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Abstract

Many IT security systems rely on IP geolocation to block Internet traffic from or to certain

countries or geological locations. As more large companies run global networks with

their public IP addresses roaming regularly between different geographical locations and

with the increased use of Content Delivery Networks for serving web sites and other

content, blocking traffic based on IP geolocation is not sufficient anymore in all cases.

Therefore, a new approach to classify and summarize IP addresses as an alternative to

IP geolocation was suggested. Furthermore, a visualization method for the classified

data was evaluated. The focus of this work was on identification of Content Deliver

Networks (CDN) and anonymization services like VPN and TOR. A new approach was

designed and implemented to reliably identify web sites served by a CDN. The collected

raw data and the final classification data set have been publicly available for future

research. Additionally, an extensible prototype for collecting and classifying network

traffic was implemented and release to public.



Zusammenfassung

Viele IT-Security Systeme nutzen IP-Gelocation um Internetverkehr aus bzw. in bestimm-

te Länder oder Regionen der Erde zu blockieren. Da immer mehr große Unternehmen

weltumspannende IT Netzwerke betreiben und dabei öffentliche IP Adressen oftmals

zwischen verschiedenen Standorten auf der Welt, je nach Bedarf, hin und her geschoben

werden und da auch immer häufiger Content Delivery Networks (CDN) zum Bereitstellen

von Webseiten und anderen Inhalten genutzt werden, ist das blockieren von Internet-

verkehr auf Basis von IP-Geolocation Daten oft nicht mehr ausreichend. Daher wird

ein neuer Ansatz, als alternative zu IP-Geolocation, vorgestellt um IP Adressen zusam-

menzufassen und zu klassifizieren. Des Weiteren wird eine mögliche Visualisierung

Variante für die klassifizierten Daten evaluiert. Das Hauptaugenmerk dieser Arbeit liegt

auf der Erkennung von CDNs und Anonymisierungs-Services wie VPN und TOR. Es

wurde eine neue Vorgehensweise entwickelt und implementiert um CDNs zuverlässig zu

erkennen. Die dabei gesammelten Rohdaten und die klassifizierten Daten wurden für

weitere Analysen öffentlich gemacht. Zusätzlich wurde ein erweiterbarer Prototyp zum

Sammeln und klassifizieren von Netzwerkverkehr implementiert und veröffentlicht.
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1. Introduction

Today, for IT departments it becomes increasingly important to have control over their

company in- and outgoing Internet traffic and data. The reasons for that can be roughly

separated into three groups, namely security, legal, and commercial. These groups

usually overlap to some extent:

∙ Security concerns range from detecting, mitigating and stopping attacks on the

company network over data leakage protection, e.g. intended or unintended

disclosure of company trade secrets or customer data, to having an overview

where traffic is flowing to.

∙ Legal concerns are typically related to privacy laws like the General Data Protection

Regulation of the European Union. The GDPR harmonies the data privacy laws for

the EU members and regulates how organizations within the union approach data

privacy [16]. Legal concerns can also be certain provided content on a company

web service which could be illegal in some countries, like copyright regulations or

pornographic content.

∙ Commercial concerns are usually related to providing content and services only to

a certain group of customers or audience. For example free vs premium content of

online newspapers. Commercial reason could also be bound to legal contracts, for

example as a contractor might have exclusive broadcast rights for certain media

streaming content, like a TV show, within a region. This is typically enforced by

blocking this specific content for own customers within the region in question.

Technical measures to tackle these issues exist in various flavors. Firewalls are employed

to allow or block certain egress or ingress traffic. Where egress traffic defines traffic

that starts within the company network and targets an outside destination Such traffic

could be sending an e-mail to a recipient out the company or browsing a website on
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the Internet. Ingress traffic on the other hand defines traffic that is originating from the

internet and targets a destination inside the company network, like an incoming email.

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) are used to

detect, alert, and block new or already ongoing attacks. Data leakage prevention (DLP)

tools and measures are employed to detect and mitigate intentional or unintentional dis-

closure of business critical data. Websites and web services are protected from attacks

by Web Application Firewalls (WAF). Remote connections of mobile workers outside

the company network were not covered by the previous mentioned approaches. Such

connections can be secured by employing Internet traffic policies and context aware

security. Context aware security means to employ situational data like user, location,

time of day for security decisions. For example if a company only has remote workers

within the EU, a login from France at 4 p.m. CET is perfectly ok while a connection from

Asia at 1 a.m. CET might not and therefore should trigger an alert.

All of these previously mentioned solutions use IP geolocation for some of their

features. "IP geolocation" is the term used for assigning IP addresses to a certain

geographical location, whereas this could mean anything from country over city to street

level. The accuracy varies greatly between different geolocation approaches. Very

basic approaches are just relying on preexisting information like location of IP address

registration and DNS LOC entries which are not mandatory and usually not maintained

regularly. More sophisticated techniques rely on latency or topology based information.

Whereas latency describes the time passed by from sending a message to a remote

location until an answer was received. Topology based describes approaches which

enhance the latency based algorithms by using additional information gained from the

internet infrastructure. IP geolocation is employed by web services and Web Application

Firewalls (WAF) to restrict access to certain content according to the clients geographical

locations. Management views of IDS/IPS systems show ongoing attacks based on the

geographical location of the attacker on a map of the world like shown in Figure 1.1.

In firewall systems administrators and security teams often use Geo-IP Filter to block

connections to or from a geographical location, mainly on country level. Decisions on

which countries should be blocked are usually based on strategic considerations like no
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business relations exist to these countries or on security reports like AKAMAIs "State of

the Internet Security Report"[6]. According to the latest AKAMAI report the top 5 "Global

Web Application Attack Source Countries" are U.S, Netherlands, Brazil, China, Germany

[6]. While it seems to be suitable for most companies in Europe to block China or Brazil,

only based on registration and LOC information, it will eventually cause problems to

block all traffic to or from the U.S, as many global operating organizations like Facebook,

Google, Amazon have registered most of their IP addresses in the U.S. For U.S. based

companies blocking communication to and from U.S is out of question too. This means

relying just on the location of registration is not enough. Therefore, firewall vendors

usually use their own proprietary, non-disclosed algorithms for geolocation or external

services like GeoIP, IP2Location, IPligence, who also rely on proprietary algorithms,

with varying accuracy[30]. How often these databases are updated and if rules relying

on these data are kept in sync depends on the vendor. This information are usually

not made available in public documents. Albeit these databases are updated regularly

using a sophisticated approach, there would still be false positives or negatives due

to IP addresses moved across different geographical locations within a global BGP

Autonomous Systems between the update intervals. This happens for example if a new

service need to be hosted in a certain region, e.g. China, and the IP addresses used for

this new service have been previously used in a different region, e.g. Europe.

With the increased use of Content Delivery Networks (CDN) for serving content an

additional problem with blocking traffic based on geolocation arises. If an enterprise-

critical website for company X is distributed by a global operating CDN. The content for

company X is usually provided by a edge server at data center A as it is the most suitable.

Due to an outage in A or due to changes in the global routing table the edge server at

A isn’t the most suitable anymore and a server in data center B located in a different

geographical location, e.g. China, is taking over. If the resolved IP address of the

edge server at B, even though registered anywhere else in the world, is geographically

assigned to China and company X is blocking any traffic to and from China, the website

would not be reachable anymore by any user at X.

In this thesis I propose an alternative to IP geolocation, allowing a more advanced

and fine grained summarization and classification of IP addresses. The classification
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Figure 1.1.: IDS/IPS Management View Ongoing Attacks World Map [22]

will allow a clear distinction between different service types like cloud computing and

anonymization services and various providers of such services. The proposed approach

should however not exceed the network footprint of IP geolocation. Where network

footprint means the amount of traffic, in terms of packets and data transferred, produced

while classifying traffic. As geolocation is performed passively there will be no active

probing of remote sites at classification level for each connection. But like geolocation,

active probing will be performed globally on previously collected or public available

data and its results are input for the classifier. This work further proposes a graphical

representation for classified connections, as counterpart to the IP geolocation world map

typically used in IDS/IPS management views.

1.1. Goals Recap

The scope of this work consists of multiple distinct but linked goals.

∙ A novel approach for classifying IP connections as an alternative for IP geoloca-

tion should be proposed and implemented. The classification has to assign IP
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addresses to Services or Service-Providers instead of geographical locations. The

classification should be based on passively collected data only.

∙ For storage and processing of the classified packets a record (data structure)

should be defined.

∙ For these records a graphical representation, "a new map of the Internet world",

should be suggested and demonstrated. The graphical representation has to

clearly outline the "borders" and edges between distinct Services or Service-

Providers.

1.1.1. Constraints

Main focus of this work lies on identification and classification of Content Delivery

Networks (CDN),ingress traffic from anonymization services like VPN and TOR, and

the top 4 ranked Cloud Service Providers(according to Datamation [24]), namely AWS,

Microsoft, Google and IBM.

In this work I will rely on different data sources and algorithms for classification:

∙ Already existing approaches for detecting and categorizing network/Internet traffic

are evaluated, adopted and adapted.

∙ TCP/IP fingerprinting is revisited to find possible undetected patterns, beside the

well-known mostly client specific ones for OS, Tethering and VPN detection.

∙ Preexisting data sources, like BGP dumps and public available IP lists from service

providers, are employed for more detailed classification and/or fallback.

1.2. Structure of this Work

The remainder of this thesis is structured as follows. First I will give an overview on the

current state of the art in chapter 2 and background work employed in the prototype.

The approach and test setups are presented in chapter 3 and the implementation of the

prototype in chapter 4. The results of the measurements and the prototype are shown

at a glance in chapter 5 and evaluated in chapter 6. Finally, the work is concluded and

further steps are suggested in chapter 7
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2. Related Work

This chapter will discuss already existing approaches and techniques for classifying Inter-

net and network traffic and how these are visualized. This includes existing approaches

for IP geolocation with a focus on Anycast IP addresses as this is of special interest for

CDN detection. Further typical setups and technologies for Content Delivery Networks

are described. Additionally to the existing approaches for visualizing IT network data,

a diagram type called "Sankey diagram" is introduced as it should serve as the tool for

visualizing this new classification approach. In the end existing technologies to detect

connections origin from VPN connections and TOR exit nodes are described.

