
Introduction to Quantum Computing
Johannes Kepler University Linz / Fall 2023

Prof. Dr. Richard Kueng, MSc ETH

Special thanks to Kristina Kirova, Johannes Kofler, Alexander Ploier, and
Jadwiga Wilkens (alphabetical ordering) for carefully checking and revising
these lecture notes.

Copyright ©2024. All rights reserved.

These lecture notes are composed using an adaptation of a template designed by
Mathias Legrand, licensed under CC BY-NC-SA 3.0 (http://creativecommons.
org/licenses/by-nc-sa/3.0/).

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Contents

1 Motivation and outline . 1
1.1 Motivation: integer factorization 1
1.2 Quantum processing units (QPUs) 3
1.2.1 Non-technical analogy . 3
1.2.2 Different types of quantum hardware . 5
1.3 Tentative overview of topics 8
1.4 Open-source toolkits to play around with quantum circuits 8
1.5 Exam and grading process 9

2 Single qubit circuits I . 10
2.1 Introduction 10
2.2 Gaining intuition 11
2.2.1 Overall layout of single-qubit quantum circuits 11
2.2.2 Classical options: identity and bit-flip gate . 12
2.2.3 Quantum options: superposition and sign-flip . 13
2.3 Rigorous formalism: matrix-vector multiplication 15
2.4 Application: the BB84 quantum key distribution 20

3 Single qubit circuits II . 25
3.1 Motivation and outline 25
3.2 Excursion: complex numbers 26

3.3 Ultimate limits of single-qubit logic 28
3.3.1 Recapitulation . 28
3.3.2 Clifford gates . 30
3.3.3 Universal gate sets . 34
3.4 Pauli rotation gates 36
3.5 Application: restricted sum of parity computations 39

4 Two qubit circuits . 43
4.1 Classical reversible operations on 2 bits 43
4.1.1 Combining single-bit operations in parallel . 44
4.1.2 The Kronecker product . 46
4.2 Quantum operations on 2 qubits 48
4.2.1 Quantum gates on 2 qubits . 48
4.2.2 Quantum states on 2 qubit . 49
4.2.3 The CNOT gate . 50
4.2.4 Examples: CNOT1→0 and a random number generator 51

5 Bell states & Superdense Coding . 54
5.1 Motivation: The Bell state 54
5.1.1 Stronger than classical correlations . 55
5.2 More Bell states 60
5.3 Bell measurement 60
5.4 Superdense Coding 61
5.5 Quantum Games: The Prisoner’s Dilemma 63

6 Entanglement . 67
6.1 Entanglement 67
6.1.1 Rotated Bell states . 68
6.2 The CHSH game and Bell inequalities 70
6.2.1 The CHSH game . 70
6.2.2 Optimal classical strategies . 71
6.2.3 Optimal quantum strategy . 73
6.3 CHSH rigidity and monogamy of entanglement 76
6.4 Bell inequalities and the violation of local realism 76
6.5 The E91 protocol for quantum key distribution 77

7 Quantum teleportation . 80
7.1 Motivation 80
7.2 Background: marginal and conditional probabilities 82
7.2.1 Marginal probabilities . 82
7.2.2 Conditional probability distributions . 83

7.2.3 Example 1: Bell state readout . 84
7.2.4 Example 2: Drawing straws . 86
7.3 Quantum𝑇 -gate teleportation 87
7.4 Quantum state teleportation 91

8 General 𝑛-qubit architectures . 98
8.1 General 𝑛-qubit architectures 98
8.2 Classical description of 𝑛-qubit architectures 99
8.2.1 State vector representation of general 𝑛-qubit states 99
8.2.2 Circuit matrix representation of general 𝑛-qubit circuits 101
8.2.3 Classical simulation of 𝑛-qubit logic and readout 104
8.3 Implementing classical circuits with quantum logic 106
8.3.1 Quantum realizations of elementary logical gates 107
8.3.2 Quantum realization of entire Boolean circuits 108
8.4 Synopsis 111

9 Amplitude amplification circuits . 113
9.1 Motivation 113
9.2 Setup 113
9.3 Overall idea for a quadratic quantum advantage 116
9.3.1 high-level vision . 116
9.4 Concrete circuit construction 119
9.4.1 Circuit 1: reflection about good solutions (‘Grover oracle’) 119
9.4.2 Circuit 2: reflection about uniform superposition (‘diffusion operator’) . . . 121
9.4.3 Combination of the two circuit blocks . 121
9.5 Full quantum search algorithm 122

10 Fourier-type transforms . 124
10.1 Fourier transform 124
10.1.1 Motivation . 124
10.1.2 Discrete Fourier transform . 125
10.2 Quantum Fourier transform 127
10.2.1 Quantum implementation . 128
10.2.2 Fast (classical) Fourier transform . 130
10.3 QFT as a subroutine - Quantum phase estimation 131

11 Shor’s algorithm for integer factorization 136
11.1 Motiviation: hard instances of integer factorization 136
11.2 Reducing Integer Factorization to order finding 137
11.2.1 The order finding problem . 137
11.2.2 Solving integer factorization via order finding . 139

11.3 Efficiently solving order finding on a quantum computer 141
11.3.1 Recapitulation: quantum phase estimation . 141
11.3.2 Identifying the order parameter in eigenvalues of a simple reversible circuit 143
11.3.3 Approximate eigenvalues of this simple reversible circuit via phase estimation

144
11.4 Synopsis: implementation of Shor’s algorithm 147

12 Learning from quantum experiments 149
12.1 Motivation 149
12.2 Stylized learning challenge: data hiding 150
12.2.1 Encoding strategy . 152
12.2.2 Conventional approach . 153
12.2.3 Quantum-enhanced approach . 155
12.3 Demonstration on an actual quantum computer 157

Bibliography . 164

1. Motivation and outline

Date: October 4, 2023

Agenda:

1 motivation: integer fac-
torization

2 quantum processing
units (QPUs)

3 overview of topics
4 grading process

1.1 Motivation: integer factorization
One of the core objectives in computer science is, well, to compute things. On
a high level, this is typically achieved by developing algorithms that break
down potentially complicated tasks into a sequence of simpler, standardized
operations. These standardized operations can then be executed on (classical)
hardware. A modern CPU, for instance, can execute billions of elementary
logical and arithmetic operations in mere seconds, so we are blessed with
substantial amounts of raw computing power.

Alas, raw computing power may not always be enough. There is a wealth
of computing problems, where scalability issues prevent even supercomputers
from going to really large problem sizes. One well-known problem of this
kind is integer factorization: decompose a (typically large) number 𝑁 ∈ ℕ

comprised of 𝑛 bits (𝑛 = ⌊log2(𝑁)⌋ + 1) into a product of prime numbers, i.e. integer factorization of a 𝑛-bit
number

𝑁 = 𝐹0 × · · · × 𝐹𝑚−1 with 𝐹0, . . . , 𝐹𝑚−1 ∈ ℕ prime. (1.1)

The fundamental theorem of arithmetic states that every positive integer has
a unique prime factorization (if we arrange the factors in non-decreasing
order, i.e. 𝐹𝑖−1 ≤ 𝐹𝑖). And it is relatively easy to check that the maximum
number of factors 𝑚 must obey 𝑚 ≤ log2(𝑁) ≈ 𝑛. So, there can never be
too many factors. Also, and more remarkably, it is possible to check that each
proposed factor 𝐹𝑖 is actually a prime number. This is courtesy of the AKS
algorithm which also scales polynomially in 𝑛. Together, these two insights
ensure that it is always possible to efficiently check whether a proposed integer
factorization (1.1) is valid. Here, efficiently means that the number of required

2 Lecture 1: Motivation and outline

operations scales (at most) polynomially in the representation size 𝑛 (bit length)
of 𝑁 .

But, how can we actually find an integer factorization in the first place?
The easiest algorithm is trial division which goes back to Fibonacci and is
often taught in middle school: systematically test whether 𝑁 is divisible by a
smaller number. For instance, 12 = 2 × 6 = 2 × 2 × 3 which is a valid integer
factorization. This algorithm works well if there are a lot of small prime factors,
because it is comparatively cheap to identify those. And subsequent divisions
reduce the remaining problem size considerably. But, trial division can become
extremely resource-intensive if this is not the case. The worst case occurs if
𝑁 = 𝐹0 × 𝐹1, where 𝐹0 < 𝐹1 are unknown prime numbers of size ≈

√
𝑁 . In

such a situation, we need very many trial divisions to find the first prime factor.
Indeed, naively trying all numbers between 2 and 𝐹0 ≈

√
𝑁 requires a total of

≈
√
𝑁 trial divisions. This number alone is exponentially large in the bit size 𝑛

required to represent 𝑁 :
√
𝑁 = 𝑁 1/2 = 2log2 (𝑁)/2 ≈ 2𝑛/2.

cost of factoring algorithms
scales super-polynomially in
bit size 𝑛

It is possible to considerably improve the (worst-case) runtime of trial division
by only considering numbers that prime to begin with (e.g. don’t try 4, 6, 9, . . .
at all). But, this is not enough to overcome this general worst-case scaling.
The number of required operations for every trial division variant known to
date is still dominated by 2𝑛/2. It should be noted that trial division is not the
best known algorithm for integer factorization. But even the current state of
the art – the general number field sieve – cannot factor a 𝑛-bit number with
a number of basic operations that scales polynomially in 𝑛. hardness of factoring is basis

of RSA public-key encryption
This feature is

actually exploited by widely employed cryptography schemes, most notably
RSA public-key encryption.

To summarize: integer factorization is an example of a problem that is
difficult to solve (best known algorithms scale exponentially in input size), but
easy to verify (correctness of a proposed factorization (1.1) can be checked in
only polynomially many steps). This is the trademark structure of a wide and
important class of problems – the problem class NP which you might remember
from your computational complexity lecture. Other example problems of this
kind include 3-SAT, the traveling salesman problem, knapsack, minesweeper
and many more. But, among NP-problems, integer factorization is special.
Firstly, we have strong reasons to believe that it is not quite as difficult as other
problems, like 3-SAT. Secondly, and more importantly for this course, we have
omitted an important detail in our discussion of known factoring algorithms.
We actually know an algorithm that is capable of factoring a 𝑛-bit number
using a number of elementary operations that scales only polynomially in 𝑛 –
Shor’s algorithm. Shor’s algorithm can factor

integers efficiently, but
requires a quantum computer

The “only” caveat is that this algorithm cannot be executed on
conventional hardware, but requires a different type of hardware that is more
expressive – a quantum computer. We will discuss the precise workings of this
breakthrough algorithm in this class, but also the underlying type of hardware.

3 Lecture 1: Motivation and outline

1.2 Quantum processing units (QPUs)
Shor’s algorithm for efficient integer factorization posits an interesting conun-
drum for tried and tested computer science. For decades, we have divided
computational problems into different classes of difficulty. This difficulty is
measured by the number of operations (or runtime) that is required to solve
these problems on any type of computing architecture. But, at least initially,
we have only considered computing architectures that model the layout of
a modern computer, e.g. Turing machines, or logical circuits. The existence
of Shor’s algorithm suggests that this may be too restrictive. It works on a
different hardware proposal – a quantum computer – and can efficiently solve
a problem that we believed to be hard (factoring). A hypothetical quantum
computer is at least as powerful as any conventional type of hardware, but it
can also natively do things that are impossible – or at least: very expensive –
for modern computers. And unprecedented advances over the last decade have
brought us closer to actually build and operate these machines.

1.2.1 Non-technical analogy
Quantum computers are not the next generation of supercomputers. Rather,
they are an entirely new type of computing hardware based on the rules
of quantum mechanics – the laws of nature that govern physical systems at
microscopic scales (e.g. on the level of individual atoms). And, although
well-understood, these rules are radically different from everyday experience.
Understanding how a quantum computer actually works is therefore not that
easy and we will do so in multiple steps. Although more successful than any
other physical theory, quantum mechanics does not have the reputation of being
either simple, or intuitive. Some quantum mechanical effects are responsible
for the astonishing power of quantum computers, while other effects again
limit their potential considerably. Balancing these blessings and curses against
each other to still obtain a net gain can be surprisingly tricky. And, as a result,
we actually do not know many problems for which quantum computers offer
an unconditional (mathematically rigorous) advantage. But, we know some
and are constantly looking for more.

In order to get a first intuition about quantum computers, a high-level
comparison with conventional hardware can be helpful. The core of most
current computing devices is a central processing unit (CPU). It can be tasked
to carry out any possible set of instructions we throw at it, but is not necessarily
good at computing specific things (a jack of all trades, master of none). This
is where alternative processing units come in. One important example are
graphical processing units (GPUs). They are designed to solve specialized
mathematical operations, in this case large matrix matrix multiplications, much
more efficiently than traditional CPUs. The original motivation for this setup is
computer graphics, but GPUs are also well-suited for training neural networks
and simulating macroscopic physical systems.

However, even GPUs struggle with the excessive number of mathematical

4 Lecture 1: Motivation and outline

macroscopic world quantum realm

CPU QPU

input problem

readout problem

Figure 1.1 Schematic illustration of a hybrid quantum-classical computer: A con-
ventional Central Processing Unit (CPU) can outsource certain computational
task to a Quantum Processing Unit (QPU). The resulting hybrid architecture
combines the strengths of both hardware platforms, but also suffers from
information-transmission bottlenecks (input problem and readout problem).

operations that would be required to accurately simulate physical and chem-
ical processes beneath the nanoscale. Problems of this type occur naturally
in material science (e.g. the search for high-temperature superconductors),
pharmaceutics and chemistry (e.g. ab initio drug design) and fundamental
physics (e.g. probing exotic field theories). All these problems have one thing
in common. They adhere to the rules of quantum mechanics. And this renders
them extremely difficult to handle with classical (in the sense of macroscopic;
not quantum mechanical) computations and hardware. Hence, it would be
great if we had a different type of processing unit that is capable of handling
these kind of problems. This is the conceptual origin of quantum computers
that is often attributed to Richard Fenyman:

“Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”
Richard Feynman, 1981.

The term Quantum Processing Unit (QPUs) captures the intended purpose more
accurately than the colloquially used term quantum computer. quantum computers are

special-purpose processing
units (QPUs)

QPUs are not
designed to supersede conventional computers (like CPUs or GPUs) as a whole,
but are specialized processing units that can further augment computing power.
The result is a hybrid quantum-classical computer, schematically illustrated in
Figure 1.1. This combination produces a completely new and different type
of computing architecture that comes with novel opportunities, but also novel
challenges. We will discuss both throughout the course of this lecture.

5 Lecture 1: Motivation and outline

Figure 1.2 Pictures of different types of quantum hardware: ion-trap computer
(left), superconducting circuit architecture (center) and optical platform (right).
Pictures are taken from phys.org, qmunity.tech and phys.org, respectively.

1.2.2 Different types of quantum hardware
Let us now briefly discuss the most promising ways to actually implement a
quantum computing device. Note that a lot of quantum physics enters when it
comes to the precise working of these devices. This is not the main focus of
this lecture and we therefore content ourselves with a high-level overview of
the three prevalent platforms. Photographs of each are collected in Fig. 1.2

Trapped ion quantum computing
Atoms are individual particles that are very small (radius about 10−10m). They
consist of a positively charged core and a hull of electrons that is negatively
charged. It is possible to remove individual electrons to produce a positively
charged particle – an ion. This charge interacts with external electric fields.
And one can use these effects to trap ions at a specific location in 3D space (Paul
trap, Nobel Prize 1989). This has allowed quantum pioneers to create entire
chains of ions that are trapped in a 1D line, see Fig. 1.2 (left). electronic states of ions carry

quantum information
Qubits – the

fundamental ‘binary’ carriers of quantum information – are stored in electronic
states of each ion, e.g. 0 ↔ground state, 1 ↔first excited state. External
lasers are then used to flip individual qubits, while multi-qubit operations are
achieved by coupling the state of the qubit in question with external motion
states of the entire ion chain.

The result is a fully-functional quantum computing platform where in-
formation is stored in a collection of ions. Today, roughly 30 qubits can be
implemented in this fashion. The clever way of executing multi-qubit opera-
tions ensures that this device has full connectivity. That is, we can let every
qubit talk to every other qubit. One of the downsides of ion-trap platforms is
that they are relatively slow and the motional states – which are essential for
all-to-all interactions between the qubits – are difficult to initialize and can
have rather brief lifetimes. Also, scaling up to (much) larger qubit numbers is
challenging, because the underlying geometry – a chain of ions – is inherently
one-dimensional. A two-dimensional lattice of ions could host much more
qubits, but these assemblages are still in a rather early stage.

Finally, it is worthwhile to point out that ion trap quantum computing is
(almost) an Austrian invention. The theoretical proposal is due to I. Cirac and
P. Zoller (1995) who then both worked in Innsbruck. To this date, Innsbruck

https://phys.org/news/2020-07-ion-technology-quantum.html
https://www.qmunity.tech/post/quantum-supremacy-with-sycamore
https://physicsworld.com/a/quantum-advantage-demonstrated-using-gaussian-boson-sampling/

6 Lecture 1: Motivation and outline

remains a global player in ion trap quantum computing. The spin-off company
Alpine Quantum Technologies is the first European company that actually
sets out to sell these quantum computers. They might visit us at some point
throughout this lecture.

Superconducting quantum computing
In this platform type, quantum computing is implemented with superconducting
electronic circuits. Qubits are stored in microscopical circuits that roughly
resemble a resonant circuit which oscillates. electronic circuits carry

quantum information
The key difference is that they are

comprised of superconducting material (no resistance) and contain a capacitor
(like a resonant circuit), but also an additional nonlinearity – a superconducting
tunnel junction (Nobel Prize in 1973). The state of such a qubit is determined
by the number of electrons which reside on one side of the circuit compared to
the other. These states can be flipped by microwave pulses sent to an antenna
coupled to the qubit.

This basic building block (circuit plus antenna) is in principle scalable using
existing chip manufacturing techniques. Many such individual circuits can
be arranged on a 2D plane which today can host up to 100 superconducting
qubits. Interactions between these qubits can be achieved by coupling two
superconducting qubits to an intermediate coupling circuit. These intermediate
circuits must reside between the two qubits in question and must also be
fabricated. This effectively limits interactions to nearest neighbors: every qubit
can only talk to its immediate neighbors.

Today, superconducting platforms are the prevalent type of quantum hard-
ware. Companies like IBM, Google, Rigetti and more have really pushed this
technology over the last couple of years. Today’s devices can host between
53 (Google Sycamore) and 127 (IBM Eagle) qubits. They also operate much
quicker than existing ion trap devices. These desirable effects have led to the
first justifiable demonstrations of a quantum advantage – i.e. a well-defined
task where quantum computers outperform even the largest supercomputers to
date by a substantial margin. We will discuss one such result towards the end
of this course. However, superconducting quantum computers are not perfect.
They have to operate at extremely low temperatures (300mK) to ensure that
the underlying material is perfectly superconducting. This may, in fact, soon
become a bottleneck for further scaling up to larger qubit sizes, because the
additional electrical components produce heat that needs to be counteracted.
Also, the stringent limitation to nearest-neighbor interactions can considerably
slow down the actual realization of a given quantum circuit.

Optical architectures
So far, we have mainly talked about quantum computing platforms. But these
are only one aspect of the larger field of quantum technology. photons carry quantum

information
When it comes

to communication and networks – think internet – light is a very promising
carrier of information. Light can quickly and reliably cover large distances
to convey information. And, it comes in discrete packages of ‘light particles’,

https://www.aqt.eu/

7 Lecture 1: Motivation and outline

called photons. These photons can be used to represent a qubit, e.g. via
polarization: 0 ↔horizontal, 1 ↔vertical. These polarizations can be picked
out and modified with linear optical elements – think mirrors – which effectively
implements single-qubit transformations. What is more, optical devices don’t
require low temperatures and can be built and scaled-up relatively easily.

The big problem is that photons don’t directly interact with each other. This
makes it very difficult to execute multi-qubit operations – a prerequisite for
creating interesting correlations between qubits and performing interesting
computations. One way to overcome this issue is at the source: nanomaterials,
like quantum dots, can be used to create multiple photons at once which
do already exhibit powerful correlations (entanglement). This initial budget
of quantum correlation can subsequently be consumed to execute powerful
quantum computing procedures, like state teleportation which we will discuss
in due time. This technology also forms the basis of the nascent quantum
internet. Alain Aspect, John F. Clauser and Anton Zeilinger – a compatriot who
was born in Ried – are pioneers of this type of quantum technology. Last year
(04.10.2022), they received the Physics Nobel Prize for these groundbreaking
contributions.

So far, we have emphasized the potential of photons to carry quantum bits
over large distances. However, it is also possible to devise actual quantum
computers based on photons. Theses, so-called, measurement-based computing
architectures are remarkably different from conventional circuit architectures.
As such, they go beyond the scope of this lecture.

Synopsis
The above explanations are extremely crude and superficial, they sweep a lot of
important and groundbreaking insights under the rug. But we hope that they
convey a high-level message: it is actually possible to build quantum computing
platforms and there are, in fact, several ways to do so. And each comes
with their own advantages and disadvantages. different ways to realize QPUsIt should also be noted that
qubits and elementary operations (single qubit + two-qubit) are not enough
by themselves. We also need a way to initialize the qubits (qubit initialization)
and way to access the final result (qubit readout). We will discuss all these
ingredients in the next lecture. It is also important to note that all these
operations are challenging (we operate on the tiniest scales imaginable) and
not perfect. Every operation is bound to incur a small error. And these errors
can, and do, accumulate when we start combining many operations to build
a larger circuit. Today, this severely hampers our ability to scale up quantum
computing technology. There are, however, ways to overcome these issues. We
will briefly cover this topic of quantum error correction towards the end of this
course.

8 Lecture 1: Motivation and outline

1.3 Tentative overview of topics
Lectures will occur weekly on Wednesdays, 13:45–15:15. There will be 13
standard lectures in total. This is very little time to cover the vast area of
quantum computing. As a result, we will make compromises and sub-select
topics which we then discuss in depth. The core focus of this class will be
quantum circuits and, by extension, quantum algorithms. focus on quantum circuits &

algorithms
These are arguably

the ‘raison d’être’ for building quantum hardware in the first place. They also
can be understood as an interesting generalization of digital circuits. To get
everyone up to speed, we start small und gradually build up to more involved
and potentially impactful algorithms described by quantum circuits. Here is a
tentative list of 13 topics:

1 Motivation and outline
2 Single-qubit circuits 1: gaining intuition, mathematical formalism and
one application: quantum cryptography (BB84)

3 Single-qubit circuits 2: universal gate sets, approximation theorems
(Solayev-Kitaev), reversibility and one application: compute the parity of
a sum of rational numbers

4 Two-qubit circuits 1: basic building blocks, mathematical formalism and
one application: superdense coding

5 Two-qubit circuits 2: entanglement, Bell inequalities and device-
independent quantum cryptography (Ekert)

6 guest lecture by Dr. Johannes Kofler: the foundational implications of
quantum effects

7 Teleportation subroutines: conditional gate applications , 𝑇 -gate tele-
portation, quantum state teleportation,

8 Many-qubit circuits: relation between quantum and classical circuits
9 Amplitude amplification and quadratic speedup for 3-SAT (Grover)
10 Quantum Fourier transforms: Hadamard transformation, the Bernstein-

Vazirani algorithm and the Quantum Fourier transform
11 Shor’s algorithms for discrete logarithms and integer factorization
12 Basics of quantum error correction
13 (Machine) learning from quantum experiments

1.4 Open-source toolkits to play around with quantum circuits
Recent years has also seen the emergence of open-access software that simulates
quantum processing units on conventional hardware. open-access software

emulates QPUs and provides
ample opportunity to play
around

. Examples include qiskit
(by IBM), Cirq (by Google) and pennylane (by Xanadu). These are all great ways
to get valuable intuition by playing around with small quantum computations
(involving ≲ 10 qubits). We strongly encourage you to use (at least) one
of these to play around and gather intuition in a playful fashion. Also, the
internet is full with great (and freely available) courses that approach quantum
computing from this angle.

https://qiskit.org/
https://quantumai.google/cirq
https://pennylane.ai/

9 Lecture 1: Motivation and outline

1.5 Exam and grading process
The tentative exam date is February 7th, 2024, 10:00 –12:00. open book exam via moodleWe offer a
Moodle exam which you can attend either from home or in a designated lecture
hall. We also propose to do an open-book exam, i.e. you can use lecture
notes, personal summaries and even the internet. This, however, means that
the individual questions will be more challenging: you will have to analyze
and understand how concrete quantum circuits operate. Additional details and
example questions will follow in due course.

2. Single qubit circuits I

Date: October 11, 2023

Agenda:

1 introduction
2 gaining intuition
3 rigorous formalism:

matrix-vector multipli-
cation

4 application: quantum
key distributions
(BB84)

2.1 Introduction
Today, we take our first steps into the realm of quantum computation. A
high-level schematic of a quantum processing unit (QPU) is displayed in Fig. 2.1.
Note that a QPU is a digital device: it ‘eats’ bitstrings and ‘spits out’ bitsrings.
This figure also highlights a seemingly unconventional choice of convention.

Convention (reading circuit diagrams from right to left). In this class, we read
circuit diagrams from right to left. The red arrow in Fig. 2.1 visually
illustrates this flow of information (“arrow of time”). The reason for this
convention will become clear later on: it plays nicely with the mathematical
formalism we use to capture quantum logic (matrix-vector multiplication).

Figure 2.1 Schematic illustration of a quantum processing unit (QPU): on a high
level, a QPU maps bitstrings to bitstrings. Also, in this class we read circuit
diagrams from right to left. The red arrow underscores this convention.

11 Lecture 2: Single qubit circuits I

Figure 2.2 Schematic illustration of a single-qubit processor (QPU): input (very
right) and output (very left) of a single-qubit QPU are conventional bits.
Inbetween, single qubit logic (blue) is used to process the input bit directly at
the quantum level. Disruptive effects happen at the quantum-classical interface
(purple arrows), in particular the readout stage.

For the remainder of this lecture – and most lectures – we adopt a hardware
perspective and represent QPUs by quantum circuits. Today, we focus on circuits
that affect a single quantum bit, called qubit. qubit = quantum bitWe will see that these circuits can
execute well-known logical functionalities (e.g. negation), but other elementary
gates don’t have a classical counterpart at all. For illustrative purposes, we will
heavily use the Quantum Circuit Library developed by Jadwiga Wilkens who is
now a quantum PhD student at JKU [Wil23].

2.2 Gaining intuition
2.2.1 Overall layout of single-qubit quantum circuits

A QPU operates on two fundamentally different levels. Input and output
do correspond to conventional bit strings. However, the logic in-between is
executed on the microscopic level. There, genuine quantum effects become
available and can be used to perform completely new types of (quantum)
logic. Fig. 2.2 illustrates such a setting for a single qubit. There a single
qubit is initialized with an input bit value 𝑏 ∈ {0, 1} (right). Subsequently, a
collection of single-qubit logical gates is applied (center). This is where the
actual quantum computation happens. Once this is completed, we perform
a readout step where the qubit is measured to produce a single output bit
𝑜 ∈ {0, 1}. Throughout the course of today’s lecture, we will explore the
workings of such a hybrid quantum-classical architecture. We will discover that
the quantum logic part is captured by a nice deterministic and even reversible
formalism. The interfaces between quantum and classical realm are more
disruptive, by comparison. Readout, in particular, can produce true randomness
– something that is impossible for conventional (deterministic) hardware. Let us
now start to discover the workings and interplay of these different constituents
in a step-by-step fashion.

12 Lecture 2: Single qubit circuits I

2.2.2 Classical options: identity and bit-flip gate
Hybrid quantum-classical architectures, like the one displayed in Fig. 2.2, are
capable of executing basic logical functionalities. A simple, but often under-
appreciated, logical gate is the identity operation, i.e. do nothing. This operation
maps a bit to itself, i.e. logical identity (𝕀)

𝕀(𝑏) = 𝑏 for 𝑏 ∈ {0, 1}.

Equivalently, we can fully capture this (trivial) action by the following truth
table:

0 1
0 1 0
1 0 1

(identity truth table). (2.1)

A full pipeline with qubit initialization, identity gate (blue) and readout stage
looks as follows:

(2.2)

As intended, the final output bit 𝑜 is equal to the input bit 𝑏 (𝑜 = 𝑏). This
showcases that we can use a single-qubit QPU to reliably store one bit of
information within the quantum realm and recover it exactly at some later
point in time.

Another important logical gate is the negation, or bit-flip operation: bit-flip (𝑿)

X(𝑏) = ¬𝑏 for 𝑏 ∈ {0, 1},

where ¬0 = 1 and ¬1 = 0. This important logical operation is covered by the
following truth table:

0 1
0 0 1
1 1 0

(bit-flip truth table). (2.3)

A single-qubit QPU can also implement this functionality:

(2.4)

Together, Eq. (2.2) and Eq. (2.4) showcases that we can use a hybrid quantum-
classical pipeline to implement the most important single-bit operations. These

13 Lecture 2: Single qubit circuits I

operations, however, have an additional feature. Applying them twice has no
effect on the (qu)bit in question:

𝕀 (𝕀(𝑏)) = 𝕀(𝑏) = 𝑏 and X (X(𝑏)) = ¬ (¬𝑏) = 𝑏 for 𝑏 ∈ {0, 1}.

This, in particular, means that identity and bit-flip are reversible logical oper-
ations. They do not erase any information about the input bit. In fact, their
action can be readily undone by applying the same gate again. Note that not all
conceivable single-bit functions have this feature. There are in total 4 Boolean
functions that map a single bit onto a single bit. Identity and bit-flip are two of
them. The other two correspond to re-setting the bit to one particular value.
I.e. 𝑓 (𝑏) = 0 (reset to 0) or 𝑓 (𝑏) = 1 (reset to 1), for 𝑏 ∈ {0, 1}. Clearly, these
re-set operations are not reversible, because they completely erase the input bit.
The quantum implementations of identity and bit-flip do adhere to reversibility.
This is captured by the following streamlined circuit diagram equations: QPUs can execute reversible

single-bit logic

. (2.5)

2.2.3 Quantum options: superposition and sign-flip
We have just seen that a single-qubit QPU can reproduce basic logical func-
tionalities, as long as they are reversible (𝕀 and 𝑿). This is a good start that
suggests that QPUs may be capable of executing conventional logical operations.
But, by itself, this is not really spectacular (yet). Let us now discuss some
genuinely quantum operations that don’t have a conventional counterpart. First
and foremost, there is the Hadamard or superposition gate: Hadamard/superposition (𝑯)

, (2.6)

where ‘w.p. 1/2’ is short for ‘with probability 1/2’. This classical-quantum-
classical pipeline takes an arbitrary single-bit input 𝑏 and produces a uniformly
random output bit. We write

𝑜
unif∼ {0, 1}

to denote that 𝑜 = 0 and 𝑜 = 1 happen with equal probability 1/2 each. This
feature is a striking deviation from conventional logic which is fundamentally
deterministic. The execution of a Hadamard gate uses an interesting quantum

14 Lecture 2: Single qubit circuits I

effect, called superposition: a binary quantum system (qubit) can assume both
bit values at the same time.

If we readout (measure) such a superposition of binary values, the outcome
bit we obtain is truly random: both 𝑜 = 0 and 𝑜 = 1 occur with equal
probability. This is the same situation as a fair coin flip. The Hadamard gate
provides the means to observe true randomness by bringing a qubit into equal
superposition. And, equally strikingly, we can use another Hadamard gate to
exit superposition again. Much like identity and bit-flip, the Hadamard gate is
also reversible. In fact, it is also it’s own inverse:

. (2.7)

We emphasize that this is not obvious. We will do such a calculation later on,
or in an exercise. Together, Eq. (2.6) and Eq. (2.7) reveal a striking quantum
phenomenon. The first equation showcases that the Hadamard gate can be used
to generate uniformly random bits. In standard binary logic, randomization
requires an external seed and cannot be undone without erasing the bit in
question. Or, put differently: the only way to map a random bit 𝑟 into a
deterministic bit 𝑜 is to erase and reset. This breaks any correlations with the
original input bit. The Hadamard gate, however, is not like this at all. We can
apply it twice to completely undo its effect and recover a perfect correlation
between input bit 𝑏 and output bit 𝑜.

The ‘truth table’ of the Hadamard gate reflects this, because it doesn’t
adhere to the rules of conventional logic:

0 1
0 1/

√
2 1/

√
2

1 1/
√
2 −1/

√
2

(Hadamard ‘truth table’).

The detailed numbers in this table should become clear later on. For now, we
emphasize two things:

(i) the magnitude of each entry is the same, that is 0 and 1 feature in equal
measure within the superposition;

(ii) the two rows (columns) are distinct. This means that information about
the input qubit is actually preserved.

We conclude this section with another quantum logic gate, the sign-flip gate.
sign-flip (𝒁)The ‘truth table of the Hadamard gate’ already suggests that quantum logic can

feature positive and negative numbers. The sign-flip is used to change the sign
of the 1-contribution within a superposition:

0 1
0 1 0
1 0 −1

(sign-flip ‘truth table’).

15 Lecture 2: Single qubit circuits I

Interestingly, this sign-flip doesn’t do anything if we apply it to quantum
encodings of conventional logic. In particular,

, (2.8)

which looks identical to the action of the identity gate in Eq. (2.2). Also, much
like the identity gate (and every other gate we’ve encountered so far), the
sign-flip gate is also it’s own reverse:

. (2.9)

Importantly, the action of a sign gate becomes nontrivial if we apply it to
superpositions of different bit values. This is achieved by combining 𝒁 with the
Hadamard gate 𝑯 . For instance,

, (2.10)

which showcases that we can sandwich 𝒁 (sing-flip) between two Hadamard
gates 𝑯 (enter/leave superposition) to execute a logical bit-flip 𝑿 . This is a
very strong case for the nontrivial behavior of a sign-flip gate (𝒁 ≠ 𝕀).

