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Abstract

Glider pilots might be flying alone without any assistance for hours, but in case of distress,
timely assistance may be required, however the exact position of the pilot is potentially
not known to anyone else. The implemented system aims to leverage existing systems and
data sources like the OpenGliderNet and custom data relays to provide a near real-time
collection and analysis of publically available data to find missing pilots more easily, while
still maintaining a high degree of data privacy.
This thesis presents the design, implementation and deployment of the software system,
which comprises multiple microservices to provide an automatic incident detection in-
cluding a notification system and a visual presentation in a web application. Two different
types of deployments are created and compared to highlight the differences between a
modern cloud system and a more classic deployment. The testing and verification of the
system is presented, leveraging custom tools and even Microsoft Flight Simulator to be
less dependent on real world tests.
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Kurzfassung

Segelflieger können stundenlang ohne jegliche Hilfe unterwegs sein, aber in einer Notlage
kann zeitnahe Hilfe notwendig sein, auch wenn die exakte Position des Piloten mögli-
cherweise niemandem bekannt ist. Das implementierte System nutzt bestehende Systeme
und Datenquellen wie OpenGliderNet und ein selbstentwickeltes Datenrelay um in near
real-time öffentlich verfügbare Daten zu sammeln und analysieren um vermisste Piloten
leichter auffinden zu können, ohne die Datenschutzinteressen der Betroffenen zu verlet-
zen.
In dieser Arbeit werden Design, Implementierung und Deplyment des Softwaresystems
präsentiert. Dieses besteht aus mehreren Microservices welche unter anderem eine auto-
matische Ereigniserkennung, ein Benachrichtigungssystem und eine visuelle Darstellung
der Daten in Form eine Webanwendung bereitstellen. Zwei verschiedene Deployments
wurden erstellt um die Unterschiede zwischen einem modernen Cloud-System und einem
klassischeren Deployment zu beleuchten. Testen und Verifikation des Systems erfolgt mit
Hilfe von speziell für das System entwickelten Tools, aber auch Microsoft Flight Simulator,
um unabhängiger von realen Testflügen zu sein.
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1 Introduction

While humanity has achieved powered flight, some pilots still prefer the challenge of
gliding flight. Atmospheric conditions are utilized to keep flying in these unpowered
aircraft. Due to technical advancements and improved understanding of the meteorolog-
ical conditions, the sport has evolved from just staying airborne to covering significant
distances. Despite all regulation and training efforts, gliding is not hazard-free, so safety
systems are an important part of the sport. Especially cross-country flights where pilots
possibly are far away from their home airfield pose a risk of aircraft disappearing on
their way. The system presented in this thesis aims to tackle this challenge and provide
improvements to detect and help glider pilots in distress as soon as possible.

1.1 Idea

This project aims to improve search and rescue operations for gliders by collecting avail-
able position data of opted-in gliders in near real time. In case of an incident, the system
may be able to provide more complete data than current systems, and significantly faster.
While there are various types of tracking and surveillance systems, most of them focus on
a very specific part of a bigger problem. The target is to provide an easy-to-use system
which supports glider pilots and their environment from incident avoidance to improved
data for search and rescue operations. As shown in chapter 2, current systems focus on
parts of the problem like surveillance (e.g. Glidernet) or emergency alerting (e.g. ELTs).
The system presented in this thesis aims to provide a simple single point of entry for users
and extended functionality by leveraging and combining the functionalities and data of
existing systems when possible. It provides additional functionality based on the available
data like incident detection and is designed for easy future extension, both for new data
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1 Introduction

Figure 1.1: Radio ranges and communication paths

processing algorithms and new data sources.

An important goal of the project was to provide functionality similar to the existing
FLARM Search and Rescue (SAR) protocol, but significantly reducing the required time
until meaningful data can be provided.
FLARM is a traffic awareness and collision avoidance system which is very common
in gliders, but also other aircraft like general aviation planes and helicopters. As a lot
of gliders are equipped with FLARM and therefore continuously radio broadcast their
position it is possible to track those gliders by receiving those radio messages. Currently,
projects like the Open Glider Network (OGN) operate a network of ground receivers,
collect those radio messages and provide the data to the public [1]. While this already
provides lots of helpful information, it is hardly possible to cover all relevant areas with
ground receivers, especially in mountainous regions. But gliders in particular tend to visit
those areas in search of good soaring conditions, often flying below ridges and therefore
out of radio contact with any ground stations. As gliders often accumulate at hotspots
with good conditions, an aircraft out of range of the ground receivers could still be in
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1 Introduction

FLARM range of another aircraft, as illustrated in figure 1.1.
This is already considered in the FLARM Search and Rescue (SAR) protocol, where FLARM
logs are used to trace flight paths of missing gliders. In case of a suspected accident with
unknown accident location, pilots who have been flying in the relevant area are asked
to download the logs from their FLARM devices and send them to the manufacturer.
With these logs a possible flight path of the missing aircraft is reconstructed to direct
search and rescue efforts[2]. By collecting the received position reports in a glider and
forwarding those via mobile networks, a glider could fulfill similar duties as a ground
receiver. Combined with the fact that gliders often fly similar routes, this could greatly
improve the tracking coverage and be a valuable asset for search and rescues operations.
This provides an additional data source for the system to use. Due to the fast and easy
data access via a web application, this data is available almost immediately.

While the system needs to collect data to provide meaningful features, data protection
is still important. Therefore, mechanisms need to be implemented to protect the col-
lected data from unauthorized access without creating dangerous barriers in case of an
emergency.

1.2 Scope

The system shall provide a helpful tool for glider pilots and their environment like flight
instructors, club mates and airport operations manager. It is not intended to replace
any existing systems or authorities. It does not issue alerts with absolute certainty and
does not automatically dispatch search and rescue personal in case of a detected incident.
However, it does notify pre-defined (per glider) persons of trust who can then use their
best judgement of the data provided by the system to take further steps.
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2 Current Systems and Limitations

Aircraft surveillance is an important part of flight safety, so there are systems in place to
achieve these goals. However, these systems are often tailored to quite specific tasks.
Especially gliding flight provides further challenges. Compared to general aviation, glid-
ers might seem more unpredictable as they are not able to stay at a specific cruise altitude
and need to vary their course depending on the environmental conditions. Especially
recreational pilots often have no specific predefined destination which makes their flights
even harder to track. Depending on the terrain, gliders may fly close to or below mountain
tops which may hide them from ground based tracking systems like radars. But it is also
possible that gliders reach altitudes which put them out of reach of ground based systems
like mobile phone networks.

Air traffic control usually relies on radars to localize air traffic. In Austria, this is the
responsibility of the Austro Control which operates three secondary radars. In contrast to
primary radars, which rely on the reflection of a pulse sent out by the system, secondary
radars need transponders in the aircraft to provide data [3]. While those are required in
most airspaces in Austria for powered aircraft, not all gliders are equipped with transpon-
ders or are not using them all the time [4]. And even when using them, mountainous
topology often prevents accurate tracking at low altitudes.
Automatic Dependent Surveillance–Broadcast (ADS-B) might help the situation as it
broadcasts the position of the aircraft determined via a system like GPS. This could enable
better coverage by relying on less complex ground stations or even satellites to receive
the data send by the aircraft [5]. However, in gliders this is usually implemented in the
transponders, so the limitations of transponders usage still apply, and not all gliders which
are equipped with transponders are equipped with ADS-B out capable transponders or
have an appropriate data source like GPS attached.
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2 Current Systems and Limitations

Similarly to ADS-B, FLARM devices also broadcast the position of the glider. However,
in contrast to ADS-B, FLARM devices were specifically designed for small aircraft like
gliders or even para gliders as a traffic awareness and collision avoidance system. Its main
goal is not to improve overall surveillance but to provide a traffic alerting system for pilots.
FLARM devices receive the broadcasted locations of other aircraft in the vicinity and issue
traffic alerts for collision avoidance if necessary. As it was designed for lower power usage,
the range is limited and also depends on factors like the amount and installation of the
antennas in the aircraft. But it is still possible to gather FLARM transmissions of airborne
gliders with ground based receivers.
The Open Glider Network (OGN) operates a network of such ground based receivers
and provides near real-time tracking of FLARM equipped aircraft by forwarding the data
via APRS-IS which is used by multiple web and mobile clients. The limitations due to
topology and range for ground based receivers still apply, but in some areas tracking of
gliders in flight is quite reliable.
The FLARM developer, FLARM Technology, also provides a search and rescue (SAR)
protocol in case a glider is missing and was not tracked by ground based systems. In this
case, FLARM Technology requests pilots who have been flying in the area of the suspected
flight path of the missing glider to download the logs from their devices and send them to
FLARM Technology. Those logs contain the received messages from FLARM equipped
traffic which was encountered during the flight. The logs are then analyzed with focus
on the missing glider and a possible flight path is reconstructed to guide SAR operations.
While this protocol has been proven to be effective, it is quite slow as it involves lots of
manual time-consuming steps. The required time depends on how fast the data can be
gathered, and can be as low as roughly an hour in optimal cases [2].

Another method of locating crashed aircraft is using Emergency Locator Transmitters
(ELT). Those sense excessive g-forces during a crash and start transmitting a signal. The
radio frequencies at which those signals are transmitted are monitored by the authorities.
While ELT equipment is required in Austria, its usefulness is limited. ELTs may get dam-
aged during a hard crash or not trigger at all if the g-forces are relatively low. The sending
of the emergency signal requires an antenna, but the antenna might also get damaged
during an impact or shielded by carbon fiber parts depending on the orientation of the
wreckage [6].
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2 Current Systems and Limitations

Additional to the technical systems, human interaction is still a big part of flight safety
and surveillance. Airfield operation managers monitor the flight operations close to the
airfield and can spot incidents, but they also keep track of started and landed aircraft to
see if a flight is missing. Club mates may notice that an aircraft is missing at the hangar in
the evening and start the search. Pilots may check in on each other via radio and could
therefore notice if a pilot who reported troubles does not react anymore. Other club mates
might choose to watch other pilots flights from the ground using tracking apps to view
OGN data. All these operations can be streamlined with a system which combines data
sources and provides a helpful overview for the aircraft of interest.
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3 Requirements

Based on the idea and overall goal, the following requirements have been chosen.