2.1. IP Geo-Location

IP geolocation is the art of assigning IP addresses to geographical locations. In the

most simple way information from various existing data-sources like WHOIS, DNS and

local RIRs are put together to estimate the location of the IP. These data are usually

not accurate or complete, not even in combination. Therefore, more sophisticated ap-

proaches utilize distance-range correlations by estimating the location using triangulation

of a target IP according to its response time and the known geographical location of

multiple vantage points[5]. Others combine the distance-range correlation approach

with information gathered from BGP routing data to determine interfaces belonging to

the same router, which lets infer a more accurate router location and finally using these

locations as constraints for geolocating client IPs[28].
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2.1.1. BGP Anycast Detection, Enumeration and Geo-Location

IP anycast allows to provide a service on multiple servers/locations, so called replicas,

using the same IP address. An active network device, usually a router, is responsible for

directing the IP packets sent by a client to at least one nearest, according to distance

metrics and architectural decisions [9], neighbor (server), preferably only one. [41]

Historically anycast was mostly used for DNS and DDoS protection but latest studies

show an increasing number of anycast CDN services[11]. How DNS and BGP anycast

are used in CDN services is discussed further in section 2.2.

Currently, only a few techniques for detection, enumeration and geolocation of anycast

IP addresses exist as most research focuses on performance analysis, load balancing,

and optimization. Existing techniques for detecting anycast IP addresses employ latency

measurements from different vantage points and BGP routing information. Latency

based anycaster detection is straight forward if the latency between two geographically

distinct sources is greater than the sum of the latency from both sources to a single target

IP, then the target must be present in more than one location[13][31]. BGP information

are used, as a single IP prefix originating from different geographically distinct source

routers is most likely anycast, or part of an BGP hijacking attack[13].

The detection method however does not enumerate, find all or nearly all, IP replicas.

To tackle this problem in [19] a method to enumerate anycast DNS replicas using DNS

CHAOS queries, which are DNS queries of a special class. But as it turned out not

all DNS servers reply to these queries and if they do, the answer does not follow any

standard. Another drawback of this proposal is that it is only targeting DNS services.

In [13] and [12] a method for IP geolocation based on latency measurements is

suggested. Instead of just using two vantage points to detect anycast two research

platforms, PlanetLabs and RIPE Atlas, with several hundreds of vantage points have

been employed to enumerate and geolocate anycast IP addresses. According to their

data geolocation is correct in 78% percent of the cases with and median error distribution

of 384km for the other 22%, which is similar to unicast techniques.
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2.2. Anycast in Content Deliver Networks

Anycast is used in CDN services in two ways, namely DNS server anycast and web-

server/BGP anycast. The first approach assigns an anycast IP to any DNS server

serving the CDN. These DNS servers are usually strategically placed all over the globe

to have a minimal distance to all clients, this can of course vary depending on the size of

the CDN and its target market. Each of the DNS servers resolves all served websites of

the CDN to a webserver located in one of its, in best case the closest, data centers.

For webserver anycast the anycast IP is assigned to the webservers instead of to the

DNS server. In this case a website is always resolved to the same IP but the actual

targeted server depends on the shortest BGP route from the client to the next replica

server.

Both approaches are used by the biggest players in the CDN market. AKAMAI[2],

Amazons Cloudfront [4] utilize the first while Cloudflare[14] and Edgecast[45] implement

the latter. Using one above the other is an strategical decision. BGP based anycast is

ment to be more flexible as users can be sent for some webservers to location A and

for others to location B. The drawbacks are that changes, e.g. to the above mentioned

example, have to be announced to every peering partner. Further it is not possible to

enforce a data center priority on BGP. For example it is possible in BGP to suggest

preferences like go first to A and then to B but it is not guaranteed that this will be

respected by others.

DNS server anycast does however allow faster switch of users in certain areas from

location A to B, this is especially important in case of an outage or overload due to an

DDoS attack. What is not possible for DNS server anycast CDNs is to redirect user A

to location X and user B to location Y unless it has IPs in multiple prefixes with a name

server in each [21][18].

2.3. Traffic Classification

Internet traffic classification is a research topic that has become more popular in the

last 10 years as the Internet is becoming the most important and critical communication

infrastructure in the world. The need for classification of the internet traffic has several
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reasons. ISPs want to prioritize, especially for real time applications like VOIP or for

paying customers, to block or protect certain traffic. But traffic classification research is

very heterogeneous using inconsistent terminology, making it hard to compare different

approaches. We can at least define the following classification variants:[17]

1. Services: Usually traffic originating from an IP/Port pair

2. Hosts: Classification of hosts according to their dominant traffic (both sides of the

connection need to be observed)

3. Traffic profiles: (bulk, interactive)

4. Application categories: (e.g. chat, streaming, web, mail)

5. Applications: (e.g. HTTP, HTTPS, IMAP, POP, SMTP, Edonkey)

6. Content type: (e.g. text, binary, encrypted)

This classifications are usually done by the following techniques.

∙ By either the classical port to application mapping, which becomes more inaccurate

lately as less new applications register new ports at IANA as they just use already

registered ones[17].

∙ Employing deep packet inspection to analyze the payload, which is also becoming

outdated due to more encrypted traffic[17].

∙ Machine learning using either supervised techniques with the drawback of having

to keep the training set up to date with new applications or unsupervised techniques

with the drawback of needing to provide sufficient features for categorization[17].

∙ Employing traffic flow pattern analysis to recognize hosts and applications[17]

based on their communication behavior.

A drawback all the classification research approaches share is the missing ground

truth due to lack of sufficient data for privacy and security reasons[17]. Another problem

most of these approaches meet is the scalability and accuracy[17]. Therefore, most

of the research is based either on a single sided view like from a university or home

network or the working dataset is simplified for performance reason, e.g. excluding

UDP traffic[17]. Therefore none of these approaches guarantees a 100% classification

coverage nor classification accuracy.
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2.4. TCP/IP Fingerprinting

TCP fingerprinting (often referred to as OS fingerprinting) is the technique to identify

operating systems according to specifics in the TCP header. Usually it is distinguished

between active and passive fingerprinting. While in active fingerprinting a remote host is

actively probed and the response is analyzed, the passive approach packets originating

from the target system are analyzed. Most of the techniques either rely only on the

SYN or SYN-ACK packet, depending on if the remote system is server or client of the

communication. Usual metrics utilized are congestion strategy, TCP window size, initial

MSS, TTL, don’t fragment bit, and/or order of TCP options[10]. Most of the approaches

are also based on an expert system relying on previous knowledge but there are also

multiple machine learning algorithms proposed yielding good performance for TCP

traffic[3][8]. For [3] the accuracy ranges from 14% to 98.4% depending on the Layer

4 protocol used with TCP reaching the highest accuracy. TCP/IP fingerprinting is also

used for NAT and tethering detection in the way that each IP address classified with

more than one operating system is thought to hide a private network using NAT[10].

2.5. Graphical Representation of Internet/Network

Connections

To represent Internet or network connections many plot types have been utilized. For

auto generated/automatically collected data, typically world maps or network graphs/hy-

permaps are used. The first one typically shows the location of IP addresses on a map

of the world, whereby the coordinates are determined by IP geolocation. How such a

map could look like is illustrated in Figure 1.1. Such maps are used by IDS/IPS systems

for showing the location of current attackers or by SIEM (Security Incident and Event

Management) and Log-analysis tools to display the location where an event happened.

The latter one typically displays the connections between nodes in a network. This

can be a map of all BGP routers on the Internet, the Spanning-Tree links of switches on

a company network or the connection of hosts on a network. Such graphs are usually

created by some sort of monitoring tool like Nagios [36] or Nedi[37] based on their

18



Figure 2.1.: Example Network Graph

collected data or view on the network. A sample network graph is shown in Figure 2.1. It

is easy to imagine that such a graph does not scale very well, in terms of usability, with

an increasing number of nodes.

2.6. Sankey Diagram

Sankey diagram is a chart type usually used for visualization of flows within a system.

Such a diagram consists of nodes which represent resources or components of the

system and the width of the edges indicates the proportional flow quantity. They are

usually used to display government spendings (see Figure 2.2), energy production

resource flows and voter flows [44].
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Figure 2.2.: Sankey Diagram example

2.7. P0f v3

P0f v3 is passive OS and application fingerprinting tool. It utilities the concepts described

in section 2.3 to detect the targets OS (in most cases a simple SYN packet analysis)

and to reason about the application by analyzing the packets payload[49]. Further some

basic link type detection mechanisms are implemented to determine if packets of a host

are originating from an Ethernet link or have been tunneled through a VPN or IPSec.

tunnel[49]. This detection is usually just based on the default MSS sent in the SYN

packet of the target[49]. P0f also performs NAT detection by detecting back and forth

jumping TCP timestamps or changes in MTU and TTL[49]. Two of the main features

making it interesting to utilize it in the prototype are that its detection database is easily

extensible with custom metrics and that an API is provided to query P0f for its opinion

about a host[49]. The drawbacks of P0f v3 are that the promised application detection

currently only covers http and the development seems to have stalled as new minor

releases are published every other year.
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2.8. TORDNSeL

TOR exit node detection and enumeration seems not to be a primary target in researches

on the TOR network as most of the research focuses on security of the TOR network.

The reason for that there is no research on exit node enumeration is most probably

the high number of publicly available lists of TOR exit nodes collected by crawlers and

the TORDNSeL tool[47]. The publicly available lists are most of the time not complete,

and maybe also not trustworthy, as the crawlers usually rely on that exit nodes declare

and announce themselves as such to some central service[47]. TORDNSeL in its early

version did also just rely on this information to detect exit nodes[47]. As this was not

satisfying TORDNSeL is currently undergoing a major rework with more sophisticated

approaches to detected exit nodes, even those who are only occasionally available[47].

TORDNSeL is based on DNS queries and therefore is easily queryable with already

existing DNS tools. It defines 3 types of queries whereas only type 1 queries of format

{IP1}.{port}.{IP2}.ip-port.torhosts.example.com are currently implemented[47].

A type 1 query returns 127.0.0.2 if a TOR server at {IP1} exists that permits connections

to {port} on {IP2}. According to the design document the reason for implementing

currently only type 1 queries is that they first want to see what the demand is like[47]. The

TOR project also states that "the current public service is operating on an experimental

basis and hasn’t been well tested by real services"[47].
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3. Approach

In the following approach for the three main parts of this work, namely classification of

services and their provider, definition and implementation of a graphical representation

for the classified services, and the implementation of a prototype, are described.

3.1. Classification

In chapter 2 already known approaches and techniques for classifying network traffic

have been reviewed, but most of these are not applicable as they either focus on OS or

on Layer 7 application detection or their field of application is to narrow, like anycast IP

detection. Therefore new patterns and approaches for classification need to be examined

and existing ones adopted.