2.3 Rigorous formalism: matrix-vector multiplication
We have now completed a first look at how quantum circuits work. We have seen
that they can implement standard logic (e.g. identity and bit-flip), but also have
new and seemingly mysterious features. The apparent randomness generation
via Hadamard which can be completely undone via another Hadamard are
a striking example of this kind. We now present a mathematical formalism
that can be used to reproduce all these new quantum features. It equips the
intuition we gained so far with a rigorous underpinning. This is essential
when it comes to exploring the realm of quantum computing and is one of
the most transformative developments within quantum science. Over the past
30 years or so, the field has moved away from complicated physical equations
and gradually developed a succinct and finite dimensional alternative that
nonetheless captures all interesting quantum effects. In fact, basic matrix-
vector multiplication is enough to keep track of any QPU that is comprised of
(finitely many) qubits. Today, we present these rules for the special case of
a single qubit. The central object used to describe a single-qubit QPU is the
current state of the qubit inolved.

16 Lecture 2: Single qubit circuits I

Definition 2.1 (single-qubit state vector). The state of a single qubit keeps track of
its quantum logical level. At each point, it is given by a 2-dimensional vector state of a qubit is a

normalized 2D vector

|𝜓⟩ :=𝝍 =

(
𝜓0
𝜓1

)
∈ ℂ2.

The individual coefficients can be complex-valued numbers, but must obey

∥|𝜓⟩∥2 = ∥𝝍 ∥2 = |𝜓0 |2 + |𝜓1 |2 =1 (state normalization). (2.11)

We use the somewhat strange notation |𝜓⟩ to denote state vectors. This is
called a ‘ket’ and features prominently in the quantum computing literature.
The following example tells us how we can imprint a classical bit 𝑏 ∈ {0, 1}
into the initial state of a qubit.

Example 2.2 (Qubit initialization).

|0⟩ = 𝒆0 =

(
1
0

)
and |1⟩ = 𝒆1 =

(
0
1

)
.

We can interpret the first state vector |0⟩ as ‘everything is concentrated at 0
(first entry)’, while |1⟩ means that ‘everything is concentrated at 1. Moreover,
both state vectors obey the normalization condition (2.11):

∥ |0⟩∥2 = ∥𝒆0∥2 = |1|2 + |0|2 = 1,

∥ |1⟩∥2 = ∥𝒆1∥2 = |0|2 + |1|2 = 1.

■

As Definition 2.1 suggests, state vectors can be used to keep track of qubits
throughout a sequence of quantum logical gates. This, however, necessitates a
formalism to unambiguously characterize the action of quantum gates. And a
way to imprint their action onto the current state vector of a qubit.

Definition 2.3 (single-qubit gate action). A single-qubit gate is fully described by
a 2 × 2 matrix single-qubit gates are unitary

2 × 2 matrices (‘truth tables’)
𝑼 =

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

)
∈ ℂ2×2.

The action of gate 𝑼 on quantum state |𝜓 ⟩ = 𝝍 ∈ ℂ2 is captured by
matrix-vector multiplication gate action on qubit state =

matrix-vector multiplication
:

|𝜓final⟩ =𝝍final =𝑼𝝍 =

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

) (
𝜓0
𝜓1

)
=

(
𝑈0,0𝜓0 +𝑈0,1𝜓1
𝑈1,0𝜓0 +𝑈1,1𝜓1

)
∈ ℂ2.

What is more, each gate matrix𝑼 must be unitary and, therefore, reversible:

𝑼 †𝑼 =𝑼𝑼 † =

(
1 0
0 1

)
, where

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

)†
=

(
𝑈0,0 𝑈1,0
𝑈0,1 𝑈1,1

)
(2.12)

denotes matrix adjungation (transposition plus taking complex conjugates1).

1Recall that the complex conjugate of a complex number 𝑧 = 𝑎 + i𝑏 is defined as 𝑧 = 𝑎 − i𝑏 .

17 Lecture 2: Single qubit circuits I

The following instructive example showcases how this matrix-vector multi-
plication formalism allows us to recover classical logical operations.

Example 2.4 (matrix representation of classical gates). The matrix representations
of the classical operations identity (𝕀) and bit-flip (𝑿) are

𝕀 =

(
1 0
0 1

)
and 𝑿 =

(
0 1
1 0

)
.

It is easy to check that both matrices are unitary matrices. What is more,

𝕀|0⟩ =𝕀𝒆0 =

(
1 0
0 1

) (
1
0

)
=

(
1
0

)
= 𝒆0 = |0⟩,

𝕀|1⟩ =𝕀𝒆1 =

(
1 0
0 1

) (
0
1

)
=

(
0
1

)
= 𝒆1 = |1⟩,

which puts ‘do nothing’ into concrete formulas. Likewise

𝑿 |0⟩ =𝑿𝒆0 =

(
0 1
1 0

) (
1
0

)
=

(
0
1

)
= 𝒆1 = |1⟩,

𝑿 |1⟩ =𝑿𝒆1 =

(
0 1
1 0

) (
0
1

)
=

(
1
0

)
= 𝒆0 = |0⟩,

puts formulas to the action of a bit-flip. It is not a coincidence that these
matrix representations are in one-to-one correspondence to the truth tables of
the corresponding logical functionalities. Matrix-vector multiplications is just
another way of reading logical truth tables. ■

Exercise 2.5 (matrix representation of the Hadamard gate). The matrix representa-
tion of the Hadmard gate is given as

𝑯 =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
∈ ℂ2×2.

1 Show that this matrix is unitary by verifying Eq. (2.12) for𝑼 = 𝑯 .
2 The action of a Hadamard gate maps deterministic bit states |0⟩ and
|1⟩ into uniform superposition states |+⟩ and |−⟩. Use matrix-vector
multiplication to verify the following state vector representations:

|+⟩ =𝑯 |0⟩ = 𝑯𝒆0 =
1
√
2
(𝒆0 + 𝒆1) =

1
√
2
(|0⟩ + |1⟩) , (2.13)

|−⟩ =𝑯 |1⟩ = 𝑯𝒆1 =
1
√
2
(𝒆0 − 𝒆1) =

1
√
2
(|0⟩ − |1⟩) . (2.14)

Both expressions on the very right should be interpreted as ‘both 0 and
1 in equal measure’. Note, however that one combination has a ‘+’
inbetween, while the other one has a ‘−’. This sign difference ensures
that both superpositions can be undone again.

3 Verify reversibility by showing 𝑯 2 = 𝕀 via matrix-vector multiplication.

18 Lecture 2: Single qubit circuits I

Definition 2.1 (state vector) and Definition 2.3 provide us with all the rules
we need to keep track of a state vector throughout an arbitrary long sequence
of single-qubit gates. The following proposition can be derived from these rules
and allows for compressing multiple gate actions into a single matrix.

Proposition 2.6 (sequential gate composition rule). Let 𝑼 ,𝑽 ∈ ℂ2×2 be matrix
representations of two single-qubit gates. Then, the total action of sequentially
applying both is captured by the matrix-matrix product of all gates involved: sequential gate composition

= matrix-matrix product

𝑼 tot = 𝑽 ×𝑼 =

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

)
×
(
𝑉0,0 𝑉0,1
𝑉1,0 𝑉1,1

)
=

(
𝑈0,0𝑉0,0 +𝑈0,1𝑉1,0 𝑈0,0𝑉0,1 +𝑈0,1𝑉1,1
𝑈1,0𝑉0,0 +𝑈1,1𝑉1,0 𝑈1,0𝑉0,1 +𝑈1,1𝑉1,1

)
.

This composition rule with the matrix product straightforwardly extends to 𝑁
sequential gate applications: 𝑼 tot =𝑼𝑁 ×𝑼𝑁 −1 · · · ×𝑼 2 ×𝑼 1.

We leave the proof as an instructive exercise and instead want to draw
attention to the way we write down and read large matrix-vector products.
Suppose that we sequentially apply 𝑁 single-qubit gates 𝑼 1, . . . ,𝑼𝑁 to an
arbitrary starting state (vector) |𝜓⟩ = 𝝍 ∈ ℂ2. Then, we can compute the
final state vector as

|𝜓final⟩ =𝝍final =𝑼𝑁 × · · · ×𝑼 2 ×𝑼 1𝝍 ∈ ℂ2.

In words: we start our matrix-vector multiplication on the very right and keep
going. The convention to read circuit diagrams from left to right as well exactly
resembles this ordering:

. (2.15)

We now have all the pieces in place to initialize a qubit and keep track of its
state throughout a sequence of arbitrary many single qubit gates. All that is
missing now is a formula for executing the readout at the very end. That is, we
need to assign meaning to the following operation:

.

Definition 2.7 (single-qubit readout). A single-qubit readout (measurement) oper-
ation always produces a valid bit value 𝑜 ∈ {0, 1}. But it does so probabilistically.

19 Lecture 2: Single qubit circuits I

outcome probabilities =
squared magnitudes of state
vector entries

The probability of obtaining outcome 𝑜 ∈ {0, 1} depends on the underlying
state vector |𝜓⟩ =𝝍 ∈ ℂ2:

𝑝0 =Pr |𝜓 ⟩ [𝑜 = 0] = |⟨0|𝜓⟩|2 =
���𝒆†0𝝍 ���2 = |𝜓0 |2 ≥ 0, (2.16)

𝑝1 =Pr |𝜓 ⟩ [𝑜 = 1] = |⟨1|𝜓⟩|2 =
���𝒆†1𝝍 ���2 = |𝜓1 |2 ≥ 0. (2.17)

This should be read as: ‘the probability of obtaining outcome 𝑜 = 0 (𝑜 = 1)
when reading out a qubit in state |𝜓⟩ is |𝜓0 |2 (|𝜓1 |2).

Here, we use another bit of quantum notation: we write ⟨0| (⟨1|) to denote
the dual/adjoint state vector of |0⟩ = 𝒆0 (|1⟩ = 𝒆1):

⟨0| = 𝒆†0 =
(
1 0

)
and ⟨1| = 𝒆†1 =

(
0 1

)
.

This is called a ‘bra’ and plays nicely with the ‘ket’. Indeed, combining a ‘bra’
(row vector) with a ‘ket’ (column vector) produces a number (bra-ket, i.e. inner
product). For instance,

⟨0|0⟩ = 𝒆†0𝒆0 =
(
1 0

) (1
0

)
= 1 × 1 + 0 × 0 = 1,

⟨0|1⟩ = 𝒆†0𝒆1 =
(
1 0

) (0
1

)
= 1 × 0 + 0 × 1 = 0,

⟨1|0⟩ = 𝒆†1𝒆0 =
(
0 1

) (1
0

)
= 0 × 1 + 1 × 0 = 0,

⟨1|1⟩ = 𝒆†1𝒆1 =
(
0 1

) (0
1

)
= 0 × 0 + 1 × 1 = 1

and an extension to other ’bra’ and ‘ket’ vectors is straightforward.
Note that normalization of the state vector (Eq. (2.11) in Defininition 2.1)

ensures that 𝑝0 and 𝑝1 defined in Eqs. (2.16),(2.17) define a valid binary
probability distribution (think: coin toss): 𝑝0, 𝑝1 ≥ 0 and

𝑝0 + 𝑝1 = |𝜓0 |2 + |𝜓1 |2 = ∥𝝍 ∥2 = ∥ |𝜓⟩∥2 = 1.

We now have everything in place to reproduce the actual workings of all
example circuits so far. We’ll do one concrete example and leave the rest as a
very instructive exercise.

Example 2.8 (quantum random number generator). Consider the quantum circuit
from Eq. (2.6), i.e.: quantum random number

generator

.

20 Lecture 2: Single qubit circuits I

Let us do the computation for 𝑏 = 1 (the case for 𝑏 = 0 is similar and we leave
it as an instructive exercise). We start by using matrix-vector multiplication to
compute the final state vector (blue):

|𝜓⟩ =
(
𝜓0
𝜓1

)
=𝑯 |1⟩ =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

) (
0
1

)
=

(
1/
√
2

−1/
√
2

)
.

Hence, 𝜓0 = 1/
√
2, 𝜓1 = −1/

√
2 and perfect randomness generation follows

from invoking the rule for single-qubit readout (Definition 2.7):

Pr |𝜓 ⟩ [𝑜 = 0] = |⟨0|𝜓⟩|2 = |𝜓0 |2 =
���1/√2

���2 = 1/2,

Pr |𝜓 ⟩ [𝑜 = 1] = |⟨1|𝜓⟩|2 = |𝜓1 |2 =
���−1/√2

���2 = 1/2.

This is just the definition of a perfect random bit 𝑜 unif∼ {0, 1}. ■

2.4 Application: the BB84 quantum key distribution
We now have gathered enough insights about single-qubit circuits to discuss
our first quantum application: the BB84 protocol for quantum key distributions
(QKD) [BB14]. QKD = Quantum Key

Distribution
The main goal of KD is to distribute a uniformly random

seed among two parties – Alice and Bob – such that it remains private. I.e.
information about the secret bit string is not available for any third party (Eve).
The Q in QKD indicates that this is achieved by using quantum computing
features. The twist is that the rules of quantum computing allow for detecting
whether an eavesdropper might tamper with the connection between Alice and
Bob. If this happens, then Alice and Bob can abort the protocol and throw away
the random key generated so far. This does not protect private randomness,
but allows for detecting an attack and aborting – the next best thing. This is a
striking advantage over conventional key distribution protocols where ’person
in the middle’ attacks can not be detected on the fundamental level. use ‘quantum fragility’ to

detect eavesdroppersThe setup for the BB84 key exchange protocol is depicted in Fig. 2.3. At the
core is a classical identity channel, like the one presented in Eq. (2.2). Alice
(right) uses private randomness to sample a random bit 𝑟 , imprints this into a
qubit and sends this qubit to Bob. Bob can perform the readout and perfectly
recovers this bit. Here, it is also useful to think in terms of photons as carriers
of quantum information: photons can cover a lot of distance in short time and
are ideally suited for this type of information transmission protocol. But, a
mere identity channel is not secure. In particular, it does not allow to detect
actions of a potential eavesdropper in the middle. This is where the green
quantum gate boxes come into play. They are a placeholder for one of two
possible actions: (i) do nothing (𝕀) or (ii) enter/leave superposition (𝑯). Alice
and Bob toss a private random coin (𝑎, 𝑏 unif∼ {0, 1}) to decide which action
they apply. This gives rise to four potential quantum circuits that each occur

21 Lecture 2: Single qubit circuits I

Figure 2.3 Schematic illustration of the BB84-protocol: Alice and Bob use a
single-qubit circuit to communicate a single bit of information (purple). Each
player obfuscates this identity channel by either applying 𝕀 (do nothing) or 𝑯
(enter/leave superposition). If both players happen to apply the same gate, the
transmission is perfect (𝑠 = 𝑟). Otherwise, the output bit is completely random
(𝑠 unif∼ {0, 1}). This dichotomy is impossible to achieve classically and allows
for sharing a key and detecting person in the middle attacks.

with probability 1/4:

Note that whenever 𝑎 = 𝑏 , the effective classical-quantum-classical channel
transmits the original bit perfectly, i.e. 𝑠 = 𝑟 . If instead 𝑎 ≠ 𝑏 , then a uniformly
random bit is produced, i.e. 𝑟 unif∼ {0, 1}. Such effective classical-quantum-
classical channels are completely useless, because they erase all information
about the initial bit. This is an interesting and nontrivial dichotomy: whenever
Bob correctly guesses Alice’s obfuscation, he can recover her bit perfectly.
Otherwise, he effectively destroys Alice’s (qu)bit and produces a random bit
instead.

Why is this noteworthy? Well, this dichotomy also affects any potential
eavesdropper who intercepts the qubit somewhere in the middle, see Fig. 2.4 for
a illustration. BB84-protocol allows for

transmitting keys & detecting
evesdroppers

Either, Eve guesses Alice’s obfuscation correctly. Or, she destroys
the underlying bit message and re-initalizes the qubit to an uncorrelated,
random bit value. And here is where things get interesting. If Alice uses
private randomness to decide her obfuscation action, then Eve has no way to
anticipate her move. She must make the wrong guess in about half the cases.

22 Lecture 2: Single qubit circuits I

Figure 2.4 Illustration of an eavesdropper attack on the BB84 protocol: a third
party (Eve, red) intercepts the qubit in the middle. She performs qubit readout
to obtain her own bit 𝑡 , before re-initializing the qubit to send it on to Bob. In
order to maximize her chances of learning 𝑟 and to obfuscate her attack, she
can also apply two quantum gates𝑽 and𝑽 ′ that resemble the gate actions of
Alice and Bob.

Crucially, whenever she guesses wrong, she re-inserts a random bit value to
Bob. And this can now be detected. After all, Alice and Bob expect to get
perfectly correlated bits whenever they happen to execute the same obfuscation
gate (which happens in about 1/2 of all cases): 𝑟 = 𝑠 . An interception of
Eve in the middle must break this perfect correlation. And repeating the
protocol sufficiently often (with new private randomness in each go) will allow
Alice+Bob to detect eavesdropping by comparing some of their input/output
values over a public channel. More precisely, they execute 𝑇 ≫ 1 rounds
of their protocol and, after completion, they broadcast their private random
bitstrings 𝒂 ,𝒃 ∈ {0, 1}𝑇 . This allows them to discard all uncorrelated bits
and focus on the instances where perfect correlations should happen: 𝑎𝑡 = 𝑏𝑡
should imply 𝑠𝑡 = 𝑟𝑡 . This already shrinks the possible bits to roughly 𝑇 /2.
They then select certain instances within this remaining string to check whether
𝑠𝑡 = 𝑟𝑡 is actually true. This is again achieved via open communication over
insecure channels. An instance where 𝑠𝑡 ≠ 𝑟𝑡 rises suspicion. Assuming the
hardware works perfectly as intended (which is a very strong assumption), this
must be the signature of an eavesdropper!

This ability to detect actions of an eavesdropper are a core feature of
quantum cryptography protocols. Here, we have only scratched the surface and
discussed the key ideas behind on of the oldest and most basic protocols of this
type. However, at this point, you have all the information you need to execute
a proper analysis of the entire protocol – under the additional assumption
that Eve intercepts in the middle via readout plus initialization and only uses
quantum gates that mimic the possibilities of Alice and Bob.

Exercise 2.9 (complete analysis of the BB84-protocol). Perform a rigorous treat-
ment of the BB84-protocol under the additional assumption that Eve’s gates are
𝑽 ,𝑽 ′ ∈ {𝕀,𝑯 }. This results in a total of 2 × 4 × 2 = 16 different incarnation

23 Lecture 2: Single qubit circuits I

of the intercepted protocol – one for each choice of 𝑎 (Alice), as well as𝑽 ,𝑽 ′

(Eve) and 𝑏 (Bob). How many of these incarnations lead to a undetectable and
successful attack, i.e. 𝑠 = 𝑟 , as well as 𝑡 = 𝑟 ? How many of these incarnations
leave traces of Eve’s actions that can be detected by Alice and Bob? And how
many leave Eve completely clueless, i.e,. 𝑡 unif∼ {0, 1}?
Use your findings to argue that Eve does not stand a chance if Alice+Bob repeat
the protocol many times and use private randomness to choose 𝑎 and 𝑏 .

It turns out that the aforementioned assumptions on the type of attack can
be removed completely. A proper security analysis for any type of quantum
attack did take another 29 years to come up with [Tom+13]. Needless to say,
these arguments go beyond the scope of this introductory lecture.

Problems
Problem 2.10 (random number generator). Do the computation in Example 2.8
for input bit 𝑏 = 0.

Problem 2.11 (gate composition rule). Prove Proposition 8.6.

Problem 2.12 (Reversibility of all gates introduced so far). Use the sequential gate
composition rule (Proposition 8.6) to rigorously prove the following circuit
identities:

This, in particular, ensures that all these gates are reversible and to constitute
their own inverses.

Problem 2.13 (some useful circuit identities). Use the sequential gate composition

24 Lecture 2: Single qubit circuits I

rule (Proposition 8.6) to rigorously prove the following circuit identities:

Note that this implies that two Hadamard gates convert 𝑿 -gate (bit-flip) into 𝒁 -
gate (sign-flip) and vice versa. Hint: use the following matrix representations
of all gates involved:

𝑿 =

(
0 1
1 0

)
, 𝒁 =

(
1 0
0 −1

)
and 𝑯 =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
.

Problem 2.14 (matrix representation of the Hadamard gate, see Exercise 2.5). The
matrix representation of the Hadmard gate is given as

𝑯 =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
∈ ℂ2×2.

1 Show that this matrix is unitary by verifying Eq. (2.12) for𝑼 = 𝑯 .
2 The action of a Hadamard gate maps deterministic bit states |0⟩ and
|1⟩ into uniform superposition states |+⟩ and |−⟩. Use matrix-vector
multiplication to verify the following state vector representations:

|+⟩ =𝑯 |0⟩ = 𝑯𝒆0 =
1
√
2
(𝒆0 + 𝒆1) =

1
√
2
(|0⟩ + |1⟩) , (2.18)

|−⟩ =𝑯 |1⟩ = 𝑯𝒆1 =
1
√
2
(𝒆0 − 𝒆1) =

1
√
2
(|0⟩ − |1⟩) . (2.19)

Both expressions on the very right should be interpreted as ‘both 0 and
1 in equal measure’. Note, however that one combination has a ‘+’
inbetween, while the other one has a ‘−’. This sign difference ensures
that both superpositions can be undone again.

3 Verify reversibility by showing 𝑯 2 = 𝕀 via matrix-vector multiplication.

Problem 2.15 (complete analysis of the BB84-protocol, see Exercise 2.9). Perform a
rigorous treatment of the BB84-protocol under the additional assumption that
Eve’s gates are𝑽 ,𝑽 ′ ∈ {𝕀,𝑯 }. This results in a total of 2× 4× 2 = 16 different
incarnation of the intercepted protocol – one for each choice of 𝑎 (Alice), as
well as 𝑽 ,𝑽 ′ (Eve) and 𝑏 (Bob). How many of these incarnations lead to a
undetectable and successful attack, i.e. 𝑠 = 𝑟 , as well as 𝑡 = 𝑟 ? How many of
these incarnations leave traces of Eve’s actions that can be detected by Alice
and Bob? And how many leave Eve completely clueless, i.e,. 𝑡 unif∼ {0, 1}?
Use your findings to argue that Eve does not stand a chance if Alice+Bob repeat
the protocol many times and use private randomness to choose 𝑎 and 𝑏 .

3. Single qubit circuits II

Date: October 18, 2023

Agenda:

1 complex numbers
2 ultimate limits of single-

qubit logic
3 list of prominent gates
4 application: restricted

parity computations
5 bonus: Bloch sphere

visualization

3.1 Motivation and outline
Last week (Lecture 1), we started to explore single-qubit quantum logic. We saw
that quantum gates allow a native execution of completely new functionalities.
Today, we continue along these lines and push single-qubit quantum logic to
the ultimate limits of their capabilities. In a certain sense, quantum logic is
‘infinitely more expressive’ than conventional single-bit logic. As a teaser, we
point out that the negation gate 𝑿 is the only non-trivial reversible single-bit
gate. But, because 𝑿 2 = 𝕀 (do nothing), the list of all reversible single-bit
circuits is a very short one:

(3.1)

are the only two options.
In quantum logic, the situation could not be more different. We will see

that two (appropriately chosen) elementary quantum gates suffice to generate
an infinite amount of single-qubit circuits that have distinct logical functionality.
Every 2 × 2 unitary matrix is valid in quantum logic:

26 Lecture 3: Single qubit circuits II

And, what is more, we can approximate it with only logarithmically many
elementary quantum gates (in the desired approximation accuracy). This
powerful circuit synthesis result is known as the Solovay-Kitaev theorem. En
route to this surprising result, we will need to remember the basic structure
and elementary properties of complex numbers. So, today is a good occasion
to review them.

3.2 Excursion: complex numbers
The field of complex numbersℂ is an extension of the real numbersℝ. Arguably,
the most characteristic feature of complex numbers is the imaginary unit
i =

√
−1. It was first introduced to formally solve polynomial equations, most

notably 𝑥2 = −1 (which cannot have a solution over real numbers only). Today,
we know that the solutions of every polynomial equation can be expressed as
complex numbers, i.e. combinations of purely real and imaginary numbers: complex numbers have

real+imaginary parts
𝑎 + i𝑏 with 𝑎, 𝑏 ∈ ℝ.

This deep result is known as the fundamental theorem of algebra. The collection
of all such 𝑧 ’s forms the field of complex numbersℂ. Much like normal numbers,
we can add complex numbers using familiar rules: addition & multiplication

𝑧 + 𝑧 ′ = (𝑎 + i𝑏) + (𝑎 ′ + i𝑏 ′) = (𝑎 + 𝑎 ′) + i (𝑏 + 𝑏 ′) ,

i.e. we add real and imaginary parts of complex numbers separately. Multiplica-
tion takes a bit more work and we must also use the formal definition i2 = −1
to obtain

𝑧 × 𝑧 ′ = (𝑎 + i𝑏) (𝑎 ′ + i𝑏) = 𝑎 × 𝑎 ′ + i𝑏 × 𝑎 ′ + i𝑎 × 𝑏 ′ + i2𝑏 × 𝑏 ′

= (𝑎 × 𝑎 ′ − 𝑏 × 𝑏 ′) + i (𝑎 × 𝑏 ′ + 𝑏 × 𝑎 ′) . (3.2)

This is a bit cumbersome in the real+imaginary part representation. We will
soon discuss another representation which makes multiplication much easier.
For now, we point out that complex numbers come with a new operation called
complex conjugation: complex conjugation

𝑧 = (𝑎 + i𝑏) = 𝑎 − i𝑏.

This operation flips the sign of the imaginary part. This operation is actually
trivial for numbers that are real-valued to begin with: 𝑎 = 𝑎 for all 𝑎 ∈ ℝ.
Complex conjugation allows us to define the absolute value of a complex number:

|𝑧 | =
√
𝑧 × 𝑧 =

√︁
(𝑎 − i𝑏) × (𝑎 + i𝑏) =

√
𝑎2 + 𝑏2.

This looks like the (Euclidean) length of a 2-dimensional (real-valued) vector
𝒛 ∈ ℝ2. Such an analogy between complex numbers 𝑧 ∈ ℂ and 2D vectors
𝒛 ∈ ℝ2 is no coincidence. We can obtain a lot of geometric intuition by
envisioning complex plane

𝑧 = 𝑎 + i𝑏 as 𝒛 =

(
𝑎

𝑏

)
.

27 Lecture 3: Single qubit circuits II

ϕ +1−1

+i

−i

C
exp (iϕ)

ϕ

cos(ϕ)

sin(ϕ)

exp (iϕ)

iR

R

Figure 3.1 Complex unit circle (left) and Euler’s formula (right): (Left) It is
instructive to view the field of complex numbers as a 2-dimensional plane
(real+imaginary part). The unit circle within this plane contains complex
numbers 𝑧 ∈ ℂ with absolute value |𝑧 | = 1. These are called complex
phases and can be parametrized by a single angle 𝜑 . (Right) Euler’s theorem
provides the justification for our notation of complex phases: exp (i𝜑) =

cos(𝜑) + i sin(𝜑).

The 𝑥-coordinate tabulates the purely real part (ℝ), while the 𝑦 -coordinate
tabulates the purely imaginary part (iℝ). General complex numbers have
nontrivial coordinates in both and therefore live in a complex plane. Prominent
real and imaginary numbers obey |𝑧 | = 1, e.g. | + 1| = | − 1| = 1 and also
| + i| = | − i| = 1. These four points therefore live on the unit circle within the
complex plane. We refer to Fig. 3.1 (left) for a visual illustration.

Complex numbers 𝑧 ∈ ℂ that obey |𝑧 | =
√
𝑧𝑧 = 1 are called (complex)

phases. complex phaseThese are points on the complex unit circle and can be conveniently
represented by a single angle 𝜑 ∈ [0, 2𝜋) in radiants1:

𝒛 =

(
cos(𝜑)
sin(𝜑)

)
∈ ℝ2 ⇔ 𝑧 = cos(𝜑) + i sin(𝜑) ∈ ℂ.

Finally, we can use Euler’s theorem to compactly express the right-hand repre-
sentation as a single exponential:

exp (i𝜑) = cos (𝜑) + i sin (𝜑) . (3.3)

The geometric intuition behind this celebrated result is displayed in Fig. 3.1
(right). We leave a rigorous proof as an instructive exercise at the end of this
section.

Example 3.1 (‘showoff’ formula). The following mathematical formula combines
i, e and 𝜋 in a perfectly correct fashion:

ei𝜋 = exp (i𝜋) = −1.

It describes an angle representation of the ‘east pole’ (−1) on the complex unit
circle (recall that 180◦ ↔ 𝜋). ■

1Here are the conversion rules for the four most important angles: 0◦ ↔ 0, 90◦ ↔ 𝜋/2,
180◦ ↔ 𝜋 , 270◦ ↔ 3𝜋/4 and 360◦ ↔ 2𝜋 .

28 Lecture 3: Single qubit circuits II

The last thing we need to know about complex phases is that they play
nicely with each other when it comes to multiplication. Let exp (i𝜑) =

cos(𝜑) + i sin(𝜑) and exp (i𝜑 ′) = cos(𝜑 ′) + i sin(𝜑 ′) be two complex phases.
We can use the multiplication rule (3.2) and trigonometric identities to compute

exp (i𝜑) × exp (i𝜑 ′) = (cos(𝜑) + i sin(𝜑)) × (cos(𝜑 ′) + i sin(𝜑 ′))
= (cos(𝜑) cos(𝜑 ′) − sin(𝜑) sin(𝜑 ′))
+i (cos(𝜑) sin(𝜑 ′) + sin(𝜑) cos(𝜑 ′))
= cos (𝜑 + 𝜑 ′) + i sin (𝜑 + 𝜑 ′)
= exp (i (𝜑 + 𝜑 ′)) .

This confirms a famous property of exponential functions in the realm of
complex numbers: multiplication of exponentials is the same as adding the
exponents. The concept of a complex phase and this multiplication rule will be
important in our study of quantum circuits. It deserves a prominent display.

Fact 3.2 (complex phase). multiplication rule for
complex phases

A complex number 𝑧 ∈ ℂ is called a complex
phase if |𝑧 | =

√
𝑧 × 𝑧 = 1. It can be represented as 𝑧 = exp (i𝜑), where

𝜑 ∈ [0, 2𝜋] is a single angle. Multiplication of two complex phases is the
same as adding the corresponding angles, i.e.

𝑧 × 𝑧 ′ = exp (i𝜑) × exp (i𝜑 ′) = exp (i(𝜑 + 𝜑 ′)) .

Let us do a simple example that cycles through the four prominent points on
the complex unit circle:

i = exp (i𝜋/2) ,
i2 =i × i = exp (i𝜋/2) × exp (i𝜋/2) = exp (i(𝜋/2 + 𝜋/2)) = exp (i𝜋) = −1,
i3 =i × i2 = exp (i𝜋/2) × exp (i𝜋) = exp (i(𝜋/2 + 𝜋)) = exp (i3𝜋/2) = −i,
i4 =i × i3 = exp (i𝜋/2) × exp (i3𝜋/2) = exp (i(𝜋/2 + 3𝜋/2)) = exp (i2𝜋) = 1.

Exercise 3.3 (Proof of Euler’s theorem). Prove Eq. (3.3) by using i2 = −1 and the
following three Taylor series expansions:

exp (𝑧) =
∑︁∞

𝑘=0

𝑧𝑘

𝑘 !
, cos(𝑧) =

∑︁∞
𝑘=0

(−1)𝑘 𝑧2𝑘

(2𝑘)! , sin(𝑧) =
∑︁∞

𝑘=0
(−1)𝑘 𝑧2𝑘+1

(2𝑘 + 1)! .

3.3 Ultimate limits of single-qubit logic
3.3.1 Recapitulation

Recall that a single-qubit quantum processor maps bitstrings to bitstrings. An
initial bit value 𝑏 ∈ {0, 1} is used to initialize the qubit state vector

|𝜓⟩ = |0⟩ = 𝒆0 =

(
1
0

)
or |𝜓⟩ = |1⟩ = 𝒆1 =

(
0
1

)
.

29 Lecture 3: Single qubit circuits II

Figure 3.2 Schematic illustration of a single-qubit processor from Lecture 1 (see also
Fig. 2.2 there): a single-qubit processor takes a single bit 𝑏 ∈ {0, 1} as input
and produces a single-bit output 𝑜 ∈ {0, 1}. The logic in-between is executed
on the quantum level, where different logical operations become available. The
readout stage is also special and can give rise to true randomness.

This qubit state vector is a 2-dimensional vector with complex entries that can
be used to keep track of the quantum logic content when we apply quantum
gates. The action of each single-qubit gate is described by a complex-valued
matrix𝑼 ∈ ℂ2×2 that is also unitary, i.e.𝑼 †𝑼 =𝑼𝑼 † = 𝕀. The action of one
gate matrix𝑼 on state vector |𝜓⟩ =𝝍 can be computed with matrix-vector
multiplication:

𝝍 ′ =𝑼𝝍 =

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

) (
𝜓0
𝜓1

)
=

(
𝑈0,0𝜓0 +𝑈0,1𝜓1
𝑈1,0𝜓0 +𝑈1,1𝜓1

)
.

This rule readily extends to the application of 𝑇 ≫ 1 different gates: |𝜓 ′⟩ =
𝝍 ′ =𝑼𝑇 −1 × · · · ×𝑼 1 ×𝑼 0𝝍 , where × denotes matrix-matrix multiplication.
The last ingredient concerns the readout stage. If the final state is𝝍 ′, then the
probability of obtaining outcome bit 𝑜 = 0 and 𝑜 = 1 is

𝑝0 =Pr |𝜓 ⟩ [𝑜 = 0] = |𝜓0 |2 and

𝑝1 =Pr |𝜓 ⟩ [𝑜 = 1] = |𝜓1 |2 .

Note that each formula features the absolute value of a complex number. And
such absolute values are invariant under multiplication with any complex phase
exp (i𝜑):

𝑝0 = |𝜓0 |2 = |exp (i𝜑)𝜓0 |2 and 𝑝1 = |𝜓1 |2 = |exp (i𝜑)𝜓1 |2 .

This has an important consequence. Our description of quantum logic in terms
of matrix-vector multiplication carries redundant information. Indeed, the
overall complex phase does not matter at all. outcome probabilities don’t

depend on complex phases
This affects both state vectors and

gate matrices.

