

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Submitted by
Stefan Reinthaler, BSc.

Submitted at
Institute for Network and
Security

Thesis Supervisor
Assoc.-Prof. Mag. Dipl.-Ing.
Dr. Michael Sonntag

July 2018

A disaster and crisis

alerting approach

employing home

automation systems

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

July 26, 2018 Stefan Reinthaler 2/92

ABSTRACT

This thesis deals with the conception and development of a modern disaster and alerting approach
employing home automation systems. This approach illustrates how home automation technologies
(smart homes) can be integrated in disaster alerting process starting from event notification up to
possibility for automated risk mitigation for self-protection. Besides an insight into the disaster and crisis
management and traditional and current alarming methods, structure, functionality and capabilities of
smart home integration are highlighted. The goal is to examine technical characteristics that should be
considered for the design and technical implementation of a scalable and fail-safe emergency alarm
system. These aspects such as general requirements of the system, components, interfaces,
communication infrastructure and techniques are highlighted and compared. The result is a conceptual
design and implementation of a prototype of a disaster alerting system employing home automation
systems.

KURZFASSUNG

Die vorliegende Masterarbeit befasst sich mit der Konzeption und Entwicklung eines modernen
Ansatzes im Bereich Katastrophen- und Notfallalarmierung unter Einsatz von
Hausautomatisierungstechnologien. Es soll beantwortet werden, inwiefern
Hausautomatisierungstechnologien (Smart Home) bei der Katastrophenalarmierung, von der
Benachrichtigung über ein Ereignis, bis hin zum Ergreifen von Selbstschutzmaßnahmen zur
Risikominimierung, unterstützen und eingebunden werden können. Neben einem Einblick in das
Katastrophen– und Krisenmanagement und einer Gegenüberstellung aktueller
Alarmierungsmethoden, erfolgt die nähere Betrachtung von Aufbau, Funktionsweise und
Möglichkeiten von Smart-Homes. Vorrangig werden aber technische Aspekte untersucht, die für
das Design und der technischen Umsetzung eines skalierbaren und ausfallsicheren
Notfallalarmsystems in Betracht gezogen werden sollten. Diese Aspekte betreffen allgemeine
Anforderungen an das System, Anbindungsschnittstellen, Infrastruktur und
Kommunikationsmöglichkeiten, welche näher beleuchtet und gegenübergestellt werden. Das
Ergebnis dieser Untersuchung ist eine konzeptionelle Beschreibung und die prototypische
Umsetzung eines Katastrophen- und Notfallalarmierungssystems mit Hilfe von Smart-Homes.

July 26, 2018 Stefan Reinthaler 3/92

Table of Contents

1. Introduction ... 8

1.1. Objectives and Expected Result ... 10

1.2. Methodical Approach & Structure ... 10

1.3. Disaster and Crisis Management .. 11

1.3.1. Disaster and Crisis Management Life Cycle ... 12

1.3.2. Relevance of effective Communication .. 13

1.3.3. Civil Protection in a Governmental View .. 14

1.3.4. People-Centered Early Warning .. 15

1.4. State-of-the-Art of Disaster Warning Mechanisms .. 16

1.5. Home automation systems ... 21

1.5.1. Architecture of home automation systems ... 21

1.5.2. Transmission Media and Communication .. 25

1.6. Requirements and Recommendations .. 28

1.6.1. Functional Requirements ... 28

1.6.2. Non-Functional Requirements ... 29

2. Distributed Information Systems – Design Aspects ... 30

2.1. Communication Strategy .. 30

2.2. Communication Models .. 31

2.1. Scalability and Performance ... 32

2.2. Incident Information .. 35

2.3. Communication and Information Exchange .. 37

2.3.1. Communication Protocols .. 37

2.3.2. Reliable Data Transmission ... 39

2.1. Domain Name System for Information Exchange ... 39

2.1. Anycast Communication ... 42

2.2. Content Delivery Networks ... 43

2.3. Peer-to-Peer Communication Aspects .. 45

2.3.1. Peer Discovery and Distributed Hash Tables ... 46

July 26, 2018 Stefan Reinthaler 4/92

2.3.2. Connectivity ... 48

2.3.3. Information Changes ... 48

2.4. Highlights and Comparison .. 49

3. Conceptual Design of the Disaster Alerting System .. 51

3.1. Disaster Information Service Architecture ... 51

3.2. Communication Flow and Data Exchange .. 53

3.3. Caching and Conditional Requests .. 55

3.4. Load Balancing Strategy .. 57

3.5. Data Structure .. 57

3.6. Peer-to-Peer Communication Capabilities .. 60

3.6.1. Information distribution... 61

3.6.2. Information consumption and sharing .. 62

3.7. Request Scheduling ... 64

3.8. Incident evaluation and calculation ... 65

4. Implementation of the Prototype ... 66

4.1. Backend-Database ... 66

4.2. Disaster Information Service Node ... 67

4.3. Load-Balancer Configuration .. 69

4.1. Disaster Information Service - Management Interface .. 70

4.2. Endpoint/Middleware .. 71

4.3. P2P Information Distribution and Sharing ... 76

5. Evaluation ... 80

6. Future Work .. 84

7. Conclusion .. 85

July 26, 2018 Stefan Reinthaler 5/92

List of Figures

Figure 1: Main components of the disaster alerting approach .. 10

Figure 2: Disaster management life cycle, related to [4, p. 17] ... 12

Figure 3: KATWARN example [11] ... 18

Figure 4: Digital Radio EWF - Architecture [13] .. 19

Figure 5: Levels of the automation pyramid [15] ... 22

Figure 6: Building Automation - Central System Approach [15] .. 23

Figure 7: Building Automation - Decentralized Approach [15] .. 24

Figure 8: Building Automation - Semi-Decentralized Approach [15] ... 25

Figure 9: Abstract example of KNX integration [20] .. 27

Figure 10: Client-Server Principle [23] .. 31

Figure 11: Multi-Tier architecture [26] ... 33

Figure 12: Client-Server functionality by design, related to [27, p. 334] .. 35

Figure 13: CAP message structure, related to [8] ... 36

Figure 14: TCP/IP reference model [28] ... 37

Figure 15: Name resolution using DNS, related to [31] .. 40

Figure 16: Information exchange using DNS .. 41

Figure 17: Anycast Communication Schema, related to [33] .. 42

Figure 18: Information distribution with a Content Delivery Nodes ... 44

Figure 19: DHT discovery and routing concept, related to [40] ... 47

Figure 20: Abstract system architecture ... 51

Figure 21: Backend architecture .. 52

Figure 22: Information Request Sequence ... 54

Figure 23: HTTP caching mechanism [47] .. 55

Figure 24: HTTP Conditional Requests .. 56

Figure 25: HTTP 200 response size ... 56

Figure 26: HTTP 304 response size ... 56

Figure 27: Load balancing configuration .. 57

Figure 28: Incident meta-information in JSON format ... 58

Figure 29: Details of an incident in JSON format .. 59

Figure 30: Peer-To-Peer Information Distribution ... 60

Figure 31: Contact information of region .. 61

Figure 32: Information distribution and publishing .. 61

Figure 33: Peer-to-Peer incident information consumption ... 63

Figure 34: Scheduling Client Requests .. 64

Figure 35: Calculation of distance between two points ... 65

Figure 36: DIS information update ... 67

July 26, 2018 Stefan Reinthaler 6/92

Figure 37: Management UI for incident handling .. 70

Figure 38: Architecture of the endpoint .. 71

Figure 39: OpenHab Smart Home Simulation .. 72

Figure 40: List of incidents and visualization map .. 75

Figure 41: Endpoint Configuration .. 75

Figure 42: openHAB in combination with the middleware ... 76

Figure 43: DIS - P2P information publishing (console) ... 79

Figure 44: Endpoint P2P communication ... 80

Figure 45: Performance test setup ... 81

Figure 46: Test case - 10k requests per second .. 82

Figure 47: Avg. response time and error rate ... 83

List of Tables

Table 1: Comparison of alert mechanisms ... 20

Table 2: Overview of commonly used transmission standards [18] .. 26

Table 3: Comparison TCP vs. UDP Protocol, related to [28] .. 38

Table 4: RESTful HTTP GET-Methods .. 54

Table 5: Incident meta-info ... 57

Table 6: MongoDB middleware .. 66

Table 8: Disaster information service HTTP GET routes .. 68

Table 15: P2P publishing methods ... 77

Table 18: Endpoint P2P download and share incidents ... 79

Table 20: Test results .. 82

Listings

Listing 1: Torrent meta-information .. 45

Listing 2: Load incident meta-info from DB ... 68

Listing 3: Request handling based on ETags ... 68

Listing 4: NGINX load balancer configuration ... 69

Listing 5: Client request sequence for determining changes .. 73

Listing 6: HTTP request structure ... 73

Listing 7: Geographical distance calculation ... 74

Listing 8: Request structure for gathering incident details .. 74

Listing 9: Initial contact information .. 77

Listing 10: Magnet link sample ... 78

Listing 11: DHT mutable item request .. 78

Listing 12: Mutable item response structure ... 80

July 26, 2018 Stefan Reinthaler 7/92

Table of Formulas

Formula 1: Kademlia DHT XOR operation [39] .. 46

Formula 2: Haversine function [49, p. 4] ... 65

Formula 3: Equation for distance calculation [49, p. 4] ... 65

July 26, 2018 Stefan Reinthaler 8/92

A disaster and crisis alerting approach employing h ome

automation systems

1. Introduction

As the history has shown, many disasters and crisis have happened, which were not really predictable
for human beings, even supported by modern technology systems. Reasons for the occurrence of such
incidents are natural origins, technical failures or triggered due to a misbehavior from humans. Such
critical events can influence a small region, nationalities or can even have an international scope.
Whatever an unpredictable disaster causes, it is always necessary to alert affected people in an effective
and time-efficient way. Especially for highly life-threatening situations, it is required to react appropriately
to mitigate the risk. Hence, efficient disaster and crisis management and disaster and especially crisis
communication is an important. Disaster management enables organizations and governments to
identify risks and plan suitable measures to handle incidents.

As stated by United Nations Office for Disaster Risk Reduction [1, p. 4], national authorities are
responsible to perform disaster management. They have to provide general information about potentially
harmful scenarios, the warning mechanisms and recommend risk mitigation actions in case of
emergencies. For instance, a disastrous situation can arise in case of a chemistry accident in an
industrial complex, assuming that hazardous chemicals were released by an explosion, which are
harmful to the surrounding population. While first responders (e.g. fire brigade) trying to get the situation
under control, in order to reduce the risk, everyone is personally responsible to protect himself from the
consequences in the end. Therefore, it is essential for affected individuals to accordingly respond and
perform a predefined set of actions, based upon the type of incident to deal with a threatening situation.
For example, one recommended measurement for self-protection is to close all open windows in the
building and disable the ventilation, in order to avoid contamination because of a toxic or radioactive
cloud. Especially, the time of recognizing a warning notification, up to performing the proper mitigation
activities, can be a critical factor in life-threatening situations.

In a historical view, a proven and widespread method for warning people in the past (and still today) is
usage of classic sirens to inform affected regions about an incident. Sirens are very loud and it is
possible to reach many people with a single signal. Especially the simple set-up and the fact that people
can be warned even if the infrastructure is damaged, makes them still indispensable. Beside of
recognizing a danger and dissemination of warnings by a national authority, the perception of warnings
by the affected people is essential. The perception of warnings presupposes that affected people can
understand and interpret the alert information to respond accordingly. In other words, people are facing
the problem that they have to know different alarms signals, their significance and the associated risk
mitigating actions to deal with an upcoming threatening situation.

With increasing dissemination of modern technologies, it makes sense to think about additional disaster
warning and alarming approaches using these new communication channels. At this time, new alerting
and warning approaches show up on this field of research. The focus is especially on new warning
methods that are assisted by new technologies for increased determined communication. The new
communication types are ranging from SMS, E-Mail up to mobile phone applications. As an example,
the German Fraunhofer-Institute has developed an alerting system by using such modern technologies.

July 26, 2018 Stefan Reinthaler 9/92

With this warning system it is possible to alert people via a mobile phone application. The system not
only sends information about what has happened, it is also able to give textual instructions, how to
behave in case of emergency.

However, with the introduction and the distribution of home automation systems, a new opportunity is
created to take another step in this development process. The functionality of automating tasks within a
building provided by home automation systems, regarding risk mitigation activities within emergency
situations, offers a new ability for developing an extended disaster alerting and response approach. So
it is obvious to investigate and develop a new approach to extent the disaster and crisis alerting
considering home automation systems.

In general, the term home automation can be seen as a synonym for building automation. Overall,
building automation systems are able to perform tasks automatically, based on predefined events. So
all elements (e.g. sensors, actuators or other technical units) that are connected within a building can
be monitored and controlled by this system. It is often used to control lights, the heating and air condition
system, windows and entry points within a building from a central point. The classic building automation
systems are widely spread especially in industry and enterprises, but due to convenience and efficient
handling of all day tasks, such systems are increasingly employed in the private sector.

July 26, 2018 Stefan Reinthaler 10/92

1.1. Objectives and Expected Result

The main goal of this is to design a holistic disaster alerting approach employing home automation
systems that address the communication and response challenges in early warning. In other words, the
envisaged concept should demonstrate, how home automation systems can technically be integrated
in a disaster alerting process, in order to alert people about upcoming incidents and to provide a new
possibilities for affected people to perform risk mitigation actions leveraging smart home capabilities.

The following figure illustrate an abstract view of the envisioned concept:

Early warning

system

Internet

Figure 1: Main components of the disaster alerting approach

The basic idea is to setup a reliable information system that enables the communication between
disaster alerting services and smart buildings. The realization of such a system requires the interaction
of several components. On the one hand, a source of information is required that provides information
about current disasters or incidents. This can be an emergency warning service hosted by a national
authority, which is accessible via an internet connection. The information service provides an interface
to answer requests sent by the smart homes. One the other hand, it requires a middleware or and
endpoint to enable home automation systems to request this source of information and perform further
tasks.

This brief description of basic components and their interaction should give an idea, how smart homes
can be equipped with disaster alerting and response capabilities. Besides the technical requirements,
the main challenge will be to design a reliable and secure communication system and to give an
example in terms of a prototype to integrate the bunch of different home automation systems. The
methodical approach to achieve these objectives is introduced in the next section.

1.2. Methodical Approach & Structure

The focus of this work is on designing and implementing an enhanced approach by employing home
automation systems in the disaster alerting process. The concept is divided in two major parts. The first
part focuses on the theoretical aspects of disaster and crisis alerting approaches and state of the art of
the current warning approaches to identify elementary functionalities and techniques. In order to fit the

July 26, 2018 Stefan Reinthaler 11/92

needs of the envisioned disaster and crisis alerting system, a screening of the literature and best
practices is required to ensure a high level of quality. This necessitates requirements engineering and
system specification. Because of the fact that the system is designed to interact over the public internet
with private households, privacy, security and reliability also have to be in focus. All the information
obtained during the theoretical work is the basis to develop a concept and a prototype, introduced in the
second part.

Besides the theoretical findings, these research questions should guide during the technical
specification and design phase of the concept and prototype:

• What functional and non-functional requirements are mandatory for a disaster alerting system?
• Which infrastructure and communication design is useful regarding reliability, scalability and

performance?

In order to develop a disaster and crisis alerting system employing home automation systems, it will be
necessary to identify important aspects in disaster and crisis management. The next section will start
giving insights about the concept of disaster and crisis management in context with civil protection.

1.3. Disaster and Crisis Management

According to Drabek and Hoetmer [2], disaster and crisis management focuses on creating plans to
reduce the effects of disasters, in order to prevent damage to assets, human mortality, and lost revenue.
The following sections provide a general overview about disaster and crisis management, the
characteristics of disasters and crisis, insights into the life cycle approach and the relevance of effective
communication in context with civil protection.

Definition and Characteristics of Disasters and Cri sis

The understanding of crises and disasters are not necessarily congruent with the parlance of the
population, the understanding of private enterprises or in a governmental perspective. Even the
escalation model of a company, for example, distinguish between the normal case, emergency, crisis
and disaster. So, the following definitions and characteristics are trying to cover the overall view in
disaster and crisis management.

A disaster or crisis is usually defined in terms of two conceptual elements [3, p. 6]:

• Some occurrence that risks or harms the life or health of people or animals, the environment,

significant property or the vital supplies of the population.

• Secondly, the defense and fight against this happening requires uniform management by a

competent authority, especially for civil protection.

In addition, disasters and crises can have various causes and vary considerably in each effect. The
following events can trigger disasters and crisis [3, p. 6]:

July 26, 2018 Stefan Reinthaler 12/92

• Natural disasters: extreme weather conditions (e.g. a storms, heavy rainfall, floods, heat wave),
forest fires, earthquakes and epidemics.

• Technical or human failure: System failure, negligence and accidents.

Furthermore, each crisis has its own characteristics or can be seen as unique. Nevertheless, there are

patterns that occur regularly, which helps for preparation and analysis. So, disasters and crises can be

captured in various dimensions:

• A real event with a concrete danger or damage effect to sensitive entities (persons, property,
nature etc.).

• The way of crisis management by the competent authorities and companies (including pre- and
post-processing).

• The perception of crisis management by the stakeholders and the public.

In order to handle disasters and crisis successfully, a comprehensive disaster and crisis management

has to take place. The method generally used by national authorities to manage disasters and crises, is

presented in the next section.

1.3.1. Disaster and Crisis Management Life Cycle

The disaster and crisis management life cycle can be seen as a framework for handling exceptional
events, which are not part of daily business. Hence, it is a comprehensive method and can be applied
in different levels, for example supporting authorities, organizations or enterprises to protect the
environment, people and goods.

According to the Bundesministerium des Innern [3], disaster and crisis management in a contemporary
understanding can be seen as an ongoing process. It presents itself in the form of a life cycle, which
consists of four phases, as seen in Figure 2:

Precaution Preperation

Follow-up
Communication

and Resolution

Figure 2: Disaster management life cycle, related to [4, p. 17]

July 26, 2018 Stefan Reinthaler 13/92

The precaution and preparation phase takes place in the normal state. At this state, crisis management
has mainly anticipative character and is used to prevent crisis. Basically, potential crises are identified
in order to set preventive measures as a first step. The next step is to identify measures to protect
against potentially occurring crises. This is already a kind of future-oriented compensation. The
preparation phase also includes the implementation of a risk analysis in the context of risk management,
the establishment of early warning systems and the definition of processes for possible emergencies,
e.g. alerting processes and plans [3, p. 7].

For the planning of crisis management, the above-mentioned potential level of a latent and acute crisis
has to be considered. In the latent phase of the crisis, early warning systems report risks to people and
goods. In this phase, both measures to prevent as well as measures in case of an escalation to an acute
crisis have to be taken. In practice this means that existing concepts have to be adapted to the expected
crisis scenario, because every crisis has its own challenges. So, depending on the specific emergency
plan, it could be already necessary to alert affected people about the current situation. Furthermore, if a
disaster or crisis occurs, the stage changes from latent to acute. At this time, predefined actions are
required including an immediate communication, even if the information of the current situation have not
been fully collected. This means that an immediate alert has to be given to emergency responders on
site, for example ambulance services, fire brigades, police, emergency teams in companies and others.
A central point in this initial phase of a crisis, is the immediate coordination and mutual information
between relevant authorities and companies, the media, the general public and also experts.

The follow-up phase within a crises process is an important component and basically starts already
during the communication and resolution phase of handling an emergency. A primary task for example
is the appropriate documentation of all actions within the handling process. This makes it possible to
review the process and evaluate them. This step can result in a report, which covers new aspects of the
handling process that can be considered in current emergency plans [3, p. 8].

1.3.2. Relevance of effective Communication

Risk and crisis communication is an elementary part of successful disaster and crisis management. Risk
and crisis communication are often mentioned together, so that the impression can arise, both terms
describe more or less the same topic [3, p. 11]. Indeed risk and crisis communication are closely
connected with each other, because risk communication is the basis for successful communication in
crisis scenarios. Nevertheless, risk and crisis communication also differ in very important points.