For classification three categories, service, service-provider, and link type, are defined.

For service classification the following labels have been derived from the problem

description in chapter 1:

CDN Content Delivery Network

DNS Distributed/Managed Cloud DNS Service

CloudStorage Cloud Storage like Google Drive

CloudComputing Cloud Computing like Amazon EC2

VPN VPN

TOR TOR

OTHER No classification possible

Service labels are defined as mandatory, therefore a OTHER label was defined to tag

services not hit by any classifier. These labels can be used to determine how much

traffic was or was not covered by the classification.
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For service providers no labels have been predefined. Service provider names will be

defined manually when static data, e.g. service provider information, is used or derived

from WHOIS information of the BGP prefix for the IP utilized by the service.

As it also could be interesting for companies to detect what link type the remote site is

operating on, the following labels have been defined:

Fixed Cable/DSL

Mobile GSM/EDGE/HSDPA/LTE

3.1.1. CDN Detection

CDN providers usually use one of the following approaches to serve their content. Either,

as already described in section 2.2, using Anycast IP addresses for their webservers or

the DNS based approach by asking their customers to add a CNAME record pointing

to a subdomain owned by CDN provider for their website. Some providers like Fastly

support both techniques. Whilst in section 2.2 some reasons for using the one or the

other approach are discussed from a performance and reliability point of view, there

is also a reason for DNS based CDNs to provide an optional anycast IP web-server

service. The DNS approach does not allow to use the root domain, e.g. example.com, to

CNAME to the CDNs subdomain. The reason for that is section 3.6.2 of RFC1034 which

points out that "if a CNAME RR is present at a node, no other data should be present;

this ensures that the data for a canonical name and its aliases cannot be different"[34].

A root domain has other records, like NS or MX records, and therefor violates "no other

data should be present"[34][20].

The CDN detection therefore has to pay respect to these different types of CDN

networks.

The detection is based on measurements performed on a set of domain names based

on Majestics million websites [32]. Majestic million websites is a list of the top one million

ranked web-sites based on their backlink rate. The actual survey is done in two steps:

1. For each of the domain names in the dataset a DNS lookup for A, AAAA and

CNAME records will be performed.
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2. Subsequently, the RTT (round trip time) to the resolved IP addresses will be

determined.

Each of the steps is performed from multiple vantage points (VP) positioned all over the

globe. The results returned by each VP are represented by the 3-tuple (𝑞, 𝑐, 𝑀) with

𝑀 = (𝐼1, 𝐼2, . . . , 𝐼𝑛), 𝐼 = (𝑖, 𝑑) where:

q Queried domain name

c The resolved CNAME. (Can be empty)

I Resolved IP addresses and corresponding RTT for this domain

i IP address

d RTT to the IP

Anycast Webserver Based CDN Detection

For anycast CDN detection the latency based approach introduced in [13] and [31]

was adopted. Instead of applying the latency based measurements to a known set of

websites served by specific CDNs to geolocate their various points of presence, they will

be applied to the previously described measurement results. The actual classification

is summarized in the following. If the resolved IP addresses IP(𝑖𝑝1, 𝑖𝑝2, ..., 𝑖𝑝𝑛) from

multiple (at least two) VPs VP(𝑣𝑝1, 𝑣𝑝2, ..., 𝑣𝑝𝑚) for a single domain are the same

𝑖𝑝1 = 𝑖𝑝2 = ... = 𝑖𝑝𝑛 and the distance 𝑑 from 𝑣𝑝𝑥 to 𝑣𝑝𝑦 denoted as 𝑑𝑣𝑝𝑥𝑣𝑝𝑦 holds

𝑑𝑣𝑝𝑥𝑣𝑝𝑦 > 𝑑𝑣𝑝𝑥𝑖𝑝 + 𝑑𝑣𝑝𝑦𝑖𝑝

, with 𝑑𝑣𝑝𝑥𝑖𝑝, 𝑑𝑣𝑝𝑦𝑖𝑝 as distance from an target ip to 𝑣𝑝𝑥, 𝑣𝑝𝑦 respectively, for at least 2

VP pairs then the IP can be considered anycast. This rule is illustrated in Figure 3.1.

DNS Based CDN Detection

For DNS based CDNs the same measurement results, excluding already classified ones,

as for its anycast counterpart will be used. The detection consists of multiple steps:

1. Determination if it is a subdomain. If and only if it is a possible candidate.
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Figure 3.1.: Diverse target location detection

2. Calculate the minimum RTT for each VP per domain

3. Perform the same distance calculations as for Anycast Webserver CDNs.

3.1.2. Network Traffic Analysis

For detection of incoming connections from anonymization services but also for deter-

mination of additional information like link type (Ethernet, mobile,. . . ), TCP metadata

analysis for a range of devices, operating systems, services and link types are performed.

Detection of outgoing connections to the TOR network or to a VPN server are not part of

this work.

3.1.3. Categorization of Cloud Platforms

Detection of Cloud Platforms (CP) in a single approach seems almost impossible due

their nature. Many cloud platform provider have their own custom infrastructure hardware

from server to network equipment[29][33][43]. Their services include IaaS (Infrastructure

as a Service), PaaS (Platform as a Service), SaaS (Software as a Service), SECaaS

(Security as a Service), MBaaS (Mobile back-end as a service), Serverless computing,

not to mention hybrid clouds. The range of applications running on these services
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range from simple websites over virtual networks to code execution. Therefore, it seems

not possible to detect cloud platform providers or even services running on them by

simple network traffic metadata analysis. It is of course possible to detect some servers

belonging to a certain cloud provider by some metric specific to a customized OS they

use or service they provide. For example Google Linux Server have a TCP Window Size

of 5720[39]. But this information is just for a single OS for a single Provider and might

even be used by other services of Google outside their CP. This means that for detection

of CP services, first a deep insight into the infrastructure of each CP is needed to gain

information on some of their services or server. This is however outside of the scope of

this work and therefore I will rely only on open available IP address information provided

by the biggest players in the Cloud market. The provided data range from assigning

them to specific services, like Amazon does for EC2, Cloudfront, Route 53, . . . ,[15] or to

just stating that certain ranges are used for their cloud services, e.g. Google [23].

3.2. Graphical Representation

For graphical representation a Sankey diagram on top of an existing charting framework

is implemented and compared to a typical geolocation world map. Sankey charts are

commonly used for static and not dynamic data as suggested for this work. Therefore,

next to viability the scalability will be one of the main evaluation criteria.

In this work Sankey diagrams are used to visualize in- and outgoing network flows,

where classification tags are displayed as nodes. The edge direction represents the

communication direction (ingress and egress traffic), whereas the edge width displays the

relative number bytes transferred. A possible representation is illustrated in Figure 3.2.

3.3. Classification Prototype

The prototype is targeted to analyze and classify live traffic of a networks Internet link

and therefore has to be placed right in front or right after the firewall (see Figure 3.3
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Figure 3.2.: Sankey Diagram usage concept

Deployment 1 and 2 respectively). For each detected TCP session a record, defined as

𝑅 =(𝑖𝑑, 𝑐ℎ, 𝑠ℎ, 𝑠𝑟𝑐𝑖𝑝, 𝑠𝑟𝑐𝑝, 𝑑𝑠𝑡𝑖𝑝, 𝑑𝑠𝑡𝑝, 𝑝𝑟𝑜𝑡𝑜, 𝑎, 𝑑, 𝐶, 𝑆, 𝑇 ) (3.1)

𝐶 = 𝑆 =(𝑡, 𝑙, 𝑖𝑝ℎ𝑙, 𝑖𝑝𝑙, 𝑇𝑂, 𝑚𝑠𝑠, 𝑡𝑜𝑠, 𝑤𝑠, 𝑤𝑠𝑐, 𝑡ℎ𝑙, 𝑡𝑡𝑙, 𝑝, 𝑑𝑡) (3.2)

𝑇𝑂 =(𝑡𝑜1, 𝑡𝑜2, . . . , 𝑡𝑜𝑛) (3.3)

𝑇 =(𝑆𝑃, 𝑁𝑇, 𝑆𝐶) (3.4)

𝑆𝑃 =(𝑠𝑝1, 𝑠𝑝2, . . . , 𝑠𝑝𝑛) (3.5)

𝑁𝑇 =(𝑛𝑡1, 𝑛𝑡2, . . . , 𝑛𝑡𝑛) (3.6)

𝑆𝐶 =(𝑠𝑐1, 𝑠𝑐2, . . . , 𝑠𝑐𝑛) (3.7)

Where:

𝑖𝑑: is the session id

𝑐ℎ: session hash ℎ(𝑠𝑟𝑐𝑖𝑝, 𝑠𝑟𝑐𝑝, 𝑑𝑠𝑡𝑖𝑝, 𝑑𝑒𝑠𝑡𝑝, 𝑝𝑟𝑜𝑡𝑜) from client point of view

𝑠ℎ: session hash ℎ(𝑠𝑟𝑐𝑖𝑝, 𝑠𝑟𝑐𝑝, 𝑑𝑠𝑡𝑖𝑝, 𝑑𝑒𝑠𝑡𝑝, 𝑝𝑟𝑜𝑡𝑜) from server point of view

𝑠𝑟𝑐𝑖𝑝: TCP source IP

𝑠𝑟𝑐𝑝: TCP source port

𝑑𝑠𝑡𝑖𝑝: TCP destination IP

𝑑𝑠𝑡𝑝: TCP destination port

𝑝𝑟𝑜𝑡𝑜: IP protocol

𝑎: indicates if the session is still active

𝑑: indicates the session direction (in or outgoing)
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Figure 3.3.: Prototype placement

𝐶/𝑆: Client/Server packet information

𝑡: timestamp of the last seen packet

𝑙: SYN/SYNACK packet length

𝑖𝑝ℎ𝑙: initial IP header length

𝑖𝑝𝑙: initial IP packet length

𝑇𝑂: initial TCP options

𝑚𝑠𝑠: initial TCP Maximum segment size

𝑡𝑜𝑠: initial TCP Type of Service

𝑤𝑠: initial TCP Window Size

𝑤𝑠𝑐: initial TCP Window Scale

𝑡ℎ𝑙: initial TCP Header Length

𝑡𝑡𝑙: Time to Live

𝑝: Packets transferred

𝑑𝑡: Total Data transferred

𝑇 : Classification Tags

𝑆𝑃 : Service Provider List

𝑁𝑇 : Link Type List

𝑆𝐶: Service List

These records are subsequently used as source for the graphical representation

described before and for dynamic packet filter rule generation.