Example 3.4 (states). The following four state vectors all describe a logical 0 bit
(‘everything is in zero’):

|0⟩ =
(
1
0

)
, +i|0⟩ =

(
i
0

)
, −|0⟩ =

(
−1
0

)
, −i|0⟩ =

(
−i
0

)
.

■

30 Lecture 3: Single qubit circuits II

Example 3.5 (gates). The following two unitary matrices describe the same gate
action: (

exp (−i𝜋/8) 0
0 exp (i𝜋/8)

)
and

(
1 0
0 exp (i𝜋/4)

)
.

■

Non-example 3.6 (states). The following two states are not equivalent

|+⟩ = 1
√
2
(|0⟩ + |1⟩) =

(
+1/

√
2

+1/
√
2

)
and |i+⟩ = 1

√
2
(|0⟩ + i|1⟩) =

(
1/
√
2

i/
√
2

)
,

because there is no way to write |i+⟩ as exp (i𝜑) |+⟩. ■

This phase invariance of both state vectors and gate actions is an important
feature of quantum computing and also deserves a prominent display.

Fact 3.7 (phase invariance of state vectors and gate matrices). phase invariance of state
vectors & gate matrices

Two state vectors
|𝜓⟩, |𝜓 ′⟩ encode the same information content if |𝜓 ′⟩ = exp (i𝜑) |𝜓⟩ for
some 𝜑 ∈ [0, 2𝜋). Likewise, two gate matrices 𝑼 ,𝑼 ′ encode the same
action if 𝑼 ′ = exp (i𝜑 ′)𝑼 for some 𝜑 ′ ∈ [0, 2𝜋). If this is the case, we
succinctly write

|𝜓 ′⟩ =𝝍 ′ ∼𝝍 = |𝜓⟩ and also 𝑼 ′ ∼𝑼 .

3.3.2 Clifford gates
In the introduction, we have already emphasized that there are only two
non-trivial single-bit circuits: 𝕀 (do nothing) and 𝑿 (bit-flip), see Eq. (3.1). Let
us now explore what happens in the quantum case. Let’s start with the two
most prominent single-qubit gates that are featured in Lecture 1:

𝑿 =

(
0 1
1 0

)
and 𝑯 =

1
√
2

(
1 1
1 −1

)
.

The quantum circuit model allows us to combine these elementary gates to con-
struct new quantum logical functionalities. Note that many gate combinations
must be trivial because both 𝑿 and 𝑯 are reversible. In particular,

𝑿 2 = 𝑿 × 𝑿 = 𝕀 and 𝑯 2 = 𝑯 ×𝑯 = 𝕀,

which tells us that long sequences of only 𝑿 or only 𝑯 don’t accomplish
anything. Indeed, 𝑿 𝐷 = 𝑿 if 𝐷 is odd and 𝑿 𝐷 = 𝕀 else if 𝐷 is even. Likewise,
𝑯𝐷 = 𝑯 if 𝐷 is odd and 𝑯𝐷 = 𝕀 else. Truly new logical functionalities can
only be achieved if we alternate 𝑿 and 𝑯 gates. For instance, we can create

31 Lecture 3: Single qubit circuits II

the following ‘cousins’ of the Hadamard gate:

. (3.4)

Each of them features the minus sign in a different location. We can also
sandwich the 𝑿 gate between two 𝑯 s to obtain the sign-flip gate: sign-flip gate 𝒁

. (3.5)

This matrix 𝒁 is also called the Pauli-z gate, while 𝑿 is known as the Pauli-x
gate. Finally, we can combine 𝑿 and 𝒁 to get an action that is equivalent to
the Pauli-y gate𝒀 :

𝑿 𝒁 =

(
0 −1
1 0

)
= (−i)

(
0 −i
i 0

)
∼
(
0 −i
i 0

)
= 𝒀 , (3.6)

where we have used the gate invariance under global phases from Fact 3.7. This
phase invariance of quantum gate actions, in fact, also implies that we are done.
We cannot reach any new functionalities anymore. Also, note that Eq. (3.5)
allows us to replace the elementary 𝑿 -gate with an elementary 𝒁 -gate. After
all, we can transform one into the other by investing two Hadamard gates.

Lemma 3.8 The two elementary gates 𝑿 (bit-flip) and𝑯 (Hadamard) generate
a total of 8 functionally distinct quantum functionalities: one identity (𝕀), three
Pauli gates (𝑿 ,𝒀 ,𝒁) and four Hadamard-type gates displayed Eq. (3.4).

We leave a proof of this technical statement as an instructive exercise that
can be easily automated. and instead refer to Fig. 3.3 for a visualization of this
statement. Bloch sphere representation

of single-qubit state vectors
It uses a geometric analogy between single-qubit state vectors (with

complex coefficients and phase invariance) and real-valued 3D-vectors that are
confined to a sphere. In this Bloch sphere representation, antipodal points are

32 Lecture 3: Single qubit circuits II

Figure 3.3 All 8 functionally distinct quantum gates formed from only the gates 𝑿
and 𝑯 applied to the zero |0⟩ state visualized on a Bloch Sphere.

33 Lecture 3: Single qubit circuits II

always orthogonal to each other. E.g. |0⟩ and |1⟩ from north and south pole of
the sphere and also obey ⟨0|1⟩ = 𝒆†0𝒆1 = 0 (orthogonality).

Exercise 3.9 (Proof of Lemma 3.8). Verify the correctness of Lemma 3.8 by writing
a piece of code that generates gate combinations of a certain length, computes
their matrix representation via matrix-matrix multiplication and terminates
once no new functionally distinct matrices can be achieved (i.e. all newly
generated matrices are equivalent to existing ones up to a global phase).

Lemma 3.8 lists a total of 8 different logical functionalities that can be
obtained from combining two elementary quantum gates: 𝑯 and 𝒁 (or,
equivalently: 𝑯 and 𝑿). Let us now see if we can push this number even
further if we replace 𝒁 with another quantum gate. The phase gate phase gate

𝑺 =

(
1 0
0 i

)
introduces complex numbers into our gate model. It is also closely related to
the sign-flip gate. Indeed,

𝑺2 = 𝑺 × 𝑺 =

(
1 0
0 i

)
×
(
1 0
0 i

)
=

(
1 0
0 i2

)
=

(
1 0
0 −1

)
= 𝒁 ,

so it is instructive to think of 𝑺 as a ‘square root’ of the sign-flip gate 𝒁 . Higher
powers of 𝑺 lead to lower right matrix entries that continue to jump around
the complex unit circle:

𝑺3 =

(
1 0
0 −i

)
and finally 𝑺4 =

(
1 0
0 1

)
= 𝕀.

The phase gate is the first gate we encounter that is not its own reverse. If we
want to undo the action of 𝑺 , we must apply 𝑺† = 𝑺3. A single application of
the phase gate inserts complex numbers into rows or columns of existing gate
matrix descriptions. Whether it is rows or columns depends on the ordering of
gates. For instance,

𝑺 ×𝑯 =

(
1 0
0 i

)
× 1
√
2

(
1 1
1 −1

)
=

1
√
2

(
1 1
i −i

)
, while

𝑯 × 𝑺 =
1
√
2

(
1 1
1 −1

)
×
(
1 0
0 i

)
=

1
√
2

(
1 i
1 −i

)
.

We can now use a combination of 𝑺 and𝑯 to generate the actual Pauli-Y matrix
from Eq. (3.6):

𝒀 = 𝑺 ×𝑯 × 𝒁 ×𝑯 × 𝑺3.

We leave a verification of this formula as an instructive exercise. By now, it
should not be a surprise that replacing 𝒁 with 𝑺 (its square root) allows us to
build more stuff. However, the total number of different functionalities is still
finite.

34 Lecture 3: Single qubit circuits II

Definition 3.10 (single-qubit Clifford gates). The two gates 𝑯 (Hadamard) and 𝑺
(phase) generate a total of 24 different single-qubit gate functionalities. These
are called (single-qubit) Clifford gates.

Table 3.1 provides a complete list of these 24 operations and a way of how
to realize them using Pauli rotations – the topic of today’s final chapter.

3.3.3 Universal gate sets
We now have seen that two quantum gates already generate many different
logical functionalities – many more than the two nontrivial single-bit circuits 𝕀
and 𝑿 . Single-qubit Clifford gates, for instance, comprise a total of 24 gates
with different quantum logic. It is therefore natural to wonder if we can do
even better. Let us see if we can apply the trick from another time. More
precisely, we replace 𝑺 with its ‘square root’ which is called the T-gate: T-gate

𝑻 =

(
1 0
0 exp (i𝜋/4)

)
such that 𝑻 2 =

(
1 0
0 exp (i𝜋/2)

)
= 𝑺 ,

where we have used the rule for multiplying complex phases from Fact 3.2,
as well as exp (i𝜋/2) = +i (see e.g. Fig. 3.1 (left)). Euler’s formula (3.3) also
implies

exp (i𝜋/4) = cos(𝜋/4) + i sin(𝜋/4) = (1 + i) /
√
2,

so this complex phase contains both a real-valued and an imaginary contribution.
Due to 𝑺 = 𝑻 2, replacing 𝑺 by 𝑻 can only increase the number of quantum
functionalities that can be reached. The actual gain is astonishing.

Theorem 3.11 (universal gate set). Hadamard+T generate every
2 × 2 unitary matrix

Together, the elementary Clifford gates
𝑯 ,𝑺 and the T-gate𝑻 form a universal gate set: Every 2 × 2 unitary matrix
can be approximated to an arbitrary degree with sequences comprised of
only 𝑯 and𝑻 (we actually don’t need 𝑺 , because 𝑺 = 𝑻 2).

The following powerful statement stems from group theory and a proof
would go beyond the scope of this lecture. Here, we instead emphasize the
implications. There are infinitely many unitary 2 × 2 matrices that are distinct
from each other (even if we take into account phase invariance). Nonetheless,
we can approximate each and every such matrix with sequential quantum
circuits that only feature 𝑯 (Hadamard) and𝑻 (T-gate). What is more, such
universal gate sets are easy to find. The elementary Clifford gates {𝑯 ,𝑺 } only
need one additional non-Clifford gate 𝑼 to become universal2. The precise
nature of this additional third gate𝑼 does not matter at all!

Theorem 3.11 is interesting and tells us something about the ultimate
possibilities of single-qubit logic. However it does not tell us anything about the
cost associated with realizing this apparent potential. A natural cost parameter
for quantum circuits is circuit depth: how many layers of either 𝑯 or 𝑻 are

2For technical reasons, we might actually need one additional gate𝑼 , as well as its inverse
𝑼 †.

35 Lecture 3: Single qubit circuits II

Figure 3.4 (a) A Bloch sphere showing the labeling of the axis. (b) The single qubit
quantum states reached with only combinations of 𝑿 and 𝑯 , see Lemma 3.8. (c)
The single qubit quantum states reached with only Clifford gates, see Definition 3.10.
(d) The single qubit quantum states reached with arbitrary long combinations of
Clifford gates and the𝑻 gate as stated in Theorem 3.11.

required to a given target unitary𝑼 up to accuracy 𝜀 ∈ (0, 1)? This quantum
synthesis problem has a surprisingly strong answer that is valid at a remarkable
level of generality [Kit97; DN05].

Theorem 3.12 (efficient single-qubit synthesis (Solovay-Kitaev Theorem)). efficient single-qubit circuit
synthesis

Let
G be a universal gate seta, e.g. G = {𝑯 ,𝑻 } and let 𝜀 be a desired
approximation accuracy. Then, for every unitary 2 × 2 matrix 𝑼 , there
exists a sequence of (at most)

𝐷 = O (log𝑐 (1/𝜀)) (3.7)

that approximates the action of𝑼 up to accuracy 𝜀. Here, 𝑐 ∈ [1, 3 +𝑜 (1)]
is a constant that depends on the universal gate set in question.

aThe original statement also requires that this gate set either contains inverses or can
generate them in a constant number of steps.

Some elementary gate sets even achieve 𝑐 = 1, in which case Eq. (4.12) is
tight up to a constant factor. We emphasize that the required circuit depth only
scales logarithmically in the desired target accuracy. Or, to put it differently:
(after some burn-in period,) the approximation error of a quantum circuit
approximation diminishes exponentially in the circuit depth one is willing to
invest.

We have come a long way so far. Starting with 𝑯 and 𝑿 (or 𝒁), we found
out that we can generate a total of 8 different quantum functionalities. This
number went up to 24 after replacing 𝑿 with the phase gate 𝑺 . Moving from

36 Lecture 3: Single qubit circuits II

𝑯 and 𝑺 to 𝑯 and 𝑻 – the ‘square root’ of 𝑺 – had even more disruptive
consequences. These two gates can generate every 2 × 2 unitary matrix. We
refer to Fig. 3.4 for an illustration of this journey.

3.4 Pauli rotation gates
Let us now move on and discuss a different approach towards quantum gates
that is more analog in nature. This is also how modern quantum hardware
executes quantum logic. The basic building blocks are the 3 Pauli matrices: 3 Pauli matrices

𝑿 =

(
0 1
1 0

)
, 𝒀 =

(
0 −i
i 0

)
and 𝒁 =

(
1 0
0 −1

)
. (3.8)

They describe important quantum logical operations, like bit-flip (𝑿), sign-flip
(𝒀) and a combination of both (𝒀 = i𝑿 𝒁 ∼ 𝑿 𝒁). However, Pauli matrices also
feature prominently in the quantum physical formalism that is used to describe
individual qubits3. They can also be used to generate qubit rotations along
different axes. Let 𝜃 ∈ [0, 2𝜋] be an angle and define Pauli rotations

𝑹𝑥 (𝜃) = exp (−i(𝜃/2)𝑿) =
(

cos(𝜃/2) −i sin(𝜃/2)
−i sin(𝜃/2) cos(𝜃/2)

)
(𝑿 -rotation by 𝜃),

𝑹 𝑦 (𝜃) = exp (−i(𝜃/2)𝒀) =
(
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

)
(𝒀 -rotation by 𝜃),

𝑹 𝑧 (𝜃) = exp (−i(𝜃/2)𝒁) =
(
exp (−i𝜃/2) 0

0 exp (i𝜃/2)

)
(𝒁 -rotation by 𝜃).

We leave the derivation of these matrix descriptions as an instructive exercise
in matrix analysis. For now, we emphasize that one should really view these
three operations as rotations. The following technical statement explains why.

Lemma 3.13 All three Pauli rotations are 2𝜋 -periodic (up to a global phase) and
obey an angle addition rule. In formulas, we have for𝑤 = 𝑥, 𝑦 , 𝑧 ,

𝑹𝑤 (2𝜋) ∝ 𝑹𝑤 (0) = 𝕀 and 𝑹𝑤 (𝜃)𝑹𝑤 (𝜃 ′) = 𝑹𝑤 (𝜃 + 𝜃 ′), (3.9)

regardless of 𝜃 , 𝜃 ′ ∈ ℝ.

Again, we leave a rigorous derivation as an instructive exercise. Note that
this angle addition rule is very similar to the phase multiplication rule from
Fact 3.2. Lemma 3.13 ensures 𝑅𝑤 (𝜃) ∝ 𝑅𝑤 (𝜃 mod 2𝜋) (2𝜋 -periodicity) and
also completely specifies the reverse operation:

𝑹𝑤 (𝜃)−1 = 𝑹𝑤 (−𝜃) because 𝑹𝑤 (𝜃)𝑹𝑤 (−𝜃) = 𝑹𝑤 (𝜃 − 𝜃) = 𝑹𝑤 (0) = 𝕀.

Now suppose that we execute multiple Pauli rotations around the same axis.
Then, a similar argument highlights that the order of rotations does not matter:

𝑹𝑤 (𝜃)𝑹𝑤 (𝜃 ′) = 𝑹𝑤 (𝜃 + 𝜃 ′) = 𝑹𝑤 (𝜃 ′ + 𝜃) = 𝑹𝑤 (𝜃 ′)𝑹𝑤 (𝜃).
3They are related to the spin of a quantum particle across the different coordinate axes in

3-dimensional space.

37 Lecture 3: Single qubit circuits II

This means that we can accumulate and/or permute different Pauli rotations
of the same kind at will – an extremely useful feature. The following circuit
visualization depicts a straightforward extension of this formula to 𝐷 + 1
different rotations: rotations across same axis

play nicely

, (3.10)

for𝑤 = 𝑥, 𝑦 , 𝑧 and 𝜃0, . . . , 𝜃𝐷 ∈ [0, 2𝜋) arbitrary. Note, however, that this is
only true for rotations along the same axis. Pauli rotations across different axes
don’t have this feature:

𝑹𝑤 (𝜃)𝑹𝑤 ′ (𝜃) ≠ 𝑹𝑤 ′ (𝜃 ′)𝑹𝑤 (𝜃) whenever𝑤 ≠ 𝑤 ′

for almost all angles 𝜃 , 𝜃 ′ ∈ [0, 2𝜋). The following diagrammatic reformulation
reminds us that order matters a lot in general:

We conclude this section by reproducing some of the gates we have seen
today with Pauli rotations.

1 The T-gate𝑻 is equivalent to a 𝑧 -rotation with angle 𝜃 = 𝜋/4:

𝑹 𝑧 (𝜋/4) =
(
exp (−i𝜋/8) 0

0 exp (i𝜋/8)

)
∼
(
1 0
0 exp (i𝜋/4)

)
= 𝑻 .

2 The phase gate 𝑺 -gate is equivalent to a 𝑧 -rotation with angle 𝜃 = 𝜋/2:

𝑹 𝑧 (𝜋/2) =
(
exp (−i𝜋/4) 0

0 exp (i𝜋/4)

)
∼
(
1 0
0 exp (i𝜋/2)

)
= 𝑺 .

This angle is exactly twice as large as the angle required for the T-gate.
3 The sign gate 𝒁 is equivalent to a 𝑧 -rotation with angle 𝜃 = 𝜋 :

𝑹 𝑧 (𝜋) =
(
exp (−i𝜋/2) 0

0 exp (i𝜋/2)

)
∼
(
1 0
0 exp (i𝜋)

)
= 𝒁 .

This angle is exactly twice as large as the angle required for the phase
gate and four times as large as the angle required for the T-gate.

4 The Hadamard gate 𝑯 is equivalent to a combination of an 𝑥-rotation
and a 𝑦 -rotation with angle 𝜋/2 and 𝜋/4 each. The following compu-
tation periodicity and cos(−𝜋/2) = 0, sin(−𝜋/2) = −1 and cos(𝜋/4) =
sin(𝜋/4) = 1/

√
2:

38 Lecture 3: Single qubit circuits II

No. Rotation composition Matrix

1 𝕀

(
1 0
0 1

)
2 𝑿

(
0 1
1 0

)
3 𝒀

(
0 −i
i 0

)
4 𝒁

(
1 0
0 −1

)
5 𝑹 𝑧

(
𝜋
2
) √

2
2

(
1 − 𝑖 0
0 1 + 𝑖

)
6 𝑹 𝑧

(
−𝜋

2
) √

2
2

(
1 + 𝑖 0
0 1 − 𝑖

)
7 𝑹𝑥

(
𝜋
2
) √

2
2

(
1 −𝑖
−𝑖 1

)
8 𝑹𝑥

(
−𝜋

2
) √

2
2

(
1 𝑖
𝑖 1

)
9 𝑹 𝑦

(
𝜋
2
) √

2
2

(
1 −1
1 1

)
10 𝑹 𝑦

(
−𝜋

2
) √

2
2

(
1 1
−1 1

)
11 𝑹𝑥

(
𝜋
2
)
× 𝑹 𝑦

(
𝜋
2
) 1

2

(
1 − 𝑖 −1 − 𝑖
1 − 𝑖 1 + 𝑖

)
12 𝑹𝑥

(
𝜋
2
)
× 𝑹 𝑦

(
−𝜋

2
) 1

2

(
1 + 𝑖 1 − 𝑖
−1 − 𝑖 1 − 𝑖

)
13 𝑹𝑥

(
−𝜋

2
)
× 𝑹 𝑦

(
𝜋
2
) 1

2

(
1 + 𝑖 −1 + 𝑖
1 + 𝑖 1 − 𝑖

)
14 𝑹𝑥

(
−𝜋

2
)
× 𝑹 𝑦

(
−𝜋

2
) 1

2

(
1 − 𝑖 1 + 𝑖
−1 + 𝑖 1 + 𝑖

)
15 𝑹 𝑦

(
𝜋
2
)
× 𝑹𝑥

(
𝜋
2
) 1

2

(
1 + 𝑖 −1 − 𝑖
1 − 𝑖 1 − 𝑖

)
16 𝑹 𝑦

(
−𝜋

2
)
× 𝑹𝑥

(
𝜋
2
) 1

2

(
1 − 𝑖 1 − 𝑖
−1 − 𝑖 1 + 𝑖

)
17 𝑹 𝑦

(
𝜋
2
)
× 𝑹𝑥

(
−𝜋

2
) 1

2

(
1 − 𝑖 −1 + 𝑖
1 + 𝑖 1 + 𝑖

)
18 𝑹 𝑦

(
−𝜋

2
)
× 𝑹𝑥

(
−𝜋

2
) 1

2

(
1 + 𝑖 1 + 𝑖
−1 + 𝑖 1 − 𝑖

)
19 𝑿𝑹 𝑦

(
𝜋
2
) √

2
2

(
1 1
1 −1

)
20 𝑿𝑹 𝑦

(
−𝜋

2
) √

2
2

(
−1 1
1 1

)
21 𝒀 𝑹𝑥

(
𝜋
2
) √

2
2

(
−1 −𝑖
𝑖 1

)
22 𝒀 𝑹𝑥

(
−𝜋

2
) √

2
2

(
1 −𝑖
𝑖 −1

)
23 𝑹𝑥

(
𝜋
2
)
× 𝑹 𝑦

(
𝜋
2
)
× 𝑹𝑥

(
𝜋
2
) √

2
2

(
0 −1 − 𝑖

1 − 𝑖 0

)
24 𝑹𝑥

(
−𝜋

2
)
× 𝑹 𝑦

(
𝜋
2
)
× 𝑹𝑥

(
−𝜋

2
) √

2
2

(
0 −1 + 𝑖

1 + 𝑖 0

)
Table 3.1 All single-qubit Clifford gates that can be constructed using only 𝑯
(Hadamard) and 𝑺 (phase). The first column also provides a decomposition
into (at most) 3 Pauli rotations and/or Pauli gates.

39 Lecture 3: Single qubit circuits II

𝑹𝑥 (𝜋) × 𝑹 𝑦 (𝜋/2)

=

(
cos(𝜋/2) −i sin(𝜋/2)

−i sin(−𝜋/2) cos(𝜋/2)

)
×
(
cos(𝜋/4) − sin(𝜋/4)
sin(𝜋/4) cos(𝜋/4)

)
=(−i)

(
0 1
1 0

)
× 1
√
2

(
1 −1
1 1

)
= (−i) 1

√
2

(
1 1
1 −1

)
∼ 𝑯 .

The final statement of this section is an immediate consequence of Theorem 3.11
and the fact that we can use Pauli rotations to represent 𝑻 ∼ 𝑹 𝑧 (𝜋/4) and
𝑯 ∼ 𝑹𝑥 (𝜋)𝑹 𝑧 (𝜋/2).
Corollary 3.14 (Single-qubit Pauli rotations are universal). Pauli rotations are universalSequential combinations
of Pauli rotations 𝑹𝑥 (𝜃𝑥),𝑹 𝑦 (𝜃𝑦),𝑹 𝑧 (𝜃𝑧) with variable angles 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 ∈
[0, 2𝜋) can be used to reach every single-qubit functionality.

This elementary gate set is even more powerful than the ones we’ve seen so
far because we can choose continuous angles. As a result, only very few such
continuous gates suffice to exactly implement a unitary functionality𝑼 .

Exercise 3.15 (formal proofs of the matrix analysis equations).

1 Verify all three matrix representations of Pauli rotations by writing down
the matrix exponential and performing simplifications that are similar to
the proof of Euler’s equation (Exercise 3.3). Hint: use 𝑿 2 = 𝒀 2 = 𝒁 2 = 𝕀

to decompose each Taylor series into an even and odd part.
2 Verify the rotation properties in Eq. (3.9), e.g. by inserting concrete angles
and combining matrix-matrix multiplication rules with trigonometric
identities.

3.5 Application: restricted sum of parity computations
Let us now showcase how analog degrees of freedom can be exploited to
solve certain problems that don’t have an (obvious) digital solution. The
following stylized challenge illustrates that this feature alone can already be
quite empowering.

Envision a lecture hall with one instructor (me) and 𝐷 ≥ 2 students (you).
Once the game begins, the instructor hands out one integer number 𝑘𝑑 ∈ ℤ to
each student. The students win the challenge if they can determine the parity
(odd vs. even) of the sum of all integer 𝑘tot = 𝑘0 + · · · 𝑘𝐷−1. But they must do so
with very limited information transfer: the students can only receive/transmit a
single bit of information. This limitation forces students to act sequentially and
we can completely describe every possible strategy as a dynamic 1-bit circuit,
where each student contributes one logical operation (that depends on the
integer they have received).

The following classical strategy – visualized as a quantum circuit pipeline
with only classical constituents – allows the students to always win this chal-

40 Lecture 3: Single qubit circuits II

lenge:

(3.11)

This circuit cleverly exploits a cute feature of the parity: the parity of a sum is
the sum of the parities modulo 2. In this strategy, each student computes the
parity of their number and, once she receives the bit, she either flips it (if their
number is odd) or does nothing (if their number is even). This ensures that the
final outcome bit is

𝑜 =parity(𝑘𝐷1) ⊕ · · · ⊕ parity(𝑘0) = parity(𝑘0 + · · · + 𝑘𝐷−1) = parity(𝑘tot).

In words: the outcome bit is 1 if and only if 𝑘tot is an odd number. Otherwise, it
evaluates to 0. Executing this strategy allows the students to win this restricted
parity of sum computation with certainty.

So, let’s increase the difficulty level. Instead of distributing integers
𝑘0, . . . , 𝑘𝐷−1 ∈ ℤ, the instructor now distributes rational numbers𝑘0, . . . , 𝑘𝐷−1 ∈
ℚ (i.e. fractions) with the additional promise that the total sum 𝑘tot =

𝑘0 + · · · + 𝑘𝐷−1 ∈ ℤ still adds up to an integer value. He then asks the students
to come up with a strategy that again only involves a single bit of commu-
nication between them. This modification is quite nasty because the parity
is not well-defined for general rational numbers. This prevents the students
from re-using their winning strategy from before. In fact, we believe that it is
impossible to come up with a 1-bit communication protocol that is still capable
of winning this challenge with certainty.

Nonetheless, a clever group of students can overcome this sorry state of
affairs by going quantum: they replace the single bit of shared (classical) infor-
mation with a single qubit of shared quantum information. This generalization
allows the students to implement a sequential single-qubit quantum circuit of
the following form:

. (3.12)

41 Lecture 3: Single qubit circuits II

Instead of an individual bit, the students now pass an individual qubit between
themselves. They can choose to apply a quantum gate and/or perform a readout
and initialize a new qubit. A moment of thought reveals that only the very
last student should perform an actual readout. And only the very first student
should initialize their qubit. All students in the middle apply a quantum gate
that depends on the fraction 𝑘𝑑 ∈ ℚ they received. The strategy depicted in
Eq. (3.12) suggests to use a Pauli-y rotation across angle 𝜃𝑘 = 𝜋𝑘/2. The phase
addition rule for Pauli rotations from Eq. (3.10) highlights why this strategy is
a good idea:

𝑹 𝑦 (𝜋𝑘𝐷−1/2) × · · · × 𝑹 𝑦 (𝜋𝑘0/2) = 𝑹 𝑦 (𝜋 (𝑘𝐷−1 + · · · + 𝑘0) /2) = 𝑹 𝑦 (𝜋𝑘tot/2)

And, with the additional promise that 𝑘tot is integer, we can conclude that the
final state vector is

|𝜓 (𝑘tot)⟩ =𝑹 𝑦 (𝜋𝑘tot/2) |0⟩

=

(
cos (𝜋𝑘tot/2) − sin (𝜋𝑘tot/2)
sin (𝜋𝑘tot/2) cos (𝜋𝑘tot/2)

) (
1
0

)
=

(
cos(𝜋𝑘tot/2)
− sin(𝜋𝑘tot/2)

)
=

{
±|0⟩ if 𝑘tot even,
±|1⟩ if 𝑘tot odd.

The last simplification follows from the behavior of trigonometric functions:
whenever 𝑘tot is even, sin(𝜋𝑘tot/2) = 0 and all of the information must
concentrate in the ‘only 0’ branch. Conversely, if 𝑘tot is odd, then cos(𝜋𝑘tot/2) =
0 and all information must concentrate in the ‘only 1’ branch. There can be an
additional sign factor, but this does not matter, because the readout stage is
invariant under global phases.

This means that once the last person contributes their gate and starts the
readout, the outcome bit 𝑜 is perfectly correlated with the parity of the total
sum:

1 𝑜 = 0 must happen with certainty if 𝑘tot = 𝑘0 + · · · + 𝑘𝐷−1 is an even
number.

2 𝑜 = 1 must happen with certainty if 𝑘tot = 𝑘0 + · · · + 𝑘𝐷−1 is an odd
number.

So, going quantum allows the students to always win a very constrained
multi-player challenge for which no optimal classical strategy is known.

Problems
Problem3.16 (Proof of Euler’s theorem, seeExercise 3.3). Prove exp (i𝜑) = cos (𝜑)+
i sin (𝜑) by using i2 = −1 and the following three Taylor series expansions:

exp (𝑧) =
∑︁∞

𝑘=0

𝑧𝑘

𝑘 !
, cos(𝑧) =

∑︁∞
𝑘=0

(−1)𝑘 𝑧2𝑘

(2𝑘)! , sin(𝑧) =
∑︁∞

𝑘=0
(−1)𝑘 𝑧2𝑘+1

(2𝑘 + 1)! .

42 Lecture 3: Single qubit circuits II

Problem 3.17 (Finding all gates generated by𝑯 and 𝒁 , see Exercise 3.9). Verify the
correctness of Lemma 3.8 by writing a piece of code that generates gate
combinations of certain length, computes their matrix representation via
matrix-matrix multiplication and terminates once no new functionally distinct
matrices can be achieved (i.e. all newly generated matrices are equivalent to
existing ones up to a global phase).

Problem 3.18 (formal proofs of matrix exponential identities, see Exercise 3.15).

1 Verify all three matrix representations of Pauli rotations by writing down
the matrix exponential and performing simplifications that are similar to
the proof of Euler’s equation (Exercise 3.3). Hint: use 𝑿 2 = 𝒀 2 = 𝒁 2 = 𝕀

to decompose each Taylor series into an even and odd part.
2 Verify the rotation properties in Eq. (3.9), e.g. by inserting concrete angles
and combining matrix-matrix multiplication rules with trigonometric
identities.

4. Two qubit circuits

Date: 25 October 2023 Lecturers: Kristina Kirova & Jadwiga Wilkens

Agenda:

1 motivation
2 classical operations and

their truth tables
3 Kronecker product vs.

matrix product
4 XOR and CNOT gate
5 universal 2-qubit gate

set and its implications

A 1-qubit quantum processing unit (QPU) is a great starting point for gaining
a better understanding of the distinctions between classical and quantum
computing by introducing the concept of superposition. However, to harness
the full power of quantum phenomena in quantum computing, we require at
least a 2-qubit QPU and the possible logical quantum operations.

In this lecture, we delve into the world of 2-qubit gate logic. We begin by
exploring the classical bit level, first making sure that the gates are reversible,
then examining concepts like the sequential and parallel application of logical
gates with a truth table, which are subsequently expressed in mathematical
terms. Following this, we transition to the realm of 2-qubit quantum gates, and
we discuss their implications for universality in both the 2-qubit and multi-qubit
scenarios making a promising point about why and how quantum computing
can be more powerful than classical computing.

4.1 Classical reversible operations on 2 bits
As we saw in Lecture 1, there are two 1-bit reversible gate operations taking
an input bit 𝑏 ∈ {0, 1} to an output bit 𝑜 ∈ {0, 1} in such a way that no
information is lost. Namely the bit-flip operation 𝑿 and the ’do nothing’
operation 𝕀. In order to have a look at what reversibility means, Fig. 4.2 shows
examples of different logical operations mapping an input bit to an output bit.
Every input bit has to be mapped to exactly one output bit, else the mapping
(/logical operation/gate) is not reversible.

Adding a second bit to this process, the general layout now looks like Fig.
4.1, input bit pairs 𝑏 ∈ {00, 01, 10, 11} are manipulated and mapped onto

44 Lecture 4: Two qubit circuits

Figure 4.1 Schematic illustration of a two-qubit processor: Input and output consist
of 2 combined conventional bits giving 4 possible inputs and output. In between,
depicted in blue, the 2-qubit logic operating at the quantum level.

Figure 4.2 Illustration of 1 bit mappings. (a) A valid reversible mapping, the
identity operation. (b)A valid reversible mapping, the bit-flip operation. (c) A
not reversible mapping, for example, resetting the bit to 0.

output bit pairs 𝑜 ∈ {00, 01, 10, 11}. In the 1 qubit case, there are 2 distinct
logical reversible operators where every bit from the input set is mapped to
exactly one bit in the output set. How many reversible operations are there
now for 2 bits? The same explanation that applies to 1-bit operations about
what a 2-bit operation must follow to be reversible still stands. In Fig. 4.3
some illustrations are given for reversible and not reversible 2-bit gates. This
argument, when followed through, boils down to a combinatorics problem; how
many distinct ordering of 4 distinguishable objects (here the 4 combinations of
2 bits) are there? Or formulated differently; how many distinct permutations
of these said 4 objects are there? The answer is 4!, read as 4 factorial, which is
4! = 1 × 2 × 3 × 4 = 24. There are 24 reversible 2 bit

operations

4.1.1 Combining single-bit operations in parallel
The analysis above just shows how many distinct reversible classical gates there
are, not how their truth tables or sequence of gates look.

For that, let us look at some easy examples to get a grasp of how to build
compositions of 2 (qu)bit gates. Since the bit-flip operator is already known, the
easiest non-trivial example is flipping one bit while leaving one bit and doing
nothing to it or vice versa. In Fig. 4.4 all four truth tables of combinations of

45 Lecture 4: Two qubit circuits

Figure 4.3 Illustration of 2 bit mappings (a) - (c) reversible mappings. (d) In a
non-reversible mapping, the 00 and 11 bits are both mapped to the 00 bits
meaning that this mapping reverse is not clear or unambiguous.