3.1 Functional Requirements

• The system shall provide an easy to understand visual representation of the collected
data.

– Tracked positions shall be visualized on a map.

– Data points shall contain additional information like the data source and other
data, like ground speed and heading, if available.

– It shall be possible to only display data from selected data sources.

– It shall be possible to filter data by time and aircraft.

– Detected events shall be visible on the map.

– Known airfields shall be displayed on the map.

• The system shall only provide data to personnel authorized by the system adminis-
trator.

• The system shall persist data only for whitelisted aircraft.

• The system shall provide a possibility to quickly escalate privileges of a user to
access protected data in case of an emergency.

• The system shall provide a possibility to register contact data (e-mail addresses) for
persons of trust per aircraft.

7



3 Requirements

• Any data access shall be logged.

• Emergency privilege escalations shall be logged and administrators shall be notified
of such accesses.

• Access and emergency access logs shall be easily viewable by administrators.

• The system shall periodically analyze the collected data to detect flight events of
interest.

• Detected events shall cause a notification to be issued to administrators and the
persons of trust.

3.2 Technical Requirements

• Build artifacts for web services shall be docker images.

• Backend services shall be horizontally scalable.

• Endpoints available via the internet shall use TLS.

• Continuous Integration: new changes shall be built and verified automatically.

• Continuous Delivery: new versions of web services on the master branch shall be
deployed automatically.
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4 Theoretical Concepts

4.1 Aircraft based data relay

As shown in figure 1.1, ground based collection of FLARM radio communication can
be blocked by terrain and is therefore not reliable in all situations. This affects gliders
especially, as they sometimes need to stay relatively close to mountains to make the best
use of atmospheric conditions. A tighter net of ground receivers could help to improve
the tracking coverage, but is not feasible everywhere.
As gliders usually tend to move to areas with favorable atmospheric conditions they
accumulate at similar locations and sometimes fly similar routes. Additionally, the chance
of terrain obstructing the radio communication path is significantly lower than with a
ground based receivers. So the system tries to use gliders as data relays for FLARM
messages of tracked gliders.
It is already common practice to connect smartphones to the avionics. Currently, this is
used to feed data like barometric pressures or FLARM traffic into navigation apps [7]. But
this connection can also be used to collect the FLARM traffic information for the tracking
system presented here, so an implementation using a mobile app is possible without
any hardware modifications in gliders which are already equipped with the necessary
devices. Using today’s powerful smartphones, it is also possible to buffer data in case no
connection to the internet is available. Even when buffering data and transmitting it as
soon as a connection is available again, it can still be significantly faster than following the
FLARM SAR protocol and manually reading the logs from the devices after the flight.
To use aircraft as airborne receivers to relay data, only an Android smartphone with the
HGF-app and TCP connectivity to a server providing the FLARM messages are required.
The used gliders are equipped with devices which are connected to FLARM devices via a
serial connection and relay the data via a TCP server. The forwarding devices also provide
a WLAN access point via which the smartphones are connected. This feature might be
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4 Theoretical Concepts

part of electronic instruments like variometers or navigation displays or purpose-built
standalone components.
The FLARM protocol is based on the NMEA protocol, where data is transmitted in so-
called sentences. FLARM uses some sentences which are specified by the NMEA protocol,
but additionally also some custom sentences for data which was not considered in the
NMEA specification [8]. The application only parses sentences which may contain relevant
data, other sentences are ignored.
Those relevant sentences are:

GPRMC NMEA sentence providing GPS data including latitude, longitude, speed and
direction. Used in combination with GPGGA data to determine the position of the
user’s glider.

GPGGA NMEA sentence also providing GPS data, but including latitude, longitude and
altitude. Used in combination with GPRMC data.

PFLAA FLARM sentence providing data on other aircraft, possibly including the 3 di-
mensional relative position, track, turn rate, speed and more. Used to determine
position of other aircraft, which can be sent to the collector.

PFLAU FLARM sentence including the current system status used as heartbeat. If some
traffic is in the area, the sentence also contains traffic alarms, giving a rough direction
of the most relevant traffic. Tested as additional data source to PFLAA messages,
but disabled in favor of PFLAA messages.

PFLAC FLARM sentence providing configuration information. It was used experimen-
tally to gather information about the connected FLARM device, but currently serves
no important purpose.

Received data for whitelisted aircraft is buffered on the device until it is successfully
uploaded to the collector endpoint of the system.
The Android App and its relevant endpoints have been developed in a previous project,
but are an important part of the general idea and direction of the development of the
system.
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4 Theoretical Concepts

4.2 Incident detection

By continuously analyzing the collected data the system tries to detect anomalies in a
flight which may indicate that an event of interest has occurred. Such events can be
of varying nature, but the focus is on safety relevant events. These include landings at
an airfield, off-field landings, and crashes. Due to the complexity of distinguishing an
ordinary landing and a crash/crash landing, those events are currently grouped in the
categories of "landing", where a safe landing is assumed, and "incident" where a crash is
not proven, but more likely.

While the system is open for extension, currently only one detector algorithm is imple-
mented. The "stop analyzer" tries to detect when an aircraft is stopped or almost stopped
and depending on the distance to an airfield the stop is classified either as landing or as
an incident.
In case of a stop close to an airfield, it is relatively safe to assume an ordinary landing
instead of an incident, as the overwhelming majority of landings at airfields are not crash
landings. This also helps to filter such common events to reduce the amount of notification
when suppressing landing event notifications. However, if a crash landing at an airfield
is falsely classified as ordinary landing, it is very likely that the event was observed by
personnel at the airfield, like an airfield operations manager anyway, so it is quite likely
that there are no negative consequences of suppressing the notification.
As an off-field landing will always require some kind of assistance, it is always classified
as "incident" and no further distinction to a crash is made.

The algorithm is based on speed information of the aircraft. Depending on the data sources,
this information might be available as part of the received information. Otherwise, the
average speed is calculated based on the differences in time and position to the last
reported position.
For the stop analysis, some predefined parameters are necessary. These have been chosen
based on the expected behavior of the aircraft of interest, namely gliders and touring
motor gliders which in general are aircraft with relatively low minimums speeds, but are
subject to further tuning. The threshold speed below which an aircraft is assumed to not
be flying is currently set to 10 m/s. This is significantly below the minimum speed of the
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4 Theoretical Concepts

aircraft of interest and also provides some tolerance for inaccuracies, for example when
the ground speed is calculated based on the position data, the actual airspeed (which
is relevant for deciding whether the aircraft can continue flying) might be significantly
higher due to headwinds. The algorithm assumes flight if the speed of the aircraft exceeds
the predefined threshold speed. Consequentially, if the speed afterwards drops below
the threshold, a "stop" is detected, except it the speed climbs above the threshold again
in less than 30 seconds. Such cases where a stop is filtered due to the speed picking up
again might be caused by flight maneuvers like touch-and-go landings, aerobatic flight or
temporarily inaccurate sensor readings, e.g. during a side-slip.
To avoid multiple reports for a single event, all detected stops in a 60-second time frame
are grouped to one single event.
The classification of the landing is considered to be at an airfield is based on airfield data
provided by Austro Control [9]. If the position of the detected stop is in a 2 km radius
around the airfield center and not more than 200 m above the airfield, it is considered to be
located at the airfield. This simple model provides tolerances to allow for bigger airfields
with multiple runways and inaccuracies in the data. Especially the reported altitude
might be quite inaccurate, as different sources may use different sources and models - one
system might report altitude based on barometric data which can be influenced by the
atmospheric conditions, while another might use satellite positioning data.
An important limitation of the stop analysis is the fact that it can only analyze data which
exists in the system. In case an aircraft loses tracking connectivity mid-flight, the algorithm
will not detect an event. This might be uncritical if connectivity is restored or if the aircraft
lands safely in an area without coverage, but might also miss a possible notification of a
missing flight.

4.3 Data protection model

While most of the data the system processes is sourced from publically available sources,
the detailed presentation and the inferred information from the data should not be publi-
cally available. So the system has to restrict the access of flight data to trusted personnel.
But in case of an emergency, data protection is secondary to potentially rescuing a pilot.
To achieve both goals, two authorization models have been combined: Role Based Ac-
cess Control (RBAC) and the break-the-glass model (BTG). RBAC controls the standard
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workflows, while BTG enables quick and uncomplicated access to data in case of an
emergency.

4.3.1 Role Based Access Control

Role Based Access Control (RBAC) is the main model used in the application, which
controls whether to grant or deny access to data or functionality for a given user.
With RBAC, users are assigned to roles which the system uses to grant or deny access. This
allows the system to be unaware of concrete user identities when making access control
decisions while only having to consider the roles of the user [10].
The available roles are predefined in the system, and it is not intended to create additional
roles via the administration interface. Users can be assigned any combination of the
following roles:

Admin Administrators are allowed to view any flight data, view access logs, view and
manage BTG-logs, users, and fleet data

Viewer Viewers are allowed to view any flight data.

Reporter Reporters are allowed to upload data via the app.

Aircraft Viewer Allowed viewing data only of explicitly assigned aircraft.

An exception to the strict RBAC definition are the aircraft viewers, where users are directly
assigned to allow access to a specific aircraft. This keeps the system relatively simple
by just providing the absolutely necessary role and permission management features to
administrators without the possibility to create a confusing amount of custom roles.
Additional to controlling access via those roles, any access to flight data is logged.