The classification module providing the 𝑇 subset of the record is based on the findings

for detecting CDNs, cloud platforms and anonymization services. The classification
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module has to distinguish between ingress and egress TCP sessions as not all classifiers

are applicable in both cases. For example does the TOR exit node classification only

apply to ingress traffic. Which classifiers are used in which case is described in chapter 4.
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4. Prototype Implementation

The prototype was designed to consist of three main components (see Figure 4.1),

namely a data storage back-end, a worker for collecting and classifying IPv4 UDP/TCP

packets, and a web front-end for the graphical representation.

For these components several constraints have been defined:

∙ Traffic capturing should be performed with as little overhead as possible.

∙ For capturing already existing libraries or tools should be used as the focus of this

prototype is on classification

∙ The utilized libraries or tools for capturing should allow live analysis of single

packets.

∙ Classification should start with the first/second, depending on if ingress or egress

traffic, packet seen.

∙ The back-end for storing sessions and classification information should be opti-

mized for a large amount of writes and fast read of aggregation data.

∙ The prototype should be runnable on common Linux distributions.

∙ For the graphical representation an already existing graphing library with support

for Sankey Diagrams should be utilized as proper dynamic node placing on a plot is

mathematical complex and very time-consuming in implementation and therefore

outside of the scope of this work.

4.1. Backend

For the back-end MongoDB was selected as database system as it is designed for a large

amount of write operations with a good query performance on large data. MongoDB is

one of the leading NoSQL databases and is designed to work with so called documents.
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Figure 4.1.: Prototype Architecture

Such documents have a similar structure/syntax as the JSON format, and they do not

need to be predefined before inserting them into a collection. This means there is no

fixed table structure like in RDBMS and the client defines the structure of the document

at insertion time. An example document for the data structure defined in chapter 3 is

listed in Listing 4.1.

1 {
"_id": ObjectId (" 598b7f3219985902437c63be "),

3 " clienthash ":" 8483f093ffbe7add608a2a72cd74620d ",
" serverhash ":" 80062c53366aea07ef2317200636db1c ",

5 "srcip":" 192.168.1.11 ",
" srcport ":59796 ,

7 "dstip":" 104.16.3.9 ",
" dstport ":443 ,

9 " active ":0,
"proto":6,

11 " client ":{
" timestamp ": NumberLong ( 1502314290 ),

13 "len":74 ,
"iphl":20 ,

15 "iplen":15360 ,
" tcpoptions ":[

17 2,
4,

19 8,
1,

21 3
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],
23 "mss":1460 ,

"tos":0,
25 " winsize ":29200 ,

" winscale ":7,
27 " tcpheaderlen ":10 ,

"ttl":64 ,
29 " pktcnt ":8,

" datatransfered ":922
31 },

" direction ":1,
33 " server ":{

" timestamp ": NumberLong ( 1502314290 ),
35 "len":66 ,

"iphl":20 ,
37 "iplen":13312 ,

" tcpoptions ":[
39 2,

1,
41 1,

4,
43 1,

3
45 ],

"mss":1460 ,
47 "tos":0,

" winsize ":29200 ,
49 " winscale ":10 ,

" tcpheaderlen ":8,
51 "ttl":58 ,

" pktcnt ":11 ,
53 " datatransfered ":922

},
55 " classification ":{

" SERVICE " :[
57 [ "CDN" ]

],
59 " NETWORK " :[

[ "OTHER" ]
61 ],

" SERVICEPROVIDER ": [
63 [ " CLOUDFLARE " ]

]
65 }

}
67 " classification " : { " SERVICE " : [ [ "CDN" ] ], " NETWORKT " :

→˓ [ [ "OTHER" ] ], " SERVICEPROVIDER " : [ [ " AMAZON ", "AWS
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→˓ ", " CLOUDFRONT " ] ] }

Listing 4.1: Example Classification Record

Figure 4.2.: Worker Class Diagram

4.2. Worker

The worker consists of two modules as shown in Figure 4.1 (2). The Collector is

responsible for capturing packets from the network interface and enqueuing them in a

working list for further processing in the classifier.

The Classifier is responsible for keeping track of TCP and UDP sessions, storing

session information and statistics in the database. Further it is, as the name implies,

responsible to classify packets in the working queue by applying a rule set (a chain of

rules) to each packet. The worker was implement in C++ as it allows fast capturing and

processing data. An overview class diagram is shown in Figure 4.2. Initially the use

of some scripting language like Python was considered but the best library for packet

capturing (Scapy) is too slow for live capturing and adds extra delay. It would also have
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been possible to use RAW sockets in Python but this would have meant a lot of basic

work on packet processing, which was not in the scope of this work. Another option

would have been to utilize already existing packet capturing tools like Wireshark [48],

but these are not designed to run continuously and forward single packets to other

processes on the fly.

The initial class is WorldMapper which creates an instance of Configuration and

WorkingQueue which are then passed to Collector and Classifier. Configuration

reads and holds content from the configuration file. This configuration file contains

information for database connections and tables, IP addresses to exclude from classifying

and session timeouts for UDP and TCP. A sample configuration file is listed in Listing 4.2.

The WorkingQueue is a thread save list which holds all collected packets which need to

be processed by the classifier. It is defined as shared resource between Collector and

Classifier.

1 {
" localIPRanges ": [

3 " 192.168.0.0 /16",
" 10.0.0.0 /8",

5 " 172.16.0.0 /16"
],

7 " udpTimeout ": 1800 ,
" tcpTimeout ": 1800 ,

9 " mongoDBUri ": " mongodb :// localhost :27017 /? minPoolSize =3&
→˓ maxPoolSize =10",

" mongoDBName ": " connclassifier ",
11 " collectiontcpIPv4 ": " tcpsessionsv4 ",

" collectionudpIPv4 ": " udpsessionsv4 ",
13 " classifierThreads ": 7

}

Listing 4.2: Example Configuration File

4.2.1. Collector

The Collector was implemented on top of libpcap [46], which is the base packet capturing

component of tools like TCPDump [46] and Wireshark. Libpcap defines functionality

to capture and process raw packets collected from a network interface. As most of the

functions implemented in Collector are common for libpcap implementations only the
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Figure 4.3.: Collector Class Diagram

function parseIP will be discussed as it is the core method for packet handling. It is

called by pcapCallback as soon as a new packet is captured. This captured raw packet

is then handed over to an instance of either UDPPacket or TCPPacket for parsing the

IP-Header (defined by IPPacket) and the transport protocol specific information from it.

Figure 4.2 shows the important fields and functions of these types. Especially worth to

notice is the function hash128 (see Listing 4.3) as it calculates the hashes for session

identifiers. The hash is created from a string of destination-IP + destionation-Port +

IP-Proto+source-IP + source-Port, or with source/destination swapped if reversed is set

to false.

std :: string WorldMapper :: Packet :: TCPPacket :: hash128 (bool
→˓ reversed ) {

2 uint64 hash1 = 1;
uint64 hash2 = 2;

4 char *inBuf = new char[ BUFFLEN ]();
if ( reversed ) {

6 snprintf (inBuf , BUFFLEN , "%s%u%u%s%u", this -> dstip_ . toString
→˓ ().c_str (), this -> dstport_

, this ->proto_ , this -> srcip_ . toString ().c_str (), this ->
→˓ srcport_ );

8 } else {
snprintf (inBuf , BUFFLEN , "%s%u%u%s%u", this -> srcip_ . toString
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→˓ ().c_str (), this -> srcport_
10 , this ->proto_ , this -> dstip_ . toString ().c_str (), this ->

→˓ dstport_ );
}

12 SpookyHash :: Hash128 (inBuf , BUFFLEN , &hash1 , &hash2);
std :: stringstream ss;

14 ss << std :: hex << hash1;
ss << std :: hex << hash2;

16 return ss.str ();
}

Listing 4.3: Session Hash Calculation

After parsing the packet it is checked if the conversation happens between two

excluded IP addresses. If not, the packet is enqueued into the working list.

4.2.2. Classifier

As already stated the Classifier implements functionality for session management, clas-

sification, and persisting this information to the mongoDB back-end. The class diagram

in Figure 4.4 shows the main fields and functions of the classifier. It is implemented to

process the working queue multi threaded as the session management and classification

are time-consuming and would led to a congestion in the queue. The process runner

function is process, it contains the logic for taking elements from the queue and process

them further. The number of threads is defined in the configuration file and therefore

allows to be modified to yield the best performance on each hardware the prototype is

running on. In the following the main processing steps for the packets, namely session

management and classification are described.

Session Management

This is done by adding new sessions into the SessionMap sessions and removing closed

sessions from it. New sessions are determined by either receiving a SYN packet or

the first packet seen for TCP or UDP respectively. For each session two entries are

stored in sessions map, one entry for each packet direction (in or outgoing). Where the

first packet of a session is always thought to come from the "client" and any response

from the "server". For each session two entries are stored in the SessionMap on for

each calculated hash. This is done to allow fast lookup if the session already exists,
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no matter which direction the packet flows, and to retrieve the actual session ID. The

map key is the calculated hash (see Listing 4.3) for the packet, where both entries in

the map are created with the first packet, hence the reversed parameter on the hash

function. The actual session ID, named identifier corresponds to the _id field of the

according document stored in the database collection. This document is created with

the first packet seen and updated for each consecutive packet. These updates usually

increase packet counter, total amount of data transferred, and the timestamp of the

received packet for server and client respectively. Closed sessions are either determined

if a packet with FIN or RST flag set was received or the last packet received was older

than udpTimeout or tcpTimeout accordingly. Further if a TCP SYN packet was received

when a session was thought to be already open a close will be forced before the new

session entry is created. A session close always contains a remove from the sessions

map and setting the active field of the document in the database to 0. On start of the

application all documents with active = 1 are update to yield active = 0.

Classification

After updating the session information for the packet in the database and determining

if the session still needs to be classified, the packet is handed over to the according

Rule-chain. Where it is distinguished between a TCP and an UDP Rule-chain. The class

diagram for the Rule-chain are shown in Figure 4.5. The rule parents are TCPPacketRule

and UDPPacketRule for TCP and UDP respectively. These two classes define what and

in which order rules are applied. The rule order for both is shown in Listing 4.4 and

Listing 4.5. The TCP Rule-chain contains IPSignatureRule, TCPSignatureRule and

TORRules whereas the UDP Rule-chain only contains the IPSignatureRule. This is

because no UDP traffic was analyzed in this work and therefore classification of UDP

traffic will only happen on an IP basis. The single rule types will be explained in the

following.