A major difference between risk and crisis communication is given in the temporal dimension. The goal
of risk communication is especially the prevention and the preparation for threats and risks. Risk
communication should permanently develop and maintain a relationship of trust with the target groups.
Therefore, risk communication aims to sensitize people of existing dangers and risks within their
environment, in order to educate them about how to deal with potential situations, by providing
recommendations for preventive measures. It is also mentioned, that the management of large-scale
emergencies and disasters, with increasing size and duration, requires a corresponding participation of
the population. In order to empower citizens to protect themselves by performing self-protection
measures, the potential scale and consequences have to be communicated prior to the occurrence of
an event for a long time. Only preventative communication of self-protection measures can ensure, that
affected people have the appropriate knowledge what to do.

July 26, 2018 Stefan Reinthaler 14/92

In contrast, crisis communication is characterized more by short-term, time-limited action that
substantially prevents acute threats or limits damage already incurred to lead back to a normal state as
soon as possible. According to the Bundesministerium des Innern, crisis communication is defined as…

“…exchange of information and opinions during a crisis to prevent or limit
damage…", [3, p. 11]

In other words, effective crisis communication should enable affected people to prevent or limit the
imminent damage to their life and property after the occurrence of a disasters, and subsequently with
the aim to return to a normal state as soon as possible. The target groups can vary depending on the
type of disaster or crisis. In general, disaster and crisis management (within organizations or enterprises)
target groups can include customers, suppliers, employees, the media, other agencies or authorities,
scientific institutions, companies, associations, interest groups. In a view of civil protection, the target
group of crisis communication process may be primarily civilians. However, all these target groups need
to be informed. Hence, all alerts or messages and published information should be kept in a reasonably
factual and clear written style.

Finally, disaster and crisis management and effective risk and crisis communication as mentioned
above, have a high impact of the success of handling unforeseen situations. The concept and four
phases of the disaster management life cycle introduced, can also be found in national disaster and
crisis management in context with civil protection.

1.3.3. Civil Protection in a Governmental View

The protection of people is the primary goal of the civil protection. Civil protection calls for an interaction
of all forces to deal with the hazards and disaster risks. This involves authorities and emergency services
and require the assistance of the population as well. Furthermore, civil protection are all measures to
protect the population and the public in the event of crises.

In a governmental view [5], it is specially emphasized that the self-protection is an essential part of the
civil defense and disaster protection. In addition to the responsibility of the official authorities (organized
civil protection), individuals are urged to equally contribute to enable successful disaster protection.
Moreover, the population itself is called upon to take reasonable preventive and response operations in
context with self and mutual aid. This implies that the population must actively participate in the disaster
handling and recovery process and to be well prepared in case of emergency.

This aspect requires a sufficient and rapid flow of information from and to the authorities. For this
purpose, a system of emergency warning centers (EWC) have been established at a national and
regional level, for example to Federal Alarm Center (FAC) in Austria, where all information arrives about
national incidents or abroad. A key concern of emergency warning centers is the rapid warning and
alerting of the population in a disaster or crisis situation. Moreover, these are also point of contact for
relief and rescue organizations such as firefighters, Red Cross and also the contact point for the
neighboring states, the European Union, the NATO Partnership for peace and the United Nations [5].

However, EWC employ various early warning systems (EWS) to warn the population as effectively as
possible. The aim is to inform the public through multiple channels in order to reach a large part of the

July 26, 2018 Stefan Reinthaler 15/92

population and to guarantee that the warnings are perceived. At this point, we take a closer look at early
warning in the next section.

1.3.4. People-Centered Early Warning

The goals of people-centered early warning is to enable people and communities threatened by
disasters to respond in adequate time and in a sufficient way so to reduce the probability of harm, loss
of life, damage to property and environment. Early warning (EW), as defined by Grasso, Singh and
Pathak [6] is…

“…the provision of timely and effective information, through identified institutions,

that allows individuals exposed to a hazard to take action to avoid or reduce their

risk and prepare for effective response”.

In general, early warning require the integration of four key elements: Risk knowledge, monitoring and
warning service, dissemination and communication, and response capabilities [1, p. 2].

• Risk knowledge: Risk management and assessment help to prioritize mitigation strategies and
construct early warning systems.

• Monitoring and warning service: Monitoring and predicting systems enables to evaluate the
potential risk.

• Dissemination and Communication: The dissemination of warning messages requires a reliable
communication scheme to reach affected locations and to alert local and regional governmental
agencies. In addition, messages have to be in a consistent and understandable form.

• Response: A central aspects of early warning includes efficient organization, guidance and
action plans, public awareness and education.

This requirements of early warning are closely connected to the disaster and crisis management
characteristics introduced in section 1.3.1.

Derived from these characteristics, key aspects could be identified that are essential to effective self-
protection:

• Awareness : Special attention of emergency warning mechanisms for people-centered early
warning is on the wake-up effect, which is the ability to make the population aware of disasters.

• Information : The second important characteristic of efficient early warning was identified as
informational aspect (Information). Context sensitive and timely information about disasters, for
example what has happened, where, and which activities can be taken to reduce the risk of
harmful situations are crucial to ensure the best possible protection for affected people.

• Reaction : The third aspect identified for an improved warning process is the possibility to

enhance the reaction capabilities (Reaction). Only time-efficient and proactively performed
activities are the best way for protection.

July 26, 2018 Stefan Reinthaler 16/92

In the following, the state of the art of alarming systems is given, to give an overview of currently used
warning mechanisms. The quality and suitability of disaster alerting systems can be described and
measured on the basis of the characteristics above. The subsequent comparison should highlight the
potential of employing home automation systems.

1.4. State-of-the-Art of Disaster Warning Mechanis ms

The different alerting approaches are investigated in respect to the awareness, information and
response aspect. The first part focus on more traditional alerting mechanisms, whereas the second part
give attention to methods using new technologies.

• Sirens: As already mentioned, one of the simplest, most commonly used approaches to alert
the public about dangerous situations, is the use of a comprehensive central controlled siren
network. Due to the high range of the warning signal and the high wake-up effect, this method
has been proven, since no additional equipment is needed for humans to get note of alarms. So,
alarms can be locally sent to the public, depending on the type and impact of incident. This
alerting method is quite effective in respect to the wake-up effect, but is strongly limited
transmitting information over this channel. Basically, it is the job of the individual to interpret the
acoustic signals correctly, in order to associate the signals with the right mitigation actions.
Therefore, individuals are responsible to actively inform themselves about possible dangers, the
meaning of alarm signals and specific risk mitigation actions. The reason for this is the very low
informational content that can be transmitted using this alarm channel. Hence, the informational
aspect cannot be actively supported. But in respect to the self-protection idea, fast and correct
information is an essential part of a comprehensive alert mechanism. To achieve this, additional
warning mechanisms are necessary.

• TV and Radio: Another classic method to inform the population of current emergencies is done
using entertainment media, e.g. TV and radio. With the use of radio and TV, current status
reports can be distributed in an easy and simple way. The ability to track the current situation is
the major advantage using this source. This way of information seems to be well suited for
supporting the informational aspect, but only if people are already aware of an incident. Although,
there are some additional things to note regarding the informational content. In principal, TV and
radio programs are broadcasting media and can be consumed independent of the national
region. As a result, current consumers of a media channels are urged to assess their current
situation based on the context of the provided incident information, even if they are not affected.
So, the dissemination of incident information cannot be really targeted for a specific region. It is
basically the same with sirens. From an alerting perspective, the wake-up effect is missing. That
means that these devices have be running in order to catch notifications about current incidents.
It also has to be noted, that the younger generation rather prefer TV and music streaming
services or internet-based radios, than listening to traditional radios. This can be seen as
weakness, besides the fact that such a device is currently available at all.

• SMS – Short Message Service: Due to the progress of technology, new alerting mechanisms

show up on this field. Nowadays, many people already own mobile phones. With mobile phones,
individuals are able to cover a large part of their information and communication needs.

July 26, 2018 Stefan Reinthaler 17/92

Therefore, they have become an indispensable part of our world. Due to the fact that smart
phones are widely used, almost continuously online and perform information and communication
tasks in daily business, they are well suited to be part of a modern emergency warning system.
Besides the traditional warning methods, as sirens or TV and Radio, delivery of emergency
messages via the Short Messaging Service is an increasingly accepted and used method.
Affected people can be easily notified. This method also supports the desired wake-up effect and
informational aspect. But it is limited to short text based messages only.

Besides the traditional approaches of alerting, additional methods are developed that increasingly use
new technologies to extend and improve the alerting process. In the following, several new methods are
presented, which have peculiarities.

• Disaster Information Systems: Another approach for monitoring of disasters is the application
of disaster information systems. ICT enables governmental organizations building a network of
monitoring and alerting systems. Such a system as the Global Disaster Alert and Coordination
System (GDACS) [7], which is a coordinated web-based platform, providing alerts and impact
estimations for earthquakes, tsunamis, floods or cyclones. Information about current disasters
can be seen on a global map. It also provides a personalized alerting functionality via SMS, E-
Mail, RSS feeds or mobile phone applications. In addition, GDACS uses the standardized
Common Alert Protocol (CAP) [8] to provide an interface for data and information exchange with
other systems. There are many other disaster information systems following the same principle.
Meteoalarm [9] is a web-based service for alerting European countries about extreme weather
situations. The Integrated Public Alert and Warning System (IPAWS) [10] is an emergency
population warning system in the United States. These systems focus especially on natural
disaster events. All these disaster information systems can be sources for retrieving high quality
information of dangerous situations. So, disaster information systems are well suited to support
the awareness and informational aspects on a high level.

• Mobile Phones Applications: As research has shown, a variety of mobile services exists, for a

variety of warning use cases. The KATWARN [11] system is originally a German warning service
for mobile phones and is also introduced in Austria today. In case of disasters like wildfires, bomb
finds or hurricanes, responsible authorities as the Federal Emergency Management Agency, fire
control centers or the national weather service, can send warning information directly and
spatially related to the mobile phones of the concerned citizens (location based). With the
location-based alerting service, certified authorities are able to notify users about current
incidents and send behavioral information. In case of emergency, national authorities are able
to select affected users and regions using the ZIP-Code, generate specific warning messages
and sending alarm or all-clear messages. For the use of the application, no registration or
authentication is required. The service uses the geographical information for receiving
appropriate information. The user is also able to share alarm messages within social media
platforms (e.g. twitter) to notify friends and family.

July 26, 2018 Stefan Reinthaler 18/92

Figure 3: KATWARN example [11]

In addition it is possible to show the received information in a map for better visualization.
Furthermore, the KATWARN warning system can also be used without the mobile application
installed. Users can obtain warnings via an SMS or E-Mail, through registering their location by
sending a message with the specific ZIP-Code. KATWARN seems to be a modern emergency
warning system, in addition to traditional loudspeaker announcements or sirens. However, the
stability of this communication system strongly depends on the availability of mobile network and
scalability of the server providing this service. So, it happened that during an emergency in
August 2016 that the service was not reachable for a particular time and warning messages were
sent with a delay of several hours.

BIWAPP [12] is another modern smartphone app that informs and warn the German public in
case of emergency. It follows the same principle as the KATWARN system. Civil protection
authorities and their control centers can send important information and warnings about incidents
and threats to the app and thus reach citizens in an effective and direct way. Unlike KATWARN,
this app offers a bit more functionalities and individual adjustment. Places and themes (nature
of the hazard) can be individually selected, in relation of receiving information and warning
messages. Another feature provided, is the ability to make emergency calls out of the app, which
allows to inform the police or fire brigades about the current situation. In principle, this is not
really a new feature, because emergency call can be made without the need of an application.
At this point it has to be noted, that emergency calls from mobile phones can no longer (since
2017) be made without an activated SIM card in Germany. The reason for this limitation is to
prevent the misuse of emergency numbers.

• Digital Radio with EWF: The Fraunhofer Institute Fokus, in cooperation with NOXON
Vertriebsgesellschaft mbH, TMT GmbH & Co. KG und Bayern Digital Radio GmbH, developed
a new emergency warning approach, on implementing the wake-up effect in digital radios. The
mentioned feature is called “Emergency Warning Functionality” (EWF) [13] and is based on the
Digital Audio Broadcasting Plus Standard (DAB+).

July 26, 2018 Stefan Reinthaler 19/92

Figure 4: Digital Radio EWF - Architecture [13]

So, in an emergency situation, an alarm is sent by an authorized emergency center, all digital
radios pick up the alarm signal and switch to the emergency broadcast, even if the device is in
stand-by mode. To reinforce the wake-up effect, additionally conspicuous signals as visible
flashing of the display or volume increase are used. In addition to the audio announcement, an
emergency message appears on the screen of the receiving device. The text based content can
include general information and instructions, text-headlines or images. Furthermore, the warning
messages can contain detailed information on the current situation, competent local contacts,
the affected area or the correct behavior in an emergency.

• Building automation: Whereas the approaches above are limited to awareness and

informational aspects of disaster alerting, first extended approaches show up on the field of
research, considering the reaction time. A first prototype of an advanced disaster alert system
was introduced by Lin et al. [14], which take care of the automation of tasks, for increasing the
reaction time. The prototype called Active Disaster Response System (ADRS) is designed to
alarm people and perform emergency tasks within buildings when an earthquake happens. The
system can interpret messages based on the Common Alerting Protocol (CAP) [8], which is a
standard format for exchanging disaster alert messages. These messages, published by national
authorities, are parsed and actuate embedded controllers for executing tasks, for example
opening doors, stop the elevator or turn gas pipelines off. In addition the system can provide a
temporary network to allow posting emergency messages from victims via mobile phones, which
are trapped inside a building. This information, for example their exact location, can help first
responders to improve the salvation of the victims.

July 26, 2018 Stefan Reinthaler 20/92

Comparison of alert mechanisms

The mentioned alarm mechanisms focuses on awareness and information aspects, because of technical
limitation. But for an enhanced approach also reaction capabilities are desired. For the evaluation
against these alerting mechanisms, different measures are used to express the level of support: low,
moderate and high. High means that a certain aspect can be fully supported. Moderate indicates that
the aspect can be supported under certain conditions. Low specifies that no or minimal support is given.

 The main differences in respect to these aspects, are shown in the comparison matrix below:

Technique
Awareness /

 Wake-up Effect

Information /

Content

Reaction /

Automation

Sirens high low low

TV low high low

Radio moderate moderate low

SMS Broadcast high moderate low

Mobile Phone Apps high high low

Digital Radio (EWF) moderate high low

Disaster Information Systems moderate/high high low

Building automation (ADRS) moderate/high moderate/high high

Table 1: Comparison of alert mechanisms

For sure, the goal for a comprehensive and effective people centered warning approach is to support
all these aspects in a high level. As shown in the matrix, traditional and also existing alerting approaches,
realized with assistance of ICT, differs in the level of supporting the required aspects. Traditional
approaches as sirens can generate a high level of awareness, whereas TV and Radio are more in a
passive position regarding the wake-up effect. Vice versa, TV and Radio have a high informational level,
keeping affected people up-to-date. The informational aspect using sirens is rather low, because this
implies that people have to already know what to do depending on the type of alarm signal. In contrast,
newer approaches are a bit more in balance and can generate a higher level of both aspects. The
informational aspect reaches a high level of all ICT based approaches, due to the fact that different
channels and forms can be used to provide informational content. SMS is assessed to be moderate,
because to the limited length and textual representation only. In general, the wake-up effect using smart
phones for alerting is as high as possible, because smart phones are usually always on and next to their
owner. The awareness of digital radio and disaster information systems is assessed as moderate to
high level, because digital radio have an wake-up functionality, but this doesn’t work if the device is
turned off. Disaster information systems have also a high potential of supporting the awareness aspect,
but only in combination with other resources, which have to subscribe to the alarm channel. It seems

July 26, 2018 Stefan Reinthaler 21/92

that best qualification for achieving all the three aspects awareness, information and reaction, provides
the combination of DIS, smart phones and building automation. Disaster Information Systems for
providing up-to-date information of disasters, smart phones for increased awareness and notification
and the integration of building automation systems to automate risk mitigation tasks. These constitution
can be the basis of a comprehensive alerting approach.

1.5. Home automation systems

For the development of a disaster and management alerting system employing home automation
systems, it is necessary to take a closer look at home automation systems. This understanding, is
required in order to design an endpoint interacting with both the home automation system and the
warning infrastructure. In this chapter, the central concept of home and building automation systems is
outlined.

In general, home automation can be seen as the domestic application of building automation. The main
goals for home automation are the optimization of power consumption, cost reductions, enhancing the
security and automation of tasks [15]. However, the focus of the targets varies depending on the
application type. In contrast to the automation of public buildings and industrial complexes, where energy
efficiency, security and cost reduction are the prioritized objectives, is the major focus in the private
sector is to increase the quality of living by automating tasks, security and simple remote control of
devices.

Many terms exist in the world of home automation. Used terms most in literature and media are smart
home, smart living, intelligent home or e-Home. All terms represents nearly the same purpose and can
be seen as synonyms in the area of home automation. An overall definition is given by Technopedia
[16], describing the main idea of such a system:

“A home automation system is a technological solution that enables automating the
bulk of electronic, electrical and technology-based tasks within a home. It uses a

combination of hardware and software technologies that enable control and
management over appliances and devices within a home. A home with an

automation system is also known as a smart home. “ [16]

In other words, a smart home or home automation system can be described as a holistic system, which
consists of control-units, sensors and actuators linked over a wired or wireless media to enable
monitoring and control of connected devices to manage a physical environment. The architecture of
such systems is described in the next section.

1.5.1. Architecture of home automation systems

As home automation systems are based on the principle of building automation, it is necessary to
discuss the basic architecture and structure of these systems in more detail. This should also provide a
better understanding in respect to the interoperability with a disaster alerting system.

Historically, the basic construction of building automation systems are divided in different layers. These
three layers are divided into fieldbus, automation and control level. Between the individual layers,

July 26, 2018 Stefan Reinthaler 22/92

interfaces are arranged, which organizes the data and functional transportation arrange on individual
data points.

Management

Level

Automation

Level

Fieldbus Level

Inteface

Inteface

Figure 5: Levels of the automation pyramid [15]

• Management Level: The top level of the automation pyramid is the management level. This
level deals with the visualization, operation and output of messages and information of the
building. From this central position whole buildings can be controlled. In this case, control is not
understood in conjunction with automation itself, it is more the ability to control whole processes
within a building. Especially this central functionality has high significance in the private sector.

• Automation Level: The automation level deals with the components required for building an

appropriate logic for controlling, regulating and timing of sensors and actuators. For example,
the control of scheduled tasks (calendar or intervals based), the control of states (temperature,
brightness, darkness, intensity of radiation, rainfall, air, etc.) or even smart metering. The
functions of the automation pyramid are realized by linking modules, logic modules, and
controllers.

• Fieldbus Level: The fieldbus level is the bus system of the building per se. It consists of sensors

and actuators that can communicate with one another within the field bus. Furthermore also
gateways are located in this level, which allow the connection between different systems, higher
layers or basic facilities of the building systems. In this area, functionalities can already be
realized without requiring the automation or management level, like control of lighting,
temperature, blinds or air-condition and ventilation.

Sensors and Actuators

Basically, the infrastructure of all home automation systems consists of three major components.
Sensors, actuators and a control unit. Sensors and actuators interact with the central control unit, which

July 26, 2018 Stefan Reinthaler 23/92

is responsible for the logic operation. In a technical view, a sensor is a so called detector. A technical
component to determine, if some physical or chemical properties have changed in a specific
environment. For example, physical values can be the temperature, humidity, pressure, brightness and
acceleration or chemical values as ionic strength, electrochemical potential [17]. In a general view, the
main task of a sensor is to transform physical or chemical values into electrical signals. In the context
of home automation, sensors are essential elements for reporting current states to the controller in order
to trigger logical operations. There are many different kinds of sensor components on the market. Most
common sensors in home automation systems are motion and occupancy, lighting, temperature, flood
and leak, carbon monoxide, proximity, fire sensors. Actuators are exactly the opposite of sensors.
Actuators respond to the outgoing command from (electrical signal) from the control unit and converts
the signal into a mechanical motion or other physical variables [17].