4.3.2 Break the Glass

The Break the Glass (BTG) model allows a user to quickly gain access to data in the system
for which the user would normally not have permission, but requires the data for urgent
matters. The name of the model aims to provide an analogy to breaking the glass of a fire
alarm switch.
By using the BTG functionality users can decide when they need to override the strict
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access rules of the system to resolve an urgent matter, like locating a potentially crashed
aircraft. To detect abuse, BTG usage has to be audited by an administrator. The emergency
access via BTG can be combined with other access models like the previously described
RBAC by only granting access via BTG when the permissions via the main model are not
sufficient to access the data [11].
The BTG model is only used for viewing flight data. In case the RBAC denies access to
requested flight data, the user is informed that the request is denied but may be granted
in case of an emergency by "breaking the glass", but any access will be reported to the
administrator. If the user decides that it is necessary to access the data and confirms to
break the glass, access to the requested data is granted immediately and a notification to
the administrator is issued. This creates a BTG record in the system. Further access to the
same data or a subset of it is granted without having to break the glass again as long as
the BTG record is valid. A BTG record is valid for one hour after the initial breaking of the
glass or until it is revoked by an administrator. In case of an invalid BTG record for the
selected data or if additional data is requested, the glass has to be broken again.
Additional to the issued notification, administrators are able to see all BTG records in
the system. Not only can an administrator revoke access if it seems unnecessary, it is
also possible to approve such a BTG access. Approving only serves as information for
other administrators who might review the access, so that it is visible that this action was
already reviewed and deemed necessary by the approving administrator.
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The system consists of multiple components, which interface each other and also third-
party systems. An overview of the system’s components is shown in figure 5.1. The
backend components follow the Shared Database Server Pattern where microservices share
a common database server [12]. Some parts of the system have been developed in a
pre-project and were extended as part of the thesis. The pre-project implemented the basic
features for aircraft based data relay and OGN data collection, which also included the
setup of the databases and authentication system. While the Android-App only received
minor changes, components like the backend and frontend were significantly extended
and improved as part of the thesis. The modular approach of the system design proved to
be useful as it allowed to easily add and test new components without breaking existing
functionality.
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Figure 5.1: Overview of the System’s Components with newly added components in green and
significantly modified components in blue
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5.1 Technologies

Whenever possible and reasonable, components were developed using Go as program-
ming language [13]. Go was chosen as programming language due to its simplicity in
development, building and deployment. Large, opinionated frameworks were mostly
avoided as they would not fit the design philosophy of the small components. Third
party dependencies were only used when they provided a significant benefit, otherwise
it was avoided to introduce too many libraries and frameworks to keep things simple,
easy to review and avoid introducing security issues via those dependencies. The Go
components shown in 5.1 do not have compile-time dependencies on each other, so they
can be built independently. Only the data analysis has been implemented in a Go module
which is not deployed independently, but used as a compile-time dependency both in
the HGF-Backend and the Incident Detector. This allows these components to reuse the
analysis logic but also offers the possibility of different configurations - for example, one
could add experimental analyzers to the backend and verify their functionality on existing
production data without influencing and potentially breaking the Incident Detector.
The deployment units have been packaged into Docker containers to provide flexibility
for deployment, as there are many solutions for deploying such containers. This provided
enough flexibility to support two quite different deployments without having to signifi-
cantly adapt the applications or build process, as described in chapter 6.

The technology stack for the HGF-Web component has been chosen to leverage modern
frameworks and existing components. It is implemented as a single page application (SPA)
using React, with the most important third-party dependencies being Leaflet to display
flight data on a map using OpenStreetMap map data, and PicoCSS for styling [14, 15, 16,
17, 18]. While the web application can be served as static files by any web-server, it is also
packaged as a Docker container to enable similar deployments to the other components.
The Sim-Connector was implemented using C# due to the availability of the SimConnect-
SDK, which provides components to communicate with Microsoft Flight Simulator [19]. It
is used as command line application on computers running Microsoft Flight Simulator for
testing purposes and is not required for a production deployment.

17



5 Implementation

Figure 5.2: An example of the authentication flow demonstrated by HGF-Android and HGF-
Collector

5.1.1 Authentication

JSON Web Token (JWT) was chosen to represent sessions for authenticated users and
transmit session information. JWT is an open standard for securely transmitting data as
JSON object, often used to transmit authorization claims [20]. This allows a simple and
scalable way of transmitting the session data [21]. A JWT contains the username and
assigned roles of the authenticated user. The JWTs are signed using ECDSA.
The authentication service, HGF-Auth, is only responsible for authentication, creating
and verifying JWT tokens. Its functionality depends on the ECDSA private key, which
is critical to be kept private. Reducing the functionality of the authentication service to
a minimum also keeps the attack surface small. It can also be independently deployed
from other components which makes it easier to meet performance requirements for this
critical service.
An example of the authentication flow is shown in figure 5.2. As the JWT contains all the
needed data, which is the unique username and the roles of the user, it is not necessary for
the collector service to load data from a data store or another microservice for any request.
This keeps the overhead to a minimum. Due to the chosen asymmetric ECDSA signing,

18



5 Implementation

the collector service itself can verify the validity of the received JWT using the ECDSA
public key. This key can however not be used to create new valid JWTs for future requests,
making it less critical to manage this key. All services which need to validate JWTs require
the public key.
Currently, no method of revoking sessions is implemented, except for changing the key
pair. So once a user retrieves a correctly signed JWT from the authentication service it
can be used until it expires. JWT specifies an optional "exp" field, which is used to set
the expiration time after which the token has to be considered invalid. The expiration is
currently set to 30 days after initial creation of the token. It has to be checked whenever
validating a JWT.
To revoke a session, a new key pair has to be generated and pushed to the authentication
service. All other services doing JWT verification need to change the public key to only
validate the newly signed tokens. Not only is this quite an effort, it also invalidates all
sessions, and it is not possible to only invalidate a single session. This is a drawback of this
implementation, but there was no strong reason to require a simple session invalidation
feature, so the system was kept as simple as possible. However, in units which are not
trivially updatable as the Android app, some precautions were made.
In case of the Android app, the token is not validated directly on the device but validated
against the authentication service, as depicted in the "check" call in figure 5.2. This would
allow performing additional checks in the authentication service if a session might be
revoked and force the user to re-login. Of course, other services which validate JWTs would
have to implement a similar check. But as server-side services can be easily managed and
updated when necessary, no precautions have been implemented on that side.

5.1.2 Data transfer

While some components share their state via the database (e.g. Incident Detector and
Notification Service), others have to communicate directly, (e.g. HGF-Web and HGF-
Android with HGF-Backend). Those communications are implemented via HTTPS calls,
any data is serialized using JSON.
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5.2 System Components

The following list gives an overview of the components shown in figure 5.1 and their
functionality and relevant technical decisions.

General Purpose Database The general purpose database is used to persist data, except
flight data. MongoDB was chosen over the commonly used relational databases
for the added flexibility due to the schemaless design and simple usage for faster
development [22]. Deployments locally or in cloud environments are easily done
due to the amount of prebuilt packages and guides available. Performance was not
really a consideration, as any widely used data store for such purposes will be able
to handle the relatively small amount of data of this project.

Tracking Data Store The tracking data is stored in an InfluxDB. InfluxDB is a time series
database designed to handle large amounts of time based data [23, 24]. Although
the expected amount of data is currently rather small and should not be too big
for most storage systems, it was decided to use an optimized time series database
for multiple reasons. One reason being that the kind of collected data matches the
use case for such databases quite well, another being the specialized tooling Influx
provides which allows quick prototyping and testing of queries, including simple
visualizations of the queried data.

OGN-Collector To gather data from the Open Glider Network an application has been
developed using Go which connects to the APRS-IS and persists the data in the
tracking data store. The Automatic Packet Reporting System (APRS) is an amateur
radio based system to transmit data. Via the APRS internet service (APRS-IS), this
system is also connected to the internet, which enables our application to easily
connect to the system [25]. Only data of whitelisted aircraft is collected. To work
correctly, the application needs to always maintain an open TCP connection to the
APRS service to receive updates when they are broadcasted [26]. While running one
instance of the OGN-Collector should be sufficient, running multiple instances does
not cause any problems like duplicated data, as this is handled by Influx. In case
of duplicated insertions of a data point, Influx merges it with the existing point if
additional fields are added, or overwrites existing data which is unproblematic as the
collector instances should not receive conflicting data anyway. It can be meaningful
to run multiple instances of the collector, for example to improve availability so that
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data is still collected even if one instance is shut down or fails. Even when handling
such cases and restarting failed instances by using health-checks, a restart will lead
to some downtime which can be covered by another already running instance. The
OGN-Collector was implemented in the pre-project.

HGF-Auth The Auth service provides endpoints to login, which creates a new JWT and
to verify such tokens. It was implemented in the pre-project.

HGF-Collector The HGF-Collector provides an endpoint for other tools to push flight
data into the system. The endpoint requires authentication and users are only
authorized to upload data if they have the "reporter" role. Received data is stored in
the tracking data store. The HGF-Collector is mainly used by the Android-App, but
also by testing tools like the Sim-Connector. The HGF-Collector was implemented
in the pre-project.

HGF-Android The native android application which is used for aircraft based data relay
as described in section 4.1. The app was mostly implemented in the pre-project and
received minor improvements.

FLARM-Simulator This tool was already used in the pre-project to simulate the hardware
available in a glider. By using the tool, the Android app and related components can
be tested without the need to operate actual hardware. The simulator is a command
line application written in Go and simply replays logged FLARM messages via a
TCP endpoint which behaves similar to the access point available in gliders.

Incident Detector The incident collector regularly analyzes the flight data available in
the tracking store by using the analysis library. In case of a detected incident, a
notification is persisted in the General Purpose Database. It was developed from
scratch for this project.

Notification Service The Notification Service monitors the General Purpose Database
for newly created notifications and creates and sends the relevant emails via SMTP.
It was developed from scratch for this project.

Discovery Service The Discovery Service provides the URL for relevant endpoints, like
Auth, Backend and the Collector. It currently is a static file which is created manually
for each deployed system. This requires the user to only enter one base URL in the
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app instead of the three required service URLs, but does not limit the system to a
predefined addressing schema. It was developed from scratch for this project.

HGF-Backend The backend service provides required endpoints both for HGF-Web
and HGF-Android. The backend connects to the InfluxDB to load flight data, for
any other data the MongoDB is used as data store. The base functionality was
implemented in the pre-project, however it was vastly extended and improved to
support the new features.