IPSignatureRule IP signature rules determine the Service and Service-Providers only

based on the assigned IPs in the rule sets. These are used for IP addresses

retrieved from the provider directly as already mentioned or IPs/subnets determined

by the CDN detection algorithm. These rules are stored in rules files in JSON
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format. A sample rule file for Cloudflare based on provided information is shown in

Listing 4.6.

TCPSignatureRule TCP signature rules determine Services according to their specific

TCP flags and options signature. These rules are retrieved from the results of the

TCP traffic analysis defined in chapter 3. These rules are stored in a similar JSON

format as the IP signature rules. A sample rule file for TOR exit node detection

is shown in Listing 4.7. The service provider is taken from the rule file or if not

present from the IP signature classification or defaults to OTHER.

TORRules This rule was implemented as fallback if the TOR exit node detection on

TCP base is not possible to have more data for the graphical representation. This

rule uses TORDNSeL to determine if the remote site is a TOR exit node. As this

service currently only provides type 1 queries as already mentioned in section 2.8,

which only allow to query for specific ports provided by a specific exit node, this

rule performs classification only on incoming SYN packets as outgoing packets

would always return false.

After the rule chain has returned the classification result is added to the document

in the database and the classifed filed in according Session objects is set to true, to

prevent further classification runs.

1 WorldMapper :: Rule :: TCPPacketRule :: TCPPacketRule () {
IPSignatureRule * iprule = new IPSignatureRule ();

3 iprule -> readRules ();
rules_ . push_back ( iprule );

5 TCPSignatureRule * tcprule = new TCPSignatureRule ();
tcprule -> readRules ();

7 rules_ . push_back ( tcprule );
TORRules * torrule = new TORRules ();

9 rules_ . push_back ( torrule );
}

Listing 4.4: TCP Rule Order Implementation

WorldMapper :: Rule :: UDPPacketRule :: UDPPacketRule () {
2 IPSignatureRule * iprule = new IPSignatureRule ();

iprule -> readRules ();
4 rules_ . push_back ( iprule );

}

Listing 4.5: UDP Rule Order Implementation
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Figure 4.4.: Classifier Class Diagram

1 {
" IPRulesIPv4 ": [

3 {"ip": " 103.21.244.0 /22"," serviceprovider ":[" CLOUDFLARE "
→˓ ], " service ": ["CDN"]},
{"ip": " 103.22.200.0 /22"," serviceprovider ":[" CLOUDFLARE "],
→˓ " service ": ["CDN"]},

5 {"ip": " 103.31.4.0 /22"," serviceprovider ":[" CLOUDFLARE "], "
→˓ service ": ["CDN"]},
{"ip": " 104.16.0.0 /12"," serviceprovider ":[" CLOUDFLARE "], "
→˓ service ": ["CDN"]}

7 ]
}

Listing 4.6: Example IP Rule

{
2 " TCPRulesIPv4 ":[

{
4 "name":"TOR TCP",

" direction ": 0,
6 " options ":{
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"MSS":[
8 1310

],
10 " WinSize ":[

13100
12 ],

"TCPHL":[
14 40

],
16 "LEN":[

74
18 ]

},
20 " service ":[

" TORTCP "
22 ],

" serviceprovider ":[
24 "TOR"

]
26 }

Listing 4.7: Example TCP Rule

name Name for the rule

direction Session direction to which the rule should be applied. 0 Ingress, 1 Egress, 2

Both

options The actual rule settings. All options allow multiple values.

SRCPRT Source Port

DSTPRT Destination Port

WSIZE Window Size

WSCALE Window Scale Factor

TCPHL TCP Header Length

MSS Maximum Segment Size

SACKP SACK Permitted

TSPRESENT Timestamp Present

LEN Packet Length

IPHL IP Header Length

IPLEN IP Frame Length

TOS Type of Service
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service The Service tag that should by applied to a found session. Multiple values are

allowed.

service The Service Provider tag that should by applied to a found session. Multiple

values are allowed.

Figure 4.5.: Rule Class Diagram

4.3. Web Frontend

The graphical representation for the data is implemented as web interface which consists

of two components. A REST API for providing correlated data from the database as web

service and a web view for rendering a Sankey diagram with the provided data.

4.3.1. REST API

This REST service was implemented with Eve [26] a Python REST API. It allows fast

and easy setup of RESTful Web Services and comes with native support for MongoDB

[35]. A sample configuration which returns aggregated data grouped by classification is

shown in Listing 4.8.

X_DOMAINS = ’*’
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2 PAGINATION = False

4 DOMAIN = {
’tcpout ’:{

6 ’datasource ’:{
’source ’: ’tcpsessionsv4 ’,

8 ’aggregation ’ : {
’pipeline ’: [

10 {" $match " : {
"$and" : [

12 { " direction " : 1 },
{ " active " : 1 }

14 ]
}

16 },
{ " $unwind " : " $classification.SERVICE " },

18 {" $group " : {
"_id": {

20 " service " : " $classification.SERVICE ",
"sp" : " $classification.SERVICEPROVIDER ",

22 },
" ccount " : {"$sum" : " $client.datatransfered " },

24 " scount " : {"$sum" : " $server.datatransfered " }
}}

26 ]
}

28 }
}

30 }
MONGO_HOST = ’localhost ’

32 MONGO_PORT = 27017
MONGO_DBNAME = ’connclassifier ’

Listing 4.8: Example REST Configuration

This configuration list the service for retrieving aggregated data for egress TCP sessions.

The data for all active sessions is grouped by Service and the hierarchical Service-

Provider list (e.g. Amazon, AWS, Cloudfront). The fields ccount and scount are

representing the summed transfered data for client and server respectively in the group.

Next to this service the API provides three more web services with the same data

structure for egress UDP and ingress TCP/UDP sessions.
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4.3.2. Web Interface

The web interface is implemented in JavaScript with graphs based on bihisanky [7] a

library for drawing bidirectional hierarchical Sankey Diagrams. It queries the REST API

with AJAX every 10 seconds to retrieve in and -egress traffic for TCP and UDP. These

retrieved data is then merged and transformed to fit the data structure requirements

of bihisanky. Which means Services and Service-Providers are declared as nodes.

Further bidirectional links between Service nodes, Service-Provider nodes and within

the Service-Provider node hierarchy are created. In contrast to the initial idea of having

in- and egress traffic displayed in one diagram the prototype was implemented to use

two separated graphs, as shown in Figure 4.6. The main reason for that is, that it would

not have been possible to distinguish between in and egress sessions but only between

ingress and egress packets, which is not desired as lot of information would get lost.

Each chart consists of three different types of nodes. The root node which represents the

local site- This node is directly linked to a service node representing the type of service.

These service nodes are then linked to the hierarchical structure of service-provider

nodes. For better visibility of the hierarchy each layer was assigned a specific color.
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Figure 4.6.: Prototype Web Interface

44



5. Results

In the following the test setups and results for CDN detection and the network traffic

analysis are described. Further the prototype which is partly based on the results of the

measurements and the performed test runs on it are presented.

5.1. CDN Detection

The measurements have been performed on a set of domain names based on Majestic

million websites [32] as already described in subsection 3.1.1. Most of the domains are

only listed with their root/apex domain name, therefore for each domain an entry with

common website subdomains "www", "www2", and "www3" was added to adhere to

the constraints of anycast DNS based CDNs. After adding the additional domains the

dataset contained 3,994,354 entries.

The actual survey was done in two steps:

1. For each of the domain names in the dataset a DNS lookup using the dig command

from multiple vantage points (VP) over the globe was performed.

2. Subsequently, the RTT (round trip time) from each VP to the resolved IP addresses

was determined by performing a TCP Ping with NPing [38] on Port 443. Whereas a

TCP Ping is just sending a packet to the target IP with the SYN flag set and waiting

for the corresponding SYN-ACK packet. The time between sending the SYN and

receiving the SYN-ACK is taken as RTT. This approach was chosen as first test

runs with an ICMP ping showed that most of the ICMP echo requests are blocked

by a firewall at the remote site.

Each of the steps was performed from seven vantage points all over the globe. These

VPs have been placed in different regions of the AWS EC2 cloud as shown in Figure 5.1.
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Oregon Ohio London Frankfurt Mumbai Sydney Sao Paulo

Oregon X 68 156 160 217 161 182

Ohio 68 X 86 98 190 194 130

London 156 86 X 17 111 280 193

Frankfurt 160 98 17 X 109 290 207

Mumbai 222 190 111 109 X 220 301

Sydney 161 194 280 290 220 X 330

Sao Paulo 182 130 193 207 301 330 X

Table 5.1.: RTT between the vantage points

1. US West 1 (Oregon)

2. US East 2 (Ohio)

3. EU West 2 (London)

4. EU Central 1 (Frankfurt)

5. Asia Pacific Souths 1 (Mumbai)

6. Asia Pacific South East 2 (Sydney)

7. South America East 1 (Sao Paulo)

The RTT between the different vantage points is listed in Table 5.1. The round trip time

was calculated as the average of thirty ICMP pings. The pings have been performed

in both direction as Internet routes are not always symmetrical. The table shows that

the RTT is constant in both direction. There was only a slight difference for Oregon←→

Mumbai. For this pair another measurement was performed on a different day, which

yielded the same result. As the difference is only 5 ms which is about 2% of the RTT

this is negligible. For any calculation or comparison the smaller value has been used.
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Figure 5.1.: Measurement vantage points map

5.1.1. Survey

In step one of the survey, the DNS resolution, 2,297,819 of the total 3,994,354 domains

have been resolvable. Some queried domains employ a wildcard record, which resolves

all not explicitly declared or non-existent subdomains to either their apex domains A

record or to some dummy address. Further, as not all additionally added (www, www2,

www3) subdomains do really exist this number seems plausible. These domains resolved

to an actual number of 887,077 unique IP addresses. Therefore, we can assume many

domains share IP addresses as they are most likely hosted on the same web server,

or they are provided either by the same web server instance/load-balancer of a CDN.

Further there have been 380,427 CNAMES resolved, which lets infer that there can be

no more than 380427 domains that belong to an anycast DNS CDN within the result

dataset.