However, home automation systems differ in terms of the media, the link between different media via
gateways, the programmability, the standardization and use of standards, and simply the cost. The
following sections should clarify the different implementation types of a home automation system.

Centralized systems

The first criteria of realizing a building automation systems is the distinction for central, decentralized
and semi-decentralized systems. A centralized system approach consists of a central controller and
connected sensors and actuators. That means that all the communication between sensors and
actuators and the required logical operation is executed by the controller (see Figure 6). So, the
controller takes care if an event is triggered by a sensor and forwards the predefined instructions to the
responsible actuator. The advantage of such a system is that all logical functions can be evaluated by
the central controller, because all the states of the connected sensors and actuators are known. Another
benefit of this type of architecture is that it is not a prerequisite that a sensor triggers some actions.
Activities can also be initialized by some time-based events or simulation functions. On the other hand,
centralized systems architectures always have to face one problem. When the central controlling unit
fails, for example because of a power outage, system failure or similar, the entire building automation
system stops working.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Central

Controller

Actuator 3

Actuator 2

Actuator 1

Actuator 4

Figure 6: Building Automation - Central System Approach [15]

July 26, 2018 Stefan Reinthaler 24/92

Most implementations of this kind of system are based on a programmable logic controller (PLC), to
manage and control the input and output states of the IO-modules. Another way of implementation is
provided by a decentral architecture, described in the next section.

Decentralized systems

According to Aschendorf [15], decentralized systems in building automation are also called “intelligent”
systems, due to the fact that every member of the system has to be “intelligent”. In contrast to the
centralized system approach, no central control unit exists to take control of the participants. So it is
necessary that every participant in the network is equipped with a communication processor, which
enables the communication over the network, a processor that handles the functionality of the
component and an application processor, which controls the connected sensors and actuators. As a
result of that, they are much more expensive. On the other hand, this principle of a stand-alone element
can be beneficial, because it is possible to setup preinstalled applications on this components, hence
no additional functional programming is required, only the parameterization of the application device
with a software toolkit. Such systems are provided for example by KNX/EIB, LON or EnOcean and can
be implemented via wired or wireless medium.

The following figure shows the design principle of a decentralized system:

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Actuator 3

Actuator 2

Actuator 1

Actuator 4

Figure 7: Building Automation - Decentralized Approach [15]

A major problem of such a system design is, if a configuration or behavior of a system has to be changed,
the adaptions have to be changed on all involved components. So there is no benefit of a centralized
management of the system. On the other hand, the decentralized approach is not that susceptible to full
system outages as the centralized concept. In case of a failure only the components are affected where
the error occurs, because the system logic is spread over all system components [15]. But this can also
cause problems by locating the erroneous components, especially in grown and complex structures.

July 26, 2018 Stefan Reinthaler 25/92

Semi-Centralized Systems

As described in the above sections, it turned out that both system designs have their advantages and
disadvantages. Centralized systems seems to be more static and rigid, because such systems are
primary realized with wired medium and the danger of full system outages, if the central controller fails.
Decentralized systems are more flexible in contrast to centralized systems, but the configuration
changes and maintenance of the systems requires more effort, especially if the system is rare
documented. To get rid of the mentioned problematic of both central and decentral systems [15],
describe a combined approach of semi-decentralized systems. The clue is to change or adopt
centralized systems into semi-decentralized systems by applying more than one central controller. This
centralized controllers for example can be connected over simple and stable Ethernet technology, to
ensure high performance. A symbolic semi-decentralized architecture is shown in Figure 8.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Central

Controller

Actuator 3

Actuator 2

Actuator 1

Actuator 4

Central

Controller

Figure 8: Building Automation - Semi-Decentralized Approach [15]

Finally, this system design makes it possible to reduce the problematic of centralized and decentralized
building automation systems. The interconnection and communication of its components can be realized
in several ways. The basis is the type of transmission media which are described in the following.

1.5.2. Transmission Media and Communication

Typically employed media in building automation for data transmission and control can be categorized
in power supplies for the conventional electrical installation as well as powerline systems, wire-based
systems in the form of an additional data line, or radio bus systems. The use of wired-based Ethernet
or Wi-Fi increases too.

July 26, 2018 Stefan Reinthaler 26/92

The following table shows commonly used transmission media for communication in home automation
systems:

Technology Transmission Frequency Encryption Proprietary

ZigBee Pro
Radio 2,4 GHz or

 868 MHz

AES-128 No

DigitalSTROM Power line - - No

Z-Wave Radio 868 MHz AES-128 No

EnOcean Radio 868 MHz AES-128 No

HomeMatic Radio/Data link 868 MHz AES Authentication Yes

LCN Power line 3kHz - Yes

KNX-RF Radio 868 MHz - No

KNX-PL Power line - - No

KNX-TP Data link - - No

WLAN Radio 2,4 / 5 GHz WPA, WPA2 No

Bluetooth Radio 2,4 GHz AES-128 No

io-homecontrol Radio 868-870 MHz AES-128 Yes

DECT ULE Radio 1880/1900 MHz AES No

Table 2: Overview of commonly used transmission standards [18]

Each transmission medium so has its own advantages. Whereas automation systems are largely
realized through wired bus systems in industrial buildings or companies, wireless approaches can be
found increasingly in the private sector. Brandstetter [19, p. 27] mentioned some basic benefits using
wired or wireless approaches. Wired based automation systems have the advantage that transfer rate
and range is not limited by structural obstacles, for example using fiber technic, where the transfer rate
can reach up to 170Gbps. Also the immunity to electrical and electromagnetic environmental effects is
low when using shielded cables in contrast to radio systems. And if required, the transmission capacity
can be increased by laying additional cables. For sure the use of wired systems results in higher
construction costs. On the other hand, the use of a wireless based system has also benefits. The
installation of wireless networks in existing buildings can be easy and affordable, in contrast to the
subsequent installation of wires and cables for transmission and control. Another positive effect is, that
components connected via a wireless network can be controlled regardless of the location of connection
boxes. However, the standalone wireless components are much more expensive than wired
components, because they also need a logical unit to fulfill its tasks, which requires additional hardware.
In short, establishing a new wireless infrastructure in existing buildings is more affordable than a wired
infrastructure, but sensor or actuator components are much more expensive in contrast to wired devices.

July 26, 2018 Stefan Reinthaler 27/92

Gateways for Interoperability

Due to the fact of gradual development in building automation, the changing technologies and at least
many own developments of different manufacturers, no uniform standard exists in building automation
that ensures simple interoperability between the bunch of systems, as noted by Aschendorf [15, p. 71].
In order to enable interoperability, building automation system gateways are used to enable the
interaction between different de facto standards, media, protocols and other systems. This is done by
converting the individual protocols into another suitable format of the target system. Basically, there are
different types of gateways. On the one hand software-based gateways exists, which are typically
installed on a PC that is directly connected to the automation system. But also hardware-based
gateways exists in form of IP-Gateways, as shown in Figure 9. These are tied to the hardware of the
bus system or an Ethernet network, which enables the access to the system from any location of the
building.

Figure 9: Abstract example of KNX integration [20]

As already mention, gateways enables system engineers to interconnect and access building
automation systems over different channels. But also central components for system configuration,
management and user reporting will play an essential role in the conception and design of the disaster
alerting system employing home automation systems. Especially the communication with gateways,
sensors and actuators of the different de facto standards can be a challenging part. Such a toolkit is
provided by the openHAB UG [21]. OpenHAB is an open-source toolkit, which enables access to several
home automation bus systems in order to monitor and control sensors and actuators, for example via
Ethernet connections. In most cases such toolkits act as interface between the user and the underlying
home automation bus system.

In addition, the ability to access the home automation system via TCP/UDP based protocols enables
access to the system not only from the internal network, but also from external places via an internet
connection, if communication ports are forwarded by the local internet gateway.

July 26, 2018 Stefan Reinthaler 28/92

1.6. Requirements and Recommendations

From the investigation of disaster and crisis management, important elements as awareness,
information representation and reaction capabilities can be identified, which are crucial for a
comprehensive warning approach. Derived from these findings, functional and non-functional
requirements can be defined for a disaster and crisis alerting approach employing home automation
systems. The specification of requirements and technical considerations are defined in the following
sections.

1.6.1. Functional Requirements

First of all to develop a comprehensive concept and prototype system, it will be necessary to consider
the requirements of early warning as identified in section 1.3.4. , including user and technical aspects.
The functional requirements are divided in the two sections, based on the system components and
actors.

Disaster Information Service

In order to provide the smart homes with appropriate information on catastrophes and other incidents,
the following functions are defined to cover the requirements for a reliable warning service.

• A platform or service accessible via internet is required, which acts as central disaster
information source for the endpoints.

• Information about current incidents can be created, monitored, updated and archived on this
platform. This service is owned and hosted by national authorities to ensure that information is
trustworthy and valid.

• The provided information has to include valuable information about what has happened, which

region is affected by the incident or what mitigation action are recommended.

• The platform requires a standardized communication interface to allow easy and lightweight
access to incident information.

• The provided information has to be structured in a way that allows the clients easy interpretation

and further processing.

• Related to endpoint owner’s privacy and anonymity, the provider of the disaster information
service should have as little information as possible about smart homes consuming the service.
This should protect owner’s privacy and prevent national authorities to collect sensible
information.

• Therefore, it is recommended that the alarming service provides information only, so that the

endpoints are required to ask for incident information and are urged to initiate the
communication.

July 26, 2018 Stefan Reinthaler 29/92

• Since communication takes place via an Internet-based connection, the data sent through this
channel has to be protected. Therefore encryption of data to prevent alteration (e.g. man-in-the-
middle attack) and digital certificates to proof the authenticity of the information provider have to
be considered.

Endpoint/Middleware

On the smart home side, a middleware is required acting as interface between the disaster information
service and the home automation system to ensure interoperability. This middleware has to implement
the following features to perform as desired:

• The endpoint communicates with the control center system via an internet-based connection.
• It is necessary that the smart home knows its geographical location to evaluate if it is affected

by the incident.
• It is possible to interpret risk mitigation actions based on the incident information.
• Based on the information of the incident, the endpoint can send instructions to the home

automation bus system and monitor the state of sensors and actors.
• Successfully or failed instructions sent to the home automation system can be handled by the

middleware.
• In addition to alert notifications, the owner of the endpoint should be notified by the endpoint that

some risk mitigation actions can be performed. This requires also a kind of user confirmation to
allow the execution.

• The owner of the system should be able to specify, which types of incident alerts can be received
and which actions are allowed to be performed.

• The owner can view general information and current status of the endpoint via a simple graphical
user interface.

1.6.2. Non-Functional Requirements

The following common non-functional requirements describe technical necessities to ensure that quality
aspects are considered in the design of the communication infrastructure.

These requirements are listed in the following:

• Scalability

o The disaster information service should guarantee acceptable performance, handling
multiple requests even in large scale environments. Especially in assumption that this
system is used by thousands smart homes.

• Reliability

o Reliable communication between the control center and the endpoint has to be
guaranteed (For example in case of transmission failure, time out, etc.)

o Availability and redundancy of the disaster information service in case of failure. It should
be avoided that the information service isn’t available or responds with delays because
of overload.

July 26, 2018 Stefan Reinthaler 30/92

• Interoperability

o A standardized protocol or API for communication is required to ensure communication
between various smart home systems and the disaster information service.

• Information Security

o Confidentiality is primarily required for national authorities to access the disaster

information service in a secure way. This can be achieved using authentication
mechanisms (e.g. username and password) for access control.

o Integrity – It can be ensured that information sent is not changed unintentionally. This
requires cryptographic checksums in order to verify integrity of data.

o Availability – The information is accessible when it is really needed. Also make sure to

guarantee redundancy of information in case of transmission failures.

2. Distributed Information Systems – Design Aspect s

The basis for a disaster alerting system employing home automation systems is a reliable and well-
performing disaster information and communication infrastructure. In this section, approaches and good-
practices are presented to address architectural requirements defined in the section earlier.

2.1. Communication Strategy

Before it is possible to think about the network protocols and other communication techniques, a basic
application design decision has to be made, how the message transfer between the endpoints and the
disaster alerting service take place. Basically, there are two ways in message transport, using a push
or a pull communication specific model.

A push based approach indicates that the message transfer is triggered by the server [22]. If a specific
event on the server occurs and conditions are met, the server send messages to its connected clients.
For example, Radio and TV media. This assumes a permanent connection between the two members
and the receiver has to be prepared to receive messages at the time of transmission. This could be
problematic in case of disaster alerting if receivers are not online at the time of message transfer. So,
an application logic has to be implemented to check if the receiver did receive the message and repeat
the transmission in case of failure. A push approach can be highly scalable from the viewpoint of
network-load. But such an approach produce a higher workload on the server-side, because of the need
of session and error handling. From a security standpoint, it can be critical for clients when a system
can push messages or even malicious commands from outside.

The pull model works the other way around. The server makes the information available via a common
interface available. The server-side algorithms stores the information or messages, until the clients

July 26, 2018 Stefan Reinthaler 31/92

request this source. That is exactly the way how most web services works. This indicates that the clients
are responsible for connecting to this interface and ask for new information. A pull mechanisms, also
called polling, generate more transmission overhead, because the connection to the information source
have to be established frequently [22]. This approach creates higher network and server load by default,
if many clients send requests at the same time. One solution for this issue is to set a time interval for
client requests by including an adjustable delay to distribute the requests in time. In general, the benefit
of this pull-based approach is that the server-side don’t have to worry about who is connected and if the
client has got the messages. This behavior can also be seen as broadcast, because there is no
restriction to requesting clients. This allows a lightweight and slim implementation of server-side
application logic, supporting the aspect of vertical and horizontal scalability. Although it also means that
the responsibility of connection and error handling has to take place at the client-side.

A pull-based communication approach seems to fit the needs of a disaster alerting system, because of
the mentioned aspects. For an effective implementation, of such an approach, good-practices and style
patterns exists which will be investigated in the following.

2.2. Communication Models

Client/Server Model

The client-server model is one of the standard concepts to provide and distribute data within a network.
Basically, tasks are performed by applications which are divided into two main elements. Typically, client
and servers communicate over a computer network on separate hardware. But it is also possible that
both elements exist in the same hardware or system. A server can provide common services or
information and share its resources with multiple clients. A traditional view, the client only requests
resources from the server and does not share any of its resources with others. But depending on the
application context, clients can also be used to provide server functionality as well. The communication
initialization is done by the client which awaits incoming responses from the server. This principle is
illustrated in the following figure:

Figure 10: Client-Server Principle [23]

July 26, 2018 Stefan Reinthaler 32/92

The concepts of client and server are powerful functional abstractions [23]. A server is simply a unit that
provides a service, possibly to multiple clients simultaneously, and a client is a unit that consumes the
service. The clients do not need to know the details of how the service is provided, or how the data they
are receiving is stored or calculated, and the server does not need to know how the data is going to be
used.

Peer-to-Peer Model

Another communication approach is introduced by peer-to-peer networks. Essential feature of peer-to-
peer (P2P) infrastructure is decentralized networking. Decentralized means that no central control-,
service- or data instance exists on the network, as it is the case using a centralized server. A peer is a
network node acting as a client as well as server. A peer manages its own resources and allows access
to it. Each peer is thus a client and a potential server and provides services and data for other peers. In
contrast to the client-server principle, the communication is done directly between members of the peer-
to-peer network. This behavior has some advantages due to flexibility and the possibilities of fault
tolerance especially in view of scalability. Scalability and fault tolerance are central problems in single
Client-Server architectures, which represent a basic motivation for realizing P2P networks. The
decentralized approach can avoid single-point-of-failure and bottlenecks regarding communication
paths and network load.

The decentralization concept in pure peer-to-peer networks can be described as follows [24, p. 28]:

• There is no central coordination. No central node exists controlling the interactions of peers with
each other. Peer coordination is distributed.

• There is no central database, so no peer knows all resources of the system. These resources
are distributed to the peers.

• No peer has a global view of the system. Each peer knows only its neighbors; only those peers
where data exchange takes place.

• Peers and connections between peers do not have to be reliable.

The absence of managing servers within a pure peer-to-peer network implies that the members must
organize themselves [24]. This self-organization is the biggest challenge of today's peer-to-peer
systems. This includes the management of addressing structures and routing process. So, peer-to-peer
networks generally implement some form of virtual overlay network on top of the physical network
topology, where the nodes in the overlay form a subset of the nodes in the physical network. Data is still
exchanged directly over the underlying TCP/UDP network, but at the application layer peers are able to
communicate with each other directly via the logical overlay links. So, overlays are used for indexing
and peer discovery, and make the P2P system independent from the physical network topology.

2.1. Scalability and Performance

Scalability is a performance indicator which describes the flexibility of an information technology
infrastructure regarding varying load. As stated by Von Brauk and Neudert [25], some aspects have to
be considered in building scalable client-server systems. The first principle deals with the scaling
strategy itself. One possibility is to use a vertical (scale-up) approach. This is synonymous with adding

July 26, 2018 Stefan Reinthaler 33/92

extra memory or a more powerful processor in an existing server. The benefit of scaling up is that no
additional servers have to be integrated, no software has to be installed and the IT architecture remain
unaffected. This method is especially applied when no possibility exists to parallelize the application on
several servers. The upgradability of a single node depends on the model or type of hardware, because
of physical limitations. So using this technique the only remaining step is to replace the existing hardware
with more powerful. This approach not ensure linear scalability, it also strongly depends on the
parallelization of code. The alternative scaling strategy of horizontal scaling (scale out) is on a different
level of granularity. Von Brauk and Neudert [25] note that any increase in load on an IT system, it should
be possible to respond appropriate by adding new nodes, for example standard hardware or virtual
machines. Apart from the cost aspect, this elasticity has the advantages that the power expansion can
be implemented on the fly and without costly migration projects. Significant architectural challenges are
generated, for example in terms of data consistency, availability and redundancy by parallel operation
of identical servers and applications. Obviously, the realization of this kind of scaling has already to be
considered at the application and infrastructure design. Another aspect of the horizontal scaling principle
is to optimize the connection between resources and consumer.

Another problem in architectures is that data is tied to resources, such as session or connection data in
a web server [25]. The session or connection can only be served by the processing instance. In the case
of synchronous communication, in which an open transaction is waiting for the response of the writing
service, resources such as threads, memory, and network connections are used. Bottom-up through the
idempotent design of services and top-down by scheduling state-controlled communication at the
borders of the system. Idempotent services deliver the same result even if the action is repeated. All
read operations are idempotent. Idempotent services reduce the complexity associated with a
messaging system, since they always deliver the same result even through multiple requests.
Statelessness can also be promoted by terminating as many state-dependent communications as
possible outside or at the borders of the system. This includes, for example, terminating TLS
connections on the load balancer and implementing all requests within the system in an unencrypted
manner.

Multi-Tier Architectures

Multi-Tier architectures allow a flexible setup of complex distributed systems based on the client-server
principle. Basically, tier-architectures are built up in layers. The more complex the requirements the
more layers are used. Such a modular design makes it very flexible to respond to future requirements
and changes. In general, three types of layers are common in client-server architectures. These layers
are described by [24, p. 26] as follows:

Figure 11: Multi-Tier architecture [26]

• Presentation Layer : The presentation layer is responsible for the presentation and retrieval of
data that has to be processed. In distributed systems, there are two alternatives for the

July 26, 2018 Stefan Reinthaler 34/92

presentation of content. Thin-Clients are typically minimalistic versions with less powerful
hardware and software equipment, only used for standard input and output tasks. Such clients
only offer terminal functionalities to access services provided by the server. In contrast, fat clients
are equipped with all the hardware and software components necessary for processing data on
the client side. Fat clients, also called rich clients, implement the application-specific functionality,
for example the user interface (presentation logic) and the logic of applications directly at the
client.

