.layout
https://wiki.openwrt.org/doc/techref/flash.layout
https://wiki.openwrt.org/doc/techref/filesystems
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/
http://www.rfc-editor.org/rfc/rfc3748.txt
http://www.rfc-editor.org/rfc/rfc3748.txt
http://www.rfc-editor.org/rfc/rfc3748.txt
http://www.rfc-editor.org/rfc/rfc2865.txt
http://www.rfc-editor.org/rfc/rfc2865.txt

[21] “Ieee standard for information technology - telecommunications and information exchange
between systems - local and metropolitan area networks - specific requirements - part 11:
Wireless lan medium access control (mac) and physical layer (phy) specifications,” IEEE Std
802.11-2007 (Revision of IEEE Std 802.11-1999), pp. 1–1076, June 2007.

[22] Aaa and 802.1x authentication. [Online]. Available: https://networklessons.com/cisco/
ccie-routing-switching/aaa-802-1x-authentication/

[23] “Ieee draft standard for local and metropolitan area networks: Media access control (mac)
bridges (revision of ieee std 802.1d -1998 incorporating ieee std 802.1t -2001 ieee std 802.1w
-2001) (replaced by 802.1d-2004),” IEEE Std P802.1D/D4, 2003.

[24] W. Simpson, “The point-to-point protocol (ppp),” Internet Requests for Comments, RFC
Editor, STD 51, July 1994.

[25] Y.-P. W. Jyh-Cheng, “Extensible authentication protocol (eap) and ieee 802.1x: Tutorial and
empirical experience,” December 2005.

[26] V. Narayanan and L. Dondeti, “Eap extensions for eap re-authentication protocol (erp),”
Internet Requests for Comments, RFC Editor, RFC 5296, August 2008.

[27] S. D. D. Mary Cindy Ah Kioon, ZhaoShun Wang, “Security analysis of md5 algorithm in
password storage,” 2013.

[28] B. Aboba and D. Simon, “Ppp eap tls authentication protocol,” Internet Requests for Com-
ments, RFC Editor, RFC 2716, October 1999.

[29] Eap-ttls configuration on windows 7 using securew2. [Online]. Available: http:
//www.eduroam.ie/userdocs/win7-securew2-ttls.php

[30] S. Sotillo, “Extensible authentication protocol (eap) security issues,” Dept. of Technology
System East Carolina University, 2007.

[31] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tunnelled authentication
protocols,” 2002. [Online]. Available: http://eprint.iacr.org/2002/163

[32] P. Funk and S. Blake-Wilson, “Extensible authentication protocol tunneled transport layer
security authenticated protocol version 0 (eap-ttlsv0),” Internet Requests for Comments,
RFC Editor, RFC 5281, August 2008, http://www.rfc-editor.org/rfc/rfc5281.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc5281.txt

February 3, 2017 Stefan Neuhuber 83/85

https://networklessons.com/cisco/ccie-routing-switching/aaa-802-1x-authentication/
https://networklessons.com/cisco/ccie-routing-switching/aaa-802-1x-authentication/
http://www.eduroam.ie/userdocs/win7-securew2-ttls.php
http://www.eduroam.ie/userdocs/win7-securew2-ttls.php
http://eprint.iacr.org/2002/163
http://www.rfc-editor.org/rfc/rfc5281.txt
http://www.rfc-editor.org/rfc/rfc5281.txt

[33] ——, “EAP Tunneled TLS Authentication Protocol Version 1 (EAP-TTLSv1),” Internet
Engineering Task Force, Internet-Draft draft-funk-eap-ttls-v1-01, Mar. 2006, work in
Progress. [Online]. Available: https://tools.ietf.org/html/draft-funk-eap-ttls-v1-01

[34] V. Kamath and A. Palekar, “Microsoft EAP CHAP Extensions,” Internet Engineering Task
Force, Internet-Draft draft-kamath-pppext-eap-mschapv2-02, Jun. 2007, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-kamath-pppext-eap-mschapv2-02

[35] L. J. Blunk and J. R. Vollbrecht, “Ppp extensible authentication protocol (eap),” Internet
Requests for Comments, RFC Editor, RFC 2284, March 1998, http://www.rfc-editor.org/
rfc/rfc2284.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2284.txt

[36] G. Zorn, D. Leifer, A. Rubens, J. Shriver, M. Holdrege, and I. Goyret, “Radius attributes
for tunnel protocol support,” Internet Requests for Comments, RFC Editor, RFC 2868, June
2000.

[37] Quality of service (qos-scripts) configuration. [Online]. Available: https://wiki.openwrt.org/
doc/uci/qos

[38] Openwrt switch configuration. [Online]. Available: https://wiki.openwrt.org/doc/uci/
network/switch

[39] H. P. Long. Freeradius server: How to install.
[Online]. Available: http://itnetwork-infrastructure.blogspot.co.at/2012/01/
freeradius-server-how-to-install-part-2.html?m=1

February 3, 2017 Stefan Neuhuber 84/85

https://tools.ietf.org/html/draft-funk-eap-ttls-v1-01
https://tools.ietf.org/html/draft-kamath-pppext-eap-mschapv2-02
http://www.rfc-editor.org/rfc/rfc2284.txt
http://www.rfc-editor.org/rfc/rfc2284.txt
http://www.rfc-editor.org/rfc/rfc2284.txt
https://wiki.openwrt.org/doc/uci/qos
https://wiki.openwrt.org/doc/uci/qos
https://wiki.openwrt.org/doc/uci/network/switch
https://wiki.openwrt.org/doc/uci/network/switch
http://itnetwork-infrastructure.blogspot.co.at/2012/01/freeradius-server-how-to-install-part-2.html ?m=1
http://itnetwork-infrastructure.blogspot.co.at/2012/01/freeradius-server-how-to-install-part-2.html ?m=1

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder
sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit
ist mit dem elektronisch übermittelten Textdokument identisch.
Linz,

Stefan Neuhuber

	Introduction
	Motivation
	Threat Model and security concerns
	Structure

	State of the art
	Employed Technologies and Tools
	OpenWrt
	Architecture
	Build System
	Flash Memory Layout
	The Unified Configuration Interface (UCI) System

	Port-Based Authentication - 802.1x
	Primary Components
	Authentication Process
	Communication between Supplicant and Authenticator (802.1x)
	Communication between Authenticator and Authentication Server (RADIUS)
	Communication between Supplicant and Authentication Server (EAP-Method)

	EAPoL/EAPoW Protocol
	Packet Structure
	Version
	Type
	Length
	Packet Body

	Extensible Authentication Protocol (EAP)
	Packet Structure
	Code
	Identifier
	Length
	Data

	Packet Types
	EAP-Request/Response
	EAP-Success/Failure

	EAP-Methods
	Packet Structure
	Type
	Data

	EAP-MD5
	EAP-TLS
	EAP-TTLS
	PEAP

	RADIUS
	Packet Structure

	Dynamic VLANs

	Implementation
	Dynamic VLAN and Guest network configuration in OpenWrt
	Network configuration
	DHCP configuration
	Firewall configuration
	Wireless configuration

	Authentication Server configuration using FreeRADIUS
	Basic configuration
	radiusd.conf
	eap.conf
	clients.conf
	Enabling additional modules
	SQL configuration

	Populating the User database
	Issues with FreeRADIUS on OpenWrt

	Web interface
	User management
	Group management
	Network/VLAN overview
	Portability and Modifiability

	Credential distribution
	Distribution via QRCodes
	Mobile application for administrators

	Hard- and Software requirements

	Future work
	Conclusion
	Appendix
	EAP-Method Types
	RADIUS Attribute Types