In the second step of the domain survey the response time of the resolved IP addresses

has been determined utilizing a TCP ping on port 443. Of the 887,077 resolved IP

addresses only 706,523 have been responding. The difference of about 180,000 IPs

is explained due to the fact that not all the queried websites listen on port 443. Further

some domains have been resolved to private IP addresses. Even though DNS records

on public DNS servers should not contain private IP addresses for security reasons like
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Total Domains 3,994,354

Resolvable domains 2,297,819

Unique IPs 887,077

Responsive IPs 706,523

Table 5.2.: CDN survey figures

preventing information disclosure [42] it is not forbidden. Sometimes it seems to be done

on purpose as security/sanitation measures to resolve wildcard entries to invalid/private

and therefore not public routed IP addresses. A. Kalafut et al. have done a survey on

the use of wildcard records in [27]. A summary of all the figures is listed in Table 5.2.

5.1.2. Anycast IP Web-server based Content Delivery Networks

For recognition of anycast web-server CDNs’ a subset (a_dataset) of the dataset retrieved

in the domain survey was used. All IP addresses yielding RTT results from only a single

Vantage Point have been removed as these do not fulfill the requirements for the CDN

type in question. This pre-filtering removed 131,476 IP addresses from the total 706,523

leaving 575,047 IPs for analysis. In order to apply the algorithm defined in section 3.1.1

the a_dataset had to be transformed from a domain to an IP centric representation. For

each of the resolved IP addresses a record was created containing the IP as ID and its

distance (the RTT) to each of the Vantage Points. Missing values have been set to a

RTT of 9999 ms, so they won’t ever create a candidate record.

Ground Truth As there does not exist any ground truth for CDN detection to measure

the effectiveness of the applied algorithm a sample dataset has been created. This

dataset consists of 𝑛 samples (where 𝑛 = 1000) which have been randomly drawn from

the a_dataset. These 1000 samples have been manually classified to yield either 0 or

1 where 0 = no CDN and 1 = CDN. Each of 1000 samples has then been manually

reviewed and classified. Of this drawn sample dataset 254 samples have been classified

TRUE and 746 samples FALSE. Even though this dataset could be to unbalanced for
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Figure 5.2.: Anycast web-server CDN threshold selection

training machine learning classifiers, as the employed algorithms could make false

assumptions according to the balance in test and new data, it should not have a negative

impact on manual classification algorithm used in this paper as it does not consider

the number of elements in each class. Further for analysis of the results, only metrics

and tactics from machine learning to combat imbalanced dataset are employed. This

includes using Confusion Matrix, Recall (True Positive Rate, Sensitivity), and Cohen’s

kappa. After the manual classification the algorithm described in chapter 3 was applied

to the sampled dataset. The result yields a Cohen’s kappa of 0.8242 and a Sensitivity of

0.9803, the confusion Matrix of the absolute values is shown in Figure 5.2 threshold 1.

While this seems to be a relatively good results there is still space for improvement.

Therefore, the False Positives have been manually reviewed. It turned out that most

of them resulted from a minimal (in relation to the actual value) faster, accumulated,

response time, of about 5—30 milliseconds, from the Vantage Points to the target

IP than between the two VPs. For these False Positives the measurements of the

survey phase have been redone to validate the results. These retests yielded similar

values. The reason for this behavior is easily explained with the Internet architecture

as the packets used for determining the distance between 𝑉 𝑃1 and 𝑉 𝑃2 have most

probably taken a different BGP-Path than 𝑉 𝑃1 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡 or 𝑉 𝑃2 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡. Hence

it is possible that sum of distances of 𝑉 𝑃1 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡 and 𝑉 𝑃2 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡 is smaller
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Figure 5.3.: Diverse target location detection with threshold

than the distance 𝑉 𝑃1 ↔ 𝑉 𝑃2. To tackle this problem a dynamic, percentage based,

threshold was introduced. A static threshold wouldn’t be sufficient in this case as the

variance increases with the distance and a threshold of for example 30 ms is larger than

the distance between the Vantage Points in Frankfurt and London. The threshold was

applied by multiplying it to the sum of distances of 𝑉 𝑃1 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡 and 𝑉 𝑃2 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡.

The updated scheme is visualized in Figure 5.3.

To select the appropriate threshold that returns less FALSE-POSITIVES but does

not increase the TRUE-NEGATIVES a range of thresholds was tested. Therefore, the

algorithm was again applied to the sampled dataset with a varying percentage threshold

multiplied with the VP ←→ Target distance. The thresholds test range was defined

between 0.5-20.0 in 0.05 steps. The outcome of these runs is visualized in Figure 5.4

and some selected Confusion Matrices, to show the influence of several thresholds,

in Figure 5.2. According to these results the best threshold would be 1.95 at a True-

Positive-Rate (TPR) of 0.9803 and a False-Positive-Rate (FPR) of 0.0 with a Kappa of

0.9867. As this would mean almost a doubling of the calculated distance values and as
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Figure 5.4.: Anycast web-server CDN ROC

there could also happen an over-fitting to the test-dataset a threshold yielding a slightly

worse FPR should be selected. Therefore, a threshold of 1.2 has been selected as it

is the smallest threshold having the second least FPR of 0.0013 with the same TPR of

0.9803 and a Kappa of 0.9841.

Application After having selected the target threshold the algorithm defined in sec-

tion 3.1.1 was applied to the a_dataset. From the 575,047 IP addresses in the a_dataset

133,930 have been identified as part of a CDN that is about 23.3%. These IP addresses

belong to 71 different Content Delivery Networks. The top 10 CDNs by number of IP ad-

dresses in the a_dataset plus a summed value for all other CDNs are listed in Figure 5.5a.

The largest CDN, namely Cloudflare, represents about 98% of all IP addresses classified

as part of a CDN, therefore the figure has a logarithmic scaled y axis. All of these top

10 do either provide a CDN and/or a DDoS mitigation service. For completeness the

algorithm was also applied with a threshold of 1.95 (see Figure 5.5b). In comparison

to the threshold of 1.2, 1519 fewer IPs have been classified as part of a CDN, where

1058 of them belong to Incapsula [25], a DDoS protection provider. A manual review of

the RTTs of these IPs and research on Incapsula showed that the algorithm does not fit

the setup of Incapsula. Incapsula is using anycast IP addresses for their web and DNS

servers but only regional [25]. This means that the infrastructure is split up in several
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regions and only within a single region the same IP address is used at different points of

presence. As the measurements have been only performed from one or two Vantage

Points the results are not fine-grained enough to meet the criteria for reliably detecting

such CDNs, or at least not with a certain threshold applied.

5.1.3. Anycast IP DNS server based Content Delivery Networks

For recognition of anycast DNS server based CDNs a subset (b_dataset) of the dataset

retrieved in the domain survey was used. In contrast to the web-server based CDN

recognition in this b_dataset the records had to be domain centric as typically for anycast

DNS server based CDNs the IP of the web-server is different for each region of the CDN.

As these type of CDN does rely on CNAME DNS records, only domains showing such a

record have been selected for the dataset. After filtering non responsive and domains

with only one result 363685 candidate entries have been left. For each of these domains

a record was created containing the domain name as ID and the minimum measured

distance, of all resolved IPs at each Vantage Point for the specific domain, to each

Vantage Point. For this correlation of RTT results some assumptions have been made.

First it is expected that if a CDN is used by a domain, all resolved IPs belong to the same

CDN. This means that there are no additional IPs pointing to the actual web-server of

the site as this would render some CDN features like DoS protection useless. Second if

the domain is not served by a CDN the IP closest (in terms of RTT) to each VP is used.

As before, missing values have been set to a RTT of 9999 ms, so they won’t ever create

a candidate record.

Ground Truth As with anycast web-server based CDNs, there also does not exist

any ground truth for anycast DNS-server CDNs detection to measure the effectiveness

of the applied algorithm. Therefore a sample dataset containing 𝑛 samples (where

𝑛 = 1000) has been randomly drawn from the b_dataset. These 1000 samples have

been manually classified to yield either 0 or 1 where 0 = no CDN and 1 = CDN. All 1000

samples have then been manually reviewed and classified. This drawn and manually

classified sample dataset consisted of 130 TRUE and 870 FALSE samples. As before

this sample dataset is unbalanced but should not yield any problem in terms of reliability.
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(a) Threshold: 1.20

(b) Threshold: 1.95

Figure 5.5.: Top 10 anycast web-server based CDNs by number of IPs
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Figure 5.6.: Anycast DNS CDN threshold selection

Like for the anycast web server based CDNs for analysis of the results, only metrics

and tactics from machine learning to combat imbalanced dataset are employed. This

includes using Confusion Matrix, Recall (True Positive Rate, Sensitivity), and Kappa.

After the manual classification the algorithm described in section 3.1.1 was applied to

the sampled dataset. The result yields a Kappa of 0.6168 and a Sensitivity of 1.0000,

the confusion Matrix of the absolute values is shown in Figure 5.6 threshold 1. While

the Sensitivity yields a perfect, possibly too perfect (risk of overfitting), result the Kappa

shows a different result which seems more reliable after checking the confusion matrix.

As there is again a high False-Positive rate a similar threshold as in subsection 5.1.2 was

introduced. The thresholds test range was again defined between 0.5-20.0 in 0.05 steps.

The outcome of these runs is visualized in Figure 5.7 and some selected Confusion

Matrices, to show the influence of several thresholds, in Figure 5.6. According to these

results the best threshold would be 2.75 at a True-Positive-Rate (TPR) of 0.9923 and

a False-Positive-Rate (FPR) of 0.003 with a Kappa of 0.9824. As this would mean to

multiply of the calculated distance values with almost three and as there could also

happen an over-fitting to the test-dataset a threshold yielding a slightly worse FPR

should be selected. Therefore, a threshold of 1.15 has been selected as it is the smallest

threshold having the second least FPR of 0.008 with the same TPR of 1.0 and a Kappa

of 0.9697.
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Figure 5.7.: Anycast DNS CDN ROC

Application After having selected the target threshold the algorithm defined in sec-

tion 3.1.1 was applied to the b_dataset. From the 363,685 domains in the b_dataset

48,807 have been identified as part of a CDN, this is only about 13%. To assign these

domains to certain CDNs each resolved IP is matched to its most specific BGP Prefix

utilizing libbgpinfo [40]. This returned a total number of 140,396 IPs of 3770 BGP prefixes

in 619 Autonomous Systems. After manually verifying the top 50 AS, in terms of IP count,

it was identified that these belong to 47 different providers. The IPs for Autonomous

Systems of the same provider have then been merged so that their count reflects the

actual number of IPs for this provider. The remaining 569 AS only represent about 1.6%

of the IPs and therefore have not been manually validated. Figure 5.8a shows the top

10 CDN providers, according to the number of assigned IP addresses. The manual

review also showed that some providers without points of presence in every region do

rely on third party companies. For example is Akamai using IP addresses of Bharti

Airtel to provide services in India. Research on Bharti Airtel revealed that they are also

partnering with Limelight another CDN provider [1]. All the top 50 companies are either

CDN or DDoS providers, have a global infrastructure like Microsoft, Facebook, LinkedIn

or provide network services, like Level 3 Networks or Bharti Airtel, which are used by

CDNs. As IPs of the latter ones cannot be assigned to a single CDN they have been

classified as a separate CDN on their own. Again, for completeness the algorithm was
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applied to dataset using a threshold of 2.75 which was yielding the best performance

in the sample set. The top then for this run are listed in Figure 5.8b. This run returned

136,723 IPs of 2966 BGP prefixes in 392 Autonomous Systems which yields a difference

3673 IPs whereby these belong to 1233 prefixes in 360 Autonomous Systems. A manual

review of the top 10 Autonomous Systems, which yield about 55%, for these IPs showed

that all of them belong either to a CDN provider or to companies with global networks

who run their own "private" CDN. Therefore, the selection of the conservative threshold

was a good choice.