• Application layer : The application layer provides the coordination of several professionally

delineated parts of the business logic. The business tier is pulled out from the presentation tier
to its own layer. It controls an application’s functionality by performing detailed processing. The
application layer makes logical decisions, evaluations and calculations and acts as interface
between the two surrounding layers.

• Data layer : The data access layer encapsulates access to persistent data and the techniques

used. For the persistent storage databases are often used, but this is not mandatory. It is also
possible for small distributed applications to use the filesystem. When using databases for data
exchange with the application layer, interfaces has to be implemented for the access to the
database management system.

The use of these layers can result in 1-Tier, 2-Tier or Multi-Tier architectures. In 1-Tier architectures all
of this layers are located in one system, for example this concept takes place in mainframe systems. In
this structure, thin-clients are only used as input and output terminals. 2-Tier architectures are the typical
client-server systems, where the presentation layer located at the client-computer. But it also can be
necessary to implement parts of the application logic at the client side, whereas the basic application
and data logic remains on the server side. In 3-Tier or Multi-Tier architectures an additional layer is used
to separate the application logic and the data storage system. The application layer of this architecture
is between the user interface and the database server and can be realized for example by transaction
monitors, message services or an application server.

In building modern applications and distributed information systems, a multi-tier design is state of the
art and best practice. The benefit about this concept is the possibility to scale one layer of the system
without the need of changing other layers, for example application layer and data layer. A layered
architecture supports the aspect of application scalability, but there are other methods to consider.
Depended of the architectural design of distributed systems, application functionality can vary at different
levels, as shown in Figure 12: Client-Server functionality by design, related to [27, p. 334].

July 26, 2018 Stefan Reinthaler 35/92

Figure 12: Client-Server functionality by design, related to [27, p. 334]

According to Mandl [27, p. 333], variants (d) and (e) are not very common in larger developments, but
still can be found in many applications. They have the advantage that the client can access the database
directly. In contrast, (a), (b) and (c) are todays most used variants developing distributed applications
and systems. Besides this vertical distribution of application layers, a horizontal distribution can be
realized, by placing the application and data layer on multiple server units.

In context with disaster alerting and information handling of the endpoint, a system architecture based
on approach (d) will be recommended. The server provides information only, whereas the endpoint
application logic is responsible to process the receive information about incidents.

2.2. Incident Information

As identified in the requirements, a standard information format have to be provided that specifies, which
information have to be included in alert messages. OASIS [8] established a common notation, which
has been specially developed for the information exchange of disaster information. The CAP format is
compatible with emerging techniques, such as Web services, and include the following capabilities [8]:

• Flexible geographic targeting using latitude/longitude shapes and other geospatial
representations in three dimensions

• Multilingual and multi-audience messaging
• Phased and delayed effective times and expirations
• Enhanced message update and cancellation features
• Template support for framing effective warning messages
• Facility for digital images and audio

The message is presented and structured in a format, which is ideally suited for machine-to-machine
communication. The following figure illustrate the structure of a CAP message:

July 26, 2018 Stefan Reinthaler 36/92

Figure 13: CAP message structure, related to [8]

A message consists of four basic elements. In the alert segment, all information about the purpose,
status of the message itself is contained. The info segment provides space for information about the
event, for example type of the incident, urgency or instructions. In the resource segment, it is possible
to link additional textual or audio information related to the info segment of the message. All information
about the occurrence, location and range of the event can be described in the area segment. As shown
in Figure 14, all bold representations are mandatory for a CAP specific message. Elements in italics are
filled with default values if the element is not present. More details of the Common Alerting Protocol
Version 1.2 can be found on the OASIS webpage. This standard is an excellent basis for the alert
message format for the disaster alerting approach employing home automation systems.

July 26, 2018 Stefan Reinthaler 37/92

2.3. Communication and Information Exchange

This section deals with communication methods and mechanisms for information distribution. Important
aspects and design decisions are highlighted to support a secure and reliable network communication
between the home automation endpoints and the source of disaster information.

2.3.1. Communication Protocols

The TCP/IP reference model, which is an abstraction of the OSI reference model, was developed by the
Internet community. It covers layer one to four of the OSI reference model. This model is seen as the
de-facto standard of internet-based communication.

Figure 14: TCP/IP reference model [28]

In contrast to the OSI reference model, the TCP/IP reference model consists of four layers, as seen in
Figure 14. The TCP/IP reference model is designed to enable data exchange beyond the boundaries of
local networks also called “Internetworking" [28]. The application layer includes all protocols that work
with application programs and use the network infrastructure for the exchange of application-specific
data, for example HTTP, FTP, SMTP or DNS. The transport layer establishes an end-to-end connection.
The main protocol of this layer is the Transmission Control Protocol (TCP). It creates connections
between two network devices for secure transmission (TCP 3-Way-Handshaking) of data streams. The
User Datagram Protocol (UDP) is a connectionless transport protocol without any secure data
transmission mechanisms as provided by TCP. Due to this fact data packets can be exchanged
relatively fast between two hosts. Therefore, it is used where quick delivery is more important than the
reliability in relation that the data has arrived correctly and completely.

The knowledge of the main properties and behavior of the two protocols can be essential for designing
distributed communication infrastructure and applications. Especially in large scale environments with a
high traffic rate.

July 26, 2018 Stefan Reinthaler 38/92

The major difference between the protocols are listed in the table below:

Property TCP UDP

Connection Connection-oriented Connectionless
Usage Suited for applications that require

high reliability, and transmission time
is relatively less critical.

Suitable for applications that need
fast, efficient transmission.

Ordering of data
packets

TCP rearranges data packets in the
order specified.

UDP has no inherent order as all
packets are independent of each
other

Speed of transfer Slower than UDP Faster, no error-checking for
packets.

Reliability Guarantee that the data transferred
remains intact and arrives in the
same order in which it was sent

No guarantee that the messages or
packets sent would reach at all

Header Size TCP header size is 20 bytes UDP Header size is 8 bytes
Weight Heavy-weight. TCP requires three

packets to set up a socket
connection, before any user data
can be sent.

Lightweight. There is no ordering of
messages, no tracking connections

Data Flow Control TCP does Flow Control. Handles
reliability and congestion control

No option for flow control

Error Checking TCP does error checking UDP does error checking, but no
recovery options

Acknowledgement Acknowledgement segments No Acknowledgment
Handshake SYN, SYN-ACK, ACK No handshake (connectionless

protocol)

Table 3: Comparison TCP vs. UDP Protocol, related to [28]

As seen in the comparison matrix above, UDP is quite faster than TCP connections, due to the fact that
no transmission control is given by design. Therefore, control and security mechanisms has to be
implemented on the application layer. UDP's stateless nature can be useful for servers that answer
small queries from huge numbers of clients, but do not rely on a secure connection. The transmission
control protocol focus on secure and reliable communication by implementing security mechanisms like
handshaking. This should guarantee that information is transmitted successfully. But on the other hand,
the secure transmission of TCP generates a higher network load as in case of user datagram protocol.
Another positive effect of the TCP protocol is that data can be encrypted using Transport Layer Security
(TLS).

In conclusion, UDP protocol can be theoretically used for data transmission, but only under the condition
that a CAP record fits in one UDP datagram. Otherwise it would be necessary to implement a kind of
sequence order mechanism to ensure that data arrives correctly using UDP. This sequence order
problem of the UDP protocol is among other things a fundamental reason why TCP is better suited,
because of security capabilities and trustworthy transmission of information between two communication
partners.

July 26, 2018 Stefan Reinthaler 39/92

2.3.2. Reliable Data Transmission

Depending on the domain of the application, it can be necessary to encrypt data in transmission to avoid
man-in-the-middle attacks. A common practice in internet communication is to encrypt data via
Transport Layer Security [29]. The latest version is TLS 1.3 which was introduced in 2018. TLS is an
encryption protocol typically used for secure data transmission, for example over Internet connections.
The principle how it works can be described as follows: The client connects to the server. The server
authenticates itself against the client with a certificate. The client checks the trustworthiness of the X.509
certificate and whether the server name matches the certificate. Optionally, the client can authenticate
itself against the server with its own certificate. Then either the client sends the server a secret random
number encrypted with the public key of the server, or the two parties compute a secret with the Diffie-
Hellman key exchange. A cryptographic key is then derived from the secret. This key is subsequently
used to encrypt all messages of the connection with a symmetric encryption method and to ensure
message integrity and authenticity through a message authentication code. The advantage of the TLS
protocol is the ability to implement any higher protocol based on the TLS protocol. This ensures
independence of applications and systems [29].

The question that arises in context with a public disaster alerting system is, if it is required to encrypt
data in transit at all. The basic goal is to establish a service able to alarm and warn people about
upcoming threats. This implies that incident information have to be public because of its domain. So,
incident information transmitted via internet actually do not need encryption, because it do not contains
no sensitive information which have to be protected. It is more the contrary case. But it have to be
ensured that this data have not been altered on the way to its addressees. Integrity and origin of the
data are more in focus. Hence, checksums and digital signatures play a more vital role in context with a
disaster alerting system.

2.1. Domain Name System for Information Exchange

As is generally known, a Domain Name System (DNS) is a name service, an online distributed database
system, for example converts domain names into IP addresses. DNS is based on the UDP protocol (port
53) and is essential part of internet communication [30]. The advantage about DNS is decentralization
aspect and the way how the information is provided to requesting clients.

Basically, name resolution can be achieved by recursive and iterative DNS queries, illustrated in the
next figure:

July 26, 2018 Stefan Reinthaler 40/92

Configured name

server

Child name server Parrent name server

Local client

recursive queryresolver

Figure 15: Name resolution using DNS, related to [31]

With a recursive query, the DNS server respond to the client with either the requested resource record
or an error message that the domain name or record does not exist. If it is the case that the DNS server
does not have the information requested by the client, it queries other server until it gets the information
or until the name query fails. So, recursive name queries are generally made by DNS clients to a DNS
server. An iterative query allows the DNS server to return a referral, which is a pointer to a DNS server
authoritative for a lower level of the domain namespace. The DNS client can then query the DNS server
for which it obtained a referral. It continues this process until it locates a DNS server that is authoritative
for the queried name, or until an error or time-out condition is met. This kind of query is typically initiated
by a DNS server that attempts to resolve a recursive name query for a DNS client [32].

In addition, DNS caching is another important mechanism for efficient name resolution. DNS caching
retains the result of a recursive query for a specific time in the DNS server’s local cache before
responding to identical DNS queries from other clients without having to re-request in the name servers.
The length of time that a cache entry is valid is determined by its TTL (time to live) value. The TTL value
is specified by the authoritative name server of the corresponding zone. Generally, caches are
implemented for example in the resolver of the operating system, the name servers of the Internet
access provider, and some applications such as web browsers. The of cached data at different locations
is to relieve the authoritative name server and saving time, because a request can respond faster from
the cache than by re-requesting the responsible name server [32].

The existing and already usable communication infrastructure of DNS (including caching) is an
interesting option for providing data to clients in this context. Therefore, a conceptual model was built to
illustrate such a possible approach. As shown in
Figure 16, information about the occurrence of incidents could be provided by using Resource Records
(RR), for example with TXT records which contains the information needed. Smart homes could use
DNS queries to request cached information about current incidents. The benefit is that information is
decentralized and principally already available on ISP’s DNS server cache, if a request was already
made from a client using the same DNS server. That means, only one DNS query has to be made to
get the information from the server of origin within ISP’s DNS environment. This information will be
stored in DNS cache and shared with any other clients requesting (consider the TXT’s TTL value).

July 26, 2018 Stefan Reinthaler 41/92

Autoritative DNS
IPS(A) DNS

Cache

sbg.example.com 60 IN TXT

tirol.example.com 60 IN TXT

3. tirol.example.com

TXT !

 1. tirol.example.com TXT ?

 4. TXT tirol.example.com !

example.com

ua.example.com 60 IN TXT

“id:123;lat:1;lon;2“

sbg.example.com 60 IN TXT ...

tirol.example.com 60 IN TXT ...

IPS(B) DNS

Cache

ua.example.com 60 IN TXT

“...“

 s
a

lz
b

u
rg

.e
xa

m
p

le
.c

o
m

 T
X

T
 ?

Figure 16: Information exchange using DNS

So, using existing DNS infrastructure seems to be a possible approach to distribute incident information
to smart homes, because information can be decentralized. But there are some restrictions to consider.
Such an approach is only suitable when a small amount of data will be transmitted, because of the size
limits of the resource records. Moreover, time critical content would be probably problematic for dynamic
and frequently updated data as it is required in disaster alerting. Actually, frequent record changes are
not a really a technical issue, because the update interval can be controlled via TTL values. The problem
that can arise is more of an organizational nature. ISPs are not enforced to accept very small TTL values.
Smaller TTL values increase the update frequency on DNS servers. In some cases, they are ignoring
TTL values of records and accepting only values higher than 3600 seconds, in order to prevent a misuse
and potential overload of the system. In addition, DNS is working over UDP. As is generally known, UDP
is a stateless protocol. So, there is no guarantee that messages or packets sent would arrive in the
correct order. Moreover, the authenticity and integrity cannot be guaranteed unless Domain Name
System Security Extension (DNSSec) is used, for example signing the content. At the one hand,
DNSSec provides protection mechanism to verify if the contend has changed during transmission and
reduce the risk of DNS cache poisoning.

Using DNS infrastructure would probably work to provide meta-data of incident. No additional
infrastructure and protocols have to be implemented to provide data to the endpoints. But due to the
mentioned limitations, some compromises have to be made, which could restrict the efficiency and
reliability of this approach.

July 26, 2018 Stefan Reinthaler 42/92

2.1. Anycast Communication

Anycast is a communication and routing mechanism where a single destination address can have
several endpoint addresses. While unicast addresses a unique target, broadcast addresses all systems
in the subnet, and multicast addresses certain groups of nodes, anycast communication always finds
the closest possible target via routing information [33].

Figure 17: Anycast Communication Schema, related to [33]

In an abstract view, endpoints receive the same IP address and propagates a corresponding route via
a routing protocol, for example as implemented by the BGP (Border Gateway Protocol) to route internet
traffic. In the event of a failure or inaccessibility, the route disappears and all subsequent packets are
routed to another server. The desired service can thus also be provided if one or more servers fail. This
increases the availability. In contrast to multicast environments that generate packets for all group
members, the sender creates only one single packet. A packet with an anycast address is only sent to
its nearest interface, depending on the entry in the routing table of the router closest to the sender.
Important advantages of anycast are shortened access times through shorter routing routes, load
balancing by using different systems depending on the location of the sender and scalability.

Basically, the general concept of anycast would be interesting for distribution data. But the realization
of anycast in an inter-domain scenario requires its own routing infrastructure, as it would be the case in
context with this disaster alerting approach. An implementation would require lots of routing equipment
and configuration tasks to integrate smart homes is such a scenario. The implementation of a native
anycast approach would result in high configuration effort and hardware requirements in order to create
a working communication infrastructure. Therefore anycast based approach is not really applicable for
end-to-end communication via internet. Nevertheless, anycast can be indirect part of a possible disaster
alerting approach, because it is increasingly used in Content Delivery Networks (CDN).

July 26, 2018 Stefan Reinthaler 43/92

2.2. Content Delivery Networks

In a scenario, where all resources are bundled geographically in one place, the network topology can
become the next bottleneck. A possible solution for this restriction is given by content delivery networks.
Besides the horizontal scaling in content delivery networks, nodes are also distributed geographically in
order to optimize latency and throughput by serving content from the closest geographic location.

Horizontally and geographically distributed nodes can be seen as simple caches of a central server or
instance. At this stage Von Brauk and Neudert [25] advices that this distributed caching technique is
effective for architectures, where read-only access takes place and no client-write action is needed,
because the necessity of a write feature can easily lead to consistency problems. Regarding to a central
disaster information and alerting service, there is no need that clients perform any write requests,
because the service is designed provides information only.

Key features of content delivery networks, according to Bhatia [34]:

• The latency of delivering content is reduced giving very fast throughputs.
• Network load is optimized by caching near to the point of serving content and not consuming

long distance bandwidth.
• Content is delivered with optimum performance with minimized dependency on middle

networks.
• Ensures that there is no single point of distribution, hence traffic serving can be optimized by

multiple sources.

Always in mind that in a future scenario thousands of clients may access this service, utilization of
Content Delivery Networks is a modern approach to provide information to the clients in a scalable,
redundant and resilient way. Especially the combination of load balancing and geographically
distribution of information hosting nodes is necessary requirement for the disaster and alerting service.

The architecture described above can be extended to multiple sites for more efficient information
distribution and traffic optimization. In a nationwide scenario, where thousands of smart homes exists
and are possible candidates, a simple HTTP request/response approach could lead to a high traffic rate
at the server-side. For example, in Austria 3.865.000 private households exists in 2016 [35, p. 20].
Theoretically, all these are potential candidates using this service and requesting incident information.
Even with an optimized request distribution mechanism, this would still lead to 64.433 requests per
seconds. The more requests arrives on one site, the higher is the probability that the response time will
increase to several seconds or lead to service outages because performance issues.

The figure below is an illustration of one possible solution implemented with Content Delivery Network
nodes to spread the load to various nodes and sites.

July 26, 2018 Stefan Reinthaler 44/92

DIS DatabaseDIS Node

DIS Node

DIS Node

Load Balancer

CDN Node

CDN Node

Smart Home

Smart Home

Smart Home

Smart Home

CDN Node

Figure 18: Information distribution with a Content Delivery Nodes

The underlying technique used by most CDN providers is based on a combination of DNS resolution
and anycast-routing mechanisms [34]. So, if a user's request reaches the CDN, there are different ways
how the request will be treated:

• If the requested files are not yet in the cache of the CDN PoPs (Point of Presence), the CDN
loads it from your server to the PoP and then back to the requesting client.

• If it is the case that the requested files are (based on rules) in the cache of the PoP, the response
is sent directly from there. No further request to the root server is required. When the time to live
(TTL) of the resource has expired, the CDN systematically requests a new copy from the origin
server.

• If the requested source is either dynamic or not in the cache rules, the CDN directs the request
to the origin server, which sends the requested data directly to the customer.

Nevertheless, centralized pull-based communication approaches requires clients to frequently ask the
source of information. This can lead to high network traffic, even information at server-side hasn’t
changed. Because of this fact, other methods should be considered, in order to provide propagate
information changes in a more decentralized way.

July 26, 2018 Stefan Reinthaler 45/92

2.3. Peer-to-Peer Communication Aspects

An alternative or even an extension to centralized client-server approach can be achieved by peer-to-
peer communication. In context with the disaster information system peer-to-peer data exchange could
be useful to share incident information with others and lower the network load on the centralized
instance. Peer-to-peer information sharing capabilities can be illustrated by taking a look at the
BitTorrent [36] concept.

Some basic characteristics of BitTorrent protocol used for file sharing:

• Files can be downloaded from multiple sources (called seeders) at the same time.
• Files are identified by a unique hash, which is used to find new sources of a file.
• The integrity of files is verified by checksums
• Downloaded files are shared by the client after being scanned to speed up file propagation.

BitTorrent is one, of the most popular peer-to-peer protocols, which is used for file sharing. To be able
to distribute files with others, small .torrent files are created, which contain meta-information of the file
to be shared. In addition to mandatory information such as name and size of the files, size and a list of
checksums of segments of the data to be downloaded and additionally tracker contact details can be
stored [37]. Torrent meta-info (of the file to be shared) consists of several attributes. A list of trackers
that are used to store contact information (IP-Addresses and ports) of peers downloading or seeding file
content. The number of file segments and length of these objects. It also includes the hash value of the
file segment to verify integrity of the downloaded content. Based on these information a unique 160-bit
infohash is generated.