HGF-Web The web application provides the user interface for the system. It is developed
using React and multiple third-party react components for the general functionality.
Geodata is displayed on a map using Leaflet. Similar to the HGF-Backend, HGF-Web
already existed in a basic version but needed significant changes, both improving
existing features and adding new functionality, like the notification and auditing
user interface and additional information on the flight data map and a general UI
styling.

Sim-Connector The Sim-Connector can be used to simulate flights using Microsoft Flight
Simulator and pushing the generated flight data into the system. It can be used in
multiple ways:

1. Generate FLARM log files, which then can be used with the FLARM simulator

2. Push data directly to the HGF-Collector

3. Simulate a FLARM device (similar to the FLARM Simulator) to connect the
Android app.

5.3 Notification System

The notification system is a vital part of the system. It is used to notify relevant users in
urgent cases, for example detected incidents.
The notification system is designed for extension. Not only would it be possible to
implement additional message channels, it is also possible to add new types of notifications
and new sources of notifications quite easily. The currently implemented notification
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channel is email, the only notification sources at the moment are HGF-Backend and
Incident Detector.

5.3.1 Notification Creation

If a subsystem wants to generate a notification, it is sufficient to insert a respective
notification document into the General Purpose Database. The document contains the
notification data and some metadata, it is expected to match the data model shown in
table 5.1.
Due to the flexibility of the used data model, notifications can include arbitrary data as
additional information. In case the notification sender is aware of the specific type of
notification it may use the additional data to send more specific notification messages to
the user, otherwise it can just ignore the additional data and send a generic message.

5.3.2 Notification Processing

Notifications are processed by the Notification Service using the following algorithm:

Find and mark The application queries the database for documents matching on of the
following criteria:

• State="created" and Retries less than 5

• State="processing" and LastUpdatedAt more than 10 minutes ago and Retries
less than 5

This finds both new notifications and notifications stuck in processing. If a noti-
fication is in the "processing" state for more than 10 minutes, it is assumed that
something failed during processing, and it was newer handled successfully. If a
notification was tried to be processed for 5 times and never got handled successfully,
it is assumed that the data is corrupt and will not be handled successfully in the
future as well, so it is excluded from further processing to avoid unnecessary load
on the system. The notification is still visible in the web application and is handled
by the defective notification detection.
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Name Datatype Description

ID ObjectId An unique identifier to
identify the document

Notification Object The document containing
the actual notification data
contained in the Data prop-
erty, described by the What
property

Notification.What string A string describing the
type of notification, e.g.
"flightevent"

Notification.Data Object Additional data, content
depends on the type of the
notification

CreatedAt Date Time when the notification
was initially created

LastUpdatedAt Date Time when the notification
was last updated, initially
equal to CreatedAt

State string A string describing the
state of the notification

created initial state, wait-
ing for processing

processing item is cur-
rently processed by
the notification ser-
vice

defective item could
not be processed
correctly by the
notification service

sent notification was pro-
cessed and e-mails
were sent

AcknowledgedBy string The username of a user
who has acknowledged the
notification, initially unset

Table 5.1: Notification data model
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In the same query (findAndUpdate), found documents are updated to reflect their
new status:

• State="processing"

• LastUpdatedAt=Now

Now, other instances of the service will not try to handle the respective documents
for the next 10 minutes, so duplicate processing is avoided.

Generate and send messages The system now determines the receivers of the notifi-
cation message depending on the type. This might be system administrators for
security related notifications or administrators and aircraft contact personnel for
flight related events.
A message containing relevant information is generated, and an e-mail is sent via
SMTP to the receivers.
Receivers may or may not be users in the system - e.g. a flight event could issue a
notification to a friend of a pilot who is not part of the gliding club but can initiate
contact to the club where competent personnel with user accounts can check the
flight data.

Finish When the message was sent successfully, the notification’s State is updated to
"sent" or in case of an error, State is reset to "created" and Retries is incremented.

Defective notifications (state = "created", retries >= 5) are handled similarly, but instead
of trying to parse the data a generic message is sent to admins and the state is set to
"defective".

5.3.3 Notification Acknowledgment

Administrators are able to "acknowledge" notifications via the web application. This just
sets the AcknowledgedBy property to their username which is reflected in the web user
interface. Functionally, this has no further effect, but it may help other administrators to
decide whether a specific notification still needs to be investigated or if somebody else
already took care of it.
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Name Datatype Description

Lat float64 Latitude in degrees
Lon float64 Longitude in degrees
Alt int64 Altitude in meters
Heading float64 Heading in degrees (op-

tional)
Speed float64 Speed in meters per second

(optional)
Time time.Time GPS Time if available from

the data source, otherwise
time of first entry of the
data point in the systems at
seconds precision

Table 5.2: Position data structure

5.4 Data Analysis

Analysis of flight data is needed both for incident detection and for visualization of the
data. Therefore, a module was implemented which implements the analysis algorithms
and can be used in other applications.
The analyzer package provides two interfaces: the Analyzer and Combiner. Both features
operate on the same data structures.

5.4.1 Data Structures

The Position objects described in table 5.2 represent a recorded position of an aircraft.
Depending on the data source, some properties might not be available and are therefore
treated as optional. The PositionReports as described in table 5.3 is used to pool the reported
position data of a given reporter (e.g. OGN or HGF-Android users).

5.4.2 Combiner

The Combiner is used to merge flight data from multiple sources into a single flight
path. The interface receives an array of PositionReports and returns a single flight path,
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Name Datatype Description

Reporter string An identifier for the re-
porter / data source

Positions Position[] An array of Position repre-
senting the recorded flight
path

Table 5.3: Position reports data structure

represented as array of Position.
Currently, the combination algorithm is very simple but proofed to be sufficient for the
available data - a simple windowed average.
Positions are grouped into 5 second windows. For each window, a new, combined position
is created by using the arithmetic average of each property of the input positions. The
resulting list of position represents the combined flight path.
The algorithm could be fine-tuned by weighting values based on how reliable a data
source is and experimenting with the time window size. However, the current data shows
that this very simple approach seems to be sufficient and a finer granularity than 5 seconds
is not required at the moment as shown in chapter 7.

5.4.3 Analyzer

The Analyzer operates on a flight path, represented as an array of Position and returns an
array of FlightEvents. Additionally, each Analyzer implementation also has to provide a
title string to describe itself.
At the moment two implementations are available: the StopAnalyzer and the CombiningAn-
alyzer. The StopAnalyzer algorithm is described in section 4.2
The CombiningAnalyzer is a utility for the scenario when additional analyzers are imple-
mented and should be used in combination. The CombiningAnalyzer is constructed by
providing an array of Analyzers. All provided analyzers are then executed when analyzing
flight data and all resulting flight events are returned, so the analyzers can complement
each other and support different scenarios. The detected events of all analyzers are col-
lected in a sorted list. Afterwards, the events are filtered for duplicates by filtering events
with the same event type in a predefined time window of 60 seconds.
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5.4.4 Incident detection

The Incident Detector is executed periodically and analyzes flight data of the last 24 hours.
Therefore, it would be theoretically sufficient to run the detection once a day to just detect
all events. However, this would lead to quite big delays between the actual occurrence of
an event and the generation of a notification. Hence, the incident detection is executed
in tighter intervals depending on the deployment, e.g. every five minutes. The detection
could also run continuously to achieve quick response times with the drawback of putting
steady load on the system.
Incident detection is executed on a per-aircraft basis, so data of other traffic does not
influence the analysis of an aircraft’s data.
The last 24 hours of data are loaded from the data store, mapped to the required data
structures and passed to the analyzer described in the previous sections. The resulting list
of detected events is compared to the list of already persisted events. Only for new events
a new document is persisted in the general purpose database. Additionally, for all new
events a notification is created and added to the general purpose database which can then
be handled by the notification system as described in section 5.3.

5.5 Data Inspection

Manual data inspection can be conducted using the web application. While it works best
on bigger screens, it is also usable on mobile devices, however the user experience might
be degraded, especially in portrait mode. Any functionality in the web application is
only available for authenticated users. The JWT is only kept in-memory, no persistence
like a cookie is needed. A page refresh loses the JWT and therefore also acts as logout,
but due to the implementation of the web application as single page application, normal
workflows do not require any page reloads and the user stays logged in when navigating
in the application.

5.5.1 Flight Data Inspection

Figure 5.3 shows the visualization of flight data in the web application.
All data is loaded asynchronously from the backend, where also the authorization of the
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Figure 5.3: Visualization of a simulated flight in the web application
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user is checked. The input elements above the map are used to select and filter the data to
display. Initially, the date pickers are set to select the last 24 hours, however this can be
freely adapted by the user to select any date range of interest. This also populates the next
filter element - the aircraft selection. This dropdown menu is only populated with aircraft
for which flight data is available in the selected timeframe. After selecting an aircraft, the
actual flight data is loaded from the backend.
To select a specific flight, start and end times have to be entered, and the correct aircraft
has to be selected. Otherwise, the system does not distinguish between separate flights,
only time and aircraft is considered. The rightmost filter control can be used to display
data only from selected data sources, like raw data from OGN or only processed data
which may be the result of combining multiple data sources as described in section 5.4.2.
By default, all sources are drawn on the map which helps to visualize possible differences
between them.
The data is drawn as a path on the map, with the data points drawn as points. This
gives both a nice visualization of the flight path, but also shows where the data is quite
sparse (long lines without points) which can help to identify possible areas of bad tracking
coverage. Line and point colors depend on the data source, so from different sources can
be quickly identified. Additionally, the map contains icons for known airfields which
positions are also loaded from the backend and icons for detected events like landings and
incidents which are included when loading the flight data. Flight data is automatically
reloaded when changing the filter settings.
Tooltips are used to provide additional information when clicking on a map item like a
flight position point or an incident icon as shown in figure 5.4. The event tooltip contains
the type of event, in the case of the second example image in figure 5.4 it is of type
"incident" and the time it occurred. The flight data point tooltip contains additional
information reported with the position. As some data, like heading and speed is optional
and reported by all data sources, the tooltip might contain less information if some optional
attributes are not set.
The example flight shown in 5.3 was conducted using the flight simulator to be able to
safely generate some events. The visible events are a landing on the airfield Linz-Ost, an
outlanding on the motorway A7 near Treffling and finally a crash at the eastern part of
the flight path. Both the originally reported positions (green) and the processed positions
(purple) are visible. The processed positions sometimes differ slightly due to the used
averaging algorithm as described in section 5.4.2.
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Figure 5.4: Tooltips shown when clicking an element on the map