00 01 10 11
00 0 0 1 0
01 0 0 0 1
10 1 0 0 0
11 0 1 0 0

(a) Flipping the first bit

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 0 1
11 0 0 1 0

(b) Flipping the second bit
00 01 10 11

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

(c) Flipping both bits

00 01 10 11
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

(d) Identity on both bits

Figure 4.4 All four truth tables of combinations of bit-flip and identity operations
on two bits corresponding to Fig. 4.5.

bit-flip and identity operations are depicted while in Fig. 4.5 the corresponding
gate diagrams are shown.

After visualizing the 2-qubit flip/identity in parallel combinations, hopefully,
the following part will be clearer even though the mathematical concept of
gates in parallel will be a bit tricky but crucial for the rest of the semester.

Applying two gates in parallel is written with a Kronecker product sign ⊗ in
between, (recall that applying two gates after each other is written with a × in
between). sequential gates → matrix

product
parallel gates → kronecker
product

Putting Fig. 4.5 into the Kronecker product notation they read as

(a) 𝑿 ⊗ 𝕀 Flipping the first bit,
(b) 𝕀 ⊗ 𝑿 Flipping the second bit,
(c) 𝑿 ⊗ 𝑿 Flipping both bits,
(d) 𝕀 ⊗ 𝕀 Identity on both bits.

The positioning of gates or rather matrices around the Kronecker product
⊗ is crucial since gates left of the ⊗ are only acting on the first (qu)bit and
gates written on the right are only acting on the second (qu)bit. Recall that the

46 Lecture 4: Two qubit circuits

Figure 4.5 All possible combinations of identity and bit-flip single-bit gates in 2
qubit circuit. (a) flip the first bit and leave the second. (b) flip the second bit
and leave the first. (c) flip both bits at the same time (parallel). (d) don’t do
anything to both bits.

ordering of gates when applied after each other also is important and, in general,
it does not hold that the matrix product of two matrices 𝑨,𝑩 is the same when
changing their order: 𝑨 × 𝑩 ≠ 𝑩 × 𝑨. An example for the importance of
ordering can be seen in Chapter 3 where the different combinations of𝑯 and 𝑿
are shown, more precisely Equation 3.4. Looking at the matrix representation
it very clearly shows that 𝑯 × 𝑿 ≠ 𝑿 ×𝑯 .

Ordering of gates matters!The same holds for the Kronecker product, in general, 𝑨 ⊗𝑩 ≠ 𝑩 ⊗ 𝑨. This
can already be seen in the truth table representation of bit-flip and identity
combinations in Fig. 4.4: 𝑿 ⊗ 𝕀 ≠ 𝑿 ⊗ 𝕀.

4.1.2 The Kronecker product
Before giving a more general definition of how to compute the Kronecker
product, here is an example of how to actually calculate the Kronecker product
of two matrices:

Example 4.1 (Kronecker product of bit-flip and identity).

𝑿 ⊗ 𝕀 =

(
0 1
1 0

)
⊗ 𝕀 =

(
0𝕀 1𝕀
1𝕀 0𝕀

)
=

©«
0
[
1 0
0 1

]
1
[
1 0
0 1

]
1
[
1 0
0 1

]
0
[
1 0
0 1

] ª®®®¬ =
©«

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®¬ .
The coloring in this example and in Fig. 4.4 denotes the entries of the gate
acting on the first (qu)bit which are not zero. ■

Definition 4.2 (Kronecker Product of two single-qubit gate actions). The parallel

47 Lecture 4: Two qubit circuits

action of two single-qubit gates, described by 2 × 2 matrices

𝑼 =

(
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

)
∈ ℂ2×2 and𝑽 =

(
𝑉0,0 𝑉0,1
𝑉1,0 𝑉1,1

)
∈ ℂ2×2,

is written as𝑼 ⊗𝑽 and captured by calculating the Kronecker product as

𝑼 ⊗𝑽 =

(
𝑈0,0 ×𝑽 𝑈0,1 ×𝑽
𝑈1,0 ×𝑽 𝑈1,0 ×𝑽

)
=

©«
𝑈0,0𝑉0,0 𝑈0,0𝑉0,1 𝑈0,1𝑉0,0 𝑈0,1𝑉0,1
𝑈0,0𝑉1,0 𝑈0,0𝑉1,1 𝑈0,1𝑉1,0 𝑈0,1𝑉1,1
𝑈1,0𝑉0,0 𝑈1,0𝑉0,1 𝑈1,1𝑉0,0 𝑈1,1𝑉0,1
𝑈1,0𝑉1,0 𝑈1,0𝑉1,1 𝑈1,1𝑉1,0 𝑈1,1𝑉1,1

ª®®®¬ ∈ ℂ4𝑥4.

Note that the resulting matrix has 2 × 2 = 4 columns and 2 × 2 = 4
rows. So, a parallel application of gates increases the size of the resulting
truth table. In contrast, the matrix multiplication of gates which are applied
sequentially (one after the other) does not increase the dimension of the truth
table representation.

In order to get a bit more familiar with the Kronecker product, here some
properties which are good to keep in mind for further calculations and a general
understanding. For example taking the matrix product of parallel gates, which
are denotes with capital letters 𝑨,𝑩 ,𝑪 , and 𝑫 boils down to:

(𝑨 ⊗ 𝑩) × (𝑪 ⊗ 𝑫) = (𝑨 ×𝑪) ⊗ (𝑩 ×𝑫). (4.1)

This has a neat consequence to grasp what it means to apply two gates in
parallel: When you use two gates at the same time, it’s kind of like using one
gate on the first bit and leaving the other bit alone. Then you use the second
gate on the other bit, while keeping the first one unchanged with an identity
gate. Putting this explanation into an equation gives

(𝑨 ⊗ 𝕀) × (𝕀 ⊗ 𝑩) = (𝑨 × 𝑩).

And putting this explanation into a figure gives

.

It is easy to count the total number of classical 2-bit truth tables (matrices)
which arise from Kronecker products of reversible single-bit operations. In
circuit language, this corresponds to the parallel application of single-bit gates
and there are exactly 2×2 = 4 of them (either 𝑿 or 𝕀 on each bit). This number
(4) is much smaller than the total number of reversible two-bit circuits (24).

48 Lecture 4: Two qubit circuits

So, there must be circuits whose truth table cannot be expressed as a single
Kronecker product.

One such gate is a reversible implementation of the XOR operation, called
controlled not or CNOT.

It acts as follows: the first bit is not manipulated but the second bit is the
direct sum ⊕ of the first and the second bit, which is defined as only being 1 if
exactly one of the two bits is 1, else 0,

00 01 10 11
00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

(CNOT0→1 ’truth table’). (4.2)

This operation always requires 2 bits: a control bit and a target bit. Here
the first bit denoted as 0 is the control bit and the second bit denoted as 1 is
the target bit, written as 0 → 1 in the caption of the CNOT. There is also the
CNOT1→0 which will be discussed in a later subsection.

(4.3)

Since information is flowing from the control bit to the target bit, this gate
cannot be viewed as acting separately on the first and separately on the second
bit. It always acts simultaneously on both bits and cannot be written in any
other way if there are only two bits available.

4.2 Quantum operations on 2 qubits
Equipped with a new tool to express parallel operations, let us have a look at
quantum gates and quantum states.

4.2.1 Quantum gates on 2 qubits
The generalization of the Kronecker product from classical gates to quantum
gates is straightforward: As long as a gate that now acts in parallel with other
gates has a matrix representation one can always calculate the Kronecker
product of this composition. Since in the former lectures quantum gates like
the Hadamard 𝑯 or sign-flip 𝒁 were already introduced, letting them act on a
qubit from a 2-qubit ensemble is straightforward.

49 Lecture 4: Two qubit circuits

Example 4.3 (Kronecker product of𝑯 and 𝒁).

𝑯 ⊗ 𝒁 =
1
√
2

(
1 1
1 −1

)
⊗
(
1 0
0 −1

)
=

1
√
2

©«
1 0 1 0
0 −1 0 −1
1 0 −1 0
0 −1 0 1

ª®®®¬ (4.4)

■

4.2.2 Quantum states on 2 qubit
In order to understand how a 2-qubit quantum operation manipulates states,
only a formal definition of how a 2-qubit quantum state is expressed in the
state vector formalism is missing: 2-qubit state vectors have 4

entriesDefinition 4.4 (2-qubit quantum state). The state of a 2-qubit system is character-
ized by a 4-dimensional vector

|𝜓⟩ =𝝍 =

©«
𝜓00
𝜓01
𝜓10
𝜓11

ª®®®¬ ∈ ℂ4. (4.5)

The individual coefficients, as in the single-bit state vector, can be complex-
valued numbers and it must hold that

∥|𝜓⟩∥2 = |𝜓00 |2 + |𝜓01 |2 + |𝜓10 |2 + |𝜓11 |2 =1 (state normalization). (4.6)

Analogous to the introduction of a 1-qubit quantum state, the classical bit
representation is standing out in terms of usage for extracting the probabilities
of a quantum state. How to imprint two classical bits 𝑏 ∈ {00, 01, 10, 11} into
the initial state of two qubits is given in the following example:

Example 4.5 (2-qubit initialization).

|0⟩ ⊗ |0⟩ = 𝒆00 =

©«
1
0
0
0

ª®®®¬ , |0⟩ ⊗ |1⟩ = 𝒆01 =

©«
0
1
0
0

ª®®®¬ , (4.7)

|1⟩ ⊗ |0⟩ = 𝒆10 =

©«
0
0
1
0

ª®®®¬ , |1⟩ ⊗ |1⟩ = 𝒆11 =

©«
0
0
0
1

ª®®®¬ . (4.8)

■

To abbreviate writing the classical imprinting, it is very common in the
literature to write |0⟩ ⊗ |0⟩ as |00⟩ or |0⟩ ⊗ |1⟩ as |01⟩ where the Kronecker
product is omitted and the bits shifted in one ket.

Analogous to the already discussed gates, two single-qubit states can be
paired together via the Kronecker product.

50 Lecture 4: Two qubit circuits

Example 4.6 (2-qubit quantum state vector from two single-qubits). Given two

single-qubit quantum states |𝜓0⟩ =
(
𝜓0,0
𝜓0,1

)
∈ ℂ2×2 and |𝜓1⟩ =

(
𝜓1,0
𝜓1,1

)
∈

ℂ2×2 the resulting 2-qubit state can be expressed as

|𝜓⟩ = |𝜓0⟩ ⊗ |𝜓1⟩ (4.9)

=

(
𝜓0,0
𝜓0,1

)
⊗
(
𝜓1,0
𝜓1,1

)
=

©«
𝜓0,0𝜓1,0
𝜓0,0𝜓1,1
𝜓0,1𝜓1,0
𝜓0,1𝜓1,1

ª®®®¬ =
©«
𝜓00
𝜓01
𝜓10
𝜓11

ª®®®¬ ∈ ℂ4×4 (4.10)

■

Note that this is not a general statement in the sense that not every quantum
state |𝜓⟩ can be written in terms of two single-qubit states but every system
composed of two single-qubit states can be written as above. If, for example,
the circuit starts in a classical bit imprinted state and the gates applied do not
transfer any information from one qubit to the other, the action of the gate
(𝑼 ⊗𝑽) is fully captured by letting𝑼 only act on the first qubit and𝑽 only
act on the second qubit,

(𝑼 ⊗𝑽) (𝝍0 ⊗𝝍1) =𝑼𝝍0 ⊗𝑽𝝍1. (4.11)

But as discussed in the classical 2-bit gate section, there are gates whose
action cannot be described as a single gate acting on the first qubit and another
single gate acting on the second qubit. As in the classical case the most
prominent candidate is the quantum CNOT gate whose matrix representation is
indeed the same, see the truth table (4.2) and the diagram as written in Fig. 4.3.
In quantum computing, this gate and its properties have huge implications in
terms of computing strength in the quantum realm which will be discussed
in more detail in the next lecture. Much like in classical circuit logic, these
operations allow to conditionally modify qubits. This is essential to build more
complicated functionalities out of simple elementary building blocks.

4.2.3 The CNOT gate
One of the most important features of the CNOT gate is that, paired with a
universal 1-qubit gate set, it forms a universal 2-qubit gate set. Meaning that
every 2-qubit unitary𝑼 ∈ ℂ4×4 with 16 entries can be, to arbitrary precision,
approximated by only 3 gates: the Hadamard 1-qubit gate𝑯 , the 1 qubit T-gate
𝑻 , and the CNOT gate 𝑪𝑵𝑶𝑻 acting on two qubits. universal 2-qubit gate set

51 Lecture 4: Two qubit circuits

Theorem 4.7 (efficient 2-qubit synthesis). efficient 2-qubit circuit
synthesis

Let Gbe a universal 2-qubit gate
seta, e.g. G = {𝑯 ,𝑻 ,𝑪𝑵𝑶𝑻 } and let 𝜀′ be a desired approximation
accuracy. Then, for every unitary 4 × 4 matrix 𝑼 containing 𝑚 𝑪𝑵𝑶𝑻
gates and arbitrarily many single-qubit gates, there exists a sequence of (at
most)

𝐷 = O (𝑚 log𝑐 (𝑚/𝜀′)) (4.12)

gates that approximates the action of 𝑼 up to accuracy 𝜀′. Here, 𝑐 ∈
[1, 3+𝑜 (1)] is a constant that depends on the universal gate set in question.

aThe original statement also requires that this gate set either contains inverses or can
generate them in a constant number of steps.

This theorem resembles the Theorem 3.12 of the universal 1-qubit gate set with
the big difference that the number of one standing-out gate, the CNOT gate,
plays a role in the depth of the approximating circuit. This should at first be
surprising since this kind of special treatment of one gate did not happen in
the 1-qubit case. To grasp a better understanding of this above stated theorem,
we will look at the case where there is an arbitrary circuit with single-qubit
unitaries and 𝑚 CNOT gates, mixed randomly together.

Taking a closer look at the role of the CNOT gate, it becomes clear that any
application of it is a somehow disruptive operation conditionally modifying one
qubit state. If we would zoom into one wire, let’s say the wire of the second
qubit, all the single-qubit gate operations between two CNOT gates can be
summarized to one unitary (by simply calculating the matrix product of them).
This arbitrary unitary can now be approximated with O (log𝑐 (1/𝜀)) many 𝑯
and 𝑻 gates to a precision of 𝜀. But a CNOT cannot be written as a unitary
acting solely on the second qubit, meaning it can not just be pushed into a
single-qubit unitary which is then approximated. The CNOT changes the qubit
state conditionally to the first one, so after the CNOT the next single-qubit
gates have to be approximated again, with an order of depth of O (log𝑐 (1/𝜀)).
This little procedure continues until all single-qubit gates between the𝑚 CNOT
gates are approximated to an 𝜀′ = 𝜀 𝑚 precision in total. Note that here we
use two different precision variables, namely 𝜀 for the single-qubit unitary
precision and 𝜀′ for the whole 2-qubit unitary precision.

4.2.4 Examples: CNOT1→0 and a random number generator
We will now introduce a very useful (and perhaps somewhat surprising) circuit
identity: flipping the CNOT gate with 4 Hadamard gates, fig.4.6. By "flipping"
we mean that the control qubit becomes the target one.

Example 4.8 (flipping the CNOT). Let’s show this by writing the two matrices
explicitly, using the rules for concatenating quantum operations.

52 Lecture 4: Two qubit circuits

Figure 4.6 The CNOT gate can be reversed with 4 Hadamard gates. This circuit
identity shows that the target and control qubits can be interchanged by
applying a Hadamard gate on every qubit before and after the CNOT gate.

Figure 4.7 Random number generator with 2 qubits. This quantum circuit accepts
two classical bits, 𝑏 ∈ {0, 1} which initialize the two quantum states in either
|0⟩ or |1⟩. Applying a Hadamard to both qubits and then measuring results in
two independent random bits.

(𝑯 ⊗ 𝑯)𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝑯) (4.13)

=
1
2

©«
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

ª®®®¬
©«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
1
2

©«
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

ª®®®¬ (4.14)

=

©«
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

ª®®®¬ (4.15)

which is the truth table of an operation which flips the first bit conditioned
on the second one.

This result implies that by acting locally on the two qubits we can change
the flow of information. ■

Example 4.9 (2-qubit quantum random number generator). Let us now extend our
example for a quantum number generator from the second lecture, Example
2.8, to 2 qubits. Consider the simple circuit, Fig. 4.7, where we initialize both
qubits in the |1⟩ state (for 𝑏 = 1), apply a Hadamard to each, and measure.

53 Lecture 4: Two qubit circuits

The state just before the measurement is:

|𝜓⟩ =
©«
𝜓00
𝜓01
𝜓10
𝜓11

ª®®®¬ = (𝑯 ⊗ 𝑯) (|1⟩ ⊗ |1⟩) (4.16)

=

((
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
⊗
(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)) ((
0
1

)
⊗
(
0
1

))
(4.17)

=

©«
1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2

ª®®®¬
©«
0
0
0
1

ª®®®¬ =
©«

1/2
−1/2
−1/2
1/2

ª®®®¬ . (4.18)

Now recall that the outcome probabilities are the squared magnitudes of
the state vector entries, namely |𝜓0⟩, |𝜓1⟩, |𝜓2⟩, |𝜓3⟩. Analogous to the rule
for single-qubit readout (Definition 2.7), we now compute: every outcome is equally

likely
Pr |𝜓 ⟩ [𝑜 = 00] = |⟨00|𝜓⟩|2 = |𝜓0 |2 = |1/2|2 = 1/4,
Pr |𝜓 ⟩ [𝑜 = 01] = |⟨01|𝜓⟩|2 = |𝜓1 |2 = |−1/2|2 = 1/4.
Pr |𝜓 ⟩ [𝑜 = 10] = |⟨10|𝜓⟩|2 = |𝜓2 |2 = |−1/2|2 = 1/4.
Pr |𝜓 ⟩ [𝑜 = 11] = |⟨11|𝜓⟩|2 = |𝜓3 |2 = |1/2|2 = 1/4.

We see that all the possible 4 outcomes are equally likely. Let us now focus
only on the first bit, without loss of generality. The probability of measuring an
outcome 0 on it is given by

Pr [𝑜1 = 0] =
∑︁1

𝑖=0
Pr [𝑜1𝑜2 = 0𝑖] = 1/4 + 1/4 = 1/2.

This is just the definition of a perfect random bit 𝑜 unif∼ {0, 1} which we
saw in Ex. 2.8. We now have a device which can generate 2 random bits
simultaneously. It is important to note that these 2 bits are independent of each
other. This is not always the case and in the next two lectures, we will see
examples of creating correlations with quantum circuits which cannot be done
classically.

■

5. Bell states & Superdense Coding

Date: 08 November 2023 Lecturers: Kristina Kirova & Jadwiga Wilkens

Agenda:

1 Bell States
2 Equivalence Theorem
3 Superdense Coding
4 Quantum Games

Today, we will start analyzing and exploiting the extraordinary correlations
that become possible when working with quantum circuits. As we shall see, the
(joint) quantum state of two qubits (𝑛 = 2) can be correlated in ways that are
inconceivable from a classical perspective. This has both important conceptual
implications, as well as practical ones.

5.1 Motivation: The Bell state
Our starting point is the output of the following, seemingly innocuous, quantum
circuit, Fig. 5.1. It contains two qubits, one Hadamard (superposition) gate
and a CNOT (classical gate).

We can use the unitary matrix framework to compute all amplitudes of the
resulting quantum state:

Figure 5.1 Circuit generating a Bell state. This quantum circuit initializes both
qubits in 0, then applies Hadamard to the first qubit, followed by a CNOT.

55 Lecture 5: Bell states & Superdense Coding

|𝜓Bell⟩ =𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |00⟩
=𝑪𝑵𝑶𝑻 (𝑯 |0⟩ ⊗ |0⟩)

=𝑪𝑵𝑶𝑻

(
1
√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
=

1
√
2
𝑪𝑵𝑶𝑻 |00⟩ + 1

√
2
𝑪𝑵𝑶𝑻 |10⟩

=
1
√
2
(|00⟩ + |11⟩) . (5.1)

Bell state: 1√
2
(|00⟩ + |11⟩)

Let us now compute the probability of each readout outcome in the same
manner as in ex.4.9:

Pr |𝜓Bell⟩ [𝑜 = 00] = |⟨00|𝜓⟩|2 = |𝜓0 |2 =
���1/√2

���2 = 1/2,

Pr |𝜓Bell⟩ [𝑜 = 01] = |⟨01|𝜓⟩|2 = |𝜓1 |2 = |0|2 = 0.

Pr |𝜓Bell⟩ [𝑜 = 10] = |⟨10|𝜓⟩|2 = |𝜓2 |2 = |0|2 = 0.

Pr |𝜓Bell⟩ [𝑜 = 11] = |⟨11|𝜓⟩|2 = |𝜓3 |2 =
���1/√2

���2 = 1/2.

Out of the four possible amplitudes, only two are nonzero and equal to 1/2.
This looks a lot like the value of two random coins that are perfectly correlated
with each other. perfectly correlated outcomesBoth coins always show the same value (0 or 1) with a
probability of 1/2 each.

5.1.1 Stronger than classical correlations
The above result is nice, but does not look very revolutionary yet as one can
also imitate such correlated randomness by first tossing a fair coin and then
communicating the value to both readout locations. What is so special about
this Bell state then? Let us now apply the Hadamard gate to one or both qubits,
Fig. 5.2.

In the trivial case in which a Bell state is prepared and measured, Fig. 5.2(a),
both outcomes are perfectly correlated, as we have been discussing so far.

For the quantum circuits shown in Fig. 5.2(b), where a Hadamard is applied
to the first qubit, the final state is

|𝜓final(b)⟩ =(𝑯 ⊗ 𝕀) |𝜓Bell⟩

=(𝑯 ⊗ 𝕀) 1
√
2
(|00⟩ + |11⟩)

=
1
√
2

((
|0⟩ + |1⟩

√
2

)
|0⟩ +

(
|0⟩ − |1⟩

√
2

)
|1⟩

)
=
1
2
(|00⟩ + |10⟩ + |01⟩ − |11⟩)

56 Lecture 5: Bell states & Superdense Coding

Figure 5.2 Four simple circuits including the Bell state. (a) Bell state followed
by a measurement. Outcomes are perfectly correlated. (b) A Hadamard gate
applied to the first qubit destroys the correlation. (c) A Hadamard gate applied
to the second qubit also destroys the correlation. (d) A Hadamard gate applied
to both qubits preserves the correlation.

and for the circuit shown in Fig. 5.2(c) it is

|𝜓final(c)⟩ =(𝕀 ⊗ 𝑯) |𝜓Bell⟩

=(𝕀 ⊗ 𝑯) 1
√
2
(|00⟩ + |11⟩)

=
1
√
2

(
|0⟩

(
|0⟩ + |1⟩

√
2

)
+ |1⟩

(
|0⟩ − |1⟩

√
2

))
=
1
2
(|00⟩ + |10⟩ + |01⟩ − |11⟩) .

Firstly, the quantum states which both circuits produce are the same, which
is somewhat surprising and we will discuss it in more detail below. Another
thing to note is that the probability of measuring each of the 4 possible outcomes
is the same, namely |1/2|2 = 1/4. Recall that we obtained the same probability
distribution in Ex. 4.9, the circuit generating random numbers with 2 qubits.
It seems that by applying a single Hadamard we have destroyed the perfect
correlation and have generated random bits instead.

In the case where a Hadamard gate is applied to both qubits, Fig. 5.2(d), is
surprising and without a classical analogue as it preserves the perfect correlation
between the measurement outcomes on both qubits. Let’s compute the final
state explicitly:

57 Lecture 5: Bell states & Superdense Coding

Figure 5.3 Local equivalence of Bell state. Applying a T gate on either of the two
qubits in a Bell state leads to the same final quantum state.

|𝜓final(d)⟩ =(𝑯 ⊗ 𝑯) |𝜓Bell⟩

=(𝑯 ⊗ 𝑯) 1
√
2
(|00⟩ + |11⟩)

=
1
√
2

((
|0⟩ + |1⟩

√
2

) (
|0⟩ + |1⟩

√
2

)
+
(
|0⟩ − |1⟩

√
2

) (
|0⟩ − |1⟩

√
2

))
=

1
2
√
2
(|00⟩ + |01⟩ + |10⟩ + |11⟩ + |00⟩ − |01⟩ − |10⟩ + |11⟩)

=
1

2
√
2
(2|00⟩ + 2|11⟩)

=
|00⟩ + |11⟩

√
2

=|𝜓Bell⟩

We recover the original Bell state as if no Hadamard gates were ever applied.
We have already seen that the Hadamard gate is its own inverse, 𝑯𝑯 = 𝕀, but
when applied consecutively to the same qubit. What is happening here? Is this
because of the Hadamard gate or the specific properties of the Bell state?

What is more, there does not exist a classical device which behaves in the
same way under such conditions. Namely, producing perfectly correlated bits,
then producing random bits if a Hadamard gate is applied to either register
and yet correlated ones if the Hadamard gate is applied to both. No classical equivalenceThis is what
we call stronger than classical correlations and we will see more examples of
this in the next lecture.

Example 5.1 (T gate on a Bell state). Let us now pick another gate, say the T gate,
and check if similar properties hold. Explicit computation of the final states
produced by applying the𝑻 gate on the first or on the second qubit of a Bell
state, Fig. 5.3,

58 Lecture 5: Bell states & Superdense Coding

|𝜓final(1)⟩ =(𝑻 ⊗ 𝕀) |𝜓Bell⟩

=(𝑻 ⊗ 𝕀) 1
√
2
(|00⟩|11⟩)

=
1
√
2

(
|00⟩ + 𝑒 𝑖𝜋/4 |11⟩

)
=(𝕀 ⊗𝑻) 1

√
2
(|00⟩ + |11⟩)

=(𝕀 ⊗𝑻) |𝜓Bell⟩

reveals that given a Bell state, regardless of which qubit we apply the gate
to, we produce the same state. ■

To summarize, we just demonstrated that

(𝑯 ⊗ 𝕀) |𝜓Bell⟩ = (𝕀 ⊗ 𝑯) |𝜓Bell⟩ (5.2)
(𝑻 ⊗ 𝕀) |𝜓Bell⟩ = (𝕀 ⊗𝑻) |𝜓Bell⟩. (5.3)

These are some of the properties that make the Bell State so special and
worth dedicating a whole lecture to. The above result is a particular case of the
following:

Theorem 5.2 Gate Equivalence
(𝑈 ⊗ 𝕀) |𝜓Bell⟩ =
(𝕀 ⊗𝑈𝑇) |𝜓Bell⟩

Let𝑈 be a single-qubit unitary matrix. Then,

(𝑈 ⊗ 𝕀) |𝜓Bell⟩ =(𝕀 ⊗𝑈𝑇) |𝜓Bell⟩

where 𝑇 denotes matrix transposition.

Proof. Recall Theorem 3.11, which states that {𝑯 ,𝑻 } is a universal single
qubit gate set. Hence, any arbitrary unitary gate 𝑼 can be written as 𝑼 =

𝑽 𝑁 · · ·𝑽 1𝑽 0 with𝑽 𝑘 ∈ {𝑯 ,𝑻 } for some 𝑁 ≥ 1. Let𝑼 act on the first qubit
of the Bell state:

𝑼 ⊗ 𝕀|𝜓Bell⟩ =(𝑽 𝑁 · · ·𝑽 1𝑽 0) ⊗ 𝕀|𝜓Bell⟩
= (𝑽 𝑁 ⊗ 𝕀) · · · (𝑽 1 ⊗ 𝕀) (𝑽 0 ⊗ 𝕀) |𝜓Bell⟩
= (𝑽 𝑁 ⊗ 𝕀) · · · (𝑽 1 ⊗ 𝕀) (𝕀 ⊗𝑽 0) |𝜓Bell⟩
= (𝕀 ⊗𝑽 0) (𝑽 𝑁 ⊗ 𝕀) · · · (𝑽 1 ⊗ 𝕀) |𝜓Bell⟩,

where we have used Eq. (5.2) or Eq. (5.3) to move the first gate𝑽 0 ∈ {𝑯 ,𝑻 }
from the top to the bottom. The last line is a simple commutation operation.

Repeat this 𝑁 − 1 times to obtain

𝑼 ⊗ 𝕀|𝜓Bell⟩ = (𝕀 ⊗𝑽 0) (𝕀 ⊗𝑽 1) · · · (𝕀 ⊗𝑽 𝑁) |𝜓Bell⟩
=𝕀 ⊗ (𝑽 0𝑽 1 · · ·𝑽 𝑁) |𝜓Bell⟩. (5.4)

59 Lecture 5: Bell states & Superdense Coding

Figure 5.4 Visualization of Corollary 5.3: The following three circuits are all
equivalent in the sense that they produce the same final quantum state. There
is no way of distinguishing these circuits.

The sequence of gates (𝑽 0𝑽 1 · · ·𝑽 𝑁) looks like the gate decomposition
of 𝑼 , but in reverse order. This reverse ordering can be expressed via the
transpose operation. Indeed,𝑽 𝑇

𝑘
= 𝑽 𝑘 , because 𝑯𝑇 = 𝑯 and𝑻𝑇 = 𝑻 . In turn,

𝑼𝑇 = (𝑽 𝑁 · · ·𝑽 1𝑽 0)𝑇

=𝑽 𝑇
0𝑽

𝑇
1 · · ·𝑽 𝑇

𝑁

=𝑽 0𝑽 1 · · ·𝑽 𝑁

Inserting this back into Eq. (5.4) we conclude the proof:

𝑼 ⊗ 𝕀|𝜓Bell⟩ = 𝕀 ⊗𝑼𝑇 |𝜓Bell⟩.

■

Here is an immediate consequence of Theorem 7.1 that justifies the particular
result of circuit Fig. 5.2 (d) where applying Hadamard gates to both qubits did
not change the final state.

Corollary 5.3 Let𝑼 ,𝑽 be arbitrary single-qubit gates. Then,

𝑼 ⊗𝑽 |𝜓Bell⟩ =
(
𝑼 ×𝑽 𝑇

)
⊗ 𝕀|𝜓Bell⟩ = 𝕀 ⊗

(
𝑽 ×𝑼𝑇

)
|𝜓Bell⟩.

Ultimately, the three circuits shown in Fig. 5.4 all produce the same quantum
state. This also explains why applying Hadamard gates to both qubits of the
Bell state did nothing to the state, Fig. 5.2(d). It also looks like we have found
a way to “teleport” gates from one of the qubits in the Bell state to the other.
This is a very powerful property which we will use intensively in the next two
lectures.

Proof. Both claims follow from decomposing𝑼 ⊗𝑽 either as𝑼 ⊗𝑽 = (𝑼 ⊗ 𝕀)×
(𝕀 ⊗𝑽) or (𝕀 ⊗𝑽) × (𝑼 ⊗ 𝕀) and subsequently applying Theorem 7.1. For
instance,

𝑼 ⊗𝑽 |𝜓Bell⟩ = (𝕀 ⊗𝑽) × (𝑼 ⊗ 𝕀) |𝜓Bell⟩

= (𝕀 ⊗𝑽) ×
(
𝕀 ⊗𝑼𝑇

)
|𝜓Bell⟩

=𝕀 ⊗
(
𝑽 ×𝑼𝑇

)
|𝜓Bell⟩,

and the other reformulation can be deduced in a similar fashion. ■

60 Lecture 5: Bell states & Superdense Coding

5.2 More Bell states
So far we have been analysing the simple circuit which produces the Bell state
starting with both qubits initialized in the 0 state. What happens if we were to
choose different inputs? There are 22 = 4 different choices, one for each input
string of size 𝑛 = 2, as depicted in Fig. 5.5.

The 4 Bell states are then:

|𝜓Bell(0, 0)⟩ =𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |0, 0⟩ = 1
√
2
(|0, 0⟩ + |1, 1⟩) , (5.5)

|𝜓Bell(0, 1)⟩ =𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |0, 1⟩ = 1
√
2
(|0, 1⟩ + |1, 0⟩) , (5.6)

|𝜓Bell(1, 0)⟩ =𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |1, 0⟩ = 1
√
2
(|0, 0⟩ − |1, 1⟩) , (5.7)

|𝜓Bell(1, 1)⟩ =𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |1, 1⟩ = 1
√
2
(|0, 1⟩ − |1, 0⟩) . (5.8)

These quantum states do look different but have similar features overall. They
all describe perfect correlation or anti-correlation between the two qubits
involved. In fact, we can generate all of them All 4 Bell states are locally

convertible
from the original Bell state. To

this end, we recall the following elementary single-qubit operations:

𝑿 =

(
0 1
1 0

)
i.e.

{
𝑿 |0⟩ = |1⟩,
𝑿 |1⟩ = |0⟩,

(bit flip),

𝒁 =

(
1 0
0 −1

)
i.e.

{
𝒁 |0⟩ = |0⟩,
𝒁 |1⟩ = −|1⟩,

(sign flip).

We can define a conditional application of these single-qubit gates that depends
on an external input bit 𝑏 ∈ {0, 1}:

𝑿 0 = 𝕀, 𝑿 1 = 𝑿 and 𝒁 0 = 𝕀, 𝒁 1 = 𝒁 .

In words: if 𝑏 = 0, we do nothing (identity operation). Else if 𝑏 = 1, we apply
the bit (sign) flip gate.

Proposition 5.4 Let 𝑏0, 𝑏1 ∈ {0, 1} be two possible input bits. Then,

|𝜓Bell(𝑏0, 𝑏1)⟩ =
(
𝒁 𝑏0𝑿 𝑏1 ⊗ 𝕀

)
|𝜓Bell(0, 0)⟩.

Exercise 5.5 Prove Proposition 5.4, e.g. by directly computing all advertised
2-qubit states and verifying equality.

5.3 Bell measurement
A Bell measurement is a joint measurement performed on two qubits, which
determines which of the four Bell states the two qubits are in. It consists of the

61 Lecture 5: Bell states & Superdense Coding

Figure 5.5 Circuit generating all the four Bell states. Depending on the input bits,
𝑏 , a different state is generated.