An illustrative example of a torrent file:

{

 name : '<file to share>',

 pieces:[

 '111111111111111111111111',

 '222222222222222222222222',

 '333333333333333333333333'

],

 announce: 'http://tracker.example.com'

}

Info Hash: 89798aeaf98ae8fa98ef8a7f98ae22134

Listing 1: Torrent meta-information

Because static torrent files are not very handy to exchange in order to enable other peers to join the
swarm and download the same file, magnet links have been developed. A magnet link can only contain
the infohash of a torrent and an optional list of trackers which can be contacted.

July 26, 2018 Stefan Reinthaler 46/92

Advantages of utilizing a peer-to-peer information sharing approach in contrast to centralized systems:

• Fast downloads: Every downloader (peer) also became an uploader (seeder)
• Decentralization: No central point of failure

The benefits of peer-to-peer information sharing are obvious, but also challenges have to be accepted,
in order to build a peer-to-peer communication system. Challenges in peer-to-peer communication:

• Peer Discovery: Every endpoint has to know where it can download the desired information
• Peer Connectivity: A communication channel have to be established to other endpoints, in order

to download and share information.

2.3.1. Peer Discovery and Distributed Hash Tables

To discover and exchange peer connection details with others, typically trackers or a Distributed Hash
Tables (DHT) are used today, for example implemented in the BitTorrent protocol. Trackers are
centralized public servers, which are contacted by peers to make announcements in order to gather
contact information of other peers. They manage information about one or more files through torrents
and a client who learns from the tracker who else is downloading and distributing the file. As soon as a
client has received a small piece of the file and has verified the checksum, it reports this to the tracker
and can already pass on this file piece to other clients [36].

With the BitTorrent Extension Protocol 5 (BEP 5), Distributed Hash Table are introduced which are
based on the Kademlia algorithm to utilize tracker-less peer discovery [38]. Using Distributed Hash
Tables is more a decentralized approach aiming to store contact details on several participating nodes
without using centralized trackers. In other word, each node as specified by BEP 5 can act as a tracker
for its known nodes in a decentralized manner. Using DHT in combination with trackers (which can be
single point of failure) are common practice today. Usually, discovery approaches operating over UDP
to exchange peer contact lists. Whereas the transmission of data requires a more reliable protocol by
using TCP.

According to BitTorrent’s specification, a peer is a torrent client implementing the BitTorrent protocol
and operating over TCP for data exchange between peers. A node is a client/server entity controlled by
the peer and connected to the DHT overlay network via UDP. Hence, the node is actually used for peer
discovery. So, a node can be identified by an ID. The node ID is a random number from the 160-bit
space as BitTorrent infohash. In order to compare two node IDs and an infohash for closeness an
algorithm for measuring the distance will be used. Participating nodes have to maintain contact details
for a small set of other nodes in a routing table. The accuracy of the routing table gets better as the
distance between the node IDs of others gets closer to the node ID of its own.

The distance calculation, as used by Kademlia DHT [38], is based on XOR operations:
 ��������(
, �) = ||
 ⊕ �||

Formula 1: Kademlia DHT XOR operation [39]

July 26, 2018 Stefan Reinthaler 47/92

The result is an unsigned integer, indicating the smaller the value is the closer is the node. So, if a node
search other peers for a given torrent infohash, it compares the infohash with the node IDs contained in
the routing table. In a first step it contacts known nodes with IDs closest to the infohash and make a
request for the contact information of peers downloading the torrent. If a contacted node identifies peers
in its own routing table, it answers with the contact details of these peers. Otherwise the node responds
with contact information of other nodes (maintained in its routing table) which are closer to the torrent
infohash. The querying node tries now to find other nodes until it cannot find any other nodes closer to
the target infohash. In case it cannot find any node that are closer to the already known it inserts the
peer contact information for itself [38].

The next figure illustrates the routing concept based on Distributed Hash Tables:

Peer

Node (N1)

Routing Table

N2

N3

N5

N4

Peer

Peer

Peer

DHT Network

Figure 19: DHT discovery and routing concept, related to [40]

The goal of DHT is to maintain only nodes which are online and able to respond to queries from other
nodes. So, if a node is not able to respond within the last 15 minutes its status is set to unknown. Each
unknown node in the routing table is pinged in order to verify if it is online. If pinged nodes failed twice
to respond the node will be discarded and replaced with other good nodes. Nodes are stored in so
called buckets which are covering the node ID space from 0 to 2^160 and a bucket can hold K nodes
(in BitTorrent 8 nodes) [38]. If a bucket is filled with known good nodes, no more nodes are added. But

July 26, 2018 Stefan Reinthaler 48/92

if the bucket contains the own node ID it is spilt into two new bucket. The nodes of the old buckets are
distributed among the two new nodes. Buckets with inactivity of 15 minutes (no ping responses, node
added or replaced) needs to be checked to verify that info of the nodes is the latest.

2.3.2. Connectivity

As a peer has received information about all seeders of a given file, it can start to connect to the remote
peers. But first it have to be ensured that the seeding peer is reachable. In case of peers are used to
communicate over internet, additional enabler has to be considered. Usually, BitTorrent protocol
operating on default port 6881-6889. Because most peers are located behind a firewall or a NAT router
because of limited address space of IPv4, some mechanisms are required to make each other peer
visible and reachable. One approach is to use the UPnP (Universal Plug and Play) and NAT traversal
techniques, described by Hu [41]. This mechanisms enables device in a local network to configure port
forwarding on UPnP capable routers and gateways automatically or establish connections using hole
punching techniques depended on NAT configuration. Otherwise to ports has to be configured manually
in order to allow incoming connections to a peer behind a firewall/NAT.

2.3.3. Information Changes

Another challenge arises in context with a reliable disaster alerting system:

• Information changes: It has to be ensured that the shared information is the latest version
published by an authority. Therefore, participants in a peer-to-peer network have to be notified
to download and seed the latest version.

As it is given by design, only a trustworthy instance should be able to publish incident information. And
this information is constantly updated. So this behavior could lead to versioning problems for content
distribution in peer-to-peer based approach. Changes of content require changes to meta-information
(new .torrent file), which has to be propagated to interested clients. With BitTorrent Extension Protocol
9 (BEP 9), an approach is introduced in order to download a file via BitTorrent and find related peers
without the need of downloading a related torrent file first [42]. A so called magnet link is a URI standard
for hyperlinks that point to files. It contains at least a unique identifier (infohash) of the torrent file.
Therefore, magnet links are predestined to extending discovery features using distributed hash tables.
Nevertheless, these information has to be published and distributed to peers first. Possible updates to
incident information require peers to frequently look for changes, e.g. on a predefined time interval. This
can be tricky especially when information which should be shared changes frequently.

One approach in order to provide new meta-information (e.g. torrent-files or magnet links) for a file/topic
of interest is to use additional services, e.g. renew and publish magnet link (containing the new infohash
value) via web-sites. But this requires in turn centralized service for initial meta-info exchange again.

Notification via DHT networks

However, also more decentralized approach was introduced by the BitTorrent team to address this
challenge. A draft of a new BitTorrent Extension Protocol (BEP 46) has been release, which allows to
updating torrent met-information using mutable content based on DHT [43]. This extension enables
updating torrents based on data stored in the BitTorrent DHT instead using for example RSS feeds

July 26, 2018 Stefan Reinthaler 49/92

(Really Simple Syndication) or web services. The initial seeder can notify others when the torrent is
updated and point to the new information, via mutable DHT items. The goal of this solution is to allow
publishers to serve content via a single torrent (magnet link), where it’s content might change over time.
Peers which are interested in the publisher's changing content can retrieve these updates by simple get
request using the same torrent meta-info.

As described by Norberg [44], the goal of a decentralized RSS feed like service is to create a collection
of torrents to avoid single point of failure. The DHT extension featuring put and get functionality in order
to store and receive random data (with a maximum size of 1000 bytes) in the DHT network. Key-Value
pairs can be stored either as immutable item (SHA1 hash of the torrent), or mutable item. Immutable
items under a published infohash cannot be modified. Whereas published mutable items can be
modified over time, without the need of changing the published contact point associated with the mutable
item. In order to achieve that only the original publisher can change items, values are signed using
publisher’s private key. Mutable items are published under the SHA-1 hash of the public key [45].

So, peers requesting for publishers content only need to know the publishers public key to retrieve
mutable payloads, verify integrity and version from the DHT network.

Publish and Consume Content

The BitTorrent Extension Protocol 46 described by Matteis [43], allows publisher nodes in the DHT to
notify other nodes about updates on torrents. The payload v holds a key-value pair with key ih (infohash)
and the value of the infohash. These payload can be consumed by other nodes with the targetID (SHA-
1 of public key). To detect changes of property v constantly requests have to be made. If changes to v
are found, the torrent can be updated based on the infohash from the response. Both publisher and
consumer are urged to publish mutable items via put requests to keep them alive in the DHT network.
In addition, as recommended by Norberg and Siloti [45], nodes with interest in the topic should re-
announce the downloaded payload, because items can expire in the DHT network. This could be
achieved by make put request of the item received. This would keep items in the DHT even the original
publisher disappears.

This approach, publishing and consuming small amount of data via DHT network can be used to extend
information distribution capabilities in a decentralized way. Further details of an integration of peer-to-
peer capabilities using the millions of node based BitTorrent DHT network will be described in section
3.6.

2.4. Highlights and Comparison

This comparison of centralized and decentralized approaches highlights differences in behavior and
functionality in context with the non-functional requirements of the envisioned disaster alerting system.

Reliability and Scalability: Reliability and Scalability (in sense of redundancy) and availability can be
optimally supported due to decentralization, since each peer can practically operate as an information
source. This is a big advantage, especially when gigabytes of static data have to be shared with others;
several sources (peers) are available to seed pieces of already downloaded content, instead of a typical
single source client/server approach. But, several techniques, like multitier architecture, load balancing

July 26, 2018 Stefan Reinthaler 50/92

and distributed service nodes can be implemented to create horizontal and vertical scalable centralized
information systems.

Information Changes: Another challenge in peer to peer networks is the need to ensure that only the
latest version of the data is available to all its clients. Whereas dynamic content can be problematic, for
example when information about current incidents constantly changes, which makes frequently updates
necessary. This can create a content versioning problem in the peer-to-peer network. Client-Server
approach using a web-service can better address these challenge, because only one contact point is
visible and available requesting clients, but also techniques are available to build a solution in terms of
peer-to-peer network.

Connectivity : In assumption that peers are typically behind a firewall or NAT router, network
configuration changes (opening incoming firewall ports on the home network) have to be made at
endpoints site, in order to enable the provision of the information of a peer since the connection
initialization takes place externally. Although, there are some NAT traversal mechanisms (e.g. TCP/UDP
hole punching) to enable establishing bidirectional connections between peers in different networks. But
this requires additional (central) services for signaling and even to relay data in case direct peer-to-peer
connections do not work. A centralized approach does not really facing such a problem, because in a
view point of an endpoint outgoing connections are not blocked in the most cases. So no configuration
changes are required.

Security : In sense of security, the management of many different information sources is more
problematic to ensure confidentiality and integrity of the information, as it will be the case in a centralized
client/server approach. Each peer creates an attack surface, which makes it easier for intruders to take
control of these information source or deliver malicious content to others within the peer-to-peer network.
Of course, mechanisms are in place, for example integrity checks (hashing), digital signatures to verify
the publisher or encryption techniques, but in turn this will create additional implementation effort.
Security aspects in client/server architecture are easier to realize and manage compared to peer-to-
peer networks, because of the centralization aspect.

While peer-to-peer networks provide advantages over centralized client-server systems in terms of
scalability and availability, client-server systems can better address challenges such as connectivity,
integrity and versioning, because of the centralization aspect.

Based on the requirements and challenges for a disaster alerting system, some kind of centralization is
inevitable to create a reliable system. Because smart homes are urged to frequently request for new
incident information even in peer-to-peer communication. The next section will introduce a concept of a
disaster alerting system leveraging client/server and peer-to-peer communication techniques.

July 26, 2018 Stefan Reinthaler 51/92

3. Conceptual Design of the Disaster Alerting Syst em

In this chapter the design and structure of a disaster and crisis alerting prototype system employing
home automation systems is presented. It covers the architecture, prerequisites and technical aspects.

As already mentioned the scenario of a disaster alerting approach employing home automation systems
consist of several components. The major task load will be on the two elements for interconnecting
smart buildings and disaster alerting services. The Disaster Information Services (DIS) has a central
position in this design acting as access point for the smart homes, which requests for disaster
information. The control center is reachable over the internet. Furthermore, the control center provide a
functionality for national authorities to collect or create incident information by themselves and provide
this information via a public interface, which can be requested by the smart homes.

DIS Control Center

Controlled by

Home Automation System

Figure 20: Abstract system architecture

The endpoint takes the second major part of the system. The DIS endpoint is connected with the DIS
service and the home automation system over a secure internet connection. It is the interface between
the home automation system and the disaster information service. The endpoint/middleware is designed
to transform and forward risk mitigation events within the home automation bus.

3.1. Disaster Information Service Architecture

The basic architecture of the disaster alert and response system is based on a multi-tier architecture.
Multi-tier architectures allow a flexible setup of complex distributed systems based on the client-server
principle. Basically, tier-architectures are built up in layers. The more complex the requirements the

July 26, 2018 Stefan Reinthaler 52/92

more layers are used. Such a modular design makes it very flexible to respond to future requirements
and changes. The following figure shows the disaster information service internal architecture at one
site.

DIS DatabaseDIS Node2

DIS Node1

DIS Node3

Load Balancer

Smart Home

Smart Home

Smart Home

Smart Home

Client Tier Application Tier Data Tier

Figure 21: Backend architecture

As it is recommended, separation between application and data tier increases availability, flexibility and
extensibility. Based on that design, the data at rest is stored at a separate layer. A central database
allows consistent information storage. In addition, all information can be easily maintained by authorized
people of a national organization. The disaster information service inside the application layer provides
the information stored in the database. Because of the separation of application and data layer, it is
possible to implement multiple nodes at one site for load balancing. An internet-facing load-balancer is
used to forward the client requests to the nodes based on performance statistics of the disaster
information service hosting nodes.

RESTful Web Service

In order to ensure a high availability of the entire system, it is necessary to choose a system architecture
and communication strategy which optimally supports features such as scalability, reliability and
elasticity. A wide spread and well-established architectural style for internet-based end-to-end
communication is given by RESTful web service. Web services have gained tremendous importance in
the age of internet-based communication, as it is possible to build lightweight and easy implementable
APIs to provide a communication interface for all kind of devices.

July 26, 2018 Stefan Reinthaler 53/92

The architecture style REST was first introduced in the year 2000 by Roy Thomas Fielding in his
dissertation entitled "Architectural styles and the design of network-based software Architectures" [46].
REST stands for representational state transfer. It is an architectural style and not a methodology or a
process. Fielding only abstract conditions, but do not specify explicit processes, protocols or even
media. Typical architectures from the range of distributed applications based on certain characteristics
were compared. On this basis, Fielding created an architecture pattern, with focus on scalability,
extensibility and interoperability.

A RESTful API includes the following aspects [46]:

• Client-Server
• Stateless
• Caching
• Uniform Interface
• Layered System
• Code on Demand

By encapsulating the client and the server, they can be developed separately from each other, or the
client can be kept more easily portable. The server is slimmer and supports the aspect of scalability.
Stateless or statelessness does not mean that the client and server are not allowed to change their
state. However, each operation must be completed in itself. REST dictates that the state is either held
by the client or converted to a resource state by the server [46]. This has several advantages. The API
is kept clear and does not have to determine from the context, what a request means. Links to resources
can be reused easily. Statelessness also has a positive effect on stability and scalability in connection
with caching, since no separate session data is required. The caching itself lowers the latency and the
incoming data volume. With a layered system, modular design is required, which improves maintenance,
reusability and extensibility. Code-on-demand is designed to provide greater client and server
decoupling, expandability and scalability, as it can be deployed to the client as needed.

An important design aspect was the efficient use of web intermediaries (firewalls, proxies and caches)
and the meaningful embedding of successful technologies such as HTTP, HyperText Markup Language
(HTML) or XML and JSON.

As it is typical for emergency or disaster alerting, no access restrictions should be made for requesting
clients. Critical information should be available for all. So there is no need of endpoint authentication
and authorization. The information can be simply provided via a public interface, which the clients can
access. This approach is comparable to public information on the web. Under this aspect, the HyperText
Transfer Protocol (HTTP) in combination with TLS provides an easy solution supporting the client-server
approach. In addition, most home automation systems have already a HTTP-Client implemented, so
there minimal modifications necessary to establish an information channel.

3.2. Communication Flow and Data Exchange

A client-facing RESTful web service is hosted on the disaster information service nodes. For the
information provision of incidents information, HTTP GET method have to be implemented. POST, PUT,
DELETE methods are not required, because clients should only read information and should not be able

July 26, 2018 Stefan Reinthaler 54/92

to modify the data on the backend. This is only permitted to authorized people via an internal
management interface.

In principle, resources can be requested via a specified URL (Uniform Resource Locator) by using the
following schema: https://<server>:<port>/path . In a RESTful manner, each URL represents
exactly one resource on the server. Furthermore, the pull-based approach makes it necessary to split
the information about incidents into different parts for efficient use. Because sending all incident
information to a client, even if it is not affected, will waste network bandwidth. Therefore the REST API
has to implement two URLs where clients can request meta-information and more specific information
of incidents.

HTTP-Method Purpose

GET /incidents/<region> Provides a list of incidents with meta-information, e.g. incident ID
number and the affected area.

GET /incident/<ID> Detailed information about the incident. For example, event type,
urgency, instructions, etc.

Table 4: RESTful HTTP GET-Methods

The clients send request for new or modified incident meta-information periodically (e.g. every minute).
The meta-information is a compact representation of all incidents affecting people and goods in a
specific region. Primarily, this information is used by the endpoint first to decide if its location is affected
and further request are necessary. If the endpoint is effected, comparing its geographic coordinates with
the geo-coordinates by one of the listed incidents, the corresponding incident ID is used to send further
requests in order to get detailed information about the current situation.

In addition to reduce the network traffic, it is meaningful to rank and categorize incident meta-information
by their geographic regions, for example into states and cities. So, clients are able to request for
information only they are interested in. For example, a client needs only information about current
incidents in Upper Austria or Vienna, instead of receive the entire list of incidents in Austria.

The following figure is a simplified illustration of the communication flow:

DISEndpoint

GET /incidents/<region>

List of meta-info

GET /incident/<12345>

Incident details

Figure 22: Information Request Sequence

July 26, 2018 Stefan Reinthaler 55/92

This request sequence has the advantage that the network and server-load can be reduced by
requesting meta-data at first. Detailed information is only requested by the client when it is actually
needed.

3.3. Caching and Conditional Requests

In addition, HTTP caching mechanisms can be used to increase the response time and reduce network
and server-side load. The basic idea of HTTP caches is to store resources locally for faster retrieval the
next time a resource or an object is requested [47]. This can also be applied in context with pull-based
disaster information alerting system, as shown in the figure below.

Endpoint

Disaster

Information

Service

Cache

Request: Resource up-to-date?

Response: HTTP 304 (not modified)

Use cached copy

Figure 23: HTTP caching mechanism [47]

The conditional request is used to ask the disaster information service if it has a modified copy of a
resource. The client send information about the cached object in the HTTP-Header of the request. The
disaster information service will determine, based on the header information, if the client cached incident
version is the most recent. If so, the disaster information service respond with the HTTP status code
304 and an empty response body, which means that the resource has not changed since the last
request. In the case, the incident information is outdated, the disaster information service return an
update.

To fulfill this task, so called Entity-Tag (ETag) Header information has to be included in the request
header sent by the client. The ETag represents a digest of the resources contents, for instance, an MD5
hash. The first time, the client requests a resource from the service, an ETag is included in the response
header from the server. This value is used in the IF-None-Match request header for upcoming requests
for identification, if the resource at the client-side is the most recent version.