Accessing Data with restricted Permissions

As described in section 4.3, users might have limited permission to view flight data but
can still access data by using the break-the-glass (BTG) functionality. Those users are still
able to use the filters and view which aircraft have available flight data in the selected
time range. However, when selecting an aircraft in the filter, the BTG dialog informs the
user of their options as shown in figure 5.5. Should the user decide to cancel the access at
this point, no permanent record is created, and no data is loaded. If the user chooses to
get emergency access, a new BTG token is created in the backend and a notification about
the action is sent to administrators. The BTG token is used to transparently authorize
further requests to the same data. For example, a user might initially choose a longer
time period and then wants to focus only on a very specific timespan. This action is
immediately allowed without further need to break the glass, as the user already gained
access to the requested data anyway, so repeatedly having to break the glass for already
seen data would not provide additional security but pose an annoyance to both the user
and administrators. This is possible as long as the BTG token is valid, which is one hour
or earlier, if an administrator revokes the token. After that, a new BTG token has to be
requested, which again will trigger a notification. In case the user wants to view more data
and extends the selected time range, a new BTG token needs to be requested as requests
with longer time ranges may contain yet unseen data.
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Figure 5.5: The BTG dialog shown when accessing restricted flight data

Backend Implementation

The backend operations required to correctly load the flight data are more complex
operations. This is mostly due to the authorization logic required for the flight data access
using BTG.
Generally, so-called "Middleware" handlers are used to intercept the requests in the Gin
framework and handle authentication and authorization [27]. Gin is a framework for
web applications in Go. It was chosen due to its simple API which provides the required
functionality to streamline the development of HTTP APIs without being too opinionated.
The AuthHandler is registered globally, so all requests have to pass its checks. It parses the
Authorization HTTP header and checks for a valid JWT. If no valid token can be found, the
request handling is aborted and an empty response with HTTP status 401 "Unauthorized"
is returned. Otherwise, the successfully parsed data from the token is set as context for
the request, so further handlers can easily access the session data contained in the token.
Usually this is followed by a generic RBAC middleware. This handler checks if the session
contains one of the roles required for the requested endpoint, otherwise the request is also
aborted with HTTP status 401.
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While this simple middleware is easy to use and works fine for features not supporting
BTG, it is not sufficient for the flight data endpoints. In this case, no previous RBAC checks
are used. Instead, the endpoint handler has to parse the exact request, including aircraft
ID and time range and decide based on this data if the requesting user is authorized to
view the data. Authorization might be granted based on the user’s roles or on an existing
BTG token. If the user neither possesses an appropriate role, BTG-token, or has opted to
actively break the glass, the request is aborted with status 401. If the user does not possess
an appropriate role or BTG-token but has chosen to actively break the glass (i.e. clicked
the according dialog button in the frontend as shown in figure 5.5) a new BTG-token is
created, and a notification is issued by adding a new notification document to the general
purpose database.
After these authorization steps, the actual request processing is delegated to the correct
handler and proceeds to load the requested data. The data is loaded from the Tracking Data
Store using a Flux-Query. The query string is dynamically computed for the requested
aircraft and time range. As this query will contain user supplied data in the query string, it
is very important to thoroughly check this data to avoid injection vulnerabilities. The time
parameters are verified by converting them to a Go time.Time object and then formatting
the time to a string using the RFC3339 format [28]. The aircraft ID is checked to only
contain alphanumerical characters which is sufficient for this data and will fail any input
strings containing key characters of Flux. The returned data is then collected into Go
structs as described in section 5.4.1. An audit log entry is created to record that the
authenticated user has accessed this data. The data is passed to the analyzer to get events
contained in the loaded flight data. Both the events and the position data are contained
in the final result which is automatically serialized to JSON when writing the HTTP
response.

5.5.2 Auditing Data Inspection

The web application offers multiple pages for administrators to audit data access and
system activity as shown in figure 5.6.
The Access Log page shows all flight data accesses. If a user requests flight data for an
aircraft in a given time range, the request will show up on this page, regardless of the
user’s roles and permissions. Also, all subsequent requests to the same data is recorded as
separate entry. So the page gives an overview over the user’s activity and not only which
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data was accessed. This can help to identify particularly nosy users who might be abusing
their viewer privileges out of personal interest. The access log auditing is designed to
be extensible for other access types as well. Currently, only flight data access is audited
because it is the only viewer feature non-administrators are allowed to use. However, if an
additional role for e.g. fleet management would be introduced, it could be a requirement
to audit fleet data access or changes too. In that case, only a new type of access would
be added in the backend without the need for adaptions in the database and in the web
application, as the current data model is designed and well-prepared for such changes.
The Break The Glass Log shows the BTG-tokens which are used and created as described in
the previous section. As described in section 4.3.2 administrators can approve and revoke
these tokens. Once an administrator has executed an approval or revoke action on a token,
the change is final and cannot be overruled by other administrators.
The Notifications page gives an overview over the notifications which were created in the
system. Administrators can acknowledge a notification, which just serves as information
for other administrators that the notification was taken care of. This page is also designed
to handle notifications with arbitrary data in yet unknown data structures, where unknown
data is just rendered as JSON string.
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Figure 5.6: The auditing web interface
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5.6 Tools and Simulators

An important part of testing the system was to reduce the dependency on third party com-
ponents for real world tests. To achieve this, some tools and simulators were developed to
provide easily controllable parts for testing to replace the real systems.
An additional need for simulations arises when testing complex and dangerous scenarios
like crashes. For obvious reasons, one would not to conduct a test flight which ends in a
crash, but especially this important scenario has to be tested. But also for less dangerous
scenarios simulations quickly pay off as real world tests are quite time-consuming and ex-
pensive. With the developed tools it is possible to conduct a reduced amount of real world
testing and use the generated logs and data to repeat the tests whenever necessary.

5.6.1 FLARM Message Collection

The HGF-Android application can be used to collect the FLARM messages received by
the device. It logs each received message to a file which can then be accessed via an
DocumentsProvider. This allows a developer to extract the exact received messages and
either analyze them manually or replay them using the FLARM Simulator.

5.6.2 FLARM Simulator

The FLARM Simulator is a simple tool to use in place of a real aircraft with a FLARM
device and a TCP endpoint to access the data.
The Go-application opens such a TCP server which can then be connected to with the
Android application. It supports two modes of operation: simple data, which just always
sends the same hard-coded messages for very simple connectivity tests, or file-replay,
which replays the FLARM messages provided via a text file. This text file can be created
manually or a log file from the HGF-Android application or the Sim-Connector can be
used.
The FLARM Simulator replays the messages with a fixed frequency (e.g. 1Hz), which
might influence the timing of the messages. Therefore, the FLARM Simulator is used for
testing scenarios where exact timing is not crucial, e.g. testing visualizations or persistence.
At the current state of the system, this is only a problem when replaying data which
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does not contain speed information, as the timestamps are needed for the average speed
calculation and data which contains multiple events in short time spans, as the merge
algorithms are time based as described in section 4.2.

5.6.3 Sim-Connector

The Sim-Connector can be used as a FLARM Simulator as well, but instead of replaying
log-files it directly relays data received from an active Microsoft Flight Simulator flight. It
also supports writing log-files for the FLARM Simulator or pushing data directly to the
HGF-Collector as replacement for an Android client.
The C# application uses the SimConnect SDK to connect to Microsoft Flight Simulator - and
therefore also requires Microsoft Flight Simulator running on the same machine. It uses
the Task Parallel Library to provide a TCP-Server in parallel to receiving the data from the
Flight Simulator but also uses the Event-based Asynchronous Pattern for easier integration
with the SDK [29, 30]. The Connector task polls every second using the ReceiveMessage
method. If data is available, the SDK invokes registered receive handler which casts the
data to the internally defined structure and passes it to an event. Via this event, the other
components of the program can receive the data. A NMEA sentence is generated from
the data, written to a log-file, sent to the collector or to a TCP-Client, depending on the
configuration.
The simulator currently only generates GPRMC and GPGGA sentences, so it only reports
the position of the aircraft but not of any traffic. However, for most tests this is sufficient
as only some source of position data is required, and it does not matter if it got tracked as
traffic or directly reported its own position.
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The system was designed to be platform-agnostic to avoid dependencies on any specific
infrastructure vendor, except for the mobile application, which is only available on An-
droid. Therefore, build artifacts of backend services are Docker containers, which could be
deployed on any host capable of running such containers, container orchestration systems
like Kubernetes or managed platforms like Google Cloud Run. To prove this concept, two
different environments have been deployed. The first environment, called "Classic Deploy-
ment" in this thesis, features a single, inexpensive virtual server running all services and
is described in detail in section 6.4. The second environment, called "Cloud Deployment"
is based on Platform-as-a-Service (PaaS) solutions provided by Google Cloud Platform
(GCP) and Software-as-a-Service (SaaS) solutions provided by the database vendors and is
presented in section 6.5. The project’s source files were managed using Git on Gitlab.com
and using GitLab CI for continuous integration (CI) and continuous delivery (CD) [31].
For continuous integration, a build pipeline is executed on every push to verify that the
code actually builds, and the unit tests are executed. Additionally, for pushes to the master
branch the deployment step is executed which pushes the newly built artifacts to the
respective environments to achieve continuous delivery. The whole pipeline is shown
in figure 6.1 and includes all build and deployment jobs which do not need any manual
intervention to deliver the newly pushed code to the Classic and Cloud systems where the
running services are immediately updated.