Figure 5.6 Bell measurement. Applying a 𝑪𝑵𝑶𝑻 and a 𝑯 just before the
measurement is equivalent to measuring in the Bell basis.

same operations preparing the Bell state but in reverse order: Bell measurement is the
reverse of Bell state
preparation

first applying a
CNOT gate to both qubits and then a Hadamard gate on the first qubit, Fig. 5.6.
We can think of the CNOT gate un-entangling the two previously entangled
qubits. This allows the information to be converted from quantum information
to a measurement of classical information.

Each of the 4 possible outcomes denotes one of the Bell states, as defined in
Eqs. 5.8.

5.4 Superdense Coding
This protocol called superdense coding is often used in literature to showcase
how the Bell State could be used in a real-world application, keeping in mind
that for simplicity there are only two qubits involved to make calculations
understandable. The naming will become clearer after stating the protocol.

The setting is depicted in Fig. 5.7 and is the following: Alice wants to send
Bob a message which is encoded in two classical bits 𝑏 ∈ (00, 01, 10, 11), with
her only sending one qubit to Bob. For that to work, they have to share a
strongly correlated qubit pair which is prepared and sent by a neutral third
party, here called Charlie. As one can see in the diagram in Fig. 5.7 the prepared

62 Lecture 5: Bell states & Superdense Coding

Figure 5.7 Scheme of the superdense coding protocol. Charlie prepares Bell State
and sends one part to Alice and the other part to Bob. Alice performs a quantum
operation on her qubit depending on which 2 bits (𝑏0𝑏1) ∈ (00, 01, 10, 11)
she wants to send to Bob. Then she sends her qubit to Bob which applies
a CNOT0�1 gate and a Hadamard gate on the first qubit. A measurement
performed by Bob in the computational basis will reveal which 2 bits Alice sent
him.

qubit pair is the first bell basis state as stated in Eq. (5.1). Alice then applies
quantum operations to her qubit to encode the two classical bits she wants to
send to Bob. She has four different options to encode her message and for Bob
to decode the send qubit correctly:

. (5.9)

After Alice applies one of the four operations, she sends her qubit to Bob. Bob,
already holding the other part of the Bell state qubit pair or receiving it at
the same time performs a measurement in the first bell basis by applying a
CNOT0�1 gate where Alice’s qubit is the control qubit and his qubit the target
qubit and after that a Hadamard gate on Alice’s qubit before measuring and
recording the classical bit string.

This protocol takes advantage of Proposition 5.4, the fact that Alice’s action
on her part of the Bell state is equivalent to changing the qubit initialization of
Bob, see Fig. 5.8. Since the CNOT and Hadarmard gate are reversible, Alice’s
actions directly influence the result of the readout operations of Bob.

63 Lecture 5: Bell states & Superdense Coding

Figure 5.8 Diagrams sketching the equivalences in the superdense coding protocol.

5.5 Quantum Games: The Prisoner’s Dilemma
Alice and Bob robbed a bank and stashed their loot in their office. Unfortunately,
somebody rats them out and the police find the stash. Although not sure if
both of them together are the culprits or just one of them, they arrest both of
them before they have the chance to talk to each other and interrogate them
separately. Alice and Bob face two options during the interrogation: Either
they confess and get a reduced sentence or they lie and claim that it was only
the other one giving them the chance to deflect the accusation and come free.
There is just one catch: if both of them accuse the other one, both of them will
face prison time. There are four different outcomes concerning their prison
time: 1) Both confess, then both get 1 year in prison, 2) Alice deflects and Bob
confesses, Alice comes free and Bob faces 5 years in prison, 3) Bob deflects
the accusations and Alice confesses, Bob comes free and Alice faces 5 years in
prison, or 4) both of them deflect and accuse each other and both of them get
each 3 years in prison. This is visualized in the following table, using tuples of
prison time where the first entry refers to Alices’ prison time and the second
entry to Bobs’ prison time:

Alice

confess deflect

Bo
b confess (1,1) (0,5)

deflect (5,0) (3,3)

. (5.10)

64 Lecture 5: Bell states & Superdense Coding

The government is technologically highly advanced and in their internal
prison-time-sentence system, they encode the decision into bits; confessing
corresponds to bit 0 and accusing the other to bit 1. The procedure is the
following: The computer starts in the 00 state and the alleged perpetrators can
choose if they want to confess or deflect by applying logical gate operations:
confession C is represented by the identity operation 𝕀 while deflecting D is
represented by the bit flip operation X,

. (5.11)

The time in prison will be calculated using the readout bits, and for the
judicial system to be able to read it off faster our usual bit string states are just
labeled with the prison times for Alice and Bobs in the subscription:

|𝜓11⟩ = |00⟩ ⇒ 1 year for Alice, 1 year for Bob,
|𝜓05⟩ = |10⟩ ⇒ 0 years for Alice, 5 years for Bob,
|𝜓50⟩ = |01⟩ ⇒ 5 years for Alice, 1 year for Bob,
|𝜓33⟩ = |11⟩ ⇒ 3 years for Alice, 3 years for Bob.

All four combinations of confessing and deflecting from the table 5.10 can be
put into equations with input bit string 00 on which logical gates are applied
and the final state dictates the prison time,

(C ⊗ C) |𝜓11⟩ = C|0⟩ ⊗ C|0⟩ = 𝕀|0⟩ ⊗ 𝕀|0⟩ = |00⟩ = |𝜓11⟩,
(C ⊗ D) |𝜓11⟩ = C|0⟩ ⊗ D|0⟩ = 𝕀|0⟩ ⊗ X|0⟩ = |01⟩ = |𝜓50⟩,
(D ⊗ C) |𝜓11⟩ = D|0⟩ ⊗ C|0⟩ = X|0⟩ ⊗ 𝕀|0⟩ = |10⟩ = |𝜓05⟩,
(D ⊗ D) |𝜓11⟩ = D|0⟩ ⊗ D|0⟩ = X|0⟩ ⊗ X|0⟩ = |11⟩ = |𝜓33⟩.

One can quickly see that both parties confessing would overall minimize the
global prison time to 2 years in total, but when looking from Alices’ (or Bobs’)
perspective confessing also can lead to 5 years in prison. While deflecting can
lead to no prison time at all or 3 years in prison, the obvious choice here for the
individual is to always deflect, although that tactic leads to an overall prison
time of 6 years. Since both parties will have the same thought process, both
will deflect hence maximizing the global prison time but seemingly minimizing
the individual prison time, that is why this problem is called the prisoners’
dilemma.

But recently the government went along with the quantum hype and,
without really knowing how to use it, bought a quantum computer to replace

65 Lecture 5: Bell states & Superdense Coding

its old prison-time-sentence system. And since Bell states are the new hot stuff,
of course, there will be Bell states involved.

The changes are the following: first, the matrix representation of deflecting
changes to

𝑫 = −i𝒀 =

(
0 −1
1 0

)
,

which action can also be represented as D|0⟩ = |1⟩ and D|1⟩ = −|0⟩.
Secondly, the states encoding prison time look a bit like Bell states now:

|𝜓11⟩ =
1
√
2
(|00⟩ + i|11⟩) , |𝜓05⟩ =

1
√
2
(|10⟩ − i|01⟩) ,

|𝜓50⟩ =
1
√
2
(|01⟩ − i|10⟩) , |𝜓33⟩ =

1
√
2
(i|00⟩ + |11⟩) .

Nothing changes if Alice and Bob play by the book and either confess or deflect,
the government tested that and we can just calculate the prison time states as
above and verify it by ourselves:

(C ⊗ C) |𝜓11⟩ =
1
√
2
[(C ⊗ C) |00⟩ + i(C ⊗ C) |11⟩] = 1

√
2
[|00⟩ + i|11⟩] = |𝜓11⟩,

(C ⊗ D) |𝜓11⟩ =
1
√
2
[(C ⊗ D) |00⟩ + i(C ⊗ D) |11⟩] = 1

√
2
[|01⟩ − i|10⟩] = |𝜓50⟩,

(D ⊗ C) |𝜓11⟩ =
1
√
2
[(D ⊗ C) |00⟩ + i(D ⊗ C) |11⟩] = 1

√
2
[|10⟩ − i|01⟩] = |𝜓05⟩,

(D ⊗ D) |𝜓11⟩ =
1
√
2
[(D ⊗ D) |00⟩ + i(D ⊗ D) |11⟩] = 1

√
2
[|11⟩ + i|00⟩] = |𝜓33⟩.

Alice, always up to date on what the quantum world is up to right now,
recognizes the quantum character of the new device while being interrogated,
and realizes her chance: she doesn’t apply the confess nor the deflect gate but
another gate which she calls the miracle move:

𝑴 =
1
√
2

(
i −1
1 −i

)
, 𝑴 = 𝑺𝑯𝒀 𝑺𝒁 ,

𝑴 |0⟩ = 1
√
2
(i|0⟩ + |1⟩), 𝑴 |1⟩ = 1

√
2
(−|0⟩ − i|1⟩).

By doing so the resulting quantum state is a superposition of different prison
time states, and interestingly it doesn’t matter what Bob chooses (who is not
as up-to-date and just applies the confess or deflect gate). To see that, the
application has to be written out as done above, and the resulting bit strings

66 Lecture 5: Bell states & Superdense Coding

have to be regrouped to see which superposition this miracle move creates.

(M ⊗ C) |𝜓11⟩ =
1
√
2
[(M ⊗ C) |00⟩ + i(M ⊗ C) |11⟩] ,

=
1
√
2
[M|0⟩ ⊗ C|0⟩ + iM|1⟩ ⊗ C|1⟩] ,

=
1
√
2

[
1
√
2
(i|0⟩ + |1⟩) ⊗ |0⟩ + 1

√
2
i(−|0⟩ − i|1⟩) ⊗ |1⟩

]
,

=
1
2
[i|00⟩ + |10⟩ − i|01⟩ + |11⟩] ,

=
1
√
2
[|𝜓33⟩ + |𝜓05⟩] .

(M ⊗ D) |𝜓11⟩ =
1
√
2
[(M ⊗ D) |00⟩ + i(M ⊗ D) |11⟩] ,

=
1
√
2
[M|0⟩ ⊗ D|0⟩ + iM|1⟩ ⊗ D|1⟩] ,

=
1
√
2

[
1
√
2
(i|0⟩ + |1⟩) ⊗ |0⟩ + 1

√
2
i(−|0⟩ − i|1⟩) ⊗ −|1⟩

]
,

=
1
2
[i|00⟩ + |10⟩ + i|01⟩ − |11⟩] ,

=
1
√
2
[|𝜓33⟩ − |𝜓05⟩] .

Alice cheated the system, it doesn’t matter what Bob does, Alice might walk
free even though Bob deflected and gets 5 years in prison. Worst case, Alice
faces 3 years as she would when she deflects. And Bob either faces 3 years or 5
years in prison, which doesn’t seem fair because this clearly seems like a rigged
game now.

There are more consequences following the introduction of quantum moves
into the prisoners’ dilemma, in [EWL99] the concept is explained in a more
rigorous mathematical formalism. The analysis is being taken even further by
parameterizing the quantumness of a move while looking at average prison
times for Alice and Bob.

6. Entanglement

Date: 15 November 2023 Lecturer: Johannes Kofler

Agenda:

1 entanglement
2 the CHSH game
3 quantum key distribu-

tions (QKD) revisited:
the E91 protocol

6.1 Entanglement
Entanglement is the phenomenon when two or more quantum systems are
correlated in such a (non-classical) way that even a perfect and complete
description of all individual systems does not fully specify their joint state. And
vice versa, knowing everything about their joint state, does not imply maximal
knowledge about the individual constituents. When two or more systems are in
an entangled state, they – in some sense – cannot be thought of as individual
systems anymore, even if they are separated in space. This is, in fact, what
Erwin Schrödinger called the “essence of quantum physics”.

In the bipartite case, i.e., for two quantum systems 𝐴 and 𝐵 , product (or
separable) states have the form

|𝜓⟩𝐴𝐵 = |𝜑⟩𝐴 ⊗ |𝜑⟩𝐵 . (6.1)

Definition 6.1 (entanglement, bipartite case). A pure bipartite quantum state |𝜓⟩𝐴𝐵
is entangled if and only if it is not a product state (i.e. not separable). entangled quantum states are

not separable
This

means that it is impossible to write |𝜓⟩𝐴𝐵 in the form of Eq. (6.1).

The Bell states are, of course, not of this form, i.e. there is no way to write
a Bell state such that it factorizes into an individual state |𝜑⟩𝐴 for Alice and
an individual state |𝜑⟩𝐵 for Bob. There also exist measures to quantify the
amount of entanglement in a quantum state, and the Bell states are indeed
maximally entangled. Bell states are maximally

entangledAs we will see later, entangled states can give rise to correlations whose
“strength” cannot be achieved by any classical process. Moreover, entanglement

68 Lecture 6: Entanglement

is a necessary resource for many quantum information technologies such as
quantum computing and entanglement-based quantum cryptography.

6.1.1 Rotated Bell states
Corollary 5.3, see also Fig. 5.4, highlights that the Bell state somehow correlates
both qubit wires in a nontrivial way. In fact, it is impossible to discern
whether a certain unitary (think: gate, circuit) has been applied to the first
qubit or the second one. Both qubits (wires) are linked. These circuit
reformulations, however, do feature a transpose. And this can be different from
the (complex-valued) adjoint. For real-valued matrices, however, transposition
and adjungation coincide and both denote the inverse of the continuous gate.
Rotation gates are one rich family of real-valued unitary transformations.
Parametrized by a single angle, they correspond to 2 × 2 rotation matrix

𝑹 (𝜃) =
(
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

)
with 𝜃 ∈ [0, 2𝜋).

Note that we use polarization (or spin) angles here, which are half as large
as angles on the Bloch sphere. So, we do not need all the factors 1/2 as in
Lecture 3. Rotation matrices are comparatively intuitive and obey very nice
composition and inversion rules.

Fact 6.2 Let 𝑹 (𝜃𝐴),𝑹 (𝜃𝐵) be two rotation matrices. Then,

𝑹 (𝜃𝐴)𝑹 (𝜃𝐵) =𝑹 (𝜃𝐴 + 𝜃𝐵) (composition),

𝑹 (−𝜃𝐴) =𝑹 (𝜃𝐴)𝑇 = 𝑹 (𝜃𝐴)−1 (transposition/inversion).

■

Exercise 6.3 Verify the composition rule of Fact 6.2 by computing the matrix
product and using trigonometric identities. Then, conclude the transposi-
tion/inversion rule directly from the composition rule.

It is interesting to consider Bell states, where each qubit is rotated by a
different angle. From now on we use subscript 𝐴 to denote the first qubit and
subscript 𝐵 to denote the second qubit. This notation convention will become
clear later on. For 𝜃𝐴 , 𝜃𝐵 , we define

|𝜓Bell(𝜃𝐴 , 𝜃𝐵)⟩ = 𝑹 (𝜃𝐴) ⊗ 𝑹 (𝜃𝐵) |𝜓Bell⟩. (6.2)

This state can be created by applying two independent rotation gates to
each qubit, Fig. 6.1.

Access to a quantum computer is one way to prepare such rotated Bell
states. But it is not the only one, and far from the most interesting case. All we
need to create such a state is a source that produces two qubits whose joint
quantum state is described by |𝜓Bell⟩. This can, for instance, be achieved by
nanomaterials – so-called quantum dots – that create a pair of photons whose

69 Lecture 6: Entanglement

Figure 6.1 Preparing the state |𝜓Bell(𝜃𝐴 , 𝜃𝐵)⟩ by rotating each qubit at an angle
𝜃A and 𝜃B respectively.

polarization degree is maximally entangled.1 These photons can then travel
(with the speed of light) to distant locations. There, quantum aficionados –
whom we call Alice and Bob – can ‘catch’ the photons and use polarization
filters to implement each rotation. In this context, the following visualization
is more appropriate:

Bell
source

qubit 𝐵qubit 𝐴
Alice

𝑅 (𝜃𝐵)

Bob

𝑅 (𝜃𝐴)

‘large distance’
.

This visualization depicts a scenario that is equivalent to the circuit in Fig. 6.1.
But, the underlying geometry is very different. Since their creation, the two
qubits have travelled in opposite directions. The recipients, Alice and Bob,
are very far away from each other, apply rotations independently and perform
single-qubit measurements. Nonetheless, the measurement outcomes they can
obtain remain very correlated. And, what is more severe, rotations performed
by Alice appear to affect Bob’s side and vice versa. This alternative viewpoint
isolates the strangeness of the following, mathematically valid, statement.

Lemma 6.4 For any 𝜃𝐴 , 𝜃𝐵 ∈ [0, 2𝜋), the outcome probabilities of measuring
the rotated Bell Bell states preserve

correlations under joint
rotations

state in Eq. (6.2) always obey

Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 00] = Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 11] = 1
2
cos2(𝜃𝐴 − 𝜃𝐵) ,

Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 01] = Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 10] = 1
2
sin2(𝜃𝐴 − 𝜃𝐵) .

Proof. Let us combine Corollary 5.3, Theorem 7.1 and the defining properties

1Armando Rastelli from the physics department at JKU is, in fact, one of the world-leading
experts in fabricating such entangling photon sources.

70 Lecture 6: Entanglement

of rotation matrices (Fact 6.2) to obtain

|𝜓Bell(𝜃𝐴 , 𝜃𝐵)⟩ =𝑹 (𝜃𝐴) ⊗ 𝑹 (𝜃𝐵) |𝜓Bell⟩ = 𝕀 ⊗ 𝑹 (𝜃𝐵)𝑹 (𝜃𝐴)𝑇 |𝜓Bell⟩
= 𝕀 ⊗ 𝑹 (𝜃𝐵 − 𝜃𝐴) |𝜓Bell⟩

=
cos (𝜃𝐵 − 𝜃𝐴)√

2
|0, 0⟩ + sin(𝜃𝐵 − 𝜃𝐴)√

2
|0, 1⟩

− sin(𝜃𝐵 − 𝜃𝐴)√
2

|1, 0⟩ + cos(𝜃𝐵 − 𝜃𝐴)√
2

|1, 1⟩.

We can now square these amplitudes to obtain the probabilities of the 2-bit
outcomes in question. ■

The following two extreme cases are noteworthy:

1 𝜃𝐴 = 𝜃𝐵 (same rotation on both qubits): in this case 𝜃𝐴 − 𝜃𝐵 = 0 and
the trigonometric relations cos2(0) = 1, sin2(0) = 0 ensure

Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 00] = Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 11] = 1
2
,

while the outcomes 0, 1 and 1, 0 can never occur. This always produces
perfectly correlated outcome bits for both qubits.

2 𝜃𝐴 = 𝜃𝐵 ± 𝜋/2 (shifted angle): in this case 𝜃𝐴 − 𝜃𝐵 = ±𝜋/2 and the
trigonometric relations cos2(𝜃/2) = 0, sin2(𝜃/2) = 1 ensure

Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 01] = Pr |𝜓Bell (𝜃𝐴 ,𝜃𝐵) ⟩ [𝑜 = 10] = 1
2
, ,

while the outcomes 0, 0 and 1, 1 can never occur. This produces perfectly
anticorrelated outcome bits for both qubits.

Lemma 6.4 interpolates between those extreme cases in a smooth fashion. If
𝜃𝐴 and 𝜃𝐵 are close, we are still likely to get very correlated output bits. If
instead 𝜃𝐴 − 𝜃𝐵 is close to 𝜋/2, we are likely to obtain very anti-correlated
output bits instead. Changing the relative difference of both angles allows us
to interpolate between perfect correlation and perfect anticorrelation.

6.2 The CHSH game and Bell inequalities
6.2.1 The CHSH game

The CHSH game is a modern view on a seminal thought experiment by John
Clauser (Nobel Prize 2022), Michael Horne, Abner Shimony and Richard Holt
from 1969. It has been intended to test the fundamental limits of (any) classical
explanation for quantum mechanical effects that involve the Bell state. This is
a clever sharpening of revolutionary observations by John Bell in 1964 [Bel64].

The CHSH game involves two players, A (for Alice) and B (for Bob), as well
as a referee. We refer to Fig. 6.2 for a visualization. Throughout the duration
of the game, A and B must not communicate with each other. Each of them
receives a uniformly random bit from a quizzmaster and are tasked to commit
to another single bit as output: the CHSH game

71 Lecture 6: Entanglement

A B

𝑥 𝑦

𝑎 𝑏

A B

𝑥 𝑦

𝑎 𝑏

Λ A B

𝑥 𝑦

𝑎 𝑏

Bell pair

Figure 6.2 Three variants of the CHSH game: Two players, A (for Alice) and
B (for Bob), play as partners in the following setting. A quizmaster (red)
provides each with a uniformly random input 𝑥 ∈ {0, 1} for A and 𝑦 ∈ {0, 1}
for Bob. They then have to output one bit (blue) each. They win the game if
𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦 . The interesting twist is that A and B cannot talk to each other
once the game has started. There are three potential scenarios that meet these
overall desiderata: (Left): A and B perform purely deterministic strategies (grey
boxes that implement a single-bit function). (Center:) similar setting, but A
and B share some joint random seed Λ (green) before the game starts. This
allows them to potentially hedge bets and gamble. (Right:) In the quantum
variant of the CHSH game, A and B share a Bell state (magenta) which they
can rotate and measure after the game has started.

• A receives 𝑥 ∈ {0, 1} (uniformly random) and outputs 𝑎 ∈ {0, 1},
• B receives 𝑦 ∈ {0, 1} (uniformly random) and outputs 𝑏 ∈ {0, 1}.

The players win if the two output bits obey 𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦 , so the optimal
strategy depends on both input bits. More precisely:

1 (𝑥, 𝑦) = (0, 0) implies that they win if (𝑎, 𝑏) = (0, 0) or (𝑎, 𝑏) = (1, 1)
(perfect correlation),

2 (𝑥, 𝑦) = (0, 1) implies that they win if (𝑎, 𝑏) = (0, 0) or (𝑎, 𝑏) = (1, 1)
(perfect correlation),

3 (𝑥, 𝑦) = (1, 0) implies that they win if (𝑎, 𝑏) = (0, 0) or (𝑎, 𝑏) = (1, 1)
(perfect correlation),

4 (𝑥, 𝑦) = (1, 1) implies that they win if (𝑎, 𝑏) = (0, 1) or (𝑎, 𝑏) = (1, 0)
(perfect anti-correlation),

This looks like an easy and somewhat boring game. But, remember that Alice
and Bob cannot talk to each other! And while three game settings suggest an
easy winning strategy, the fourth setting (perfect anti-correlation) asks for a
completely orthogonal strategy. And, since A and B only have access to one
input bit, how should they prepare for this situation?

6.2.2 Optimal classical strategies
The dilemma from above turns out to be impossible to overcome with traditional
means. This is the content of the following statement that basically underscores
that the naive strategy – Alice and Bob both always output 0 (1) – is optimal
among all deterministic strategies.

72 Lecture 6: Entanglement

Proposition 6.5 The best deterministic classical strategy for the CHSH game
wins with probability 3/4 = 0.75.

Proof. Both players, Alice and Bob, receive a (uniformly random) bit and are
tasked to produce a single output bit. There are only four different single-bit
functions that make sense in this context:

𝑓0(0) = 0, 𝑓0(1) = 0 (constant, always 0),
𝑓1(0) = 0, 𝑓1(1) = 1 (balanced, identity),
𝑓2(0) = 1, 𝑓2(1) = 0 (balanced, bit-flip),
𝑓3(0) = 1, 𝑓3(1) = 1 (constant, always 1).

Recall that there are 4 possible inputs for the CHSH game. Three of them
((0, 0), (0, 1), (1, 0)) ask for perfectly correlated output bits ((0, 0) or (1, 1))
while only one input (1, 1) requires perfectly anti-correlated output bits ((0, 1)
or (1, 0)). Importantly, Alice (Bob) doesn’t have access to the full input string,
they only see the first (second) bit. So, there is no way to prepare a strategy to
handle the fourth scenario. Instead, it seems better to always provide correlated
outputs, e.g. by jointly agreeing to always output 0 (Alice and Bob always apply
𝑓0 to their input) or, equivalently, by jointly agreeing to always output 1 (Alice
and Bob both apply 𝑓3 to their input bits). Such a perfectly correlated strategy
succeeds in 3 of the 4 possible scenarios. Since all four scenarios occur with
equal probability, the overall probability of success is 3/4 = 0.75, as advertised.

An exhaustive search over all possible combinations of 42 = 16 function
combinations underscores that these strategies are indeed as good as it gets. ■

The above proof reveals a dilemma that arises when Alice and Bob want
to come up with a very good strategy for the CHSH game. Each of them only
receives one-half of the input string, and they must not (cannot) communicate
while the game is going on. This partial information is not enough for them
to discern whether the interesting special case (input ((1, 1) which asks for
anti-correlated bits) has actually happened. And so, it does not seem to make
sense to pay attention to this special case at all. Stubbornly outputting 0,
regardless of the actual input, looks like a highly competitive strategy.

An interesting question is now whether there are randomized strategies that
allow Alice and Bob to do better than that. A randomized strategy could look
as follows: before the game starts, Alice and Bob are allowed to meet, conspire
and exchange information. They could use this opportunity to share a random
seed Λ that allows them to hedge bets and ‘gamble’ later on in the game. This
shared random seed should really be viewed as a mathematical abstraction of
a joint strategy that may involve additional information, as well as multiple
strategies.

But, to not interfere with the defining rule of the CHSH game, we insist
that the shared random seed is (statistically) independent from the random
bits 𝑥 and 𝑦 the referee is going to use once the game actually starts in

73 Lecture 6: Entanglement

earnest. This assumption is crucial and actually sufficient to prove the following
generalization of Proposition 6.5.

Theorem 6.6 (Bell inequality for CHSH). Any classical strategy conceivable best classical CHSH strategy
wins with probability ≤ 0.75

–
even those that use (arbitrary amounts of) shared randomness between
both players – can win the CHSH game with a probability of at most
3/4 = 0.75. Hence, the Bell inequality for the CHSH game, limiting all
classical strategies, reads: 𝑝class

succ ≤ 3
4 .

To be more precise, this upper bound on the optimal classical strategy
hinges on two explicit assumptions:

• separated players (‘locality’): Alice receives input bit 𝑥 and outputs
𝑎 ∈ {0, 1}; she has zero information about either 𝑦 or 𝑏 from Bob’s side.
Analogously, Bob’s outcome 𝑏 does not depend on 𝑥 or 𝑎 .

• uncorrelated randomness (‘free will’): the referee samples both input
bits 𝑥, 𝑦 uniformly at random; importantly, these random numbers are
completely uncorrelated from the shared random seed Λ that Alice and
Bob use to power their strategies.

There is a third implicit assumption, that is sometimes called ‘realism’. It states
that it is possible to assign probabilities to all input/output tuples arising from
potential strategies, irrespective of whether they occur in the actual game or
not.

Proof sketch of Theorem 6.6. The overall idea is that shared randomness cannot
improve over the best deterministic strategy. A shared random seed allows the
players to switch between different deterministic strategies – depending on the
value of the random seed. The resulting probability of success then becomes a
weighted sum over winning probabilities of individual deterministic strategies:

𝑝succ =
∑︁

𝑘
Pr[success|strategy 𝑘] 𝑝 (𝑘) with 𝑝𝑘 ≥ 0,

∑︁
𝑘
𝑝 (𝑘) = 1.

But, we already know from Proposition 6.5 that Pr[success|strategy 𝑘] ≤ 3/4
for all 𝑘 . It is impossible to overcome this threshold with probabilistic averaging.

Note, however, that this strategy only works if the random seed (𝑝 (𝑘) in
our case) is statistically independent of the game settings (𝑥, 𝑦). Otherwise,
the expression would not factorize nicely and the argument becomes void.
This is why uncorrelated randomness is an important assumption behind
Theorem 6.6. ■

6.2.3 Optimal quantum strategy
We have now prepared the stage for a very astonishing observation: a quantum
generalization of the CHSH – which does not violate any game rules – allows
the players to win with a success probability that is quite a bit larger than
3/4 = 0.75. To achieve such a noteworthy improvement, Alice and Bob share a

74 Lecture 6: Entanglement

Bell state between them before the game starts, see Fig. 6.2 (right). Once the
game begins, each player uses the input bit to perform a certain rotation on
their half of the Bell state and measure their qubit:

Bell state (qubit pair)
𝑦 𝜃𝐵

𝑦

𝜑

𝑏

𝑥𝜃𝐴

𝑥

𝑎
.

At first sight, this setup looks a bit asymmetric. Bob features an additional
rotation gate 𝑅 (𝜑) while Alice doesn’t. Due to the invariants of a rotated Bell
state, this is in fact the most general setup conceivable. Consider now the
scenario where Alice receives input bit 𝑥 and Bob receives input bit 𝑦 . After
applying rotations, they produce a rotated Bell state that depends on 𝑥 and 𝑦 .
We succinctly write

|𝜓 (𝑥, 𝑦)⟩ := |𝜓Bell(𝑥𝜃𝐴 , 𝑦 𝜃𝐵 + 𝜑)⟩ = 𝑹 (𝑥𝜃𝐴) ⊗ 𝑹 (𝑦 𝜃𝐵 + 𝜑) |𝜓Bell⟩.

Note that since this state depends on the rotation angles 𝜃𝐴 , 𝜃𝐵 , 𝜑 ∈ [0, 2𝜋),
Lemma 6.4 conveniently provides us with the associated outcome probabilities
for perfectly correlated and anti-correlated measurement outcome bits:

Pr |𝜓 (𝑥,𝑦) ⟩ [𝑜 = 00] = |𝜓 (𝑥, 𝑦)⟩ [𝑜 = 11] = 1
2
cos2 (−𝑥𝜃𝐴 + 𝑦 𝜃𝐵 + 𝜑) ,

Pr |𝜓 (𝑥,𝑦) ⟩ [𝑜 = 01] = |𝜓 (𝑥, 𝑦)⟩ [𝑜 = 10] = 1
2
sin2 (−𝑥𝜃𝐴 + 𝑦 𝜃𝐵 + 𝜑) .

We can now use these probabilities to analyze the success probability in each
CHSH game setting as a function of the rotation angles involved:

1 (𝑥, 𝑦) = (0, 0) which asks for 0 = 𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏 . In words, Alice and
Bob win the game if their output bits are perfectly correlated, that is they
should output either (𝑎, 𝑏) = (0, 0) or (𝑎, 𝑏) = (1, 1). The probability
of success is

𝑝succ(0, 0) = Pr |𝜓 (0,0) ⟩ [𝑜 = 00] + Pr |𝜓 (0,0) ⟩ [𝑜 = 11]

=
1
2
cos2 (−0𝜃𝐴 + 0𝜃𝐵𝜑) +

1
2
cos2 (−0𝜃𝐴 + 0𝜃𝐵 + 𝜑)

= cos2 (𝜑) .

2 (𝑥, 𝑦) = (0, 1) which asks for 0 = 𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏 . Again, Alice and Bob
win if their output bits are perfectly correlated. The probability of success
is

𝑝succ(0, 1) = Pr |𝜓 (0,1) ⟩ [𝑜 = 00] + Pr |𝜓 (0,1) ⟩ [𝑜 = 11]

=
1
2
cos2 (−0𝜃𝐴 + 1𝜃𝐵𝜑) +

1
2
cos2 (−0𝜃𝐴 + 1𝜃𝐵 + 𝜑)

= cos2 (𝜃𝐵 + 𝜑) .

75 Lecture 6: Entanglement

3 (𝑥, 𝑦) = (1, 0) which asks for 0 = 𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏 . For the last time, Alice
and Bob win if their output bits are perfectly correlated. The probability
of success is

𝑝succ(1, 0) = Pr |𝜓 (1,0) ⟩ [𝑜 = 00] + Pr |𝜓 (1,0) ⟩ [𝑜 = 11]

=
1
2
cos2 (−1𝜃𝐴 + 0𝜃𝐵𝜑) +

1
2
cos2 (−1𝜃𝐴 + 0𝜃𝐵 + 𝜑)

= cos2 (−𝜃𝐴 + 𝜑) .

4 (𝑥, 𝑦) = (1, 1) which asks for 1 = 𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏 . In this last scenario,
Alice and Bob win if their output bits are perfectly anti-correlated. The
probability of success is

𝑝succ(1, 1) = Pr |𝜓 (1,1) ⟩ [𝑜 = 01] + Pr |𝜓 (1,1) ⟩ [𝑜 = 10]

=
1
2
sin2 (−1𝜃𝐴 + 1𝜃𝐵 + 𝜑) + 1

2
sin2 (−1𝜃𝐴 + 1𝜃𝐵 + 𝜑)

= sin2 (𝜃𝐴 + 𝜃𝐵 + 𝜑) .

We can now take into account the distribution of inputs (𝑥, 𝑦) to combine
all these four probabilities into a single success probability. By assumption,
all possible 2-bit inputs occur with equal probability 1/22 = 1/4 (uniform
distribution). So, the overall probability of success becomes

𝑝succ =
1
4
[
cos2(𝜑) + cos2(𝜃𝐵 + 𝜑) + cos2(−𝜃𝐴 + 𝜑) + sin2(−𝜃𝐴 + 𝜃𝐵 + 𝜑)

]
.

We are now in a position to optimize the quantum strategy by choosing
𝜃𝐴 , 𝜃𝐵 , 𝜑 to make this success probability as large as possible. The cosine
function becomes large if all the angles are (relatively) close to zero and is
symmetric, i.e. cos(−𝛼) = cos(+𝛼). Here is one choice that yields the same
success probability for each of the four challenges:

𝜃𝐴 = −𝜋/4, 𝜃𝐵 = +𝜋/4, 𝜑 = −𝜋/8.

It achieves

𝑝succ = cos2 (𝜋/8) = 1
4

(
2 +

√
2
)
≳ 0.85.

Although not perfect, this success probability is considerably larger than the
best classical success probability (3/4 = 0.75) conceivable. In fact, it can
be shown that this quantum success probability is optimal. Even by using
(arbitrary) quantum resources and (arbitrary) quantum circuits one cannot
beat this threshold. This is worth a prominent display.