July 26, 2018 Stefan Reinthaler 56/92

The following figure demonstrates the caching mechanism, implemented in the disaster information
service:

Figure 24: HTTP Conditional Requests

As it can be seen in the first request (A), the server response contains the ETag value and the entire
requested resource, with a content-length of 4730 bytes. In a second request (B), the resource at the
server-side has not been modified. Therefore, the response contains header information only, without
any resource data.

Based on this behavior, this allows to reduce the response size and network load significantly, as shown
in the figures at the next page.

Figure 25: HTTP 200 response size

Figure 26: HTTP 304 response size

In consumption, conditional HTTP request can significantly save network bandwidth and transferring
costs. At this point, it has to be noted that the response size depends on the transferred information.
The more incident information is contained, the bigger is the request size for sure.

July 26, 2018 Stefan Reinthaler 57/92

3.4. Load Balancing Strategy

With an increasing number of request the disaster information service can quickly reach performance
limits which results in bad response time or even worse service outages. In order to create a scalable
disaster information service system, load-balancing strategies have to be considered.

The following figure illustrates the load-balancing strategy for the envisioned system:

DIS Database

DIS Node
TCP/IP Connection

Load Balancer

DIS Node

Load 50%

Load 50%

Figure 27: Load balancing configuration

Instead of using only one web-service node to answer client requests, it is more efficient in respect to
performance capabilities to build a cluster of disaster information service nodes to be able to share the
load. In this illustration, the load balancer acting as a HTTPS proxy forwarding requests to several
disaster information service nodes based on decision rules (e.g. round-robin or number of connections
per node). This setup allows the flexibility to add new nodes and ensure performance of the disaster
information service.

3.5. Data Structure

In order to enable endpoints to identify whether they are affected by an incident, an appropriate data
exchange format is required. At this point, geographical information is an important factor. Each geo-
information per incident provided to the clients consists of the following values.

Key Value
id Unique identifier of an incident
lon Longitude of an incident (based on GPS coordinates)
lat Latitude of an incident (based on GPS coordinates)
rad Radius of the incidents sphere of influence
polygon Optional: List of latitude and longitude coordinates

Table 5: Incident meta-info

July 26, 2018 Stefan Reinthaler 58/92

The id is a unique value to identify the incident, used for specific request to receive detailed information.
Longitude (lon) and latitude (lat) describe the center of incident occurrence. rad and polygon values
are required to define the area of influence. Whereas the mandatory radius contains a distance from the
center of the incident occurrence to define a rough area, the optional polygon field can be used to specify
an exact area based on geographical coordinates.

The following data structure is a lists of incidents, which contains the mentioned meta-information:

Figure 28: Incident meta-information in JSON format

The data can be received using the predefined URL /incidents/<region> . The format of an
incident alert is inspired by CAP-Standard and structured with the JavaScript Object Notation (JSON).
JSON provides an efficient way to structure information and is easier to read for humans and for
machine-to-machine communication [48].

July 26, 2018 Stefan Reinthaler 59/92

A second client request using the URL pattern /incident/<id> will return details of a specific incident,
as shown in the figure below:

Figure 29: Details of an incident in JSON format

The JSON object which contains detailed incident information is related to the data format as given by
the CAP standard, described in section 2.2. This data package includes the most important information
which is needed to alert people via smart homes about:

• What has happened,
• Where has it happened,
• Who is affected,
• Which risk mitigation actions should be taken to protect yourself

This data object will be used by home automation systems for information visualization and can also
include recommendations for self-protection.

July 26, 2018 Stefan Reinthaler 60/92

3.6. Peer-to-Peer Communication Capabilities

As discussed in section 2.4, sharing information can increase scalability and lower possible performance
issues at the server-side. In addition to the centralized approach using a web-service and client
requests, a peer-to-peer communication approach is going to be introduced. The following concept can
be seen as extension/alternative to the existing approach.

Challenges in peer-to-peer communication are higher than in centralized client/server approaches, but
it in terms of scalability and availability by increasing number of participants more efficient. The following
figure should illustrate a concept using a peer-to-peer communication techniques in context with a
disaster alerting system:

Endpoint

Endpoint

Endpoint

Incidents

Peer Discovery

(DHT & Tracker)

Disaster Information Service

1. Seed new file

2. Announce via DHT &

 Tracker(s)

3. Publish torrent info via

 webservice & DHT

Public Tracker(s)

File Distribution

via BitTorrent

Protocol

Meta info

DHT

4. Get torrent info

5. Discover Peers via DHT &

 Trackers

6. Download file & seed

7. Announce via DHT &

 Tracker(s)

 Figure 30: Peer-To-Peer Information Distribution

As illustrated in Figure 30, a central disaster information service plays a vital role in a peer-to-peer
information sharing approach. The central disaster information service acts as initial seeder. Its task is
to share incident information (meta-info and incident details, as already mentioned) with endpoints
interested in. The important part here is that only one master node is allowed initially to create torrent
meta-info and seed incident information. These meta-info (for example in form of magnet links) is
required to enable participating peers to find and download related incident information distributed. But
first, the peer have to gather this meta-info from somewhere. In addition, incident information can be

July 26, 2018 Stefan Reinthaler 61/92

changed which makes it necessary to frequently update this meta-info. One way is, to use the introduced
web-service in order to build a contact point for the peers and publish these magnet links and as mutable
DHT items. Hence, we have to come back to some sort of centralization. Peers request for these torrent
meta-info frequently. Based on this information they can start a discovery processes for seeding clients
based on DHT and/or utilizing Trackers for signaling peer information. The downloaded file has to be
announced and seeded to others in order to achieve full peer-to-peer capabilities.

3.6.1. Information distribution

In contrast to the central client-server approach where meta-information about incidents is published on
the web-service, frequently requested by endpoints to detect information changes, peer-to-peer
capabilities (BitTorrent DHT) can be used to publish and notify endpoints about changes to incident
meta-information. But first, contact information have to be published. New participating endpoints have
to initially request for contact information, which is associated with the region of interest. Therefore, it is
required by the central disaster information service to publish these contact information first. The
association is represented in Figure 31.

targetID, <region>
KeyPair

(public & private key)

Contact information

targetID, <torrent

infohash>

DHT mutable item

Figure 31: Contact information of region

The region of interest is associated with a key pair. In principle, the private key is used by the disaster
information service to sign mutable DHT items, whereas the public key is used for verification purposes
for DHT storage operations and simultaneously as identifier for a region and DHT mutable item. So
endpoints use the published contact info on the web-service in order to identify mutable items via the
targetID in the DHT network.

Publishing incident meta-information

Now, the endpoint knows under which ID he can find and request incident information in the DHT
network. In a next step, the disaster information service is responsible for seeding incident meta-
information via BitTorrent protocol and store the signed torrent infohash in the DHT network. The
publishing process initiated by the central disaster information service can be described as follows:

Incident Meta-Info

(id, lat, lon, radius,

polygon)

Magnet Link

(infohash, optional:

tracker l inks)

seed
DHT mutable item

(targetID, infohash, seq#)store

Figure 32: Information distribution and publishing

July 26, 2018 Stefan Reinthaler 62/92

Based on current incident information, a torrent is created containing the infohash and optionally tracker
links. These information is required to enable endpoints do find and download incident information from
seeding peers. In addition, a mutable DHT item is created, based on torrent’s infohash signed with the
private key and a sequence number of the payload. The sequence number is increased each time when
the disaster information service stores/update new content in the DHT network. So a node in the DHT
network receiving a storage request compares the current sequence number with the new one. If the
sequence number is higher than the current one, the item is accepted. Otherwise, the request will be
discarded by the storing node.

Only for clarification purposes, transmission of incident data (incident meta-info) is separated by using
the BitTorrent protocol, whereas the process for incident update notification (based on torrent infohash)
is done via the DHT network. This separation is required because the storage space of DHT items is
limited to 1000 byte.

3.6.2. Information consumption and sharing

In a first step, if an endpoint want to receive incident information, the region of interest has to be
configured, for example OOE. Every time the region has been changed, the endpoint have to request
the initial torrent information (e.g. targetID) associated with the region. Therefore, it sends a request to
the disaster information service hosting the contact information. These information is the basis for
checking updates to the torrent meta-info and will not change. So every endpoint interested in region
OOE will use exactly the same information to check if something has changed. The payload of the DHT
mutable item contains the latest infohash published through the disaster information service in the DHT
network. After the endpoint knows the latest infohash published, it compares the current one with the
infohash received.

July 26, 2018 Stefan Reinthaler 63/92

Get mutable DHT

item (targetID)

Receive DHT paylod

(infohash, seq#)

Infohash changed ?
Discover seeders

(Tracker/DHT)

Keep seeding

current version

Download file

(ooe.json)

Seed fi le

 (ooe.json)

Ask for torrent info

(.../torrent/OOE)

Set region of interest

(=OOE)

Announce seed

(Tracker/DHT)

End

DHT network

(UDP)

BitTorrent Protocol

(TCP/UDP)

Disaster information service

(HTTPS)

Figure 33: Peer-to-Peer incident information consumption

If torrents meta-info has changed, then a download sequence is initialized by discovery endpoints who
have already seeding the latest file containing incident information. In addition, remove the current file
from the local seeding repository and start seeding the latest version. Otherwise, if the infohash is the
same, keep seeding the current file. Based on a time interval (e.g. 1 minute) start the lookup process
again and verify if incident updates are available.

July 26, 2018 Stefan Reinthaler 64/92

This peer-to-peer communication approach guarantees that every endpoint can download and sharing
the correct information with others. The more endpoints interested in a specific region the more contact
points are available where this information can be gathered.

3.7. Request Scheduling

The design of the disaster information service also affects the design of the endpoint/middleware.
Different communication strategies have been discussed how the communication flow & information can
be realized. Both approaches are based on a pull-method. Therefore, endpoints are urged to frequently
send information request, compare the results and check if its location is affected by incidents based on
the geographical coordinates.

As it is commonly known an emergency warning system can only fulfill its purpose when incident
information is provided and distributed promptly. The disaster information system design requires that
endpoints frequently ask for new information. To handle this load on the server-side, scalability and
performance aspects are already considered in the design for the disaster information service. But
indeed precautions can be made on the client-side, e.g. using an optimized client request strategy.
Beside the fact that the web-service has to handle concurrent requests anyway, a fixed request time-
interval set on the client-side could provide the possibility that different located clients send request
exactly at the same time. And that could have a negative impact on performance as well. In order to
prevent this possibility it is recommended to vary the time when requests are sent.

 time

< 20 sec50 sec

Fixed timeout Variable delay

Request fired after 53 sec

Figure 34: Scheduling Client Requests

As shown in Figure 34, a fix timeout is set which initiates the client request procedure for example every
50 seconds. In addition, a delay range can be used, for example between 0 and 20 seconds, to calculate
a random value which is added to the interval. After a request is sent to the disaster information service
based on this value, the client waits another 50 second + the random value calculated to perform the
next request. This mechanism should prevent concurrency issues made by software design.

July 26, 2018 Stefan Reinthaler 65/92

3.8. Incident evaluation and calculation

Incident meta-information include a geographical coordinates (latitude and longitude) of the incident and
diameter information. This information is used to calculate if the location of the endpoint (based on its
latitude and longitude) is affected. To calculate a distance between two coordinates the Haversine
formula [49] has been used. Based on this formula it is possible to find the shortest path on Earth’s
surface by latitude and longitude.

Haversine function: haversine θ = sin²(��)
Formula 2: Haversine function [49, p. 4]

To solve for � using inverse sine function:

� = 2r sin� !"sin² #$2 − $12 ' + cos($1) cos($2) sin² +,2 − ,12 -.
Formula 3: Equation for distance calculation [49, p. 4]

(�) is the calculated distance between two points based on latitude ($) and longitude (,). (/) is the

radius of the sphere [49, p. 4].

As the distance between the endpoint and the occurrence of the incident is known it is simple to
determine if the endpoint is affected by the incident. If the calculated distance (�) is less or equal than
the given radius (radius) of the incident, then the endpoint affected.

Figure 35: Calculation of distance between two points

At this point it has to be noted that the Earth is not perfect shaped. The Earth radius varies at the pole
and equator. Therefore it is recommended to use the median Earth radius (6371 kilometers) for the
calculation with Haversine formula to limit the flattering. Nevertheless, this can influence the result
especially on long distances calculations. Because distance calculation in our case is limited to a limited
area, the Haversine formula has been used.

July 26, 2018 Stefan Reinthaler 66/92

4. Implementation of the Prototype

This section deals with the implementation of the prototype. Essential techniques and core functionality
are highlighted. In addition, the development environment and software are described which are used
to setup and create the system.

4.1. Backend-Database

According to the conceptual design, a backend-database is necessary to store and manage incident
information. For this prototype a NO-SQL database named MongoDB is used. MongoDB is one of the
market-leading NoSQL databases. MongoDB [50] was designed for modern IT landscape and allows
an agile development and higher scalability of applications. MongoDB is a general-purpose open-source
database.

MongoDB provide the following key features:

• Document data model with dynamic schemes
• Comprehensive, flexible index support and powerful queries
• Auto-Sharding for horizontal scalability
• Built-in replication for high availability
• Text search
• Enhanced security (e.g., Kerberos support)

Beside the scalability aspects, the main reason for MongoDB is because incident information can be
stored in simply JSON format using the MongoDB document data model. The big advantage is that
incident data remains in the same data structure as it is transmitted to the clients, which makes is very
efficient to store, maintain and load data from the database. This result in positive performance effects,
because no extra algorithm is required to parse data form the database into the right transmission
format. Two data collections (incident and users) have been created to store incident and user
information. While incident information is provided to the endpoints, user credentials are only required
for user authentication from the incident management user interface.

To connect the disaster information service nodes with the database a middleware has been created in
order to create, delete, and retrieve incident information.

Method Description

storeIncidentInDATABASE:function(incident, callback) {} Store incident in the database
getAllIncidentsFromDATABASE : function(callback) {} Load all existing incident from database
getIncidentFromDATABASE : function(id, callback) {} Get incident from database by incident ID
deleteIncidentFromDATABASE : function(id, callback) {} Delete incident by incident ID

Table 6: MongoDB middleware

July 26, 2018 Stefan Reinthaler 67/92

4.2. Disaster Information Service Node

The interacting components, e.g. the RESTful web service and also the endpoint/middleware are
developed with Node.js and express.js as web-framework. Node.js [51] is an JavaScript runtime built
on the JavaScript V8 engine of Chrome. It uses an event-driven, non-blocking input/output model which
makes Node.js lightweight and efficient. It also provides a comprehensive open source repository (Node
Package Manager [52]) that enables the integration of many modules and libraries. The asynchronous
event driven JavaScript runtime is designed to create scalable network applications. Because of this
fact many connection can be handled concurrently, in contrast to models following thread-based
networking, which is relatively inefficient and difficult to implement.

Generally, in order to build a vertical and more horizontal scalable system, the RESTful disaster
information service has a modular design and can run on several hosts without the need of changes to
the configuration and code. That means it is possible to create a cluster of DIS nodes to increase
performance if required.

DIS DatabaseDIS Node

TCP/IP Connection

Intervall: Update incident cache every 30 sec.

Figure 36: DIS information update

The disaster and information service nodes acting as an external content delivery node and update and
cache incident information from the database on a regular basis. This modular implementation strategy
should prevent high loads at backend-side and can be seen as content delivery node at one site.

The following code snipped illustrates how meta-information is generated based on the incident
information:

function reloadIncidentGeoInfo(){

 …

 DBUtil.getAllIncidentsFromDATABASE(function (inc idents) {

 incidents.forEach(function (elem) {

 if (elem.alert) {

 var geolocation = {

July 26, 2018 Stefan Reinthaler 68/92

 "_id" : elem._id, “lon" : ele m.Point.long, "lat": elem.Point.lat,"

 rad" : elem.rad, "polygon" : elem.alert.info.area.polygon };

 pubIncidentListCache.push(geo location);

 }});

 lastETag = crc.crc32(pubIncidentListC ache).toString(16);

 });

 }

Listing 2: Load incident meta-info from DB

This incident-meta information is the provided to the endpoints. Based on the geo-information e.g.
longitude and latitude, the endpoint can check whether it is affected by an incident or not.

The disaster information service API can externally accessed via GET requests:

HTTP GET Methods Description

app.get('/incidentList', function (req, res) {} Route to provide a meta-info of all incidents
app.get('/incidents/OOE', function (req, res) {} Route to provide meta-info of incidents for a

specific region
app.get('/incident/:id', function (req, res) {} Route to get detailed incident information by

incident ID.

Table 7: Disaster information service HTTP GET routes

As mentioned in the conceptual design, it is possible to request meta-information and details of incidents
via HTTP GET requests. An important part of this implementation is only to respond with incident data
if the requested information has been changed. The implementation logic is illustrated in the following
example:

app.get('/incidents/OOE', function (req, res) {

 if(req.headers.etag === lastETa g){

 res.setHeader('etag', lastE Tag);

 res.status(304).end('');

 }else{

 res.setHeader('etag', lastE Tag);

 res.send({incidentList : pu bIncidentListCache});

 }

});

Listing 3: Request handling based on ETags

Each time the endpoint send a request, the generated ETAG hash (calculated based on available
incident information) is set in the response header. The next time an endpoint requests the same source
(sending the ETAG as “If-Non-Match ” in the request header) the info hash is compared to the current
one. If both values match, the disaster information service responds with a HTTP status code 304 Not

July 26, 2018 Stefan Reinthaler 69/92

Modified . On the other hand, if the values are not the same the service will send the updated incident
information.

4.3. Load-Balancer Configuration

In this setting, the NGINX web server works as load-balancer in front of the disaster information service
nodes. NGINX [53] is an open source and highly scalable HTTP web server; reverse proxy and load
balancer for HTTP, TCP and UDP traffic. NGINX is known for its high performance, stability, rich feature
set, simple configuration, and low resource consumption.

The disaster information service listening on TCP/IP port 44331 for the internal communication with the
load balancer. According to NGINX documentation, the ports for internal upstream communication must
be different, because the external HTTPS requests terminate already at TCP/IP port 443 at the load
balancer. The load-balancing mode is set to least-connected. Which means an incoming request is
forwarded to the server with the least number of active connections.

The implementation of the load-balancer configuration is given below:

upstream cdncluster {

 least_conn; # Use Least Connect ions strategy

 server 192.168.1.10:4431; # DIS NodeJS Ser ver 1

 server 192.168.1.20:4431; # DIS NodeJS Ser ver 2

}

server {

 listen 443 ssl;

 server_name dis.example.at; ssl on;

 ssl_certificate /etc/nginx/cdn/fullchai n.pem;

 ssl_certificate_key /etc/nginx/cdn/privkey. pem;

 location / {

 proxy_set_header Host $host; proxy_set_head er X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add _x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass https://cdncluster; proxy_redire ct off;

 }

}

Listing 4: NGINX load balancer configuration

As it can be seen in the configuration file, the load balancer configuration handles request for two
disaster information service nodes. In this example, only encrypted connections are allowed to be
forwarded to the participating server nodes at the back. As stated by Nelson [54], it can be useful to
offload SSL/TLS decryption from the backend nodes, because SSL/TLS decryption is CPU intensive
and can lower performance of the content delivery nodes.

July 26, 2018 Stefan Reinthaler 70/92

4.1. Disaster Information Service - Management Int erface

For simulation purposes and to manage incidents, e.g. create or delete, a web-based management
console has been developed. It can be seen as stand-alone server which is connected to the database.
The feature set includes an overview of all incidents shown in a map and simple list.

Figure 37: Management UI for incident handling

The idea behind this implementation is to provide a dashboard which is only accessible by authorized
users to manage incident information. User account information and credentials are stored in the
database. Even it is only for internal management purposes, sensitive information, e.g. passwords are
stored as hash value + salt to ensure a certain level of security within this prototype. The cryptologic
hash function was implemented with an Node.js module which is based on the SHA3 standard [55] with
512 bit length.