Figure 6.1: The build pipeline which is executed for each push to the master branch
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6.1 Building

Building the backend services from the source code is quite straightforward thanks to the
Go tooling. Only two commands are executed in a golang container to fetch dependencies
and build the application for amd64 Linux systems:

Listing 6.1: Go Build

go get -v -d ./... # load dependencies as specified in the
go.mod file

CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build -ldflags="-w -s" -o
$CI_PROJECT_DIR/hgf -backend # build a statically linked binary
for amd64 linux without debug information

The frontend build uses npm for package management and the npm build tasks are
provided by create-react-app. The build process does not produce an executable file, only
static files which can be served by any web server.

Listing 6.2: Frontend Build

npm install
npm run build

6.2 Unit testing

Unit tests were implemented to verify functionality of components of backend services.
Those tests are especially important for critical components like the analyzer. With the
unit tests it can be verified that the current implementation produces the expected results,
but they are also helpful to determine whether future changes to the code impact those
results and might cause a regression.
The tests are implemented using Go’s testing tools, a sample unit test which tests the speed
calculation needed for the stop analysis is shown in the following listing. The amount of
test cases has been reduced for brevity.

Listing 6.3: Speed calculation unit test

package common
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import (
"testing"
"time"

)

func Test_calculateSpeed(t *testing.T) {
type args struct {

posA Position
posB Position

}
tests := [] struct {

name string
args args
want float64

}{
{

name: "speed",
args: args{

posA: Position{
Lat: 48.298427340179686 ,
Lon: 14.335288657343233 ,
Alt: 250,
Time: time.Date (2021, 10,

17, 15, 54, 14, 98000 ,
time.Local)

},
posB: Position{

Lat: 48.29819100688015 ,
Lon: 14.3354589906351 ,
Alt: 249,
Time: time.Date (2021, 10,

17, 15, 54, 15, 64000 ,
time.Local),

},
},
want: 29.177073998403447 ,

},
/* further test cases removed for brevity */
}
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for _, tt := range tests {
t.Run(tt.name , func(t *testing.T) {

if got := CalculateSpeed(tt.args.posA ,
tt.args.posB); got != tt.want {

t.Errorf (" calculateSpeed () = %v,
want %v", got , tt.want)

}
})

}
}

The unit test tests the CalculateSpeed function, which wants two Position objects as parame-
ters. Based on this data, the average ground speed is calculated and returned. The return
value is compared to the want value in the test case. If those values do not match, the test
is failed and an error is recorded.
Unit tests are executed before every build by using the go test command.

6.2.1 Real world test data

For the analyzer a testing system was introduced which allows using real data from the
system to create new test case. With these tests it can be ensured that interesting scenarios
which might come up during operation of the system can be added to the test suite easily
to verify that those scenarios will continue to work correctly in future versions.
But this can also be used to create tests for scenarios which were not correctly analyzed
(e.g. false positive incident detected) and allow the implementation of improvements in
the analysis algorithm in a test driven way.
The creation of such test scenarios is quite simple: the users loads and visualizes the
relevant data via the web application. The backend response for the requested flight data
is saved to a file and the test scenario is specified by adding the new file and the expected
results to the tests array in the unit test.
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6.3 Containerization

All backend services are containerized for deployment using very similar Dockerfiles to
create the containers. The following listing shows the Dockerfile of the Backend:

Listing 6.4: Backend Dockerfile

FROM golang:alpine as build
# Redundant , current golang images already include ca -certificates
RUN apk --no-cache add ca-certificates

FROM scratch
COPY --from=build /etc/ssl/certs/ca -certificates.crt

/etc/ssl/certs/
COPY hgf -backend hgf -backend
COPY waypoints.cup waypoints.cup
EXPOSE 8080
EXPOSE 2112
ENTRYPOINT ["/hgf -backend "]

The Docker build is only executed after the Go-build step has succeeded, so the binary
hgf-backend is already available as artifact of the previous build and does not need to
be built from the source code again. However, a multi-stage build is used anyway to
build a small container only containing the necessary elements [32]. In the first stage,
the golang:alpine image is used and the ca-certificates package is installed, if not already
contained in the image [33]. This allows the second and final stage to populate an empty
image (scratch) with the SSL certificates installed in the first stage [34]. Those certificates
are needed if the application in the container wants to open a connection using TLS and
verify the certificates. Additionally, the binary of the application (in this case hgf-backend)
and the waypoints file are added to the image. The image exposes port 8080 where the
application will provide its functionality and port 2112 where a Prometheus endpoint
provides metrics. The entry point of the image is the application binary.
Other Go services are containerized similarly.
The web frontend’s Dockerfile differs from the Go services, as the frontend build does not
produce an executable application, only static files which can be served by a web server.
Therefore, nginx is used via the official nginx base image to build a container image as
shown in the following listing [35]:
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Listing 6.5: Frontend Dockerfile

FROM nginx
COPY build /usr/share/nginx/html
COPY nginx/default.conf /etc/nginx/conf.d/default.conf

Only the build outputs and a configuration file are copied to the image. The configuration
file is necessary to configure nginx to correctly handle the single page application - for any
requested path, the index.html is served as the routing inside the application is handled
via JavaScript on the client side.

6.4 Classic Deployment

The classic deployment uses one single host to operate all the necessary services for the
system. This host is a "Cloud-Server" hosted by Hetzner running Debian stable [36].
The databases use the official Docker images of the vendors, i.e. MongoDB Community
Edition and Influx 2.0 OSS [37, 38].
All containers provide services reachable from outside the host are running behind a nginx
reverse proxy which takes care of TLS using Letsencrypt certificates.
Backend services are executed using the Docker images. Systemd is used to manage these
services.
A deployment of a Go service consists of two steps. First, the correct container is assigned
the "production" tag. Afterwards, an update script is executed via ssh on the target server
which updates the service. This requires the CI service to be able to authenticate to
the target server. To achieve that, an RSA private key is provided via an environment
variable to the CI job. To limit the abuse potential via these keys, they are limited to
a single command, and can therefore only trigger the update of a specific service, but
it is not possible to execute arbitrary commands on the target server via the CI script
or by extracting the key from the CI environment. The executable deployment which
is triggered via ssh is not managed by the deployment process and cannot be remotely
modified using a deployment key. Only the server administrator is supposed to update
these critical scripts.
The aforementioned update scripts trigger a restart of the corresponding systemd service.
These services take care that the current instance is shut down, the latest image with the
"production" tag is pulled and started.
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Pulling from the Docker registry requires a deployment key which is allowed to read, but
not write from the registry and is saved on the server.

6.4.1 Deployment Example for HGF-Auth

In this section the necessary configuration files and scripts for a deployment of the authen-
tication service are shown. All other go services are deployed similarly. The following
listing shows the deployment job which is configured in the .gitlab-ci.yml which deploys
to the host pwandl.xyz.

Listing 6.6: .gitlab-ci.yml

deploy_pwandlxyz:
image: docker:latest
stage: deploy
services:

- docker:dind
environment: production
variables:

CI_REPOSITORY_URL: git@gitlab.com:$CI_PROJECT_PATH.git
only:

- master
dependencies:

- docker -build
before_script:

- docker login -u "$CI_REGISTRY_USER" -p
"$CI_REGISTRY_PASSWORD" $CI_REGISTRY

- echo ’preparing environment ’
- apk add --update openssh -client
- eval $(ssh -agent -s)
- mkdir -p ~/. ssh/
- echo "$PWANDLXYZ_DEPLOY_KEY" | tr -d ’\r’ | ssh -add - >

/dev/null
- touch ~/.ssh/known_hosts
- echo "$PWANDLXYZ_SSH_KNOWN_HOSTS" > ~/.ssh/known_hosts
- chmod 644 ~/. ssh/known_hosts

script:
- echo ’tagging image for release ’
- docker pull "$CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA"
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- docker tag "$CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA"
"$CI_REGISTRY_IMAGE:production"

- docker push "$CI_REGISTRY_IMAGE:production"
- echo ’prepared image , deploying now ’
- ssh hgf@pwandl.xyz /srv/hgf/deploy -auth.sh
- echo ’deployment completed ’

The deployment job is only executed for builds on the master branch and can only be run
after the "docker-build" step has successfully finished.
The deployment job is executed in a "docker" Docker container which provides the tools to
manage the docker containers. In the before_script block, the system is prepared by using
GitLab-CI’s environment variables to make sure both docker and ssh commands later can
be used without issues. For Docker, it is necessary to login at the GitLab Docker registry.
For SSH, the openssh-client package is installed, the known_hosts file is created with the
known host key of the target server, and the private key is read from an environment
variable and added to the ssh authentication agent.
The docker image built in a previous step is pulled by the script, tagged as "production",
and finally the tag is pushed. Afterwards the deployment script on the server is started
via ssh.
The deployment script is very simple, it only triggers a restart of the systemd service:

Listing 6.7: deploy-auth.sh

#!/ bin/bash

sudo systemctl restart hgf -auth.service

The sudo capabilities of the user are very limited and only relevant commands are allowed
as shown in the sudoers configuration:

Listing 6.8: /etc/sudoers.d/hgf

hgf ALL=NOPASSWD: /usr/bin/systemctl restart hgf -auth.service
# additional entries redacted for brevity

The systemd service is configured as follows:

Listing 6.9: hgf-auth.service

[Unit]
Description=HGF auth service
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Requires=docker.service ,hgf -mongo.service
After=docker.service
User=hgf
Group=hgf

[Service]
Type=Simple
ExecStartPre =-/usr/bin/docker rm -f hgf -auth
ExecStartPre =/bin/sh -c ’/usr/bin/cat /srv/hgf/gitlab.key |

/usr/bin/docker login --username hgf_production
--password -stdin registry.gitlab.com && /usr/bin/docker pull
registry.gitlab.com/h-g-f/hgf -auth:production ’

ExecStart =/usr/bin/docker run --name hgf -auth -p
127.0.0.1:9002:8080 --network hgf -v
/srv/hgf/auth.properties :/srv/hgf/auth.properties:ro -e
CONFIG_PROPERTIES =/srv/hgf/auth.properties
registry.gitlab.com/h-g-f/hgf -auth:production

ExecStop =/usr/bin/docker stop hgf -auth
Restart=always

[Install]
WantedBy=default.target

Before starting the service, the old container is removed and the docker daemon logs in to
the GitLab registry and pulls the hgf-auth image tagged with production.
The start command creates a new container from the previously pulled image. Noteworthy
here are some of the passed arguments. The application listens to port 8080 inside the
container, which is published to the host port 9002. This is necessary for the reverse proxy
to connect to the container, as the reverse proxy is currently running natively on the host
due to historical reasons. Additionally, the container is connected to the hgf network,
which is also used by the database container, so the application and the database can
communicate via this docker network. The application configuration is read from property
files and only the location of the configuration file is passed as environment variable.
Therefore, the configuration file is mapped as read-only volume into the container.
The configuration file specifies some properties and application secrets which need to be
adapted to the environment and should not be hard coded or managed with the code:
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Listing 6.10: auth.properties

auth.key.public=<redacted >
auth.key.private=<redacted >
cors.origin=https :// hgf.pwandl.xyz
mongo.user=hgf -admin
mongo.password=<redacted >
mongo.db=hgf
mongo.endpoint:hgf -mongo

It provides the keys for the JWTs, defines the origin, so the application can correctly use
CORS and configures the connection to the MongoDB.