Theorem 6.7 (optimal quantum strategy for the CHSH game). For the CHSH
game (2 players), there is an optimal quantum strategy that (only) uses
2-qubit Bell states and two single-qubit rotations for each player. best quantum CHSH strategy

wins with probability > 0.85
This

76 Lecture 6: Entanglement

strategy achieves a success probability of 𝑝succ = (2 +
√
2)/4 ≳ 0.85.

6.3 CHSH rigidity and monogamy of entanglement
In this section, we briefly discuss the implications of actually observing a success
probability that is (close to) 𝑝succ = (2 +

√
2)/4. It turns out that such a high

probability of success is only possible if Alice and Bob share a (state close to
the) maximally entangled Bell state.

Fact 6.8 (CHSH rigidity and monogamy, informal). Suppose that Alice and Bob
play the CHSH game, but do not necessarily know (or trust) whether they
actually both measure one half of a Bell state. Then, they can use the success
probability they achieve to test their assumptions. In fact, an optimal success
probability of (2 +

√
2)/4 is only achievable if they indeed share a (possibly

rotated) Bell state. Moreover, this even implies that their two-qubit state is
completely uncorrelated (think: private) from any external players. ■

This fact subsumes two strong observations: (i) playing a CHSH game and
winning with optimal success probability essentially certifies that the underlying
protocol works as intended. monogamy of entanglement: if

two quantum systems are
maximally entangled they
cannot be entangled with a
third one

There is no additional need for benchmarking
and/or bug fixing. This remarkable feature is also called ‘self-testing’.
(ii) the quantum correlations within a two-qubit Bell state are maximally strong.
They are, in fact, so strong that it is impossible to still couple this quantum
system to another one. This feature is known as monogamy of entanglement.

6.4 Bell inequalities and the violation of local realism
We should note that the importance of the violation of Bell’s inequalities goes
far beyond winning a game with larger-than-classical success probability. In
fact, what John Bell did [Bel64], was a rather historic achievement: He made
it possible to experimentally test a hitherto almost metaphysical problem,
which some of the greatest minds in the history of physics could not solve,
namely whether or not the physical world may eventually allow for a classical
description after all. I.e. can there exist an underlying reality “beneath” the
quantum state, described by “hidden variables” (similar to the random seed Λ
introduced earlier) not yet known in quantum theory? This classical worldview
is called “realism”. Alone, it does not seem to be testable. But Bell combined it
with two more very plausible assumptions, denoting the resulting worldview of
“local realism”.

Local realism encompasses all classical theories about the physical universe
which obey the three assumptions of realism (physical properties are defined by
hidden variables and exist independent of and prior to measurement), locality
(no influence can propagate faster than the speed of light), and freedom of
choice (measurement settings can be chosen independently of the hidden
variables).

77 Lecture 6: Entanglement

The worldview of local realism implies Bell inequalities. Over many decades,
Bell inequalities have been violated in laboratories all around the world. The
2022 Nobel Prize in Physics was awarded to some of the most significant of
these experiments.

6.5 The E91 protocol for quantum key distribution
We now have seen two compelling features of the two-qubit Bell state. On the
one hand, it allows two agents, Alice and Bob, to obtain perfectly correlated
output bits that are still random ((0, 0) and (1, 1) with probability 1/2 each).
And, on the other hand, the agents can play a CHSH game to self-test and
certify the underlying setup. Arthur Ekert was the first to realize the potential
impact of a combination of these two effects [Eke91]. He devised a protocol,
which first appeared in 1991, that uses shared entanglement to establish a
private random key between two distant parties. This key can then be used in
a one-time-pad protocol, which is an information-theoretic secure encryption
technique, i.e. it remains safe even if an adversary has infinite computing power.

The key idea is to distribute many Bell states among Alice and Bob. Each of
them uses private randomness to measure halves of each state in one of several
designated basis. Each measurement provides Alice with a private bit that is
strongly correlated – via entanglement in the original Bell state – with the
private bit that Bob has obtained in the same round.

Once this randomized (Bell) measurement stage is completed, Alice and
Bob exchange their basis choices over a public channel, e.g. the internet
or a telephone. By itself, the choice of basis setting does not reveal any
information about the obtained measurement outcomes. They then identify
instances, where they happened to measure in the same basis, to identify
perfectly correlated output bits. These then form the basis of their private key.
But, before jumping to premature conclusions, they also use a considerable
amount of their measurement data to imitate a CHSH game and compute their
(approximate) success probability. shared entanglement enables

detecting ‘wiretap’ or ‘man in
the middle’ attacks

Note that, in this step, it is necessary to
also communicate measurement outcomes with each other. So, the bits they
use for CHSH testing cannot be used as a private key anymore. Nonetheless,
this CHSH game imitation is essential for the protocol and equips it with the
uncanny ability to detect ‘wiretap’ or ‘man in the middle’ attacks.

If they achieve a close-to-optimal CHSH success probability, the rigidity of
the CHSH game and monotony of entanglement (Fact 6.8) ensure that their
protocol must have worked as intended. In particular, the shared correlations
between their Bell states are private in the sense that they cannot be correlated
to any external quantum system that is beyond their control. The latter is very
general and includes a potential eavesdropper (‘man in the middle’), even if
this agent is very powerful and has access to arbitrary amounts of (quantum)
computing resources. As soon as such a hypothetical eavesdropper tampers
with the shared Bell states, they must interfere with the perfect entanglement
between Alice and Bob (monogamy of entanglement). And such an attack

78 Lecture 6: Entanglement

would necessarily manifest itself in a (much) smaller success probability for the
CHSH game. Alice and Bob, however, can check for exactly that and abort their
protocol if their imitation of the CHSH game is not as successful as it ought to
be.

The actual E91 protocol uses 3 different rotations for each participant (Alice
and Bob) that are depicted in Fig. 6.3. A quick look at them reveals that two of
each are perfectly aligned with each other. These are well-suited to establish
shared randomness (via perfect correlation of Bell outcome measurements).
On the other hand, two of each, are also perfectly suited to play the winning
strategy for the CHSH game. A full and secure execution of the E91 protocol
requires access to many shared Bell pairs so that we can generate sufficiently
long shared private keys and also have enough statistics to approximately
determine the CHSH success probability. We encourage you to have a closer
look by yourself and implement a variant of the E91 protocol using, for instance,
QISKIT to simulate the generation and subsequent measurement of Bell states.
Such a small coding project would also allow you to discover for yourself, how
powerful the CHSH game is at detecting potential attacks on the Bell state.
A brutal man-in-the-middle-attack could, for instance, involve an additional
third qubit which the eavesdropper swaps into the circuit to funnel out one-half
of the entangled state. The CHSH test, however, would detect such a clumsy
attack almost immediately.

Exercise 6.9 Go through our high-level description of the E91 protocol and make
it precise. Which pairs of basis rotations allow for extracting a pair of perfectly
correlated, uniformly random bits? Which pairs of basis rotations instead
allow for playing a CHSH game? Optional: use QISKIT to simulate the E91
protocol in the presence of a malicious eavesdropper who tampers with the
pristine Bell-state preparation circuit. Show that the (estimated) CHSH success
probability really drops below (2 +

√
2)/4 in any such scenario.

79 Lecture 6: Entanglement

Bell state (qubit pair)
R(θB) (oB , θB)

random angle

θB = π/8

θB = 0

θB = −π/8

R(θA)

random angle

θA = 0

θA = −π/8
θA = −π/4

(oA, θA)

Bell state (qubit pair)
R(θB) (oB , θB)R(θA)(oA, θA)

Bell state (qubit pair)
R(θB) (oB , θB)R(θA)(oA, θA)

many (independent) repetitions

Figure 6.3 Illustration of the E91 protocol: Two players – Alice on the left and
Bob on the right – share many perceived Bell pairs (blue) among. For each
Bell state, they perform independent rotations that are selected uniformly
from three options (red circle for Alice, green circle for Bob) and follow it
up with a computational basis measurement (magenta). Two of the three
angles are the same on each side. The entire process gives each party a list
of measurement settings and corresponding results. They then share their
measurement settings over a public channel. If the same angle was measured –
this occurs in 2 of the 9 setting combinations – then the perfect correlations
of Bell state measurements provide them with one shared random bit. In 4
out of 9 cases, their measurement setting combination belongs to the CHSH
game. Then, they also communicate their measurement outcomes as they are
required for the calculation of the success probability. If the estimated success
probability is (close to) optimal, they can be sure that the entire protocol has
worked as intended. In particular, no eavesdropping whatsoever can have taken
place. If the success probability is not close to optimal, something fishy must
have happened. Alice and Bob then abort the protocol, because their shared
key may not be correct and/or secure.

7. Quantum teleportation

Date: 22 November 2023

Agenda:

1 motivation
2 marginal & conditional

probabilities
3 𝑇 -gate teleportation
4 state teleportation

7.1 Motivation
Today, we prepare the stage for scaling up our quantum architectures to many
qubits. An important prerequisite to doing so is the ability to recognize sub-
routines and reason about them. In particular, we want to know whether two
quantum subroutines are equivalent or not. In pictures,

.

The following rigorous statement fully resolves this question for the case of a
single qubit1.

Theorem 7.1 (equivalence of single-qubit functionalities). Two single-qubit func-
tionalities (e.g. sub-circuits) 𝑨,𝑩 are equivalent if they always lead to
the same readout probabilities. That is, for all input states |𝜓⟩ and all
single-qubit unitaries𝑼 , we must have

Pr𝑼𝑨 |𝜓 ⟩ [𝑜 = 𝑠] = Pr𝑼𝑩 |𝜓 ⟩ [𝑜 = 𝑠] for 𝑠 ∈ {0, 1},

The requirements put forth by this statement are best visualized in another

1A generalization to 𝑛 ≥ 1 qubits is relatively straightforward, but would go beyond the
scope of this lecture.

81 Lecture 7: Quantum teleportation

picture:

,

for every input state |𝜓⟩ and every subsequent unitary gate𝑼 . This characteri-
zation of equivalence is intuitive: two (black box) subroutines are equivalent if
and only if it is impossible to detect any functional difference between the two.

It should not come as a surprise that quantum circuits can ‘hide’ functional
differences better than conventional circuits. The following example highlights
that different input states and different unitaries can both be necessary to
detect them.

Example 7.2 (checking different input states |𝜓⟩ and unitaries𝑼 matters for Theo-
rem 7.1). Consider 𝑨 = 𝕀 (do nothing) and 𝑩 = 𝒁 (sign flip). Then,

𝑩 |0⟩ = |0⟩ = 𝑨 |0⟩ and 𝑩 |1⟩ = −|1⟩ ∼ |1⟩ = 𝑨 |1⟩,

but the two gates are clearly not equivalent. To see this, set |𝜓⟩ = |+⟩ =

𝑯 |0⟩ = (|0⟩ + |1⟩)/
√
2 (and recall |−⟩ = 𝑯 |1⟩ = (|0⟩ − |1⟩)/

√
2)). Then,

𝑩 |𝜓⟩ =𝑩 |+⟩ = 𝑩 (|0⟩ + |1⟩) /
√
2 = (|0⟩ − |1⟩) /

√
2 = |−⟩ = 𝑯 |1⟩,

𝑨 |𝜓⟩ =𝑨 |+⟩ = |+⟩ = 𝑯 |0⟩.

Both states describe equal superpositions between 0 and 1 and produce equiva-
lent readout probabilities:

Pr𝑩 |𝜓 ⟩ [𝑜0 = 0] =Pr |+⟩ [𝑜0 = 0] = |⟨0|+⟩|2 = 1
2
,

Pr𝑨 |𝜓 ⟩ [𝑜0 = 0] =Pr |−⟩ [𝑜0 = 0] = |⟨0|−⟩|2 = 1
2
.

Nonetheless, the actual states are very different from each other. Applying one
subsequent Hadamard gate𝑼 = 𝑯 reveals this difference: 𝑼𝑩 |𝜓⟩ = 𝑯 |−⟩ =
𝑯 ×𝑯 |1⟩ = |1⟩, while𝑼𝑨 |𝜓⟩ = 𝑯 |+⟩ = 𝑯 ×𝑯 |0⟩ = |0⟩. This ensures

Pr𝑼𝑩 |𝜓 ⟩ [𝑜0 = 0] =Pr |1⟩ [𝑜0 = 0] = 0,
Pr𝑼𝑨 |𝜓 ⟩ [𝑜0 = 0] =Pr |0⟩ [𝑜0 = 1] = 1.

These readout probabilities are as different as they get: one always produces 0
and one always produces 1. ■

This example showcases that we may need the ability to choose different
input states and different subsequent unitaries to unravel a functional difference
between quantum sub-routines. Theorem 7.1 then follows from carefully
arguing that this is enough to unravel all functional differences between
single-qubit circuits. We leave this analysis as an instructive exercise.

82 Lecture 7: Quantum teleportation

Exercise 7.3 (Proof of Theorem 7.1). Provide a proof of Theorem 7.1 for the special
case where both 𝑨 and 𝑩 are single-qubit gates.

At this point, it is worthwhile to emphasize that Theorem 7.1 also applies
to more general quantum subroutines. The subroutines we analyze today,
for instance, involve more than one qubit. A readout is performed on these
auxiliary qubits. And, depending on the outcome obtained (𝑜𝑘 = 0 or 𝑜𝑘 = 1),
we perform different quantum gates on the remaining qubit wire. For instance,

,

where double lines indicate the conditional application of a quantum gate (if
readout is 1, we apply the gate; otherwise we do nothing).

In order to properly analyze such quantum (sub-)routines, we need a
framework that allows us to reason about such conditional operations, i.e.
(gate) actions that depend on a random outcome we have observed earlier.

7.2 Background: marginal and conditional probabilities
7.2.1 Marginal probabilities

For simplicity and concreteness, we will focus on probability distributions that
address binary outcomes/events. This will be enough to reason about quantum
readout procedures, because they only ever produce bit values.

Definition 7.4 (marginal probability distributions (two binary events)). marginal probabilitiesConsider a
joint probability distribution Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡] over two binary events 𝑠 , 𝑡 ∈
{0, 1}. Then, the marginal probability for the first event (𝑜0) is

Pr [𝑜0 = 𝑠] =
∑︁1

𝑡=0
Pr [𝑜0 = 𝑠 , 𝑜𝑡 = 𝑡] = Pr [𝑜0 = 𝑠 , 𝑜1 = 0]+Pr [𝑜0 = 𝑠 , 𝑜1 = 1] ,

while the marginal probability for the second (𝑜1) event is

Pr [𝑜1 = 𝑡] =
∑︁1

𝑠=0
Pr [𝑜0 = 𝑠 , 𝑜𝑡 = 𝑡] = Pr [𝑜0 = 0, 𝑜1 = 𝑡]+Pr [𝑜0 = 1, 𝑜1 = 𝑡] .

Note that this definition readily extends to a joint probability distribution
over more than two events. For three binary events (𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢) we

83 Lecture 7: Quantum teleportation

get

Pr [𝑜0 = 𝑠] =
∑︁1

𝑡 ,𝑢=0
Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢] ,

Pr [𝑜1 = 𝑡] =
∑︁1

𝑠 ,𝑢=0
Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢] ,

Pr [𝑜2 = 𝑢] =
∑︁1

𝑠 ,𝑡=0
Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢] .

7.2.2 Conditional probability distributions
Definition 7.5 (conditional probability distributions (two binary events)). conditional probabilitiesConsider a
joint probability distribution Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡] over two binary events 𝑠 , 𝑡 ∈
{0, 1}. Then, the two conditional probabilities for the first event (𝑜0) are

Pr [𝑜0 = 𝑠 |𝑜1 = 0] = Pr [𝑜0 = 𝑠 , 𝑜1 = 0]
Pr [𝑜1 = 0] for 𝑠 = 0, 1,

Pr [𝑜0 = 𝑠 |𝑜1 = 1] = Pr [𝑜0 = 𝑠 , 𝑜1 = 1]
Pr [𝑜1 = 1] for 𝑠 = 0, 1.

Likewise, the two conditional probabilities for the second event (𝑜1) are

Pr [𝑜1 = 𝑡 |𝑜0 = 0] = Pr [𝑜0 = 0, 𝑜1 = 𝑡]
Pr [𝑜0 = 0] for 𝑡 = 0, 1,

Pr [𝑜0 = 𝑡 |𝑜0 = 1] = Pr [𝑜0 = 1, 𝑜1 = 𝑡]
Pr [𝑜0 = 1] for 𝑡 = 0, 1.

(Care must be taken when the denominator approaches zero. This would mean
that we condition on an event that can (almost) never happen).

Note that there are two conditional probability distributions for each event:
one that assumes 𝑜0/1 = 0 and one that assumes 𝑜0/1 = 1. Each of them is a
valid probability distribution in its own right. Non-negativity follows directly
from the construction. Normalization, on the other hand, follows from the
fact that the relevant marginal distribution features in the denominator. For
instance,∑︁1

𝑠=0
Pr [𝑜0 = 𝑠 |𝑜1 = 0] =

∑1
𝑠=0 Pr [𝑜0 = 𝑠 , 𝑜1 = 0]

Pr [𝑜1 = 0] =
Pr [𝑜1 = 0]
Pr [𝑜1 = 0] = 1

and we obtain the same result for all other conditional probability distributions.
Similar to marginal probability distributions, Definition 7.5 also readily

extends to more than two binary variables. However, the number of different
possibilities grows very quickly! For three binary events (𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢),
we can construct

Pr [𝑜0 = 𝑠 |𝑜1 = 𝑡 , 𝑜2 = 𝑢] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜1 = 𝑡 , 𝑜2 = 𝑢] for 𝑠 = 0, 1,

Pr [𝑜1 = 𝑡 |𝑜0 = 𝑠 , 𝑜2 = 𝑢] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜0 = 𝑠 , 𝑜2 = 𝑢] for 𝑡 = 0, 1,

Pr [𝑜2 = 𝑢 |𝑜0 = 𝑠 , 𝑜1 = 𝑡] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡] for 𝑢 = 0, 1,

84 Lecture 7: Quantum teleportation

(condition on two events), but also

Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 |𝑜2 = 𝑢] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜2 = 𝑢] for 𝑠 , 𝑡 = 0, 1,

Pr [𝑜0 = 𝑠 , 𝑜2 = 𝑢 |𝑜1 = 𝑡] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜1 = 𝑡] for 𝑠 ,𝑢 = 0, 1,

Pr [𝑜1 = 𝑡 , 𝑜2 = 𝑢 |𝑜0 = 𝑠] =Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢]
Pr [𝑜0 = 𝑠] for 𝑡 ,𝑢 = 0, 1.

(condition on a single event).

Exercise 7.6 (Bayes’ theorem). Prove the following statement known as Bayes’
theorem: Bayes’ theorem

Pr [𝑜1 = 𝑏 |𝑜0 = 𝑎] = Pr [𝑜0 = 𝑎 |𝑜1 = 𝑏] Pr [𝑜1 = 𝑏]
Pr [𝑜0 = 𝑎] .

Context: Bayes’ theorem highlights that the direction of correlations can be
inverted. As such, it plays a pivotal role in statistics.

Exercise 7.7 (Perfect correlations go both ways). Suppose that we have a joint
distribution of two binary variables that obey

Pr [𝑜1 = 𝑡 |𝑜0 = 𝑠] =
{
1 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡 .
(7.1)

In words: the value of 𝑜0 completely determines the value of 𝑜1 (perfect
correlation). Use Bayes’ rule to show that this also implies

Pr [𝑜0 = 𝑠 |𝑜1 = 𝑡] =
{
1 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡 .

Is the converse direction also true? That is, does

Pr [𝑜1 = 𝑡 |𝑜0 = 𝑠] = Pr [𝑜0 = 𝑠 |𝑜1 = 𝑡]

necessarily imply perfect correlations in the sense of Eq. (7.1)?

7.2.3 Example 1: Bell state readout
Recall a basic Bell state preparation circuit, followed by reading out the two
qubits involved:

.

85 Lecture 7: Quantum teleportation

We already know from Lecture 3 and Lecture 5 that this state (vector) corre-
sponds to

|𝜓Bell⟩ = 𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝕀) |00⟩ = 1
√
2
(|00⟩ + |11⟩) .

And, for readout values 𝑜0 = 𝑠 and 𝑜1 = 𝑡 with 𝑠 , 𝑡 = 0, 1, we obtain

Pr |𝜓Bell⟩ [𝑜0 = 𝑠 , 𝑜1 = 𝑡] =
{
1/2 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡
. (7.2)

Access to this joint probability distribution over a pair of events, allows us to
compute both marginal and conditional probabilities. Let us start with the
marginal probabilities. For the first outcome 𝑜0, we obtain

Pr |𝜓Bell ⟩ [𝑜0 = 0] =Pr |𝜓Bell ⟩ [𝑜0 = 0, 𝑜1 = 0] + Pr |𝜓Bell ⟩ [𝑜0 = 0, 𝑜1 = 1] = 1
2
+ 0 =

1
2
,

Pr |𝜓Bell ⟩ [𝑜0 = 1] =Pr |𝜓Bell ⟩ [𝑜0 = 1, 𝑜1 = 0] + Pr |𝜓Bell ⟩ [𝑜0 = 1, 𝑜1 = 1] = 0 + 1
2
=

1
2
.

(Alternatively, we could have also deduced the second line from the first one:
Pr |𝜓Bell⟩ [𝑜0 = 1] = 1 − Pr |𝜓Bell⟩ [𝑜0 = 0] = 1 − 1/2 = 1/2.) An almost identical
computation reveals the same marginal probabilities for the second outcome
𝑜1:

Pr |𝜓Bell ⟩ [𝑜1 = 0] =Pr |𝜓Bell ⟩ [𝑜0 = 0, 𝑜1 = 0] + Pr |𝜓Bell ⟩ [𝑜0 = 1, 𝑜1 = 0] = 1
2
+ 0 =

1
2
,

Pr |𝜓Bell ⟩ [𝑜1 = 1] =Pr |𝜓Bell ⟩ [𝑜0 = 0, 𝑜1 = 1] + Pr |𝜓Bell ⟩ [𝑜0 = 1, 𝑜1 = 1] = 0 + 1
2
=

1
2
.

We can put everything together into a single formula that succinctly captures
the marginal probabilities of a Bell state readout procedure:

Pr |𝜓Bell⟩ [𝑜0 = 𝑠] = Pr |𝜓Bell⟩ [𝑜1 = 𝑠] = 1
2

for 𝑠 = 0, 1. (7.3)

This display highlights two things: (i) the two marginal probabilities are
identical and (ii) each marginal probability is equivalent to a uniformly random
bit (think: coin toss).

Let us now move on to determining the conditional probabilities. We start
with conditioning on 𝑜1 = 0:

Pr |𝜓Bell⟩ [𝑜0 = 0|𝑜1 = 0] =
Pr |𝜓Bell⟩ [𝑜0 = 0, 𝑜1 = 0]

Pr [𝑜1 = 0] =
1/2
1/2 = 1,

where we have inserted Eq. (7.2) for the enumerator and Eq. (7.3) for the
enumerator. In a similar fashion, we obtain

Pr |𝜓Bell⟩ [𝑜0 = 1|𝑜1 = 0] =
Pr |𝜓Bell⟩ [𝑜0 = 1, 𝑜1 = 0]

Pr [𝑜1 = 0] =
0

1/2 = 0.

This confirms that these two conditional probabilities indeed form a valid
probability distribution. Both probabilities are non-negative and add up to one.

86 Lecture 7: Quantum teleportation

Conditioning on 𝑜1 = 1 instead, tells a similar story, but with reversed roles:

Pr |𝜓Bell⟩ [𝑜0 = 0|𝑜1 = 1] =
Pr |𝜓Bell⟩ [𝑜0 = 0, 𝑜1 = 1]

Pr [𝑜1 = 1] =
0

1/2 = 0,

Pr |𝜓Bell⟩ [𝑜0 = 1|𝑜1 = 1] =
Pr |𝜓Bell⟩ [𝑜0 = 1, 𝑜1 = 1]

Pr [𝑜1 = 1] =
1/2
1/2 = 1.

This is again a valid probability distribution over a single binary outcome. In
fact, we can combine both into a single formula:

Pr |𝜓Bell⟩ [𝑜0 = 𝑠 |𝑜1 = 𝑡] =
{
1 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡 .
(7.4)

This display highlights another feature of Bell state readout: the first outcome
bit is perfectly correlated with the second outcome bit: 𝑜0 = 𝑜1. It should not
come as a surprise that this perfect correlation persists if we exchange the roles
of the two outcome bits. We leave this as an instructive exercise.

Exercise 7.8 (Bell readout probabilities conditioned on the first outcome bit 𝑜0). Use
Eq. (7.2) and Eq. (7.3) to derive the following conditional probability distribu-
tions:

Pr |𝜓Bell⟩ [𝑜1 = 𝑡 |𝑜0 = 𝑠] =
{
1 if 𝑡 = 𝑠 ,

0 else if 𝑡 ≠ 𝑠 .

7.2.4 Example 2: Drawing straws
You and four of your friends have just had dinner and now have to decide who
does the dishes. To make the decision fair all of you agree to decide by drawing
straws. This means there are 5 straws of which 1 is considerably shorter than
the other 4 straws, they are mixed in a hat or beanie and one person at a time
is drawing one straw from the hat without looking and not putting it back after
drawing it. The person drawing the shortest straw loses and has to do the
dishes and the other ones all win.

This can be described as a joint probability distribution over 5 binary events
𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4 ∈ {0, 1}– one for each straw in the hat, aka player of the game.
We say that player 𝑘 loses if they draw the short straw, 𝑜𝑘 = 1 and 𝑜𝑘 = 0
otherwise. The associated probability distribution then becomes

Pr [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢,𝑜3 = 𝑣, 𝑜4 = 𝑤] =
{
1/5 if 𝑠 + 𝑡 + 𝑢 + 𝑣 +𝑤 = 1,
0 else.

for 𝑠 , 𝑡 ,𝑢,𝑣 ,𝑤 ∈ {0, 1}. Access to this distribution allows us to compute the
marginal probabilities for 𝑜0 only:

Pr [𝑜0 = 1] =
∑︁1

𝑡 ,𝑢,𝑣 ,𝑤=0
Pr [𝑜0 = 1, 𝑜1 = 𝑡 , 𝑜2 = 𝑢,𝑜3 = 𝑣, 𝑜4 = 𝑤]

=1/5 + 0 + · · · + 0 =
1
5
.

87 Lecture 7: Quantum teleportation

This readily allows us to conclude that Pr [𝑜0 = 0] = 1−Pr [𝑜0 = 1] = 1−1/5 =

4/5. A computation of the other four marginal probabilities looks very similar
and produces exactly the same results (why?). We can therefore succinctly
write

Pr [𝑜𝑘 = 1] = 1/5 and Pr [𝑜𝑘 = 0] = 4/5 for all 𝑘 = 0, 1, 2, 3, 4.

This ensures that the drawing of the straws is fair: each player has the same
odds of winning/losing.

However, all five players draw from the same hat. This introduces depen-
dencies between the individual scores of the players involved. Conditional
probabilities are the proper way to reason about these effects which become
most pronounced if we look at the score of the last player’s conditional on the
score of all players before them. For instance,

Pr [𝑜4 = 1|𝑜3 = 0, 𝑜2 = 0, 𝑜1 = 0, 𝑜0 = 0] = Pr [𝑜0 = 0, 𝑜1 = 0, 𝑜2 = 0, 𝑜3 = 0, 𝑜4 = 1]
Pr [𝑜0 = 0, 𝑜1 = 0, 𝑜2 = 0, 𝑜3 = 0]

=
Pr [𝑜0 = 0, 𝑜1 = 0, 𝑜2 = 0, 𝑜3 = 0, 𝑜4 = 1]

Pr [𝑜0 = 0, 𝑜1 = 0, 𝑜2 = 0, 𝑜3 = 0, 𝑜4 = 0] + Pr [𝑜0 = 0, 𝑜1 = 0, 𝑜2 = 0, 𝑜3 = 0, 𝑜4 = 1]

=
1/5

0 + 1/5 = 1.

And, in a similar fashion, we can conclude

Pr [𝑜4 = 0|𝑜3 = 0, 𝑜2 = 0, 𝑜1 = 0, 𝑜0 = 0] = 0.

Note that these conditional probabilities are actually deterministic: player five
is guaranteed to lose if players one, two, three, and four all win. A converse of
this observation is also true. Suppose, for concreteness, that player three loses,
i.e. 𝑜2 = 1. Then, player five has no chance of also losing. In formulas,

Pr [𝑜4 = 1|𝑜3 = 0, 𝑜2 = 1, 𝑜1,= 0, 𝑜0 = 0] = 0,
Pr [𝑜4 = 0|𝑜3 = 0, 𝑜2 = 1, 𝑜1,= 0, 𝑜0 = 0] = 1

and we leave the actual derivation as a quick exercise. By now it should not
come as a surprise that the same is true if any of the other players already lost.
We can succinctly summarize our insights in the following display

Pr
[
𝑜4 = 1

���∑︁3

𝑘=0
𝑜𝑘 = 0

]
= 1 while Pr

[
𝑜4 = 1

���∑︁3

𝑘=0
𝑜𝑘 = 1

]
= 0.

In words: player five must lose (𝑜4 = 1) if everybody else wins before and they
must win (𝑜4 = 0) if somebody else has already lost.

7.3 Quantum𝑇 -gate teleportation
The concept of conditional probabilities is vital to analyze quantum subroutines
that combine unitary (quantum) gates with partial qubit readout and conditional
operations. Fig. 7.1 displays one such subroutine that plays a very prominent

88 Lecture 7: Quantum teleportation

Figure 7.1𝑻 -gate teleportation: This quantum subroutine effectively acts on a
single qubit (lower line). Apart from a single 𝑇 -gate (red), it only features
Clifford operations (𝑺 ,𝑿 and 𝑪𝑵𝑶𝑻) and the readout of the top qubit.
Interestingly this subroutine is equivalent to applying a𝑻 -gate on the second
qubit, i.e. |𝜓out⟩ = 𝑻 |𝜓in⟩.

role in fault-tolerant quantum computation (we will talk about quantum
error correction and fault tolerance in a future lecture). It also highlights
that quantum computation is really different from conventional hardware
design [GC99].

The circuit in Fig. 7.1 contains notation we haven’t seen before. In particular,
a double line emanates from the readout symbol and enters a quantum gate
box. This depicts a conditional gate application conditional gate applicationthat depends on the readout bit
𝑜0 we observe:

(i) if 𝑜0 = 0, we do nothing (i.e. apply the identity 𝕀 to the remaining qubit),
(ii) else if 𝑜0 = 1, we apply the gate 𝑺𝑿 to the remaining qubit.

The subroutine depicted in Fig. (7.1) takes a single qubit as input and also
outputs a single qubit. It, therefore, corresponds to an effective single-qubit
operation that we can execute if we have a quantum computer with (at least)
two qubits. The main result of this section highlights that this effective operation
is equivalent to one we already know.

Theorem 7.9 (T-gate teleportation). The effective single-qubit subroutine
displayed in Fig. (7.1) is equivalent to applying a single-qubit 𝑇 -gate:
|𝜓⟩ ↦→ 𝑻 |𝜓⟩ for every input |𝜓⟩.

Before moving on to a step-by-step analysis, it is worthwhile to suggestively
rewrite part of the 𝑇 -gate teleportation circuit. To this end, we define

|𝑇 ⟩ = 𝑻𝑯 |0⟩ = 1
√
2

(
|0⟩ + ei𝜋/4 |1⟩

)
,

which is known as a magic state magic state: |𝑇 ⟩ = 𝑻𝑯 |0⟩. Theorem 7.9 then tells us that we can use
one such magic state to effectively apply a single 𝑇 gate to another (arbitrary)

89 Lecture 7: Quantum teleportation

qubit. In pictures,

and this version of the protocol is known as magic state injection. magic state injectionIt only
features Clifford gates (𝑺 ,𝑯 ,𝑪𝑵𝑶𝑻 and 𝑿 = 𝑯𝑺2𝑯), as well as one single-
qubit readout operation. Magic state injection does, however, convert access
to one magic state |𝑇 ⟩ in an effective application of a 𝑇 -gate which is not a
Clifford gate. This trick will become important once we discuss quantum error
correction and fault-tolerant quantum computation.

Let us now move on to actually prove Theorem 7.9. Theorem 7.1 tells us
that it is enough to show

,

for an arbitrary single-qubit unitary𝑼 and an arbitrary single-qubit state vector
|𝜓⟩. The readout probabilities for the r.h.s. are now simply

Pr𝑼𝑻 |𝜓 ⟩ [𝑜0 = 𝑡] = |⟨𝑡 |𝑼𝑻 |𝜓⟩|2 for 𝑡 = 0, 1. (7.5)

The other side requires quite a bit more work. But, we have all the necessary
prerequisites to analyze it as well. Let us start with tracking the two-qubit state
vector throughout the quantum circuit. We can write |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ with
𝛼, 𝛽 ∈ ℂ and |𝛼 |2 + |𝛽 |2 = 1 and obtain the following effective starting state:

|𝜑0⟩ =|𝑇 ⟩ ⊗ |𝜓⟩ = 1
√
2

(
|0⟩ + ei𝜋/4 |1⟩

)
⊗ (𝛼 |0⟩ + 𝛽 |1⟩)

=
𝛼
√
2
|00⟩ + 𝛽

√
2
|01⟩ + 𝛼ei𝜋/4

√
2

|10⟩ + 𝛽ei𝜋/4
√
2

|11⟩.

Next, we apply two CNOT-gates with different control qubits. On a bit logic
level, they act as

𝑪𝑵𝑶𝑻 2→1 |𝑠 , 𝑡 ⟩ = |𝑠 ⊕ 𝑡 , 𝑡 ⟩ and 𝑪𝑵𝑶𝑻 1→2 |𝑠 , 𝑡 ⟩ = |𝑠 , 𝑡 ⊕ 𝑠 ⟩
for 𝑠 , 𝑡 = 0, 1 and we obtain

|𝜑1⟩ =𝑪𝑵𝑶𝑻 2→1 |𝜑0⟩ =
𝛼
√
2
|00⟩ + 𝛽

√
2
|11⟩ + 𝛼ei𝜋/4

√
2

|10⟩ + 𝛽ei𝜋/4
√
2

|01⟩ and

|𝜑2⟩ =𝑪𝑵𝑶𝑻 1→2 |𝜑1⟩ =
𝛼
√
2
|00⟩ + 𝛽

√
2
|10⟩ + 𝛼ei𝜋/4

√
2

|11⟩ + 𝛽ei𝜋/4
√
2

|01⟩.