This management server was also developed with Node.js framework. In addition to the REST API for
browser communication, web-sockets technology (based on NPM module socket.io [56]) is used to
provide possibility for instant server updates on incident information. The server is accessible over
TCP/IP port 443 and secured with self-signed certificate. The client-side graphical user interface is built
on HTML technology and CSS.

July 26, 2018 Stefan Reinthaler 71/92

4.2. Endpoint/Middleware

As specified in the requirements, the middleware is built in a lightweight and portable way to be able to
be integrated on different systems. To build a uniform system, interacting components are combined on
one platform. The basic system design of the prototype is illustrated in the following figure:

Raspberry PI 3 (Unix)

openHAB 2 Middleware

Figure 38: Architecture of the endpoint

Hardware

As it is common in smart home management systems hardware resources are limited. To setup a
realistic test environment Raspberry PI Version 3 has been chosen as unified platform. Raspberry is a
single-board computer providing the following specifications [57]:

• SoC: Broadcom BCM2837
• CPU: 4× ARM Cortex-A53, 1.2GHz
• GPU: Broadcom VideoCore IV
• RAM: 1GB LPDDR2 (900 MHz)
• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless
• Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy
• Storage: microSD
• GPIO: 40-pin header, populated
• Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface

(CSI), Display Serial Interface (DSI)

Smart Home Simulation

In order to simulate smart home functionality, the open-source tool open Home Automation Bus
(openHAB) has been used. OpenHab is a stand-alone platform with an integrated API and web-based
graphical user interface (GUI) to view the status and manage components (sensors and actuators) from
different smart home vendors.

July 26, 2018 Stefan Reinthaler 72/92

Figure 39: OpenHab Smart Home Simulation

As shown in Figure 39, the interactive dashboard can be build and adapted based on your needs to
visualize a smart home. For the simulation with the endpoint/middleware, the default smart home
template was used. OpenHab has a built-in API to enable status tracking and configuration of virtual
sensors and actuators. The following example gives an idea how the OpenHAB API is used to get a
state of a defined sensor or actuator: http://<ip-address>:<port>/basicui/CMD?<sensor>. This
API is used to perform and demonstrate some risk mitigation tasks by the middleware.

In addition, the middleware is integrated into this web-based dashboard in order to visualized incident
information as well. So if a smart home is affected by an incident the related information can be shown
in this dashboard.

Communication Middleware

The middleware is built on the Node.js/Express.js framework as well. The reason for that is based on
the fact that Node.js/Express can be on different operating systems, e.g. Windows and Unix-based
systems. Furthermore, the middleware requires in addition to the incident handling features (e.g. HTTP
requests), a sort of visualization and human interaction interface. This is realized via a simple web-
based GUI. Of course other development software & tools can be used to implement the endpoint logic.
But for this prototype Node.js in combination with openHAB have been used.

The endpoint is required to send requests in order to receive incident information. As it has been
specified in section 3.3. , the endpoint send frequent HTTPS requests on a specified interval. In order
to prevent concurrency issues on the server-side because of the fixed interval, a delay has been
implemented.

July 26, 2018 Stefan Reinthaler 73/92

function startInterval(){

 var counter = 50000;

 var delayFunction = function(){

 //set next runtime to 50sec + a random delay bet ween 1sec and 20sec

 var delay = 50000 + randomNumberGenerator(0,20)* 1000;

 //check for update

 run(function(result){

 console.log("Next update in "+delay/1000 + " sec");

 timeout = setTimeout(delayFunction, delay) ;

 });

 }

 setTimeout(delayFunction, counter);

}

Listing 5: Client request sequence for determining changes

The initial start interval has been set to 50 seconds. In addition, a random number is calculated between
0 and 20 seconds, which is added to the initial value. The result specifies when the next asynchronous
request will be sent. This should ensure a slight variance when requests arrives at the server-side in
case endpoints are coincidentally urged by the algorithm to send exactly at the same time.
In the following an example of a HTTPS client request for incident meta-info for a specific region is
shown:

request('https://'+server+'/incidents/'+region,{hea ders:{'etag':etag}},function() {

Listing 6: HTTP request structure

The etag value is specified in the request header which is compared on the server-side to decide if
it is required to responds with an HTTP 200 status, including the incident meta-info list or with HTTP
status 304 Not Modified.

Distance calculation based on geographical coordina tes

In case the endpoint receives a new list of meta-information of related incidents he is interested in, each
incident have to be calculated to determine if the endpoint is in the influence area of the incident. This
is based on the Haversine formula as already mentioned in section Fehler! Verweisquelle konnte
nicht gefunden werden.

July 26, 2018 Stefan Reinthaler 74/92

As required for the distance calculation and furthermore to determine if the endpoint is affected the
following parameters are essential: Endpoint latitude and longitude; incident latitude, longitude and
radius. As well as the median Earth radius with 6371 kilometers.

The following example is a simplified view of the implementation:

function calculation(){

 latDelta = (lat2 - lat1) * Math.PI / 180;

 lonDelta = (lon2 - lon1) * Math.PI / 180;

 lat1Rad = lat1 * Math.PI / 180;

 lat2Rad = lat2 * Math.PI / 180;

 a = Math.sin(latDelta/2)*Math.sin(latDelta/2)+Mat h.sin(lonDelta/2)*Math.sin(lonDelta/2)*

 Math.cos(lat1Rad) * Math.cos(lat2Rad);

 c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

 distance = earthRadius * c;

}

Listing 7: Geographical distance calculation

Incident details and visualization

Based on the result of the distance calculation, even detailed information about an incident is required.
In this case an additional request have to be sent to the disaster information service including the
incident ID.

The implementation for the request is illustrated below:

request({url: 'https://'+server+'/incident/'+alertI tem.id},function(incident) {

Listing 8: Request structure for gathering incident details

As identified in the requirements section, the endpoint should provide a possibility for the user to interact
with the system in order to specify the location of the endpoint, the incident information of interest or to
simply view incident information. So, if the response form the server is successful, the information of the
incident is shown in the client-side and web-based UI.

July 26, 2018 Stefan Reinthaler 75/92

The following figures give an example when an endpoint is affected by an incident:

Figure 40: List of incidents and visualization map

Incident information is shown in a list and within a map. Based on the endpoint settings, only incidents
warnings that are of interest and pose a threat are displayed.

Endpoint Location Settings

In order to determine if the endpoint is affected by an incident the location (latitude and longitude) of the
endpoint are required. Therefore, web-based configuration page has been developed to provide the
owner of the system to set the location of the endpoint and specified the region of interest.

Figure 41: Endpoint Configuration

July 26, 2018 Stefan Reinthaler 76/92

To provide a kind of persistency the values are stored in a JSON file on the local system in this prototype.
These configuration is loaded when the endpoint starts.

Figure 42: openHAB in combination with the middleware

The benefit of a modular middleware design is that it can be included in different systems, for example
in openHAB. The web-based user interface can be simply added in a Webview element as illustrated
in Figure 42.

4.3. P2P Information Distribution and Sharing

In order to provide peer-to-peer communication capabilities, a proof of concept has been implemented.
The disaster information service has been extended with a separated instance (beside the client/server
architecture) for seeding and publishing incident information via DHT and the BitTorrent client. This
server is integrated in the existing architecture and is connected to the backend database in order to
gather incident data. In principle, the peer-to-peer publishing node can coexists with the client/server
infrastructure, bound to the same database, but the information distribution works differently.

The implementation is built on node.js JavaScript framework. The proof of concept is based on a torrent
client called Webtorrent [58] written in JavaScript. This open source project is published under MIT
License terms including the following features:

• Torrent client for node.js & the browser
• Handle multiple torrents simultaneously, efficiently
• Pure JavaScript
• Supports advanced torrent client features (download & seed)

July 26, 2018 Stefan Reinthaler 77/92

• Magnet URI support
• Peer discovery via DHT and Tracker

WebTorrent’s capabilities are used to create a proof of concept for peer to peer communication in
context with the disaster alerting system.

Publishing Regional Contact Information

Because endpoints require an identifier to ask for information changes for its region via the DHT network,
the targetID have to be requested first. Therefore, the disaster information service could publish this
contact information on its web-service API. The following listing should illustrate a possible information
structure and its content.

"OOE": {
 "targetID":6b863cd20ed75e5cc0128738c49ceb3a400757 9217363592…",
 "city": {
 "linz":{ "targetID": "f1ea5b764f68852a47e 0dd80554d…………",
 "trackers": "udp%3A%2F%2Fexplod ie.org%3A6969"
 },
 "wels":{ "targetID": "aa99ea5b764eeeeeee ee0554d3ab………",
 "trackers": ""
 }
 }
}

Listing 9: Initial contact information

So, endpoints first contact the web-service via HTTPS request to get the targetID for the region of
interest. This targetID then can be used to determine changes of stored items in the DHT network.

Peer-to-Peer Information Sharing

The disaster information service is responsible for sharing incident meta-information with its clients.
Therefore, the following functionality of the peer-to-peer master instance have been implemented:

Methods Descriptio n

reloadIncidentMetaInfo() This method is used to connect to the database and load current
incident information.

seedIncidentInfo() Writes incident info to a file, creates a torrent (magnet link,
infohash, tracker URLs) based on the file and opens a seeding
channel.

publishNewInfoHash() The infohash of the torrent created is published in the DHT
network associated with the targetID (hashed public key of the
publishing node).

Table 8: P2P publishing methods

The reloadIncidentMetaInfo() utilizes the same DBUtil.js mongoDB middleware to connect to the
backend database. The seedIncidentInfo() method serialize the data on disk in JSON format first.
Afterwards, the seeding client creates a torrent magnet link (example can be seen in Listing 10Fehler!
Verweisquelle konnte nicht gefunden werden.) and waiting for peer connections on TCP port 54444.

July 26, 2018 Stefan Reinthaler 78/92

magnet:?xt=urn:btih:f1ea5b764f68852a47e0dd80554d3ab 67c6c4fa6&dn=ooe.json&tr=udp%3

A%2F%2Fexplodie.org%3A6969&tr=wss%3A%2F%2Ftracker.o penwebtorrent.com

Listing 10: Magnet link sample

This magnet link can be used by other peers to find and download the corresponding information. In this
example, the magnet link contains the BitTorrent infohash (btih), file name (dn) and optional tracker
information (tr). Now, these contact information have to be transmitted to the endpoints. This is
happening in the publishNewInfoHash() function.

The publishing mechanism is based on the BitTorrent-DHT module integrated in the WebTorrent bundle.
As described in section 2.3.3. the module including features to store and request arbitrary data and in
form of mutable items on closest nodes in the DHT network.

Sign and Store mutable items in the DHT network

In order to store mutable items, the payload have to be signed. The node module BitTorrent-DHT module
provides a function to sign the infohash using public- and private-key pair. The key-pair should be
created once per region and do not change over time. Which means, each incident information about a
region (e.g. OOE) is signed by the same key-pair, because of the fact that the public key is a reference
point for peers to ask for infohash updates via DHT network and to verify integrity and originator of the
infohash. Therefore, the creation of key-pairs and its association with a region is more a static task and
have to be done once. For example, region OOE belongs to key-pair <private key X> and <public key
X> as described in section 4.3.

An example of the payload of the mutable item containing at least the following attributes:

{

k: <publicKey of originator>,

v: { ih: <current infohash of file, e.g. ooe.json>} ,

sign: <signature>,

seq: <sequence number (increased by +1)>

}

Listing 11: DHT mutable item request

The generated infohash of the current (magent link) is wrapped by the DHT mutable item, and will be
updated if the content of the incident information in (ooe.json) changes. Signing the content ensures
that only the originator can publish new content related to the DHT mutable item. The sequence number
defines the version of the item, so it is possible for requesting nodes to identify the latest one. So,
mutable items can be updated, without changing their related DHT keys.

July 26, 2018 Stefan Reinthaler 79/92

These mutable items in the DHT network can be identified and retrieved by other nodes knowing the
targetID. The peer needs to ask for the targetID of its region the first time when it will participate in the
disaster alerting network.

The following figure should illustrates the publishing sequence:

Figure 43: DIS - P2P information publishing (console)

Retrieve and Share Incident Information

At the endpoint site (requesting peer), the same methodical approach can be used to in order to receive
and share incident information. In contrast to the disaster information service, an endpoint has to ask
the DHT network for updated torrent information and to determine if a new version of incident information
for its region has been released. So, beside seeding functionality in order to share incident information
with other endpoints, functionality to check and download the torrent are required.

The mentioned functionality can be triggered by following methods:

Methods Description

checkTorrentInfo() This method is used to check if torrent infohash has been updated
via DHT network

downloadIncidentInfo()

Search for other peers in the swarm for the given infohash,
download and write the file to disk.

seedIncidentInfo() Create a torrent of the downloaded file and seed it.

Table 9: Endpoint P2P download and share incidents

As already mentioned, the targetID has to be pulled from the disaster information service once. The
checkTorrentInfo() connects to the DHT network and asking for mutable items which can be
identified by the targetID.

July 26, 2018 Stefan Reinthaler 80/92

The following example represents a typical payload structure of a node response, related to [45]:

{

 "id": < id of sending node> ,
 " k": <public key>,
 "nodes": <IPv4 nodes close to 'target'> ,
 "seq": <monotonically increasing sequence number>,
 "sig": <signature>,
 "v": <ih: infohash>

}

Listing 12: Mutable item response structure

The responses from the closest nodes related to the targetID are evaluated if it contains a mutable item
by checking attributes like k, sig , v . If these attributes are not available it can be assumed that it is
an immutable item or the node responding do not have a DHT item stored. The response also includes
a list of closest nodes which are iteratively ask if the responding node cannot successfully offer the
mutable item. By verifying the signature, infohash and sequence number it can be ensured that the
contained infohash is issued by its originator and is the latest version. Otherwise the response can be
seen as invalid.

Figure 44: Endpoint P2P communication

If everything is valid, the endpoint can go on and trigger the downloadIncidentInfo() method.
Based on the infohash received from the last lookup, a DHT discovery sequence is initiated to find
related peers and download the desired information. As soon as the information has been downloaded,
the endpoint start sharing the content by triggering the seedIncidentInfo() method.

5. Evaluation

In order to show possibilities and limitations of the centralized disaster information service, an evaluation
of performance metrics was made. In the following, an overview of valuable performance metrics, the
test environment, test scenario and related results are presented. In addition, observations of the peer-
to-peer information sharing approach are highlighted in this section.

The disaster information service plays a central role in this hybrid system design. Although, peer-to-peer
communication capabilities are discussed and available, client-server communication is required in
order to provide at least incident meta-information to its endpoints. Depending on the number of the

July 26, 2018 Stefan Reinthaler 81/92

participating endpoint, therefore, the number of requests to the system will increase. In order to be able
to estimate how the system behaves when it comes to peak loads, usually performance and load tests
are a good option.

Performance indicators

Simulated load test try to give an answer as to whether a web service is capable of handling an
increasing number of requests and at what level it comes to loss of performance. The performance and
stability of a system can usually be measured and interpreted using various key performance indicators.
Because the disaster information service is realized via web-service, response time and volume metrics
are decisive.

The following performance metrics can provide information about how a system behaves during a load
test [59]:

• Response time: The duration how long it takes to get an answer from the server
• Timeout errors: Number of requests timed out
• Error rate: Percentage of total number of request failed
• Requests per second: Number of requests per second sent to the server
• CPU Utilization: Percentage of CPU usage during the test

Test environment

The goal is to measure the disaster information service performance during a high load of requests sent
by the endpoints. To obtain meaningful values, a test environment have to be set up. The virtual test
environment requires two essential components. A work-load generator simulating endpoints sending
requests and a virtual machine hosting the disaster information service. The environment was created
on the Microsoft Azure cloud to build a realistic situation. The platform provides several features even
including load testing capabilities. Loader.io [60], is work-load generator which can be integrated to
enable performance test within the Azure platform. In its free plan, it supports testing scenarios
generating work-loads up to 10k concurrent request per second. The virtual host running the disaster
information service has 6 virtual CPUs, 16 GByte memory and 1 GBit network connection, which
corresponds to a mid-size configuration.

Workload

generator

Disaster Information

Service Node

Test setup

HTTPS 443

Figure 45: Performance test setup

July 26, 2018 Stefan Reinthaler 82/92

Figure 45 illustrates the test setup and the communication flow. The work-load generator will send
HTTPS request via network to its target and measure related response metrics as mentioned above.
On the other hand, the CPU utilization of the service host has been monitored during a test run.

Test configuration and results

The central questions are: What impact does an increasing load have on the service performance and
at which request level you have to expect performance loss or even worse service outages. The derived
information of such tests should then be considered for building scalable service infrastructure. In order
to show the utilization and performance at increasing load, different levels have been configured (100,
1000 and 10k requests per seconds). The duration of a test run was set to 1 minute. This configuration
allows a simple extrapolation of the results at the end. HTTPS GET request have been sent to
https://<server>/incidents/ooe/<id> to simulate requests for incident information at a constant load.

The results of the test runs are presented in the following table:

Test

Case #

Requests per

second sent #

Avg. response

time (ms)

Timeouts

(ms)

Error

rate %

CPU

utilization %

1 100 85 0 0 ~ 5 %

2 1000 87 0 0 ~ 25 %

3 10k 1286 5744 4,10% ~ 90 %

Table 10: Test results

As can be seen in Table 10, the values for test run number 1 and 2 do show expected good results. The
average response time differs only by 2 milliseconds by an increased request rate of factor 10. All
transactions were successful generating a maximum CPU load lower than 5% in the first case and 25%
in the second one. At a level of 10k request per second performance indicators show different results.
The average response time goes up to ~1.2 seconds, which is actually an acceptable value. The result
in test case number 3 also shows that 5744 out of 600k requests sent have been timed out. The error
rate goes up to 4.10%, reflecting that request were not answered accordingly or in time. The peak of the
CPU utilization during the 1 minute test was at ~90%. This indicates that CPU resources actually were
available and implies that possibly other factors, e.g. Network latency or security mechanisms could be
sources of interference. However, a maximum of 10k request per seconds is an acceptable result.

Figure 46: Test case - 10k requests per second

July 26, 2018 Stefan Reinthaler 83/92

Figure 47: Avg. response time and error rate

Base on the results of the test, a deviation can be made to put the values in the right context. As it is
specified in the design for native client-server communication, endpoints are only be allowed to send a
request once per minute. Theoretically, using this hosting configuration and setting would allow one
single instance supporting up to 600k endpoints in a typical client server communication approach. With
an increasing number of participants new instances could be added to the system in order to scale
horizontally and server the next 600k clients.

In the age of virtualization and cloud computing, changes to systems are no longer challenging. That
means system can dynamically scale in a vertically way, by increasing necessary system resources or
in a horizontally way, simply higher the number of serving instances.

P2P information publishing and observations

Despite various methods and mechanisms to make a central system scalable, the fact remains with
pure client/server communication that more effort and resources must be made available as the load
increases. To reduce this general burden, a decentralized peer-to-peer communication approach is
desired to spread information on several contact points.

In the following, observations of the implemented peer-to-peer information sharing approach between
the disaster information service and endpoints are described. The evaluation relates to general
performance indicators [61, p. 2], such as overall information lookup time, data persistence and content
integrity of published and retrieved information via the DHT network.

Lookup performance : The logarithmic routing mechanism of the Kademlia DHT allows to reduce the
XOR distance to the target key by ½ per lookup [62, p. 2]. These operations are iterative performing
sequential queries of intermediate nodes until no closer contacts can be obtained. In a simple 1:1 test
scenario, where the publisher (disaster information service) and a consumer (endpoint) reside on
different sites (communicating via internet), the information lookup operation in point of view of a
consumer takes up to 5 seconds on average until the desired information (e.g. infohash) can be
retrieved. This time span seems an acceptable value in order to determine if some incident information
updates are available at the end.