6.4.2 Monitoring

To provide some insights into the system’s behavior, a simple monitoring system has been
set up. The main components of the monitoring system are Prometheus, a database which
stores the application metrics, and Grafana, a web application used to visualize the data
[39, 40].
The Go applications can be easily monitored employing the Prometheus Golang client.
The following listing shows how the Prometheus client package is used to expose metrics
via HTTP on port 2112:

Listing 6.11: Prometheus Go Client

go func() {
promMux := http.NewServeMux ()
promMux.Handle ("/ metrics", promhttp.Handler ())
err := http.ListenAndServe (":2112" , promMux)
if err != nil {

log.Printf ("error serving prom metrics: %v", err)
}

}()

This endpoint is polled by the Prometheus server to collect the data. The data includes
technical information like memory usage and garbage collection statistics, but can also
contain custom metrics. An example of such a custom metric is timing a performance
critical part of the application using a Prometheus histogram and a Timer object.
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Figure 6.2: Custom Grafana dashboard

Grafana is able to connect to a variety of data sources, so not only Prometheus data can be
visualized, but also data contained in Influx or MongoDB. Existing dashboards from third
party sources can be imported to visualize standard data like the aforementioned technical
information provided by the Golang client. Custom dashboards can be built to visualize
system specific data and provide a nice overview as show in figure 6.2. The dashboard
shows some information about the system usage, like the amount of users authenticated
in the selected time range or the amount of detected events. It also contains more technical
information, like the service health and memory usage of the services. The values show
that the tracked traffic and the load on the system was very low in the selected time frame.
Logs are collected using Debian’s default logging system and can be easily accessed using

journalctl.
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6.5 Cloud Deployment

The cloud deployment uses Google Cloud Platform (GCP) services and commercial ser-
vices of the database vendors to run the system [41].
Mongo Atlas is a Software-as-a-Service (SaaS) product offered by MongoDB which is used
for the general purpose data store [42]. The InfluxDB is provided similarly via the Influx
Cloud service by InfluxData [43]. These services allow the usage of those technologies
without the need of provisioning servers or any other infrastructure or having to maintain
and update these services, as those tasks are fulfilled by the respective vendors.
The application services are deployed in Cloud Run services. Cloud Run executes the pro-
vided software in the Docker container and exposes an HTTPS endpoint to communicate
with the deployed software [44]. To be able to use a custom domain name, Load Balancing
is used. This allows listening on custom DNS names with managed TLS certificates,
redirecting HTTP traffic to HTTPS and as the name suggests, load balancing if multiple
instances of a service are running in Cloud Run [45].
The Cloud Run configurations have been created manually using GCP’s web console.
Similar to the classic deployment, the actual deployment of the software is automated
in the CI pipeline and the current version is automatically deployed for any push to the
master branch.
First, the Docker image is pushed to a Docker repository in the Artifact Registry [46]. Then
the deployment of the new version is triggered via Google Cloud SDK command line tool
[47].

6.5.1 Deployment Example for HGF-Auth

In this section the necessary configuration files and scripts for a deployment of the authen-
tication service are shown. All other go services are deployed similarly.
The initial creation of the Cloud Run service via the web console is quite straightforward,
some parameters like name of the service, network configuration and capacity settings
(e.g. memory, vCPUs, min/max number of instances) have to be specified. The application
specific configuration is provided via environment variables (in contrast to the classic
deployment, where configuration files are used). Those variables can be also defined in
the web console and can also reference secrets, like database authentication keys, managed
in Secret Manager as shown in figure 6.3. The Load Balancing is configured via the web
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Figure 6.3: GCP Cloud Run Variables & Secrets configuration
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console as well, specifying the HTTP to HTTPS redirect rule, the connection to the Cloud
Run and the DNS name and platform managed TLS certificate. Future deployments might
rely on Cloud Run Domain mappings instead, however those are only in preview yet, so the
Load Balancing was needed to be able to use custom DNS names for the services.

The following listing shows the two jobs needed for the deployment to GCP as defined in
.gitlab-ci.yml.

Listing 6.12: .gitlab-ci.yml

push_gcloud:
image: docker:latest
stage: publish
services:

- docker:dind
environment: gcloud
variables:

CI_REPOSITORY_URL: git@gitlab.com:$CI_PROJECT_PATH.git
only:

- master
dependencies:

- docker -build
before_script:

- docker login -u "$CI_REGISTRY_USER" -p
"$CI_REGISTRY_PASSWORD" $CI_REGISTRY

- echo $GCLOUD_KEY_BASE64 | docker login -u _json_key_base64
--password -stdin https ://europe -west1 -docker.pkg.dev

script:
- echo ’tagging image for gcloud release ’
- docker pull "$CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA"
- docker tag "$CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA"

"europe -west1 -docker.pkg.dev/h-g-f -344207/ hgf/hgf -auth:production"
- docker push

"europe -west1 -docker.pkg.dev/h-g-f -344207/ hgf/hgf -auth:production"
- echo ’pushed image to gcloud ’

deploy_gcloud:
stage: deploy
only:
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- master
image: google/cloud -sdk:latest
environment: gcloud
dependencies:

- push_gcloud
script:

- echo $GCLOUD_KEY_BASE64 | base64 --decode | gcloud auth
activate -service -account --key -file=-

- gcloud run deploy "hgf -auth" --image
"europe -west1 -docker.pkg.dev/h-g-f -344207/ hgf/hgf -auth:production"
--project h-g-f -344207 --region europe -west1

The necessary key used for authentication to GCP is provided base64 encoded as variable
GCLOUD_KEY_BASE64 to the build job. It is used for the docker login command and for
the gcloud auth command.
The push_gcloud job simply tags the image with the correct name and "production" tag to
push it to the project’s GCP repository where it will be available for services like Cloud
Run. The deploy_gcloud job triggers a deployment for the pushed production tag. Only
then the Cloud Run service pulls the updated container for the selected tag and deploys
the new versions.

6.5.2 Monitoring

For the cloud deployment, no custom monitoring system was set up. Instead, GCP
provides enough tools to fulfill the basic monitoring needs, which is shown in figure 6.4.
Logs are available via the Log Explorer which also allows creating alerts, e.g. for all logs
with error log level or for a specific log message [48].
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Figure 6.4: GCP Cloud Run Metrics

6.6 Deployment Comparisons

While both of the deployments fulfill the requirements to run the system, the differences
are quite big in some aspects. Table 6.6 provides an overview for important aspects
of the system. The added flexibility and comfort of the cloud system comes with a
significantly bigger price tag, but also significantly more possibilities, e.g. redundant
deployments over multiple geographic regions with little effort. The actual pricing of the
cloud system depends on usage of the system, more load leads to higher cost, while the
classic deployment offers more predictable pricing.
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Classic Cloud

Managing Services systemd unit Google Cloud Run
Horizontal Scaling no, exactly 1 instance yes, 0+ instances
Load Balancing No load balancing possible Cloud Load Balancing
HTTPS letsencrypt cert Managed SSL certs
General purpose data store MongoDB Community

Server
MongoDB Atlas

Time series data store InfluxDB OSS InfluxDB Cloud
Monitoring Prometheus + Grafana Google Cloud tools
Pricing ca. e8 ca. e100

Table 6.1: Comparison of Deployments

6.7 Data Privacy

The system aims to only collect as much data as necessary.
Flight data collection is strictly limited to whitelisted aircraft; all other data is ignored as
soon as feasible. No data of aircraft which has not opted in to tracking will be stored in the
system. Flights are not connected to pilots, however with access to additional information
like start lists it might be possible to achieve that connection outside the system.
The flight data is currently only collected from publically available sources, i.e. the
OpenGliderNetwork or the broadcasted FLARM messages.
Opt-in is trivial for privately owned gliders, where the pilot/owner can choose to accept
the tracking for themselves. With club aircraft, multiple pilots may use the same aircraft,
who would need to consent to the tracking. However, clubs can introduce additional
usage limitations to their aircraft (like experience limits, additionally required training, ...)
which may include accepting the tracking of the used aircraft.
The position data stored in Influx is automatically deleted by Influx after it reaches a
configured age. Currently, the configured age is one year. For a productive use without the
goal of developing system improvements based on the data, a much lower retention time
could be achieved, like 14 days after which a missing aircraft should be at least identified
to be missing, so any needed data can be extracted. Data used for development does not
need to be connected to a real aircraft, so pseudonymization is possible. In contrast to
e.g. tracking of cars or e-scooters, which might be used to travel directly to one’s home or
office, it is harder to identify pilots based on their flight path as the start and endpoints are
usually limited to airfields used by lots of other pilots. The flight path itself might identify
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a pilot, but only in very specific cases, like a pilot known for repeatedly flying a specific
route with unique waypoints. Usually, it would not be possible to identify a specific pilot
by the flown route, especially in soaring flight, as those routes are heavily influenced by
external circumstances like meteorological conditions and traffic.
Users do not need to provide any personal information to use the system, except a unique
username and a password (which is stored as a hash). E-Mail addresses can be optionally
entered if the user wishes to receive notifications. User behavior is recorded by the
auditing functionality to detect possible privacy infringements when a user abuses the
system.
As described in 4.3, none of the data is made publically available, and it is taken care that
only authorized users are allowed to access the data they need to access.
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Testing has been done using both artificial test data and real world flight data. The
simulation tools, described in section 5.6, played an important role during testing. It
allowed testing changes to the system immediately without having to conduct a test flight
based on real world data. Test flights would of course be the most realistic tests, but they
are quite time-consuming and expensive. Additionally, some scenarios are not testable in
a test flight, e.g. crashing an aircraft just to test the incident detection is not advisable. It is
however possible to test the outlanding detection by providing manipulated airfield data,
so that the system is not aware of an airfield being located at the position of the landing
and therefore detecting an incident as shown in figure 7.1. Logged data from test flights at
least allowed replaying scenarios with real world data without having to repeat the actual
flight.
Unit testing was used to cover important algorithmic parts like the analysis components.
Tests which involve more than one component were conducted manually as the effort
of creating automated end-to-end tests was estimated too great to be worth it at the
moment.
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Figure 7.1: "True" positive incident with manipulated airfield data shown in the web application