5.2. Network Traffic Analysis

For detection of ingress connections from anonymization services and determination

of remote site link type (Ethernet, mobile,. . . ), TCP metadata analysis for a range of

devices, operating systems, services, and link types was performed. The test setup

included the operating systems, network carrier, and services is listed in Table 5.3.

The test was done in two steps, first data for the combinations listed in Table 5.4 Step

1 has been performed to get a better understanding which factors have an influence

on the metadata and which not. In the second step additional combinations, listed in

Table 5.4 Step 2, for the factors identified in step one have been performed.

For all combinations in Step 1 and 2, HTTP/HTTPS queries to the dedicated target

server have been performed. TOR measurements for the iPad2 could not be performed

as the device was not under full control by the author and had a mobile device manage-

ment software installed which automatically removed the TOR-Browser as soon as it

was installed. On the target server all traffic on port 80/443, while performing the queries

was captured and assigned to the specific OS, carrier, service and connection type.

The measurements for entries with service NONE are performed without any tunneling

or anonymization as they should serve as a baseline. This captured data has been

subsequently analyzed for patterns to identify the service and connection types used.
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(a) Threshold: 1.15

(b) Threshold: 2.75

Figure 5.8.: Top 10 anycast DNS server based CDNs by number of IPs
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Client devices and Operating Systems

Device Type Operating System

PC Windows 10

Lenovo X1 Carbon Ubuntu 17.04

Galaxy S3 Android 4.4.4

Moto X Play Android 6.1

iPad2 iOS 10

Internet Carrier

Carrier Connection Type

Liwest Cable

3 GSM/HSDPA

Yesss GSM/HSDPA/LTE

GSM Modems

GSM Modem Type Connection Type

Internal if present

Huawei E3372 USB

Huawei E3372 in TL-MR3420 WLAN

Services

Anonymization services

TOR

Random Open VPN provider

Target/Capturing Device

Operating System Service

Ubuntu 16.04 Website on Port 443(HTTPS)

Table 5.3.: Network Traffic Analysis Test Environment
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Step 1

OS Connection Type Service

Windows 10 Cable TOR

Windows 10 Cable VPN

Windows 10 Cable NONE

Ubuntu 17.04 Cable TOR

Ubuntu 17.04 Cable VPN

Ubuntu 17.04 Cable NONE

Android 6.1 Cable TOR

Android 6.1 Cable NONE

Android 6.1 Internal GSM TOR

Android 6.1 Internal GSM VPN

Android 6.1 Internal GSM NONE

iOS 10 WLAN/Cable VPN

iOS 10 WLAN/Cable NONE

iOS 10 Internal GSM NONE

iOS 10 Internal GSM VPN

Step 2

OS Connection Type Service

Windows 10 USB→ E3372 NONE

Ubuntu 17.04 USB→ E3372 NONE

Ubuntu 17.04 WLAN→ E3372 NONE

Android 4.4.4 WLAN→ E3372 TOR

Android 4.4.4 Internal GSM TOR

Table 5.4.: Network Traffic Analysis Test Phases
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Step 1

The figures 5.9a and 5.9b show the results using MSS, RTT, TCP Window Size and as

x,y,z axis respectively. Although the RTT does not add much value to classification as

we can only conclude that it is increasing when VPN gateways are used. But RTT might

also vary when the client is on a mobile network or when one of the communication

partners has a bad connection therefore this seems not to be a good metric. Using

the frame length instead of RTT as in Figure 5.9c and Figure 5.9d seems to aid the

separation of some classes.

The tables 5.5 are listing all identified and correlated data from the collected baseline

dataset. The correlated data for OpenVPN and TOR measurements for both steps are

listed in 5.6.

Mobile The only difference between land line and mobile connection when no service

is used is evident in the Maximum-Segment-Size. All other values like Frame-

Length, Window-Size, and Header-Length are equal for all collected base data.

The difference seems to originate either from the mobile carrier, as for Android

and iOS different providers (3 and Yesss respectively) have been used, or the

GSM/HSDPA modem of the devices. To prove that, further data using different OS

types/versions, GSM modems and Mobile-Data-Providers has to be collected in

step 2.

TOR For TOR exit nodes no client side or connection related influence on the collected

data could be identified. This was however expected as the exit nodes setup a new

TCP connection to the target host. Therefore, they often have the same fingerprint

as other common Linux systems outside the TOR network. But there also exist

exceptions as some exit nodes show a pattern in MSS and Window-Size, like

1310/13100, 1460/14600. If this is caused by configuration changes by the TOR

exit node hoster or a special Linux distribution could not be identified. As there is

no link to client, connection type, carrier, OS no further data will be collected in

step 2.

OpenVPN As already widely known and used by tools like P0f, the collected data show

that it is possible to identify connections which have been tunneled through a
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Landline/Fixed

Step Type OS MSS WinSize TCPHL FRAMELEN

1 fixed android 1460 65535 40 74

1 fixed ios 1460 65535 44 78

1 fixed linux 1460 29200 40 74

1 fixed windows 1460 8192 28 62

Mobile connections

Step Type OS MSS WinSize TCPHL
FRAME-

LEN
Modem

1 mob android 1370 65535 40 74 internal Moto X

1 mob ios 1410 65535 44 78 internal iPad2

2 mob android 1424 65535 40 74 Huawei E3372

2 mob android 1318 11862 40 74 internal S3

2 mob android 1318 13180 40 74 internal S3

2 mob linux 1424 29200 40 74 Huawei E3372

2 mob linux 1370 29200 40 74 internal Moto X

2 mob windows 1370 8192 32 66 internal Moto X

2 mob windows 1424 8192 32 66 Huawei E3372

Table 5.5.: Network Traffic Analysis Base Line Data
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TOR connections

Step Type OS MSS WinSize TCPHL FRAMELEN

1 fixedtor android 1310 13100 40 74

1 fixedtor android 1460 29200 40 74

1 fixedtor android 1460 14600 40 74

1 fixedtor linux 1460 29200 40 74

1 fixedtor windows 1460 29200 40 74

1 fixedtor windows 1460 14600 40 74

1 fixedtor windows 1310 13100 40 74

1 mobtor android 1460 29200 40 74

VPN connections

Step Type OS MSS WinSize TCPHL FRAMELEN Modem

1 fixedvpn linux 1460 8192 32 66

1 fixedvpn windows 1351 8192 28 62

1 fixedvpn android 1365 65535 40 74

1 fixedvpn ios 1360 65535 44 78

1 mobvpn android 1368 65535 40 74
internal

MotoX

1 mobvpn android 1365 65535 40 74
internal

MotoX

1 mobvpn ios 1360 65535 44 78
internal

iPad2

Table 5.6.: Network Traffic Analysis Data
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VPN connection. There however could not be any relation to connection type,

land line or mobile, identified. It is noticeable that most VPN servers enforce

a MSS around 1360 as this yields the default settings in OpenVPN to mitigate

packet fragmentation. Also the MSS seems to be untouched by the OpenVPN

configuration. The only outliers in the dataset are from the Linux machine as there

the MSS was increased and the Window-Size decreased and the TCP-Header-

Length and Frame-Length differ from the base line results. As this seems not to be

right the measurement was redone using a different server, but the result kept the

same. Therefore, this is either coincidence that the tested servers use the same

settings or it is OpenVPN client related. As there is no link to client, connection

type, carrier, OS no further data will be collected in step 2.

Step 2

The results from the collected data for step two show a clear picture on what was the

cause for the differences in the data for mobile connections. The MSS seems only to

be dependent on the GSM/HSDPA modem used. There is no difference if the Modem

was connected directly via USB or indirectly, plugged int a WLAN-Router, via WLAN.

TCP Window-Size, TCP-Header-Length and Frame-Length are similar to the base line,

except from Frame-Len for Windows which is slightly increased. Therefore, it is possible

to identify clients on mobile connections and maybe even the Operating System they are

running.

5.3. Prototype

The prototype was configured with the results of the previous two surveys, of CDN

detection and network metadata analysis, installed on a virtual machine and placed

within a home network, behind a NAT router. All traffic originating from the internal

network interface of the router was mirrored to this machine as shown in Figure 3.3

"Deployment 2".

To test the prototype several outgoing queries to websites from the Majestic Million

sites which are known to be served by a CDN have been performed. Further an Internet
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(a) Classification by type using MSS; TCP

Window Size and RTT

(b) Classification by OS using MSS; TCP Win-

dow Size and RTT

(c) Classification by type using MSS; TCP

Window Size and Frame Length

(d) Classification by OS using MSS; TCP Win-

dow Size and Frame Length

Figure 5.9.: Measurment results of first round
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reachable, via NAT, web-server was hosted within the test-network. This web-server

was queried from clients connected via land-line, VPN and TOR. For outgoing sessions

all traffic was classified according to the configuration provided. For ingress traffic

the additional NAT layer caused misclassification as the TCP-Header-Length for VPN

connections differed from the measurements taken previously without a NAT router in

between. The graphical representation at different states of the test is documented in

Figure 5.10 and Figure 5.11.

a Shows the state with only background noise as no active external connection was

started. At this state there should not have been any ingress traffic classified.