Availability and persistence: As given by design, a put operation is used to store torrent information
in the DHT network. The information is typically replicated to the closest nodes of the key space [62, p.
2], in a viewpoint of the disaster information service performing the store operation. During the test, the
initial publisher has been turned off, in order proof if data is still available and can be retrieved by an
endpoint. The test was successful and it could be approved that even the originator of the information

July 26, 2018 Stefan Reinthaler 84/92

goes offline, data can be retrieved by other closest nodes from the DHT network. This is the result of
migrating items from node to node in case of a node becomes unavailable. But in this particular case it
has been recognized that stored items are discarded by nodes approximately after an hour and the
lookup operation runs into errors or respond with a wrong item (not the latest). Therefore, data items
carry meta-information of incident have to be refreshed (published) to stay alive in the network even
information have not changed in the back.

Integrity : The concept for decentralized information publishing and consumption via DHT networks
intend to use mutable items. As incident information have to be frequently updated and stored different
nodes, integrity and authenticity of these object have to be checked. Before nodes store mutable items
in its routing table, they use the public key for verifying the originator and content. So, the verification of
an item is done at store operations. Which means that it is not possible for endpoints to retrieve modified
content performing a get request. During the evaluation of these concept it has been noticed that the
retrieved information always reflects the content published from its originator. Furthermore, the version
of the mutable item containing incident information is verified by the publishing sequence number.

The different information exchange approaches have been evaluated. Both have its advantages and
challenges. Whereas the centralized communication approach makes it easy to maintain and publish
incident information (versioning), guarantee data integrity and security, the peer-to-peer approach has
its strength in availability and scalability, even in a large scenario.

6. Future Work

The concept developed for a disaster alerting system employing home automation systems was
implemented in form of a prototype in order to illustrate new possibilities for alerting and protection
measures. Various aspects of the design and communication infrastructure were considered,
implemented and evaluated. However, it should be noted that this prototype is not a complete product
intended for productive use. Although, the techniques used can be considered and implemented for a
productive system.

Security mechanisms like TLS encryption has been considered and implemented in the disaster
information service. But it would be recommended to evaluate the system especially under the security
aspect. Especially in the field of peer-to-peer communication, considerations and improvements
regarding security must be deepened. Although the information should in principle be publicly available,
the integrity of data during the transmission within the DHT network could be further improved with the
use of cryptographic algorithms. For, example a Public Key Infrastructure (PKI) could be implemented
to ensure a secure transmission in end-to-end communication.

Furthermore, in order to efficiently integrate smart home automation systems, a technical specification
based on the categories of incidents, their recommended self-protection measures and tasks to be
performed by the smart home is desirable. This could result in a sort of reference table, to match self-
protection tasks with recommended sensor and actuator activity.

July 26, 2018 Stefan Reinthaler 85/92

7. Conclusion

The advancing digitization in the private sector and the growing number of home automation systems
open up new possibilities in the context of an early warning system. The aim of this thesis was to develop
a concept for integrating smart home systems into a disaster alerting process. To achieve this goal, first
known general requirements for a disaster alerting system based on literature and national civil
protection guidelines were examined. It has become clear that aspects such as awareness (something
has happened), informational content (what has happened) and self-protection measures (what can i
do to protect myself) have to be essential components within an early warning system. These aspects
were examined in context with the current alerting techniques. From this it can be seen that some of
these aspects are more or less supported but from the point of view of the persons involved it is
sometimes difficult to interpret them in order to be able to derive suitable self-protection measures,
without the addition of further sources of information.

New alerting approaches such as via SMS or smartphone apps can handle these requirements very
well. But, even in this approaches, it is still the duty of the victim to carry out the risk mitigation tasks by
himself. With the inclusion of smart home systems, it is also possible to automate these manual
activities. Even if use cases for performing automatic risk mitigation tasks are limited, the integration of
smart home systems can help to notify (for example, playing alarm sound or flashing lights in case of
an alert), visualize information and give an overview about the status of possible critical elements, such
as open windows or doors in case of a spreading toxic cloud threatening system owners region.

Beside functional requirements, technical requirements have been derived which should be consider to
build a comprehensive system. An additional question of this thesis also refers to which communications
infrastructure and systems are required for a scalable and reliable system.

Various communications models were examined to what extent they are suitable for a scalable
distributed information system in the context of an early warning system. Opportunities and challenges
are have been highlighted. A central challenge in connection with pull-based communication
approaches is to provide incident information in a timely and valid manner. Theoretically, different
approaches can address this challenges, as has been illustrated for example on a DNS based
information distribution approach. But in practice there are always compromises to make. Centralized
communication systems, have their strengths in terms of security, trust, manageability and connectivity
and do not facing information versioning problems. However, a central point of contact can lead to
performance issues with an increasing number of requests. Hence, additional effort is required to ensure
the availability and scalability of a centralized system, which can be achieved using the mentioned
distribution and balancing techniques. In contrast, decentralized information systems realized for
example via peer-to-peer based communications models provide maximum scalability, because each
participating peer can act as a potential information distributor within the network. But here too, peer-to-
peer typical problems such as peer discovery, end-to-end connections and especially the distribution of
the right information must be taken into account. Therefore, a prototype has been developed that
combines both client / server approaches and peer-to-peer capabilities. In addition to the reliable transfer
of data, the correct interpretation is crucial. The division between meta-information and incident details
allows an efficient determination of whether certain endpoints are affected by incidents or not. In addition
to the reliable transfer of data, the correct interpretation is crucial. The division between meta-information
and incident details allows an efficient determination of whether certain endpoints are affected by
incidents or not, without sending unnecessary data over the network, which may not be relevant.

July 26, 2018 Stefan Reinthaler 86/92

This results in a hybrid system that can provide incident information through various communication
interfaces. In particular, decentralization to provide information updates is a huge advantage in the case
of a disaster alerting system. This means that the load can be distributed evenly among a large number
of participants. However, as the results of the evaluation of the central information service have shown,
a large amount of request (without peer-to-peer communication) can be traded. Various strategies and
techniques have been developed for this purpose. Thus, a vertical or horizontal scaling of systems can
be achieved at the present time, where resources can be automatically added, without much effort.

In summary, it can be said that digitization and automation have meanwhile taken hold in all areas,
which opens up new possibilities in various contexts. Traditional well-established alerting approaches
can be improved and expanded as a result of this progress.

July 26, 2018 Stefan Reinthaler 87/92

References

[1] United Nations International Strategy for Disaster Reduction, “Global Survey of Early Warning

Systems,” United Nations, no. https://www.zivilschutz-ooe.at/wp-content/uploads/2017/10/AKW-

Unfall-1.pdf, p. 56, 2006.

[2] T. E. Drabek and G. J. Hoetmer, Emergency management: Principles and practice for local

government. International city management association Washington, DC, 1991.

[3] Bundesministerium des Innern, “Leitfaden Krisenkommunikation,” 2018. [Online]. Available:

https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/bevoelkerungsschut

z/leitfaden-krisenkommunikation.html. [Accessed: 03-Feb-2017].

[4] S. Jachs, “KOORDINATION VON KRISEN- UND KATASTROPHENSCHUTZ- MANAGEMENT,”

Bundesministerium für Inneres, 2011. [Online]. Available:

https://www.bmi.gv.at/204/Internationales_Katastrophenmanagement/start.aspx. [Accessed: 03-

May-2017].

[5] BMI, “Bundesministerium für Inneres - Zivilschutz Austria,” 2017. [Online]. Available:

http://www.bmi.gv.at/cms/bmi_zivilschutz/. [Accessed: 04-Feb-2017].

[6] V. Grasso, A. Singh, and J. Pathak, “Early Warning Systems A State of the Art Analysis and

Future Directions,” 2012.

[7] GDACS, “Global Disaster Alert and Coordination System,” 2016. [Online]. Available:

http://portal.gdacs.org/about. [Accessed: 05-Feb-2017].

[8] OASIS - Advancing open standards for the information society, “Common Alerting Protocol,”

2016. [Online]. Available: http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.

[Accessed: 20-Feb-2017].

[9] EUMETNET, “Meteoalarm - Alerting europe for extream weather,” The Network of European

Meteorological Services, 2016. [Online]. Available: http://www.meteoalarm.eu/?lang=de_GE.

[Accessed: 15-Feb-2017].

[10] FEMA, “Integrated Public Alert and Warning System,” Federal Emergency Management Agency,

2015. [Online]. Available: https://www.fema.gov/integrated-public-alert-warning-system.

[Accessed: 02-Mar-2017].

[11] KATWARN, “KATWARN - Katastrophen Warn App,” 2016. [Online]. Available:

http://www.katwarn.de. [Accessed: 05-Mar-2017].

[12] BIWAPP, “BIWAPP - Bürger Info und Warn App,” 2016. [Online]. Available:

http://www.biwapp.de. [Accessed: 23-Mar-2017].

[13] Fraunhofer Institute, “EWF - Emergency Warning Functionality,” 2016. [Online]. Available:

http://www.audioblog.iis.fraunhofer.de/nab-show-2014-ewf/. [Accessed: 10-Apr-2017].

[14] C.-Y. Lin, E. T.-H. Chu, L.-W. Ku, and J. W. S. Liu, “Active disaster response system for a smart

building,” Sensors, vol. 14, no. 9, pp. 17451–17470, 2014.

[15] B. Aschendorf, “Übersicht über Gebäudeautomationssysteme,” in Energiemanagement durch

July 26, 2018 Stefan Reinthaler 88/92

Gebäudeautomation, Springer, 2014, pp. 197–779.

[16] Techopedia, “Home Automation System - Definition,” 2016. [Online]. Available:

https://www.techopedia.com/definition/29999/home-automation-system. [Accessed: 23-May-

2017].

[17] Bussysteme, “Aktoren und Sensoren,” Bussysteme, 2016. [Online]. Available:

https://www.smarthome-geraete.de/bussysteme/. [Accessed: 23-May-2017].

[18] Wikipedia, “Smart Homes,” 2016. [Online]. Available: https://de.wikipedia.org/wiki/Smart_Home.

[Accessed: 04-Jun-2017].

[19] H. Brandstetter, “Heimautomationssysteme - Theorie und Praxis,” pp. 1–153, 2008.

[20] Iridiummobile, “Setting up Connection to KNX,” 2016. [Online]. Available:

http://wiki2.iridiummobile.net/Setting_up_Connection_to_KNX. [Accessed: 04-Jun-2017].

[21] OpenHAB, “OpenHAB - Introduction.” [Online]. Available: http://www.openhab.org. [Accessed:

19-Jun-2017].

[22] J. P. Martin-Flatin, “Push vs. pull in Web-based network management,” Integr. Netw. Manag. VI.

Distrib. Manag. Networked Millenn. Proc. Sixth IFIP/IEEE Int. Symp. Integr. Netw. Manag. (Cat.

No.99EX302), no. May, pp. 3–18, 1999.

[23] J. DeNero, “Distributed and Parallel Computing,” Berkeley.edu, 2016. [Online]. Available:

http://wla.berkeley.edu/~cs61a/fa11/lectures/communication.html#distributed-computing.

[Accessed: 13-Aug-2017].

[24] A. Schill and T. Springer, Verteilte Systeme: Grundlagen und Basistechnologien. Springer-Verlag

Berlin Heidelberg, 2007.

[25] S. Von Brauk and C. Neudert, “Prinzipien-skalierbarer-Architektur,” jaxenter.de, 2014. [Online].

Available: https://jaxenter.de/prinzipien-skalierbarer-architektur-848. [Accessed: 20-Aug-2017].

[26] Codeproject, “Multi-Tier Architectures,” 2016. [Online]. Available:

http://www.codeproject.com/Articles/430014/N-Tier-Architecture-and-Tips. [Accessed: 20-Aug-

2017].

[27] P. Mandl, Masterkurs Verteilte betriebliche Informationssysteme - Prinzipien, Architekturen und

Technologien. Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden,

2009.

[28] Diffen, “Comparison TCP vs. UDP,” 2016. [Online]. Available:

http://www.diffen.com/difference/TCP_vs_UDP. [Accessed: 10-Oct-2017].

[29] Wikipedia, “Transport Layer Security,” 2017. [Online]. Available:

https://de.wikipedia.org/wiki/Transport_Layer_Security. [Accessed: 10-Oct-2017].

[30] Selfhtml, “Grundlagen des Domain Name System,” 2017. [Online]. Available:

https://wiki.selfhtml.org/wiki/Grundlagen/Domain_Name_System. [Accessed: 15-Oct-2017].

[31] Microsoft Technet, “Recursive and Iterative Queries,” 2010. [Online]. Available:

https://technet.microsoft.com/de-de/de/library/cc961401.aspx. [Accessed: 18-Oct-2017].

[32] RFC-1034, “Domain Names - Concepts and Facilities,” 1987. [Online]. Available:

July 26, 2018 Stefan Reinthaler 89/92

https://tools.ietf.org/html/rfc1034. [Accessed: 27-Oct-2018].

[33] Wikipedia, “Anycast Routing,” 2017. [Online]. Available: https://de.wikipedia.org/wiki/Anycast.

[Accessed: 27-Oct-2017].

[34] A. Bhatia, “Different CDN technologies: DNS Vs Anycast Routing,” 2017. [Online]. Available:

https://anuragbhatia.com/2014/03/networking/different-cdn-technologies-dns-vs-anycast-

routing/. [Accessed: 03-Nov-2017].

[35] Statistics Austria, “AUSTRIA Data. Figures. Facts,” 2018. [Online]. Available:

https://eu2018.statistik.at/fileadmin/euratspraesidentschaft/downloads/austria._data._figures._fa

cts.pdf. [Accessed: 06-Jan-2018].

[36] BitTorrent, “Deutsche BitTorrent FAQ,” 2018. [Online]. Available: http://www.bittorrent-

faq.de/#ss1.1. [Accessed: 12-Mar-2018].

[37] B. Cohen, “The BitTorrent Protocol Specification,” 10.01.2008. [Online]. Available:

http://www.bittorrent.org/beps/bep_0003.html. [Accessed: 12-Mar-2018].

[38] A. Loewenstern and A. Norberg, “DHT Protocol,” BitTorrent.org, 2008. [Online]. Available:

http://www.bittorrent.org/beps/bep_0005.html. [Accessed: 12-Mar-2018].

[39] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information System Based on the

XOR Metric,” p. 13.

[40] J. Fuchs, “A Torrent Recommender based on DHT Crawling,” ETH Zürich, 2015.

[41] Z. Hu, “NAT Traversal Techniques and Peer-to-Peer Applications,” Telecommun. Softw.

Multimed. Lab. Helsinki Univ. Technol., 2005.

[42] G. Hazel and A. Norberg, “Extension for Peers to Send Metadata Files,” 2012. [Online]. Available:

http://bittorrent.org/beps/bep_0009.html. [Accessed: 15-Mar-2018].

[43] L. Matteis, “Updating Torrents Via DHT Mutable Items,” 2018. [Online]. Available:

http://bittorrent.org/beps/bep_0046.html. [Accessed: 13-Mar-2018].

[44] A. Norberg, “BitTorrent extension for DHT RSS feeds,” 2018. [Online]. Available:

https://libtorrent.org/dht_rss.html. [Accessed: 12-Mar-2018].

[45] A. Nordberg and S. Siloti, “Storing arbitrary data in the DHT,” 20118. [Online]. Available:

http://bittorrent.org/beps/bep_0044.html. [Accessed: 15-Mar-2017].

[46] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”

Building, vol. 54, p. 162, 2000.

[47] Heroku, “Increasing Application Performance with HTTP Cache Headers,” 2017. [Online].

Available: https://devcenter.heroku.com/articles/increasing-application-performance-with-http-

cache-headers. [Accessed: 15-Dec-2017].

[48] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” Internet Engineering

Task Force (IETF), 2017. [Online]. Available: https://tools.ietf.org/pdf/rfc8259.pdf. [Accessed: 17-

Dec-2017].

[49] N. Chopde and M. Nichat, “Landmark Based Shortest Path Detection by Using A* and Haversine

Formula,” GH Raisoni Coll. Eng. …, vol. 1, no. 2, pp. 298–302, 2013.

July 26, 2018 Stefan Reinthaler 90/92

[50] MongoDB, “MongoDB - Datenverwaltung neu erfunden,” 2017. [Online]. Available:

https://www.mongodb.com/de. [Accessed: 15-Jan-2018].

[51] Node.js, “About | Node.js,” Nodejs.org, 2016. [Online]. Available: https://nodejs.org/en/about/.

[Accessed: 25-Jan-2018].

[52] Node Package Manager, “What is npm?,” 2018. [Online]. Available:

https://docs.npmjs.com/getting-started/what-is-npm. [Accessed: 25-Jan-2018].

[53] NGINX, “Welcome to the NGINX and NGINX Plus documentation,” 2018. [Online]. Available:

https://docs.nginx.com/nginx/. [Accessed: 25-Jan-2018].

[54] R. Nelson, “SSL/TLS Offloading, Encryption, and Certificates with NGINX and NGINX Plus.”

[Online]. Available: https://www.nginx.com/blog/nginx-ssl/.

[55] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,”

Draft FIPS PUB 202, no. August, 2015.

[56] Socket.io, “Socket.io - How to use,” 2018. [Online]. Available: https://socket.io. [Accessed: 27-

Jan-2018].

[57] RaspberryPi, “Raspberry PI 3 Specification Benchmarks,” 2018. [Online]. Available:

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/. [Accessed: 14-Mar-

2018].

[58] “WebTorrent - The streaming torrent client. For node.js and the web.” [Online]. Available:

https://www.npmjs.com/package/webtorrent. [Accessed: 14-Mar-2018].

[59] “What do Load Testing Metrics tell us about Performance?,” 2018. [Online]. Available:

http://loadstorm.com/load-testing-metrics/. [Accessed: 14-May-2018].

[60] Loader.io, “The Loader.io APIhttp://www.news.cs.nyu.edu/~jinyang/pub/iptps04.pdf,” 2018.

[Online]. Available: http://docs.loader.io/api/intro.html. [Accessed: 13-May-2018].

[61] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The BitTorrent P2P file-sharing system:

Measurements and analysis,” 4th Int. Work. Peer-to-Peer Syst., pp. 205–216, 2005.

[62] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson, “Profiling a million user

dht,” Proc. 7th ACM SIGCOMM Conf. Internet Meas. - IMC ’07, p. 129, 2007.

July 26, 2018 Stefan Reinthaler 91/92

Curriculum Vitae

Stefan Reinthaler, BSc.

12. Mai 1987

 Nationality: Austria

 stefan@reinthalernet.at

Current Employment

10/2015 – now Senior Associate, Risk Consulting

KPMG Alpen-Treuhand GmbH

Previous Employments

03/2014 – 09/2015 Part-Time Employee in a Datacenter

 TTG Tourismus Technologie GmbH, 4040 Linz

 1st & 2nd level-support, user and system administration,

asset management

02/2007 – 09/2011 IT System Engineer

 AKD Baunetzwerk GmbH, 4040 Linz

Account Manager, 1st & 2nd Level Support, Network
management (WAN, LAN, VPN), Exchange administration,
Client/Server Lifecycle-Management

Education

03/2014 – now Master‘s program Computer Science

 Johannes Kepler University Linz, 4040 Linz

03/2014 – now Master‘s program Business Informatics

 Johannes Kepler University Linz, 4040 Linz

09/2011 – 03/2014 Bachelor's degree Business Informatics

 Johannes Kepler University Linz, 4040 Linz

06/2009 – 09/2011 General qualification for university entrance

 Johannes Kepler University Linz, 4040 Linz

Skills and Interests

Certificates
ITIL v3 Foundation, Microsoft Certified Professional - Licensing

Languages German (native), English (fluent), Spanish (A1/A2)

Hobbies Climbing, Running, Traveling

July 26, 2018 Stefan Reinthaler 92/92

STATUTORY DECLARATION

I hereby declare under oath that the submitted Master’s Thesis has been written solely by me without

any third-party assistance, information other than provided sources or aids have not been used and

those used have been fully documented. Sources for literal, paraphrased and cited quotes have been

accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Place, Date

Signature