90 Lecture 7: Quantum teleportation

We can use elementary (state) vector and Kronecker operations to rewrite this
state suggestively as

|𝜑2⟩ =
1
√
2
|0⟩ ⊗

(
𝛼 |0⟩ + ei𝜋/4𝛽 |1⟩

)
+ e−i𝜋/4

√
2

|1⟩ ⊗
(
ei𝜋/4𝛽 |0⟩ + ei𝜋/2𝛼 |1⟩

)
=

1
√
2
|0⟩ ⊗ (𝑻 (𝛼 |0⟩ + 𝛽 |1⟩)) + e−i𝜋/4

√
2

|1⟩ ⊗
(
𝑺†

(
ei𝜋/4𝛽 |0⟩ + 𝛼 |1⟩

))
=

1
√
2
|0⟩ ⊗ (𝑻 |𝜓⟩) + e−i𝜋/4

√
2

|1⟩ ⊗
(
𝑺†𝑿

(
𝛼 |0⟩ + ei𝜋/4𝛽 |1⟩

))
=

1
√
2
|0⟩ ⊗ (𝑻 |𝜓⟩) + ei𝜋/4

√
2
|1⟩ ⊗

(
𝑺†𝑿𝑻 |𝜓⟩

)
. (7.6)

This reformulation of the state |𝜑2⟩ already tells us quite a bit about the
quantum logical configuration just before reading out the first qubit. It is a
superposition of two distinct contributions: one for each classical readout value
associated with the first qubit. If the readout value is 𝑜0 = 0, we don’t do
anything to the remaining qubit and obtain

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜0 = 0, 𝑜1 = 𝑡] = Pr(𝕀⊗𝑼) |𝜑2⟩ [𝑜0 = 0, 𝑜1 = 𝑡]

=

����⟨0𝑡 | (1
√
2
|0⟩ ⊗ (𝑼𝑻 |𝜓⟩) + e−i𝜋/4

√
2

|1⟩ ⊗ (𝑼𝑺†𝑿𝑻 |𝜓⟩)
)����2

=
1
2
|⟨𝑡 |𝑼𝑻 |𝜓⟩|2 .

Else if 𝑜0 = 1, we do apply 𝑿𝑺 to the second qubit and obtain

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜0 = 1, 𝑜1 = 𝑡] = Pr(𝕀⊗𝑼)×(𝕀⊗(𝑿𝑺)) |𝜑2⟩ [𝑜0 = 1, 𝑜1 = 𝑡]

=

����⟨1𝑡 | (1
√
2
|0⟩ ⊗ (𝑼𝑿𝑺𝑻 |𝜓⟩) + e−i𝜋/4

√
2

|1⟩ ⊗
(
𝑼𝑿𝑺𝑺†𝑿𝑻 |𝜓⟩

))����2
=
1
2
��⟨𝑡 |𝑼𝑿𝑺𝑺†𝑿𝑻 |𝜓⟩

��2 = 1
2
|⟨𝑡 |𝑼𝑻 |𝜓⟩|2 .

These two computations nail down all four joint probabilities for 𝑠 , 𝑡 = 0, 1.
Marginalization then implies

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜0 = 0] = 1
2
|⟨0|𝑼𝑻 |𝜓⟩|2 + 1

2
|⟨1|𝑼𝑻 |𝜓⟩|2 = 1

2
,

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜0 = 1] = 1
2
|⟨0|𝑼𝑻 |𝜓⟩|2 + 1

2
|⟨1|𝑼𝑻 |𝜓⟩|2 = 1

2
,

and the conditional outcome probabilities become

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜1 = 𝑡 |𝑜0 = 0] = (1/2) |⟨𝑡 |𝑼𝑻 |𝜓⟩|2

1/2 = |⟨𝑡 |𝑼𝑻 |𝜓⟩|2 ,

Pr(𝕀⊗𝑼) |𝜑final⟩ [𝑜1 = 𝑡 |𝑜0 = 1] = (1/2) |⟨𝑡 |𝑼𝑻 |𝜓⟩|2

1/2 = |⟨𝑡 |𝑼𝑻 |𝜓⟩|2 ,

91 Lecture 7: Quantum teleportation

Figure 7.2 Quantum teleportation subroutine: An arbitrary quantum state enters
this subroutine on the top right (first qubit wire). Once the protocol is completed,
the same state leaves the lower left corner (third qubit wire), i.e. |𝜓out⟩ = |𝜓in⟩.
This is remarkable because there seems to be no quantum logical connection
between the first and the last qubit.

In words: each conditional readout probability is equivalent to reading out the
single-qubit state 𝑼𝑻 |𝜓⟩ instead. Also, this is valid for any input state |𝜓⟩
and any subsequent unitary𝑼 . This allows us to conclude that Theorem 7.9 is
valid as stated.

7.4 Quantum state teleportation
We are now ready for the main topic of today’s lecture: quantum state tele-
portation. The protocol dates back to 1993 [Ben+93], but we present it in a
more modern framework – as another quantum circuit black box that has one
incoming qubit wire and one outgoing qubit wire, see Fig. 7.2.

Theorem7.10 (correctness of quantum teleportation). quantum state teleportationThe teleportation subrou-
tine in Fig. 7.2 acts like an effective one-qubit operation. Every input state on
the top right gets exactly transferred to the bottom left, i.e. |𝜓out⟩ = |𝜓in⟩.

We provide a justification of the name ‘teleportation’ protocol in fig. 7.3.
Let us now move on to provide a proof sketch for Theorem 7.10. Similar to
𝑇 -gate teleportation, we build our arguments on the (sufficient) conditions
on subroutine equivalence from Theorem 7.1. Concretely, we fix an arbitrary
single-qubit state |𝜓⟩, an arbitrary single qubit unitary𝑼 and set out to show

(7.7)

92 Lecture 7: Quantum teleportation

justification of the term
‘teleportation’

Figure 7.3 Interpretation as a quantum state ‘teleportation’ protocol: This inter-
pretation stems from the observation that part of this quantum circuit can be
prepared in advance. It is easy to recognize a Bell state preparation circuit at
the beginning of qubits 2 and 3. Inserting it provides the following suggestive
reformulation where we have artificially elongated the wires of qubit 2 and
qubit 3. This highlights that the actual generation of the Bell state between
qubit 2 and 3 can actually lie in the past, i.e. it occurred a long time before
the actual state |𝜓⟩ enters the picture. This extra time can, in principle, be
spent on moving the two parts of the Bell state (qubit 2 and qubit 3) very far
away from each other. The state teleportation subroutine then uses existing
entanglement (Bell state) between two very distant locations to perfectly
transmit a single-qubit state |𝜓⟩ from one location (Alice’s side, aka qubits 1
and 2) to a completely different location (Bob’s side, aka qubit 3).
Note, however, that this protocol only works as intended if Alice communicates
her readout values to Bob and Bob uses them to apply conditional quantum
gates. If this is not the case, the protocol produces complete garbage. This
subtle feature reconciles state teleportation with Einstein’s postulate that no
‘information’ can move faster than the speed of light.

93 Lecture 7: Quantum teleportation

The equality sign here indicates that the outcome probabilities associated with
𝑜2 ∈ {0, 1} (left) and 𝑜 ∈ {0, 1} (right) must be identical. We have also
already streamlined this display a bit by incorporating the two-qubit Bell state.
This readily allows us to write down the actual 3-qubit starting state. For
|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (with 𝛼, 𝛽 ∈ ℂ and |𝛼 |2 + |𝛽 |2 = 1), we obtain

|𝜑0⟩ =|𝜓⟩ ⊗ |𝜓Bell⟩ = (𝛼 |0⟩ + 𝛽 |1⟩) ⊗ 1
√
2
(|00⟩ + |11⟩)

=
𝛼
√
2
|000⟩ + 𝛼

√
2
|011⟩ + 𝛽

√
2
|100⟩ + 𝛽

√
2
|111⟩

The CNOT between qubits 1 and 2 turns this state into

|𝜑1⟩ =(𝑪𝑵𝑶𝑻 ⊗ 𝕀) |𝜑0⟩

=
𝛼
√
2
(𝑪𝑵𝑶𝑻 1→2 ⊗ 𝕀) |000⟩ + 𝛼

√
2
(𝑪𝑵𝑶𝑻 1→2 ⊗ 𝕀) |011⟩

+ 𝛽
√
2
(𝑪𝑵𝑶𝑻 1→2 ⊗ 𝕀) |100⟩ + 𝛽

√
2
(𝑪𝑵𝑶𝑻 1→2 ⊗ 𝕀) |111⟩

=
𝛼
√
2
|000⟩ + 𝛼

√
2
|011⟩ + 𝛽

√
2
|110⟩ + 𝛽

√
2
|101⟩

and a Hadamard gate on the first qubit produces

|𝜑2⟩ = (𝑯 ⊗ 𝕀 ⊗ 𝕀) |𝜑1⟩

=
𝛼
√
2
| + 00⟩ + 𝛼

√
2
| + 11⟩ + 𝛽

√
2
| − 10⟩ + 𝛽

√
2
| − 01⟩

=
𝛼

2
|000⟩ + 𝛼

2
|100⟩ + 𝛼

2
|011⟩ + 𝛼

2
|111⟩

+𝛽
2
|010⟩ − 𝛽

2
|110⟩ + 𝛽

2
|001⟩ − 𝛽

2
|101⟩.

Written as is, this final 3-qubit state looks rather complicated. However, an
interesting structure reveals itself if we start grouping the amplitudes in terms
of the possible outcome bits for qubit 1 (𝑜0) and qubit 2 (𝑜1):

|𝜑2⟩ =
(
1
2
|00⟩

)
⊗ (𝛼 |0⟩ + 𝛽 |1⟩) +

(
1
2
|01⟩

)
⊗ (𝛼 |1⟩ + 𝛽 |0⟩)

+
(
1
2
|10⟩

)
⊗ (𝛼 |0⟩ − 𝛽 |1⟩) +

(
1
2
|11⟩

)
⊗ (𝛼 |1⟩ − 𝛽 |0⟩)

=

(
1
2
|00⟩

)
⊗ (|𝜓⟩) +

(
1
2
|0, 1⟩

)
⊗ (𝑿 |𝜓⟩)

+
(
1
2
|10⟩

)
⊗ (𝒁 |𝜓⟩) +

(
1
2
|11⟩

)
⊗ (𝑿 𝒁 |𝜓⟩) ,

where we have used |𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩, 𝑿 |𝜓⟩ = 𝛼 |1⟩+𝛽 |0⟩, 𝒁 |𝜓⟩ = 𝛼 |0⟩−𝛽 |1⟩
and 𝑿 𝒁 |𝜓⟩ = 𝛼 |1⟩ − 𝛽 |0⟩. This regrouping tells an interesting story that
comes in four parts:

94 Lecture 7: Quantum teleportation

(i) If 𝑜0 = 0, 𝑜1 = 0, the third qubit must be in the state |𝜓⟩. Conditioned
on these two readout outcomes, the protocol works perfectly and exactly
transmits |𝜓⟩ from the first qubit wire to the third one.

(ii) Else if 𝑜0 = 0, 𝑜1 = 0, the third qubit must be in the state 𝑿 |𝜓⟩. This is
not a perfect state transmission from qubit one to qubit three, but the
superfluous bit flip 𝑿 can be undone. Conditioned on 𝑜1 = 1, we apply
an additional 𝑿 -gate to qubit three to also recover 𝑿 × 𝑿 |𝜓⟩ = |𝜓⟩
perfectly.

(iii) Else if 𝑜0 = 1, 𝑜1 = 0, the third qubit must be in the state 𝒁 |𝜓⟩. This
is not a perfect state transmission from qubit one to qubit three, but
the superfluous sign flip 𝒁 can be undone. Conditioned on 𝑜0 = 1, we
apply an additional 𝒁 -gate to qubit three to also recover 𝒁 ×𝒁 |𝜓⟩ = |𝜓⟩
perfectly.

(iv) Else if 𝑜0 = 1, 𝑜1 = 1, the third qubit must be in the state 𝑿 𝒁 |𝝍 ⟩. This is
essentially a combination of cases (ii) and (iii). Conditional application of
both 𝒁 (because 𝑜0 = 1) and 𝑿 (because 𝑜1 = 1), however, recovers the
state perfectly. Provided that we apply these gates in the correct order.
Doing 𝑿 first (further right) and 𝒁 second (further left) ensures that the
resulting state is 𝒁 × 𝑿 × 𝑿 × 𝒁 |𝜓⟩ = 𝒁 × 𝒁 |𝜓⟩ = |𝜓⟩.

Understanding these four cases is enough to complete a rigorous proof of
Theorem 7.10. We have just shown that the conditional applications of 𝑿
(associated with 𝑜0 = 1) and 𝒁 (associated with 𝑜1 = 1) produce a teleportation
output that is always exactly equal to the teleportation input state |𝜓⟩. The
final unitary 𝑼 in Eq. (7.7) turns this state into 𝑼 |𝜓⟩ just before the final
readout. This readout procedure is therefore equivalent to the right-hand side
(simply prepare𝑼 |𝜓⟩ and perform the readout).

Note, however, that our analysis above is merely a proof sketch and not yet a
complete proof. Turning it into one requires a proper treatment via conditional
readout probabilities that is similar to Section 7.3. We leave it as an instructive
exercise that may be very relevant for the written exam.

Exercise 7.11 (complete proof of Theorem 7.10). See Prob. 7.16 for a detailed
outline.

95 Lecture 7: Quantum teleportation

Problems
Problem 7.12 (Proof of Theorem 7.1). Consider two single-qubit gate matrices
𝑨,𝑩 (unitaries). Show that they must be equivalent (i.e. 𝑩 = ei𝜑𝑨 for some
𝜑 ∈ [0, 2𝜋)) if the following equality is true for all input states |𝜓⟩ and all
subsequent unitary gates𝑼 :

Pr𝑼𝑩 |𝜓 ⟩ [𝑜 = 𝑠] = Pr𝑼𝑨 |𝜓 ⟩ [𝑜 = 𝑠] for 𝑠 = 0, 1.

Challenging bonus question: is it really necessary to consider all possible
input states, as well as all possible unitaries?

Problem 7.13 (Bayes’ theorem). Prove the following statement known as Bayes’
theorem:

Pr [𝑜1 = 𝑏 |𝑜0 = 𝑎] = Pr [𝑜0 = 𝑎 |𝑜1 = 𝑏] Pr [𝑜1 = 𝑏]
Pr [𝑜0 = 𝑎] .

Context: Bayes’ theorem highlights that the direction of correlations can be
inverted. As such, it plays a pivotal role in statistics.

Problem 7.14 (Drawing straws revisited). Recall the drawing straws scenario,
Ex. 7.2.4. What happens if everyone were to put back in the hat their straw
after their turn? What would the probability of winning or losing be? Would it
change after every turn? Justify your findings with the mathematical formulas
developed in this lecture.

Problem 7.15 (Perfect correlations go both ways). Suppose that we have a joint
distribution of two binary variables that obey

Pr [𝑜1 = 𝑡 |𝑜0 = 𝑠] =
{
1 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡 .
(7.8)

In words: the value of 𝑜0 completely determines the value of 𝑜1 (perfect
correlation). Use Bayes’ rule to show that this also implies

Pr [𝑜0 = 𝑠 |𝑜1 = 𝑡] =
{
1 if 𝑠 = 𝑡 ,

0 else if 𝑠 ≠ 𝑡 .

Is the converse direction also true? That is, does

Pr [𝑜1 = 𝑡 |𝑜0 = 𝑠] = Pr [𝑜0 = 𝑠 |𝑜1 = 𝑡]
necessarily imply perfect correlations in the sense of Eq. (7.8)?

Problem 7.16 (proof of correctness for quantum state teleportation). Consider the
following two quantum circuits

,

96 Lecture 7: Quantum teleportation

where𝑼 is an arbitrary single-qubit gate and |𝜓⟩ is an arbitrary single-qubit
input state (vector).

1 Write down the readout probabilities of the left-hand-circuit, i.e.

Pr𝑼 |𝜓 ⟩ [𝑜 = 𝑢] for 𝑢 = 0, 1.

2 Compute all joint readout probabilities of the final right-hand side state:
Pr |𝜑final⟩ [𝑜0 = 𝑠 , 𝑜1 = 𝑡 , 𝑜2 = 𝑢] for 𝑠 , 𝑡 ,𝑢 = 0, 1.

3 Use your result from 2 to derive the marginal probabilities for readout
bits one and two, i.e. Pr |𝜑final⟩ [𝑜0 = 𝑠 , 𝑜1 = 𝑡] for 𝑠 , 𝑡 = 0, 1.

4 Combine your results from 2 and 3 to compute all conditional probabilities
Pr |𝜑final⟩ [𝑜2 = 𝑢 |𝑜0 = 𝑠 , 𝑜1 = 𝑡]. Conclude that

Pr |𝜑final⟩ [𝑜2 = 𝑢 |𝑜0 = 𝑠 , 𝑜1 = 𝑡] = Pr𝑼 |𝜓 ⟩ [𝑜 = 𝑢] for 𝑢 = 0, 1,

regardless of the bit values for 𝑜0 and 𝑜1. In other words: the state
teleportation always operates as intended!

5 Suppose that Bob becomes impatient and performs a readout on his qubit
before receiving the readout values of Alice (and before performing the
conditional corrections). Then, the full teleportation protocol is cut short
and effectively becomes

.

Compute the marginal probability distribution for Bob’s readout of the
third qubit: Pr |𝜑final⟩ [𝑜2 = 𝑢] for 𝑢 = 0, 1. Argue that this readout
probability distribution does not contain any information about Alice’s
input state |𝜓⟩ whatsoever.
Context: this observation resolves an apparent conflict between quantum
state teleportation and the widespread belief that ‘nothing’ can propagate
faster than the speed of light. According to the rules of quantum
computing, the teleportation of |𝜓⟩ from qubit one to qubit three happens
instantly – regardless of the distance spanned by the initial Bell state.
However, the readout values on Alice’s side (𝑜0 and 𝑜1) do affect the
teleported state in a very particular fashion. If not properly undone, this
‘washes out’ all information about |𝜓⟩. In other words: the teleported
state is useless for Bob until he receives Alice’s readout values for 𝑜0 and
𝑜1. This information, however, is classical and can only travel at the speed
of light.

97 Lecture 7: Quantum teleportation

Problem 7.17 (quantum repeaters). Consider the following quantum circuit that
involves 4 qubits and two partial measurements on qubit 2 and 3:

1 Compute the two-qubit output state 𝜌out(𝑜0, 𝑜0) for the special case
where 𝑜0, 𝑜1 = 0. Can you recognize it?

2 What is the probability of obtaining 𝑜0 = 𝑜1 = 0 when performing the
partial measurement?

3 Argue that this circuit actually encompasses a quantum repeater for
spreading entanglement across larger distances. But, the way we have
set it up is probabilistic. The entanglement exchange protocol only works
with a certain success probability (which one?).

4 Optional: do a full analysis that applies to all possible measurement
outcomes 𝑜0, 𝑜1 ∈ {0, 1}. Can you correct the protocol (using 𝑜0 and 𝑜1)
such that it is guaranteed to work in a deterministic fashion?

8. General 𝑛-qubit architectures

Date: 29 November 2023

Agenda:

1 general 𝑛-qubit circuits
2 strong & weak (classi-

cal) simulation
3 implementing classical

circuits on quantum
hardware

4 synopsis

8.1 General 𝑛-qubit architectures
Today, we make a substantial jump: we transition from few-qubit architectures
(1, 2 or 3 qubits) to large-scale architectures that contain 𝑛 ≫ 1 qubits.
Conceptually, we are well-prepared for this increase in complexity. We already
know all the relevant concepts, like qubit initialization at the beginning and
qubit readout at the very end. The quantum circuits in between are also
combinations of elementary 1- and 2-qubit gates that we already know. We

𝑛-qubit architecture: 𝑛 input
qubits, 𝑛 readout bits and a
combination of elementary
quantum gates inbetween

Figure 8.1 A general 𝑛-qubit architecture has 𝑛 input bits 𝑏0, . . . , 𝑏𝑛−1, a central
block of quantum logic and a final readout stage that recovers𝑛 bits𝑜0, . . . , 𝑜𝑛−1.
the central block is solely comprised of elementary quantum gates, e.g.𝑯 ,𝑻 ,𝑺
and 𝑪𝑵𝑶𝑻 . The number 𝑠 of elementary quantum gates is called the size of
the quantum circuit.

99 Lecture 8: General 𝑛-qubit architectures

refer to Fig. 8.1 for a visualization1.
We are going to explore the fundamental possibilities of such large quantum

architectures. We will see that simulation on classical hardware is possible,
but does come with an exponential overhead (in 𝑛). Conversely, we can use a
hypothetical quantum architecture to execute any classical Boolean circuit with
only linear overhead. To paraphrase: quantum architectures are never much
worse than conventional hardware. But, conversely, building them might unlock
exponential improvements in terms of (conventional) running time and/or
circuit size. This window of opportunity is exploited by seminal quantum
circuit constructions, like the ones by Shor for integer factorization and discrete
logarithm. This, however, will be the topic of a future lecture.

8.2 Classical description of 𝑛-qubit architectures
We have already introduced quite a bit of formalism that allows us to reason
about quantum circuit architectures.

8.2.1 State vector representation of general 𝑛-qubit states
Recall that a single qubit wire contains two complex-valued degrees of freedom.
We can capture both of them with a 21-dimensional state vector of amplitudes:

|𝜓⟩ =
∑︁1

𝑏0=0
𝜓𝑏0 |𝑏0⟩ =𝝍 =

(
𝜓0
𝜓1

)
∈ ℂ2 = ℂ21 , (8.1)

where we must also meet the normalization condition ∥𝝍 ∥2 = ⟨𝜓 |𝜓⟩ =∑1
𝑏0=0

��𝜓𝑏0

��2 = |𝜓0 |2 + |𝜓1 |2 = 1. The two most basic examples encode a single
logical 0 and a single logical 1, respectively:

|0⟩ = 𝒆0 =

(
1
0

)
and |1⟩ = 𝒆1 =

(
0
1

)
. (8.2)

We can use these basic building blocks to construct state vectors of more
complex bit configurations. The case 𝑛 = 2, for instance, featured prominently
in Lecture 4. There are in total 4 = 22 bit strings of length 𝑛 = 2. And we can
use the Kronecker product to construct all of them from the basic state vectors
in Eq. (8.2):

|00⟩ =|0⟩ ⊗ |0⟩ =
(
1
0

)
⊗
(
1
0

)
=
(
1 0 0 0

)𝑇
= 𝒆0 ∈ ℂ4= ℂ22 ,

|01⟩ =|0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=
(
0 1 0 0

)𝑇
= 𝒆1 ∈ ℂ4= ℂ22 ,

|10⟩ =|1⟩ ⊗ |0⟩ =
(
0
1

)
⊗
(
1
0

)
=
(
0 0 1 0

)𝑇
= 𝒆2 ∈ ℂ4= ℂ22 ,

|11⟩ =|1⟩ ⊗ |1⟩ =
(
0
1

)
⊗
(
0
1

)
=
(
0 0 0 1

)𝑇
= 𝒆3 ∈ ℂ4= ℂ22 ,

1A 𝑛-qubit architecture can also feature partial readout and conditional gate applications
(see Lecture 7). We disregard this option here for the sake of keeping things simple.

100 Lecture 8: General 𝑛-qubit architectures

where we have written down the final expression as a row vector (transposition)
to save a bit of paper space. Note that this identification between bitstrings
(left) and standard basis vectors (right) is even nicer than one might expect:
the 2-bit string on the left corresponds to a bit encoding ⌞𝑙⌟ of the standard
basis vector index. For 𝑙 between 0 and 3 = 22 − 1,

𝒆 𝑙 = |⌞𝑙⌟⟩ or equivalently |𝑏0𝑏1⟩ = 𝒆𝑏0+2×𝑏1 . (8.3)

A general 2-qubit state vector can always be decomposed into a superposition
over all these 22 bit configurations:

|𝜓⟩ =
∑︁1

𝑏0,𝑏1=0
𝜓𝑏0𝑏1 |𝑏0𝑏1⟩ =𝝍 =

©«
𝜓00
𝜓01
𝜓10
𝜓11

ª®®®¬ ∈ ℂ4 = ℂ22 . (8.4)

This state vector must obey the following normalization condition:

∥𝝍 ∥2 = ⟨𝜓 |𝜓⟩ =
∑︁1

𝑏0,𝑏1=0

��𝜓𝑏0𝑏1

��2 = 1.

Comparing Eq. (8.4) with Eq. (8.1) already provides us with a blueprint
on how to scale up these vector representations further. State vectors of
𝑛-bit strings can be constructed by forming 𝑛-fold Kronecker products of the
basic bit configurations (8.2) involved. Each Kronecker product doubles the
number of dimensions involved. So, we end up with state vectors that live in a
2𝑛 -dimensional complex space ℂ2𝑛 : 𝑛-qubit bitstring

configurations

|0 · · · 00⟩ =|0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |0⟩ =
(
1
0

)
⊗ · · · ⊗

(
1
0

)
⊗
(
1
0

)
=
(
1 0 · · · 0 0

)𝑇
= 𝒆0 ∈ ℂ2𝑛 ,

|0 · · · 01⟩ =|0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗ · · · ⊗

(
1
0

)
⊗
(
0
1

)
=
(
0 1 0 · · · 0

)𝑇
= 𝒆1 ∈ ℂ2𝑛 ,

...

|01 · · · 1⟩ =|0⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
⊗ · · · ⊗

(
0
1

)
=
(
0 · · · 0 1 0

)
= 𝒆2𝑛−2 ∈ ℂ2𝑛 ,

|11 · · · 1⟩ =|1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩ =
(
0
1

)
⊗
(
0
1

)
⊗ · · · ⊗

(
0
1

)
=
(
0 0 · · · 0 1

)
= 𝒆2𝑛−1 ∈ ℂ2𝑛 .

More succinctly, we obtain the following generalization of Eq. (8.3) to 𝑛-bit
strings and numbers 𝑙 between 0 and 2𝑛 − 1:

𝒆 𝑙 = |⌞𝑙⌟⟩ or, equivalently |𝑏0 · · ·𝑏𝑛−1⟩ = 𝒆𝑏0×2𝑛−1+𝑏1×2𝑛−2+···+𝑏𝑛−1 . (8.5)

101 Lecture 8: General 𝑛-qubit architectures

A general 𝑛-qubit state vector can form a superposition of all these 2𝑛 𝑛-bit
configurations: 𝑛-qubit state vector has 2𝑛

(complex-valued) amplitudes

|𝜓⟩ =
∑︁1

𝑏0,...,𝑏𝑛−1=0
𝜓𝑏0 · · ·𝑏𝑛−1 |𝑏0 · · ·𝑏𝑛−1⟩ =

©«

𝜓0· · ·00
𝜓0· · ·01

...

𝜓01· · ·1
𝜓11· · ·1

ª®®®®®®¬
∈ ℂ2𝑛 . (8.6)

Each amplitude 𝜓𝑏0 · · ·𝑏𝑛−1 can be a complex number, but together they must
obey the following normalization condition:

∥𝝍 ∥2 = ⟨𝜓 |𝜓⟩ =
∑︁1

𝑏0,...,𝑏𝑛−1=0

��𝜓𝑏0 · · ·𝑏𝑛−1
��2 = 1.

Note that this sum ranges over all 2𝑛 different amplitudes that feature in
Eq. (8.6).

Exercise 8.1 The following representation of a general state puts more emphasis
on the exponential amount of different superpositions that are allowed:

𝝍 =
∑︁2𝑛−1

𝑙=0
𝜓𝑙𝒆 𝑙 ∈ ℂ2𝑛 or |𝜓⟩ =

∑︁2𝑛−1
𝑙=0

𝜓𝑙 |⌞𝑙⌟⟩.

Show that both formulas are equivalent to Eq. (8.6).

8.2.2 Circuit matrix representation of general 𝑛-qubit circuits
By now, we are already acquainted with quantum gate matrices. They are
reversible extensions of reversible binary logic. Prominent single-qubit gate
matrices are

𝑯 =
1
√
2

(
1 1
1 −1

)
and 𝑺 =

(
1 0
0 i

)
,

as well as the 𝑇 -gate:

𝑻 =

(
1 0
0 exp (i𝜋/4)

)
.

In addition, we have also seen two important 2-qubit gates that allow us to do
conditional quantum logic. The two possible CNOT gates are,

𝑪𝑵𝑶𝑻 1→2 =

©«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ =
(
1 0
0 0

)
︸ ︷︷ ︸

|0⟩⟨0 |

⊗ 𝕀 +
(
0 0
0 1

)
︸ ︷︷ ︸

|1⟩⟨1 |

⊗ 𝑿 ,

𝑪𝑵𝑶𝑻 2→1 =

©«
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

ª®®®¬ = 𝕀 ⊗
(
1 0
0 0

)
︸ ︷︷ ︸

|0⟩⟨0 |

+ 𝑿 ⊗
(
0 0
0 1

)
︸ ︷︷ ︸

|1⟩⟨1 |

,

102 Lecture 8: General 𝑛-qubit architectures

where the subscript denotes the ‘flow of information’ from control to target.
Much like in conventional Boolean circuitry, we can now take these ele-

mentary gates and combine them to construct nontrivial functionalities on 𝑛

qubits. Such a quantum circuit has to map a 2𝑛 -dimensional state vector |𝜓in⟩
(𝑛-qubit input state) to another 2𝑛 -dimensional state vector |𝜓out⟩ (𝑛-qubit
output state). This action is described by a 2𝑛 × 2𝑛 circuit matrix𝑼 : 𝑛-qubit circuit fully described

by a 2𝑛 × 2𝑛 circuit matrix
|𝜓out⟩ =𝑼 |𝜓in⟩ for all |𝜓in⟩ ∈ ℂ2𝑛 . (8.7)

The matrix 𝑼 depends on the elementary gates involved, as well as their
location within the circuit. Similar to the 1- and 2-qubit case, we can use
products to construct this final matrix out of matrix representations of the
individual constituents: Kronecker (parallel) and

matrix (sequential) products
turn elementary gate matrices
into full 2𝑛 × 2𝑛 circuit matrix

1 Parallel gate applications use the Kronecker product ‘⊗’ of the individual
gate matrices involved (including 𝕀 ∈ ℂ2×2 for qubit wires where nothing
happens). For 𝑛 qubits, this always produces a single 2𝑛 × 2𝑛 matrix for
each gate layer

2 Combining sequential gate layers uses the matrix product ‘×’ of 2𝑛 × 2𝑛

gate layer matrices.

This general construction is best explained by means of an example.

Example8.2 (3-qubit Toffoli gate). Consider the following combination of𝑯 ,𝑻 ,𝑻 † =
𝑻 7 = diag(0, exp (−i𝜋/4)) and 𝑪𝑵𝑶𝑻 that act on three qubit wires:

(8.8)

The r.h.s displays a sequential combination of 12 gate layers. We can use the
Kronecker product to compute a 23 ×23 matrix representation for each of them:

𝑪 0 = 𝕀 ⊗ 𝕀 ⊗ 𝑯 , 𝑪 1 = 𝕀 ⊗ 𝑪𝑵𝑶𝑻 1→2, 𝑪 2 = 𝕀 ⊗ 𝕀 ⊗𝑻 †,

𝑪 3 = |0⟩⟨0| ⊗ 𝕀 ⊗ 𝕀 + |1⟩⟨1| ⊗ 𝕀 ⊗ 𝑿 (why?),

𝑪 4 = 𝕀 ⊗ 𝕀 ⊗𝑻 , 𝑪 5 = 𝕀 ⊗ 𝑪𝑵𝑶𝑻 1→2, 𝑪 6 = 𝕀 ⊗ 𝕀 ⊗𝑻 †,

𝑪 7 = 𝑪 3, 𝑪 8 = 𝕀 ⊗𝑻 ⊗𝑻 , 𝑪 9 = 𝑪𝑵𝑶𝑻 1→2 ⊗ 𝑯 ,

𝑪 10 = 𝑻 ⊗𝑻 † ⊗ 𝕀 and 𝑪 11 = 𝑪𝑵𝑶𝑻 1→2 ⊗ 𝕀.

The final gate matrix then corresponds to the (ordered) matrix product of the
12 matrices that describe the individual layers:

𝑼 = 𝑪 11 ×𝑪 10 ×𝑪 9 ×𝑪 8 ×𝑪 7 ×𝑪 6 ×𝑪 5 ×𝑪 4 ×𝑪 3 ×𝑪 2 ×𝑪 1 ×𝑪 0. (8.9)

103 Lecture 8: General 𝑛-qubit architectures

Proper execution of this construction produces the following simple expression
for the final unitary matrix: 3-qubit Toffoli gate (two-fold

controlled-NOT)

𝑪𝑪𝑵𝑶𝑻 =𝑼 =

©«

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

ª®®®®®®®®®®®¬
. (8.10)

This is the truth table of a two-fold controlled bitflip: the third truth value is
flipped if the first two bits are equal to 1. Otherwise, nothing happens. The
short-hand notation on the lhs of Eq. (8.8) succinctly captures this functionality.
■

Exercise 8.3 Derive the matrix representation (8.10) yourself by completing the
argument from the example: (i) form all 12 layer matrices 𝑪 0, . . . ,𝑪 11 using
a Kronecker product construction, (ii) combine these 12 layers sequentially
by computing the matrix product in Eq. (8.9). Hint: don’t do this by hand.
Instead, write a piece of code that does it for you. Computers are good at this
type of linear algebra.

Kronecker and matrix products have another nice feature: they play nicely
with unitary matrices2.

Lemma 8.4 (Kronecker andmatrix product respect unitary structure). The Kronecker
product of two (or more) unitary matrices is again a unitary matrix. Likewise,
the matrix product of two (or more) unitary matrices is again a unitary matrix.

The proof readily follows from the following appealing features of Kronecker
and matrix products: (𝑨 ⊗ 𝑩)† = 𝑨† ⊗ 𝑩†, (𝑨 ⊗ 𝑩) (𝑪 ⊗ 𝑫) = (𝑨𝑪) ⊗ (𝑩𝑫)
and, finally, (𝑼 ×𝑽)† = 𝑽 † ×𝑼 †. We leave it as an instructive exercise in
(multi-)linear algebra.