7.1 Data Verification

Data from the different connected data sources has been checked to be of sufficient
quality. While some limitations have been detected during testing as described in the
following sections, all data sources provided quite reliable data and can benefit the system.
Verification of data was mostly done manually with the usage of the developed tools and
third party tools to provide a comparison.

7.1.1 OGN Data

To verify data ingested from the OGN network is of usable quality, third party OGN clients
have been used to compare the collected data to the data shown in those third party appli-
cations. The used third-party clients were web applications (https://live.glidernet.
org, https://glidertracker.de) and a mobile application (https://play.google.com/
store/apps/details?id=com.meisterschueler.ognviewer). The data available in the
HGF system, including the visualization in the web application was compared to the data
available via those third party applications. Even when the data itself seems to match,
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visualization differences exist due to different data processing and visualization, e.g. the
Glidertracker shows no markers for the data points and seems to interpolate the data for
a smoother and visually more appealing presentation while the HGF web application
draws straight lines and markers for each data point.
Possible latencies introduced by the OGN network are not problematic, as the messages
contain a timestamp (with milliseconds resolution) when the FLARM message was cre-
ated.
One issue with the OGN data was found when comparing different clients: not all in-
stances seem to receive all data points. So while the data points which are received on
all instances contain equal data, it seems that not all data points are sent to all instances.
This behavior can be observed even when comparing multiple instances of the same ap-
plication, e.g. running the OGN Viewer app on multiple phones or comparing the different
deployments of the HGF system.
The achieved sampling rate (up to 0.1 Hz) is sufficient for the stop analyzer to be able
to detect events, but the limitation has to be kept in mind for future analysis algorithms,
which should not rely on uninterrupted data streams and higher sampling rates, if only
OGN data is expected to be available.
Comparing OGN data to other data sources, like the collected tracks of the navigation
software (LK8000) or visible traffic around an airfield showed no significant errors in the
data.

7.1.2 Relayed Data

Data relayed by the Android app was compared to other available data, like the afore-
mentioned OGN data and verified similarly using the visualization provided by the web
application. An aero tow was used as a real life test scenario to collect data. In this test, the
tow plane used the Android application to ingest data, both the tow plane and the glider
were equipped with FLARM. As the flown routes and speeds are very well known in this
scenario, data could be verified to be plausible even without perfect OGN coverage in
lower altitudes. OGN data and data from the Android application does not match exactly,
but the differences of up to a few meters in location data are minor and not significant for
the currently used analysis algorithms. This difference can be explained by the more com-
plex calculation of the position of the tracked aircraft when using the Android application.
Via OGN, the position data is received via the FLARM message and used without further
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processing. Via the Android application, it has to be reconstructed from multiple NMEA
messages due to the limitations of the FLARM data port specification. As only the relative
position of the tracked aircraft is received, the absolute position needs to be calculated by
using the last known position of the tracking aircraft. This introduces multiple sources
for errors. The last known position of the tracking aircraft might be slightly outdated,
the position data itself can contain some inaccuracy as it is based on GPS data and all
calculations use floating point numbers which might also introduce minor imprecision.
The timestamp of the data is based on the smartphone’s system time as the traffic sentences
do not contain a timestamp. As modern smartphones usually have a quite accurate time
setting, no problems were detected with the timing of the data.

7.2 Processing Verification

The initial testing of the implemented flight data processing was based on data from flight
simulator flights. This provided great flexibility with possible scenarios and generated
useful data quickly. Additionally, no environmental factors like the coverage of a tracking
system were a concern.
The algorithms were also applied to real world data available in the system and false results
were used to create unit tests and improve the algorithms even further. In addition to
unit tests, manually testing new versions of processing algorithms is very straightforward
using the web application, as the backend always applies the latest detection algorithms
to the data when loading flight data for visualization, so the new results are immediately
available also for old data.
Testing showed a perfect detection of crashes and landings for simulated flights. Every
crash, outlanding and landing on an airfield in simulated flights was correctly detected,
and neither false positives nor false negatives could be provoked.
For real world flights, the results depend mostly on the data quality. In areas with good
tracking coverage, the landing detection works as perfect as in the simulations. Bad
coverage and therefore incomplete data inevitably lead to false negatives as the current
algorithms are not designed to handle such cases. Detection of a real incident was luckily
not possible as no relevant incident occurred during the time of testing the system. A
few false positives were noticed, some of which could be explained by aerobatic flight
maneuvers. The other false positives seem to have occurred in scenarios where the
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Figure 7.2: False positive incident shown in the web application

coverage and therefore the sampling rate was not optimal and additionally where the
ground speed did not match the airspeed very well, possibly due to headwinds and/or
flight maneuvers like pulling up into a thermal and starting circling.
An example of a false positive is shown in figure 7.2. In this case, the speed data was
collected via OGN and was part of the message, so no calculation based on the location
data was necessary. As the equipped FLARM in this glider does not have a pitot sensor, it
can only report speed based on GPS data and therefore only ground speed, not air speed.
This can explain why the aircraft was still flying at reported speeds (37 km/h, 40 km/h,
50 km/h) way below the stall speed (ca. 60 km/h) [49]. The reason for the low reported
ground speed cannot be determined with certainty, but probable causes are winds and the
glider changing directions quite quickly.
The results might be improved further with more fine-tuning of the preset parameters,
like the speed threshold or the averaging window. Such improvements might be possible
after operating the system for a while and gathering more data and might also depend
on additional data sources. For example, a narrower averaging window will currently
not bring any improvements, as the actually achieved sampling rate of the data is not
significantly higher than after the windowed sampling. If an additional data source with
higher sampling rate would be connected to the system, it could be necessary to reevaluate
such parameters.
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While the system can already be practically used and fulfills the requirements, there are
still several possible improvements.

8.1 Additional Data Sources

As the quality of the visualized data and incident detection depends highly on the collected
data, integrating more data sources could bring significant benefits. The system itself
can be easily extended with additional collectors, so no big adaptions would have to be
implemented. Some data providers only provide paid licensing for API access and their
data sources. A big benefit for the system would be a collection of ADS-B data to also track
aircraft equipped broadcasting their location via ADS-B. Some gliders already feature
ADS-B out capable transponders, so only a new collector which gathers data from a service
providing ADS-B tracking would be need to track these aircraft.

8.2 Improved Incident Detection Algorithms

The data analysis algorithms described in section 4.2 only support very specific and limited
scenarios. More advanced algorithms might be capable of detecting more incidents, such
as crashes where the avionics are destroyed and no further data is broadcast by the aircraft.
This might include implementing heuristics which can detect a possible incident in case of
lost tracking connection or some anomaly detection based on modern machine learning
techniques.
Every development in this directing potentially leads to significant testing efforts and
might even require more sophisticated testing tools and simulators.

61



8 Future Work

8.3 Improved Testing Tools

While the current incident detection algorithm can be tested easily with the implemented
tools, future development might be limited by the test data sources.
As the SimConnector provides perfect data quality, it is not quite representative for real
world scenarios. It could be extended to add some noise to the data to mimic GPS errors
and to drop some data to simulate imperfect tracking coverage.
The FLARM Simulator might be extended to support multiple logs and merge and replay
them with accurate timing to be able to simulate multiple aircraft at the same time. This
could be especially important when implementing heuristic detections, e.g. if one aircraft
is visible at the expected position of another tracked aircraft which lost connection, it
might indicate an incident.
Generally, end-to-end testing for all system components would help to ensure correct
functionality of all parts working together without having to manually test the system
after implementing or changing features, but is only worth the effort if the system will be
actively developed and operated for a longer time period.

8.4 Acceptance Testing

The usability of the user interfaces is not yet verified by testing with a diverse audience. Ac-
ceptance tests with users of the target group might deliver some insights into how a typical
user would use the system and where the user interface might need improvements.

8.5 Connection to Start List

As lots of clubs use electronic start lists, it would be possible to connect this system to
these start lists and therefore be able to link aircraft and pilots. However, this is currently
not implemented due to both data privacy concerns and the low cost-benefit factor of such
a feature.
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8.6 Supporting Multiple Clubs

Currently, the system is designed with global roles like Administrators and Viewers and
does not provide multi-tenant support. In the future, it might be needed to use the systems
in multiple clubs without sharing data and permissions. This could be achieved by just
deploying another instance of all components so that each club hosts their own instance
of the system. While this would not require any code changes, it would need an improved
deployment process for infrastructure components to save time and avoid errors. This
could be achieved by automating the infrastructure deployment using Infrastructure-as-
Code (IaC) technologies like Terraform [50].
Another possible solution would be to implement multi-tenant capabilities and offer
the systems as Software-as-a-Service product. While this would come with significant
development effort, it would possibly keep recurring infrastructure costs significantly
lower.
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