A review to the classification showed that there was some UDP traffic going on

between a host (port 7909) on the network and an IP of Google (port 47873). What

purpose this traffic had was not able to identify as it did not reoccurred during the

test and was therefore not capturable. It could however be related to Googles

QUIC protocol as a ongoing conversation between the host and IP in question was

captured.

b Shows traffic after aws.amazon.com was queried in a browser.

c Shows traffic after fastly.com was queried in browser. At the same time a page

hosted on the local web-server was queried by a device using a VPN gateway.

d In addition to (c) several websites hosted by Fastly, Cloudflare, Cloudfron, Akamai

were queried. Further the internal web-server was queried by several clients using

either plain land-line, VPN or TOR connections.

With only a few Service and Service-Provider nodes as in Figure 5.10a to Figure 5.11a

it is easy to perceive details of the visualization and get good information on how much

traffic, in relation to total traffic, is flowing to a specific Service-Provider. Already with a

slightly increased number of nodes as in Figure 5.11b, it is noticeable that the diagram

could get quickly overloaded.
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(a) Background noise

(b) Connection to aws.amazon.com

Figure 5.10.: Visualization prototype examples 1/2
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(a) Connection to fastly.com

(b) Multiple ingress and egress sessions

Figure 5.11.: Visualization prototype examples 2/2
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6. Evaluation

The introduced data record for holding packet/session and classification information

was sufficient for this work. However additional fields should be added if information

like time behavior is needed for classification. The classification part of the record is

capable of holding several tags for Service and Service-Provider, which could lead to

some confusion as it is not clear which one is the best fitting. Therefore, it would have

been better to extend the record with a weight tag to allow modules to force their result.

Also a reliability indicator could be useful if only a part of a rule, for example in TCP

signature classification, was fitting. Currently it is all or nothing, which leads to instant

false negatives if only one part is mismatching, as with VPN connection detection in

combination with a NAT router. Compared with IP geolocation this approach does require

much more work until all communication partners can be categorized. For IP geolocation

only the coordinates have to be assigned according to some algorithm that can be

applied globally. For the introduced classification approach for each Service, which can

be infinite many, separate techniques for detection need to be found and tested. In the

following the results for the distinct parts of this work will be recapitulated and evaluated.

6.1. CDN detection

The CDN detection approach does perform exceptionally well on the test dataset, with a

sensitivity rate of about 98%, when a dynamic threshold is taken into account. Without

this threshold the sensitivity is only about 80% which means 20% false negatives what

is not acceptable. The comparison of the results of classifications for anycast IP web-

servers and anycast DNS-server based CDNs for both the threshold that was the best

according to the ROC and the one manually selected, showed that the algorithm does

not work for all CDN architectures equally well. For both CDN types when the best
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threshold according to the ROC was used, the false negatives slightly increased. Most

of these false negatives for anycast IP web-server based CDNs belong to one company,

Incapsula, which is using a regional anycast. With an IP only present in a single

region and only one to two Vantage Points for measurement within this region, even a

conservative threshold could easily lead to false negatives. For example is the distance

Oregon-Ohio measured with 68ms. If the distance from these two Vantage Points to a

target IP, only present in West-US region, in total is 58ms, a dynamic threshold multiplier

of 1.2 would lead to an assumed distance of about 70ms which yields a false negative.

In such a case the placement of Vantage Points was too coarse to get sufficient data to

reliable detect CDNs with such an architecture.

6.2. Network traffic analysis

The network traffic analysis did show that it might be possible to identify IPs/BGP Prefixes

that belong to a mobile network provider by the fingerprint of GSM modems. But to

prove that, real traffic metrics from a mobile provider are needed to identify and validate

more GSM modems patterns. For service detection the traffic analysis did not add much

value. Already known VPN patterns have been identified and complemented with some

new metrics to possibly infer the operating system. During the test run of the prototype

it turned out that these additional patterns lead to false negatives when analysis is

performed behind a NAT router. For TOR exit node detection patterns have been found

for indicating a relationship between MSS and initial TCP Window Size but this is only

the case in about 50% of the recorded connections. It is also not clear if this pattern was

caused by the used operating system of the exit node or has been set by the operator

running it.

6.3. Graphical Representation

The chosen visualization based on Sankey Diagrams does combine many useful features

of widely use visualization types for network and Internet traffic and connections, namely

world maps, network graphs and bandwidth charts. But, it also has some of their

69



(a
)G

eo
Lo

ca
tio

n
M

ap
[2

2]

(b
)B

an
dw

id
th

G
ra

ph

(c
)N

et
w

or
k

G
ra

ph

(d
)S

an
ke

y
D

ia
gr

am

Fi
gu

re
6.

1.
:C

om
pa

ris
on

of
di

ffe
re

nt
vi

su
al

iz
at

io
n

ty
pe

s

70



drawbacks. In Figure 6.1 examples for these three are shown next to a Sankey diagram

from the prototype. When Sankey diagrams are used for connection visualization a user

is able to see at a glance where traffic is coming from or going to, in terms of Service

and Service-Provider. Further it can be determined what services are the busy talkers

and how much traffic they generate in relation to others. It also allows to easily identify

unusual ongoing traffic. For example if egress sessions show a large amount of outgoing

data to a Cloud Storage Platform like Amazons S3 or even an unknown (OTHER) service

which could indicate data leakage.

What is not possible though, is to identify the actual conversation partners and the

connection details like ports and protocols involved. Furthermore, does this kind of

diagram not show the bandwidth over time, but only a total for all ongoing sessions to or

from a certain service. This also means there is no information about past conversations.

The prototype implementation and tests let infer, that it might not scale very well

when communications happen to lots of different Services, especially when lots of

Service-Providers are involved at the same time. In the worst case nodes could look as

overloaded as in Figure 6.1c. Considering that there are bidirectional, weighted edges

between them, the user experience could get be even worse. Splitting up egress and

ingress sessions into two charts was a good decision as it becomes less overloaded

and therefore more usable.
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7. Conclusion

Many IT systems and components rely on IP geolocation to block unwanted traffic from

certain geographical areas or to visualize ongoing connections or attacks on a map of the

world. There also exist many approaches to make IP geolocation more accurate like [5]

or [28]. However, there is an increasing risk of false blocks as more large companies run

global networks with public IP addresses wandering between different location according

to the companies need. If the geolocation database is not updated regularly (for example

once a day) IPs could still be assigned to a blocked country even though already been

moved away. With more websites using global Content Delivery Networks for DDoS

protection and content delivery acceleration this problem becomes even more evident.

As geolocation do not seem to be sufficient in such scenarios, a new approach was

suggested to summarize and classify IP addresses. This classification allows distinction

of service types and providers of such services. As services on the Internet vary largely

in infrastructure, communication protocols, traffic flows, the focus in this work was

on identifying CDNs, and ingress traffic from VPN servers and TOR exit nodes. For

detection of CDNs an algorithm based on [13] and [31] was described. Furthermore, a

data structure was suggest for processing and storing collected and classified data and

a possible visualization approach was evaluated.

For testing the suggested algorithm for detection of Content Delivery Networks, a

large set of websites has been queried from seven different locations around the globe.

Initial analysis of the colleceted data showed a sensitivity of 80% which was not ac-

ceptable.Therefore, an additional dynamic threshold was introduced which lead to a

sensitivity of about 98%. An analysis of the misclassified two percent showed that it was

mostly caused by one service provider which run a CDN based on regional anycast IPs.

For VPN and TOR exit node detection traffic of a test setup was captured and the

metadata analyzed. This analysis however showed no significant new data. Already
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known VPN patterns have been confirmed and complemented with some additional

metrics which might let infer the operating system. For TOR exit nodes a pattern has

been found which was only true for about 50% of the tested cases. This pattern showed

a direct relation between MSS and initial TCP Window Size. However, it was not possible

to identify if it was caused by the operating system the TOR exit node is running on or by

some configuration setting.

Furthermore, an extensible prototype was implemented to collect and classify ongoing

Internet traffic. Classification done by the prototype was based on the findings of the CDN

and metadata analysis and for TOR exit nodes on TORDNSeL. Tests of the prototype

showed some problem with classification of traffic originating from VPN servers. It turned

out that it was caused by the NAT router as it changed the TCP-Header-Length. All other

tested traffic classifications did not show any errors.

Finally, a visualization prototype was implemented which reads live data created by

the classification prototype. The chosen visualization type gives well insight on ongoing

traffic and allows an easy identification of unusual patterns. But with an increasing

concurrent use of many services it gets too overloaded. But in a scenario where only

ongoing attacks are shown (similar to IDS/IPS world map) this would possibly not be the

case.

Even though the approach for CDN detection works exceptionally well and the sug-

gested visualization does provide a good insight, at least in some scenarios, on the

classified connection, there is still a lot of work to do. More service types need to be

defined and algorithms to detect them specified. This is also the main drawback of the

suggested classification strategy, many of the algorithms might include active probing

like for CDN detection, which cannot be performed in real time. Therefore, a database

needs to be maintained and regularly updated which could lead to similar problems like

with IP geolocation. However, the suggested classifications, evaluated approaches and

visualization provide a good starting point for future work.
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7.1. Future work

For future steps, approaches need to be found to identify already defined but not

yet classified (apart from public available data from AWS and Google) services types

like cloud storage and computing. Further, Internet traffic needs to be analyzed and

unclassified traffic identified. Based on this identified traffic, new service types could be

identified or patterns for existing ones found.

The classified data could also be used to suggest rules for firewalls or IDS/IPS system.

For example could egress traffic to an IP address which was previously identified as

TOR exit node trigger an alert as it could be considered as unusual behavior. Further

could historical data of the classification be used to detect anomalies, like IP addresses

which are at one point in time identified as TOR exit node and the next time as something

different or even unclassified.

To improve the usability of the visualization prototype, especially with lots of open

connections to various services, nodes should be made collapsible and navigable (drill-

down).

Independent from the suggested work, could the CDN detection approach be used for

easier maintenance of IP white lists in firewall. For example to exclude, certain, CDNs

from IP geolocation blocks.
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A. Appendix

∙ The source code for the classification prototype can be found at https://bitbucket.

org/preciseitsol/connectionclassifier alongside with a brief description and

some hints for installation.

∙ The source code for the REST service and the web view can be found at https:

//bitbucket.org/preciseitsol/connectionclassifierrest

∙ Scripts created for processing the collected data are published at https://bitbucket.

org/preciseitsol/script-collection

∙ Collected data including pcap files from the network traffic analysis and records

from the CDN classification process are available at https://bitbucket.org/

preciseitsol/script-collection/downloads/. This download also contains

data from the several analysis steps.
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