Exercise 8.5 Prove Lemma 8.4.

The following proposition is now an immediate consequence of Lemma 8.4
and the way we construct matrix representations of general 𝑛-qubit circuits.

Proposition 8.6 (circuit matrix). every 𝑛-qubit circuit is fully
captured by a unitary 2𝑛 × 2𝑛
matrix

The functionality of every 𝑛-qubit circuit is
completely described by a 2𝑛 × 2𝑛 circuit matrix𝑼 . This matrix is unitary and
Kronecker + matrix products allow us to construct it from the circuit diagram.

This statement tells us that every 𝑛-qubit circuit is fully characterized by a
2𝑛×2𝑛 unitary matrix𝑼 . Remarkably, the converse is also true:

2Recall that a 𝐷 ×𝐷 matrix𝑼 is unitary if𝑼 †𝑼 =𝑼𝑼 † = 𝕀, where † denotes adjungation
(transposition and complex conjugation) and 𝕀 is the 𝐷 ×𝐷 identity matrix with ones on the
main diagonal and zeroes everywhere else.

104 Lecture 8: General 𝑛-qubit architectures

Theorem 8.7 (Solovay-Kitaev (𝑛-qubit case)). every 2𝑛 × 2𝑛 unitary matrix
admits a 𝑛-qubit circuit
approx. (Solovay-Kitaev)

Every unitary 2𝑛 × 2𝑛 matrix𝑼
can be approximated to arbitrary precision by a 𝑛-qubit quantum circuit
that is solely comprised of 𝑯 ,𝑺 ,𝑪𝑵𝑶𝑻 (Clifford) and𝑻 -gates.

This is the quantum generalization of a seminal result in logical circuitry:
Every logical function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 can be represented as a logical
circuit that is comprised solely of ¬, ∨ and ∧. We don’t have the time, nor the
necessary background, to prove this powerful result. We emphasize instead,
that we now start to feel the sheer size of quantum state space. A 2𝑛×2𝑛 unitary
has exactly (2𝑛)2 = 4𝑛 real-valued degrees of freedom (why?). And, we need
a comparable number of quantum gates to address all of them simultaneously.
In other words: almost all possible 𝑛-qubit unitaries need exponentially many
quantum gates (in 𝑛) to approximate. This is a straightforward quantum
generalization of Shannon’s famous result that almost all 𝑛-bit logical functions
require exponentially many logical operations (¬,∧,∨) to realize.

8.2.3 Classical simulation of 𝑛-qubit logic and readout
We now have all the ingredients in place to present a classical strategy that
fully simulates the execution of a quantum circuit on a 𝑛-qubit architecture,
like the one presented in Fig. 8.1. The key idea is to use 2𝑛 -dimensional state
vectors to keep track of the quantum logic at each step of the quantum circuit.
We start this procedure by forming a state vector representation of the 𝑛-qubit
initialization:

|𝑏0 · · ·𝑏𝑛−1⟩ = 𝒆𝑏0+2×𝑏1+···+2𝑛−1×𝑏𝑛−1 ∈ ℂ2𝑛 . (8.11)

Now, let 𝑠 be the size of the quantum circuit, i.e. the total number of nontrivial
gates. Then, we can re-express the circuit as a sequential combination of 𝑠
layers, where each layer contains exactly one nontrivial gate:

𝑼 = 𝑪 𝑠−1 × · · · ×𝑪 1.

The individual layer matrices must be Kronecker products of exactly one
nontrivial gate matrix with only identity matrices (𝕀). For a single-qubit gate𝑽
at qubit wire 𝑎 ∈ {0, . . . , 𝑛 − 1}, we get

𝑪 𝑘 = 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑎 − 1) times

⊗𝑽 ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑛 − 𝑎) times

(8.12)

Else if we have a CNOT-gate with control at qubit wire 𝑎 ∈ {0, . . . , 𝑛 − 1}
and target 𝑏 ∈ {0, . . . , 𝑛 − 1}, there are two options: if 𝑎 < 𝑏 (control before
target), we get

𝑪 𝑘 =𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
𝑎 times

⊗ |0⟩⟨0| ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑛 − 𝑎 − 1) times

+𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
𝑠 times

⊗ |1⟩⟨1| ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑏 − 𝑎 − 1) times

⊗ 𝑿 ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑛 − 𝑏 − 1) times

. (8.13)

105 Lecture 8: General 𝑛-qubit architectures

And if 𝑎 > 𝑏 (target before control), we get

𝑪 𝑘 =𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
𝑎 times

⊗ |0⟩⟨0| ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑛 − 𝑎 − 1) times

+𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
𝑏 times

⊗ 𝑿 ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑎 − 𝑏 − 1) times

⊗ |1⟩⟨1| ⊗ 𝕀 ⊗ · · · ⊗ 𝕀︸ ︷︷ ︸
(𝑛 − 𝑎 − 1) times

. (8.14)

Importantly, every such layer matrix is sparse by construction.

Fact 8.8 The matrices 𝑪 𝑘 that arise from Eqs. (8.12),(8.13) and (8.14) are all
extremely sparse: each row/column contains at most 2 nonzero entries. ■

This helps a lot with performance when it comes to matrix-vector multipli-
cation. And, as it happens, this is precisely the operation we need to update
our quantum logical configurations. We start with Eq. (8.11) and compute
the final state vector𝑼 |𝑏0 · · ·𝑏𝑛−1⟩ via a sequence of 𝑠 sparse matrix-vector
multiplications:

|𝜓0⟩ =|𝑏0 · · ·𝑏𝑛−1⟩ ∈ ℂ2𝑛 ,

|𝜓𝑘+1⟩ =𝑪 𝑘 |𝜓𝑘 ⟩ for 𝑘 = 0, . . . , 𝑠 − 1,
|𝜓⟩ =|𝜓𝑠+1⟩ = 𝑪 𝑠 |𝜓𝑠 ⟩ = · · · = 𝑪 𝑠 × · · · ×𝑪 0 |𝜓0⟩ =𝑼 |𝑏0 · · ·𝑏𝑛−1⟩.

This computation of the final state vector |𝜓⟩ ∈ ℂ2𝑛 involves a total of 𝑠
matrix-vector multiplications in 2𝑛 dimensions. Fortunately, each matrix 𝑪 𝑘

involved is extremely sparse, see Fact 8.8. Sparse matrix-vector multiplication
routines execute each update using only (order) sparsity × dimension = 2× 2𝑛

arithmetic operations. This produces a total resource cost of (at most) 2𝑠 × 2𝑛

arithmetic operations, where 𝑠 is the size of the circuit involved.

Theorem 8.9 (strong simulation of a 𝑛-qubit circuit). Let𝑼 be a 𝑛-qubit quan-
tum circuit comprised of 𝑠 elementary gates (e.g. 𝑯 ,𝑺 ,𝑪𝑵𝑶𝑻 and 𝑻).
Given an input configuration |𝑏0 · · ·𝑏𝑛−1⟩ with 𝑏0, . . . , 𝑏𝑛−1 ∈ {0, 1}𝑛 , we
can compute the final state vector |𝜓⟩ = 𝑼 |𝑏0 · · ·𝑏𝑛−1⟩ ∈ ℂ2𝑛 using a
sequence of 𝑠 sparse matrix-vector multiplications. The total cost is (at
most) 2𝑠 × 2𝑛 .

This process is called a strong simulation of the underlying 𝑛-qubit logic.
strong simulation = keep
track of 2𝑛 -dim. state vector

After all, it does provide us with a complete classical description of all 2𝑛

amplitudes that feature in the final 𝑛-qubit configuration. In a sense, this
description is even more fine-grained than the inner workings of an actual
𝑛-qubit processor. The latter, after all, does not access amplitudes directly.
Instead, we can only sample 𝑛-bit strings 𝑜0 · · ·𝑜𝑛−1 ∈ {0, 1}𝑛 according to a
probability distribution that involves the squared amplitudes:

Pr𝑼 |𝑏0 · · ·𝑏𝑛−1⟩ [𝑜0 · · ·𝑜𝑛−1] = Pr |𝜓 ⟩ [𝑜0 · · ·𝑜𝑛−1] =
��𝜓𝑜0 · · ·𝑜𝑛−1

��2 . (8.15)

One repetition of a 𝑛-qubit quantum computation produces exactly one 𝑛-bit
string 𝑜0 · · ·𝑜𝑛−1. And we may need very, very many repetitions of this process

106 Lecture 8: General 𝑛-qubit architectures

to get even a rough idea about the 2𝑛 different (squared) amplitudes involved.
The process of being able to sample 𝑛-bit strings from the correct probability
distribution (8.15) is called a weak simulation protocol. weak simulation = sample

from correct readout
distribution

Such protocols actually
implement the functionality of a 𝑛-qubit architecture from the beginning (input
𝑛-bit string) to the end (outcome 𝑛-bit string).

Access to the full 2𝑛 -dimensional state vector is enough to sample outcome
strings according to the accompanying probability distribution (8.15). Note
that this step involves (pseudo-)randomness. The resource cost involved is
linear in the length of the state vector and therefore exponential in the number
of qubits.

Proposition 8.10 (strong simulation implies weak simulation). Assuming access to
uniformly random bits and a state vector |𝜓⟩ ∈ ℂ2𝑛 , we can sample 𝑛-bit
strings according to Pr |𝜓 ⟩ [𝑜0 · · ·𝑜𝑛−1] =

��𝜓𝑜0 · · ·𝑜𝑛−1
��2 with order 2𝑛 arithmetic

operations.

We leave a proof of this statement as an instructive exercise (there are
multiple ways to construct a weak simulator). The following consequence now
immediately follows from combining Theorem 8.9 with Proposition 8.10.

Corollary 8.11 (exponential overhead when moving from quantum to classical hard-
ware). strong (& weak) simulation

doable, but with exponential
overhead (in 𝑛)

Suppose that we wish to execute a circuit with 𝑠 elementary gates on
a 𝑛-qubit architecture. Then, we can simulate the entire pipeline on classical
hardware. The overhead in resource cost is, however, exponential in 𝑛: we
need roughly 2(𝑠 + const) × 2𝑛 arithmetic operations (and access to random
bits).

Exercise 8.12 (does weak simulation imply strong simulation? (challenging)). Suppose
you have access to a weak simulator for an unknown quantum state vector |𝜓⟩.
How often do you need to run it and produce an outcome bitstring 𝑜0 · · ·𝑜𝑛−1
until you get a good idea about all 2𝑛 amplitudes 𝜓𝑜0 · · ·𝑜𝑛−1 involved? Is this
task possible at all?

8.3 Implementing classical circuits with quantum logic
Before, we have asked ourselves whether we can use classical hardware to
simulate access to a (hypothetical) 𝑛-qubit architecture. Let us now ask the
reverse question: can we use a 𝑛′-qubit architecture to simulate a (hypothetical)
𝑛-bit Boolean circuit?

Recall that a Boolean circuit has 𝑛 input bits and𝑚 output bits. In between,
it can execute elementary logical gates like NOT (¬), AND (∧) and OR (∨).
The size 𝑠 of a circuit counts the total number of logical gates. We refer to
standard textbooks and lecture notes for detail, e.g. [Kue22].

Note that these gates are not native for a quantum architecture. Let us
now show how to reformulate them as sequences of native quantum gates (like
𝑪𝑵𝑶𝑻 , 𝑯 and𝑻).

107 Lecture 8: General 𝑛-qubit architectures

8.3.1 Quantum realizations of elementary logical gates
Reversible negation (¬)
The negation operation is special, because it is reversible. The bitflip gate 𝑿
implements it natively on single qubits: reversible NOT: 1 bitflip 𝑿

At face value, there is no overhead when implementing this logical functionality
on a quantum chip. We may, however, have to revert it at a later point if we
need access to the original bit value at a later point within the circuit execution.
This reversion costs one additional 𝑿 -gate and is displayed at the left of the
above diagram.

Reversible AND (∧)
Let us now move on to realizing the logical AND operation (∧):

𝑏0 ∧ 𝑏1 =

{
0 if 𝑏0 = 0 or 𝑏1 = 0,
1 else (𝑏0 = 1 and 𝑏1 = 1).

This operation is not reversible. If we receive 1, we know that both 𝑏0 and 𝑏1
must have been 1. But, if we receive 0 instead, we don’t know which of the
three input configurations produced it. We can, however, implement ∧ in a
reversible fashion if we allow for an additional (qu)-bit wire. The following
3-qubit circuit uses a Toffoli gate (two-fold controlled-NOT) to do the job: reversible AND: 3 qubits, 1

Toffoli gate

.

Correctness of the implementation follows directly from the truth table of the
Toffoli gate (8.10): the third bit is flipped from 0 to 1 if and only if 𝑏0 = 𝑏1 = 1.
Otherwise, it stays in 0.

Note that the Toffoli gate is typically not a native gate on a quantum
computer. We can, however, use Example 8.2 to decompose 𝑪𝑪𝑵𝑶𝑻 into a
combination of 2 Hadamards, 25 𝑻 gates and 6 𝑪𝑵𝑶𝑻 s. This produces the
following overhead in terms of elementary quantum gates.

108 Lecture 8: General 𝑛-qubit architectures

Lemma 8.13 (reversible implementation of AND (∧)). We can realize one two-bit
AND-gate using one additional qubit (initialized in 0), 6 𝑪𝑵𝑶𝑻 gates and 27
single-qubit gates (i.e. 33 elementary gates in total).

Exercise 8.14 (impossibility of implementing ∧ with two qubits). Argue that it is
impossible to realize a logical AND operation with only two qubits.

1 Why is it impossible to find a 2-qubit unitary 𝑼 ∈ ℂ4×4 such that
𝑼 |𝑏0𝑏1⟩ = |𝜓 (𝑏0, 𝑏1)⟩ ⊗ |𝑏0 ∧ 𝑏1⟩ for all 𝑏0, 𝑏1 ∈ {0, 1}?

2 Does this situation change if we allow for a partial readout of the first
qubit combined with a conditional unitary on the remaining qubit?

Reversible OR (∨)
Finally, we need to realize the logical OR operation (∨):

𝑏0 ∨ 𝑏1 =

{
0 if 𝑏0 = 0 and 𝑏1 = 0,
1 else (𝑏0 = 1 or 𝑏1 = 1).

Again, this operation is not reversible. If we receive 0, we know that both 𝑏0
and 𝑏1 must have been 0. But, if we receive 1 instead, we don’t know which of
the three possible input configurations produces it. Similar to logical AND (∧),
we can still implement ∨ in a reversible fashion if we allow for an additional
(qu)-bit wire. The following 3-qubit circuit again uses a single Toffoli gate: reversible OR: 3 qubits, 1

Toffoli gate, 5 bitflips

.

This realization draws inspiration from our AND-implementation. The third
qubit wire is initialized to the truth value 1. The only way to change this is
to trigger a two-fold controlled-NOT gate. Additional negations on the first
two-qubit wires (which are undone later on) ensure that the Toffoli gate fires if
and only if both inputs are 0. This produces an effective logical OR gate.

Similar to before, we can further decompose the Toffoli gate into elementary
quantum gates (see Example 8.2). Doing so produces the following resource
count.

Lemma 8.15 (reversible implementation of OR (∨)). We can realize one two-bit
OR-gate using one additional qubit (initialized in 0), 6 𝑪𝑵𝑶𝑻 gates and 32
single-qubit gates (i.e. 38 elementary gates in total).

8.3.2 Quantum realization of entire Boolean circuits
The reversible execution of a single AND or OR gate requires one additional qubit
wire and a total of (at most) 38 elementary quantum gates (see Lemma 8.13

109 Lecture 8: General 𝑛-qubit architectures

Figure 8.2 Implementation of Boolean circuits on quantum hardware: every
Boolean circuit with 𝑛 input bits, 𝑚 output bits and 𝑠 elementary logical gates
(green, lhs) can be converted into a functionally equivalent quantum circuit
(purple, rhs). This quantum circuit is larger and longer, but the increase in cost
is (at most) linear in circuit size max {𝑛,𝑚, 𝑠 }.

and Lemma 8.15). Putting everything together produces an extra overhead
that takes into account these extra costs for implementing AND and OR gates.

Theorem 8.16 (realizing a classical circuit on a quantum architecture). Consider a
Boolean circuit with 𝑛 input bits,𝑚 output bits and circuit size 𝑠 . Then, we
can (perfectly and deterministically) simulate this circuit with a quantum
architecture that features 𝑛 +𝑚 + 𝑠 qubits and requires (at most) 38 × 𝑠

elementary quantum gates (𝑯 ,𝑻 ,𝑪𝑵𝑶𝑻 ,𝑿).

For most circuits, circuit size 𝑠 is the dominant cost parameter. Theorem 8.16
then highlights that the overheads scale (at most) linearly in this dominant cost
factor: nr. of qubits =𝑂 (𝑠) and nr. of quantum gates =𝑂 (𝑠).
Corollary 8.17 (linear overhead when moving from classical to quantum). linear overhead permits

executing classical circuits on
quantum hardware

Every clas-
sical circuit can also be executed on a quantum architecture. The overhead is
(at most) linear in the original circuit size.

Let us first illustrate the conversion behind Theorem 8.16 by means of a
concrete example. Consider the following logical function with 𝑛 = 2 input
bits and 𝑚 = 1 output bit:

b0 ¬
∨

b1 ¬
∨

∧
(
b̄0 ∨ b1

)
∧
(
b0 ∨ b̄1

)
(8.16)

This circuit goes from left to right and contains 𝑠 = 5 Boolean gates (two ¬,
two ∨ and one ∧). Here is a quantum implementation of the same functionality

110 Lecture 8: General 𝑛-qubit architectures

which we read from right to left instead:

Each readout is guaranteed to recover the advertised in question with certainty.
There are no superpositions whatsoever and the functionality is perfectly
deterministic. Already a single look at this circuit reveals that there is a
lot of potential for improvement. The 𝑿 -gates, in particular, are their own
inverses (i.e. 𝑿 × 𝑿 = 𝕀) and many of them cancel. Here is a more streamlined
representation of this quantum circuit:

In order to compile it into elementary quantum gates, we can use the decom-
position of the Toffoli gate (two-fold controlled-NOT gate) into 𝑯 ,𝑻 ,𝑻 † and
𝑪𝑵𝑶𝑻 from Example 8.2. Doing so produces an actual quantum circuit that
acts on

𝑛′ = 5 = 2 + 3

qubit wires. The first two wires carry the logical inputs 𝑏0 and 𝑏1. Qubits 3, 4
and 5 compute intermediate logical values. Incidentally, the final logical value
is also the output of the circuit. There are 𝑠 = 3 non-reversible operations (∧
and ∨). Using Lemma 8.13 and Lemma 8.15, we can invest one additional
qubit wire and a total of 33 (∧) and 38 (∨) elementary quantum gates to
implement these functionalities in a reversible fashion. Logical negation (¬)
is easier by comparison. We can achieve it by applying 𝑿 and (potentially)
reverting this bit flip again at a later stage to recover the original truth value
back. To summarize:

111 Lecture 8: General 𝑛-qubit architectures

1 For each non-reversible operation (∧,∨), we need one additional qubit
wire and (at most) 38 elementary quantum gates.

2 For each output bit, we (may) need an additional qubit wire that is
initialized to 0. A single 𝑪𝑵𝑶𝑻 allows us to copy the relevant truth
variable into this wire.

It should not come as a surprise that this construction is general. Carrying it
out for a general Boolean circuit with 𝑛 input bits, 𝑚 output bits and 𝑠 logical
operations, produces the resource overhead displayed in Theorem 8.16.

Exercise 8.18 (Proof of Theorem8.16). Generalize the construction above to general
Boolean circuits with 𝑛 input bits, 𝑚 output bits and a total of 𝑠 nontrivial
Boolean gates (¬,∧∨).
Exercise 8.19 (more direct quantum execution of logical equality). Can you find a
more direct and less wasteful implementation of the logical functionality behind
Eq. (8.16)? Hint: look up parity check circuits.

8.4 Synopsis
Today, we started to compare classical and quantum (hardware) architectures
directly with each other. In particular, we have seen that quantum hardware
is never much worse than classical hardware. Theorem 8.16 states that every
classical circuit can also be executed on a quantum architecture with (at most)
linear overhead. In contrast, the transition from quantum to classical hardware
looks much more daunting. Theorem 8.9 states that it is possible to simulate
quantum architectures with classical software (and hardware, by extension).
But, the overhead in cost is substantial: our sparse matrix-vector subroutine
could only guarantee a runtime of 2𝑛 × circuit-size for a general 𝑛-qubit circuit.
This exponential overhead grows quickly. For 𝑛 = 10, we obtain 2𝑛 = 1024 –
which is still manageable. But already 𝑛 = 100 produces 2100 ≈ 1.26 × 1030 –
this overhead quickly exhausts even the most powerful supercomputers.

classical
linear−→ quantum

quantum
exponential
−→ classical

At this point, we should point out that sparse matrix-vector multiplication
is only one approach to simulate quantum architectures on classical hardware.
This approach is also called array-based simulation because it involves large
arrays (matrices and vectors). Other approaches include tensor network-based
simulations, stabilizer-based simulations, simulation based on decision diagrams
and many more. These all have their own strengths and weaknesses. But,
ultimately, each and every classical simulator developed to date starts to struggle
with an exponential cost increase (in the number of qubits 𝑛).

Exercise 8.20 (consequences of efficient classical simulation of quantumarchitectures).
Suppose that it was possible to simulate a general 𝑛-qubit architecture with
only polynomial overhead (in 𝑛). I.e. every quantum circuit with 𝑠 gates can
be simulated with poly(𝑛) × 𝑠 arithmetic operations. Shor’s algorithm is such a
quantum circuit: it factorizes a 𝑛 bit integer by repeatedly executing a quantum
circuit of size 𝑠 =𝑂 (𝑛3). Use this piece of information to conclude that efficient

112 Lecture 8: General 𝑛-qubit architectures

classical simulation of quantum circuits would imply a polynomial-runtime
algorithm (in bit size 𝑛) for integer factorization. What would this mean for
the RSA public key encryption protocol?

9. Amplitude amplification circuits

Date: 13 December 2023

Agenda:

1 setup
2 overall idea
3 circuit design
4 pros and cons

9.1 Motivation
By now, we have all necessary pieces in place to start talking about actual
quantum algorithms. Note that the term quantum algorithm can be a bit
misleading. Actually, these are quantum circuits designed to achieve certain
computational tasks. Today we discuss amplitude amplification circuits. The
well-known Grover ‘algorithm’ is a particularly prominent example of this
kind. It uses quantum effects to find satisfying assignments of a Boolean
function faster than a conventional brute-force search ever could. Today,
we analyze this circuit and show that this quantum speedup is quadratic in
nature. Our analysis will also highlight the advantages of a clean mathematical
formalism. The matrix-vector multiplication framework will allow us to draw
rigorous conclusions without explicitly having to know the underlying logical
functionalities. This is a key feature of quantum algorithm design and analysis.
(After all, we don’t have the hardware (yet) to run these algorithms.)

9.2 Setup
Consider a 𝑛-bit Boolean function

𝑓 : {0, 1}𝑛 → {0, 1} .
Our task is to find task: find 𝒃 ∈ {0, 1}𝑛 s.t.

𝑓 (𝒃) = 1 (‘positive answer’)
𝒃 = 𝑏0 · · ·𝑏𝑛−1 ∈ {0, 1}𝑛 such that 𝑓 (𝒃) = 1.

Let us start by collecting important cost parameters. The first one is the cost
of computing 𝑓 (𝒃) for a given input. To ease our transition into the quantum

114 Lecture 9: Amplitude amplification circuits

realm, we don’t consider the function 𝑓 directly, but a Boolean circuit 𝐶 𝑓 that
implements it. The circuit size

size(𝑓) = # of elementary logical gates in 𝐶 𝑓

measures the cost of implementing this circuit. It is also in one-to-one corre-
spondence with the runtime required to compute 𝑓 on a digital computer (or a
Turing machine). Another important indicator for the difficulty of this problem
is the ratio of positive answers: ratio of positive answers 𝑟 (𝑓)

𝑟 (𝑓) = # of inputs such that 𝑓 (𝒃) = 1
total number of inputs 𝒃 ∈ {0, 1}𝑛 =

1
2𝑛

∑︁
𝒃∈{0,1}𝑛

𝑓 (𝒃) ∈ [0, 1] .

Together, circuit size and ratio of positive answers bound the expected runtime
of a simple randomized solution strategy:

Algorithm 9.1 randomized search for positive answers
1 while success = 0 do
2 sample 𝒃 = 𝑏0 . . . 𝑏𝑛−1

unif∼ {0, 1}𝑛
3 compute 𝑓 (𝒃) ∈ {0, 1}
4 if 𝑓 (𝒃) = 1 then
5 set success = 1 and output 𝒃

Instead of discussing this classical strategy, let us reformulate it in terms of
a (𝑛 + size(𝑓) + 1)-qubit architecture. We can use Hadamard gates to create
uniform superpositions of all input strings 𝒃 ∈ {0, 1}𝑛 and use a reversible
implementation of 𝐶 𝑓 to subsequently compute the superposition of all 𝑓 (𝒃)s.
Fig. 9.1 provides a visualization of such a quantum circuit. How often do we
need to execute this circuit (or equivalently: test random input bit strings) until
we find a positive answer?

Proposition 9.1 randomized search for
positive answers requires
3/𝑟 (𝑡) attempts

Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean function with ratio of
positive answers 𝑟 (𝑓). Then with probability at least 95%, a total of 3/𝑟 (𝑓)
repetitions of the quantum circuit displayed in Fig. 9.1 provides us with (at
least) one bitstring 𝒃 ∈ {0, 1}𝑛 that obeys 𝑓 (𝒃) = 1.

Before providing a proof, we emphasize that a number of (approximately)
1/𝑟 (𝑓) random input choices is also necessary. It is extremely unlikely to get
lucky and sample a positive answer earlier.

Proof of Proposition 9.1. The proof follows from computing the state vector of
the (𝑛 + 𝑠 + 1) qubits from beginning to end. In the beginning, we have
|𝜑0⟩ = |0 . . . 0⟩ = (|0⟩)⊗(𝑛+𝑠+1) . Applying Hadamards to the first 𝑛 qubits
produces a (partial) superposition

|𝜑1⟩ =𝑯 ⊗𝑛 ⊗ 𝕀⊗(𝑠+1) |0⟩⊗(𝑛+𝑠+1) = (𝑯 |0⟩)⊗𝑛 ⊗ |0⟩𝑠+1

=
1

√
2𝑛

∑︁1

𝑏0,...,𝑏𝑛−1=0
|𝑏0 . . . 𝑏𝑛−1⟩ ⊗ |0⟩⊗(𝑠+1) =

1
√
2𝑛

∑︁
𝒃∈{0,1}𝑛

|𝒃0𝑠0⟩.

115 Lecture 9: Amplitude amplification circuits

Figure 9.1Quantum implementation of a randomized search for positive answers:
this quantum circuit implements Algorithm 9.1. The purple quantum circuit
evaluates a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} in a reversible fashion.
This requires (at most) size(𝑓) auxiliary qubits to implement ∧ and ∨ and a
final qubit onto which the result 𝑓 (𝒃) is imprinted on: 𝑪 𝑓 |𝑏0 . . . 𝑏𝑛−10𝑠0⟩ =
|𝑏0 . . . 𝑏𝑛−10𝑠 𝑓 (𝒃)⟩.

It is now time to apply the purple circuit block from Fig. 9.1:

|𝜑2⟩ = 𝑪 𝑓 |𝜑1⟩ =
1

√
2𝑛

∑︁
𝒃∈{0,1}𝑛

|𝒃0𝑠 𝑓 (𝒃)⟩.

This is a uniform superposition over 2𝑛 different bitstrings. Note furthermore
that for each 𝒃 ∈ {0, 1}𝑛 , the accompanying function value 𝑓 (𝒃) now features
at the last qubit location. The readout stage collapses this superposition and
selects one of the 2𝑛 contributions uniformly at random. The first 𝑛 bit values
tell us the (randomly selected) input string 𝒃 = 𝑏0 . . . 𝑏𝑛−1, while the final
readout value tells us 𝑓 (𝒃).

The probability with which we randomly select a bit string 𝒃 that obeys
𝑓 (𝒃) = 1 is in one-to-one correspondence with the ratio of positive answers:

Pr
𝒃
unif∼ {0,1}𝑛

[𝑓 (𝒃) = 1] = 𝑟 (𝑓) and Pr
𝒃
unif∼ {0,1}𝑛

[𝑓 (𝒃) = 0] = 1 − 𝑟 (𝑓).

How many trials do we need until we are guaranteed to sample (at least) one
bit string that obeys 𝑓 (𝒃) = 1? To answer this question, let 𝑇 denote the total
number of times we evaluate the circuit (i.e. the total number of random inputs
we try). Then, the probability of never sampling a positive answer is

Pr [all 𝑇 trials fail] =(1 − 𝑟 (𝑓))𝑇 = exp (log(1 − 𝑟) ×𝑇)
≤ exp (−𝑟𝑇) ,

because log(1 − 𝑥) ≤ −𝑥 for all 𝑥 ∈ [0, 1]. If we set 𝑇 = 3/𝑟 (𝑓), we obtain
a failure probability of at most exp(−3) < 0.05. In other words: we get a
positive answer with probability > 1 − 0.05 = 0.95. ■

Many important search problems fall into this broad category. Let us
provide two examples.

116 Lecture 9: Amplitude amplification circuits

Example 9.2 (SAT). search for positive answers
covers satisfiability (SAT)

Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean formula in CNF.
Then, the task of finding a positive answer 𝑓 (𝒃) = 1 also solves the famous
satisfiability problem. CNF formulas also have efficient circuit implementations,
i.e. size(𝑓) = poly(𝑛). So, evaluating 𝑓 (or constructing the circuit 𝐶 𝑓) is not
the main bottleneck. What makes this problem hard is that we may have to
check exponentially many inputs: the ratio of positive answers 𝑟 (𝑓) can be as
small as 𝑟 (𝑓) = 1/2𝑛 . ■

Example 9.3 (unstructured data base search). unstructured data base search
also covered

We can also interpret the Boolean
function 𝑓 : {0, 1}𝑛 → {0, 1} as a label function in an unstructured database
of bit strings. Viewed from this angle, the task of finding 𝒃 ∈ {0, 1}𝑛 with
𝑓 (𝒃) = 1 boils down to finding a database entry with the label ‘yes’. Problems
of this kind often occur as subroutines in more involved algorithms. ■

9.3 Overall idea for a quadratic quantum advantage
9.3.1 high-level vision

We have just seen that the ratio of positive answers 𝑟 (𝑓) plays an important
role when it comes to looking for positive answers. A standard execution of
randomized search requires 𝑇 ≈ 3/𝑟 (𝑓) invocations of the function/circuit in
question. Each such evaluation comes with a circuit size size(𝑓). Hence, the
total cost is

𝑇 × size(𝑓) = 3(size(𝑓) + 𝑛)/𝑟 (𝑓) (9.1)

total classical cost is
≈ size(𝑓)/𝑟 (𝑓)

scales linearly in the inverse ratio of positive answers. Note furthermore that
the ratio of positive answers can very well be exponentially small (𝑟 (𝑓) = 1/2𝑛
if there is exactly one positive answer). In these cases, the total cost (9.1) also
explodes exponentially.

Let us now present a high-level idea that uses quantum circuits to achieve a
quadratic improvement in total cost. The resulting quantum circuit𝑮 will have
(quantum) circuit size

size(𝑮) =𝑂
(
(size(𝑓) + 𝑛) /

√︁
𝑟 (𝑓)

)
. (9.2)

total quantum cost is
≈ size(𝑓)/

√︁
𝑟 (𝑓)

The first contribution is comparable to the cost of executing the circuit𝐶 𝑓 once.
The second contribution is where things get interesting: 1/

√︁
𝑟 (𝑓) =

√︁
1/𝑟 (𝑓)

is quadratically smaller than the 1/𝑟 (𝑓)-term that dominates the classical
cost (9.1). How can we hope to achieve such a quadratic improvement? There
are two main ideas that we shall now cover.

(i) re-interpret the uniform superposition in a problem-related fashion:
Fix the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and let 𝑡+(𝑓) be the number of
inputs such that 𝑓 (𝒃) = 1. Likewise, let 𝑡− (𝑓) = 2𝑛 − 𝑡+(𝑓) be the number of
inputs such that 𝑓 (𝒃) = 0. Then, we can rewrite the uniform superposition

117 Lecture 9: Amplitude amplification circuits

Figure 9.2 Geometric intuition behind amplitude amplification: view the uniform
superposition |𝜔⟩ as a combination of the superposition of bad input strings
|𝜓bad⟩ (𝑓 (𝒃) = 0) and the superposition of good input strings |𝜓good⟩ (𝑓 (𝒃) =
1). The amplitude of |𝜓good⟩ is proportional to 𝜃 ≈

√︁
𝑟 (𝑓) ≪ 1 (top right). A

reflection about |𝜓good⟩ (top center) followed by a reflection about |𝜔⟩ (top
right) implement a rotation 𝑹 that amplifies this amplitude (bottom right).
A sequential application of many rotations amplifies this good amplitude to
approximately everything (bottom left).

over all 𝑛-bit strings as

|𝜔⟩ = (𝑯 |0⟩)⊗𝑛 =
1

√
2𝑛

∑︁
𝒃∈{0,1}𝑛

|𝒃⟩

=
1

√
2𝑛

∑︁
𝒃 :𝑓 (𝒃)=0

|𝒃⟩ + 1
√
2𝑛

∑︁
𝒃 :𝑓 (𝒃)=1

|𝒃⟩

=

√︂
𝑡− (𝑓)
2𝑛

1√︁
𝑡− (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=0

|𝒃⟩ +
√︂
𝑡+(𝑓)
2𝑛

1√︁
𝑡+(𝑓)

∑︁
𝒃 :𝑓 (𝒃)=1

|𝒃⟩

=

√︂
2𝑛 − 𝑡+(𝑓)

2𝑛
|𝜓bad⟩ +

√︂
𝑡+(𝑓)
2𝑛

|𝜓good⟩

=
√︁
1 − 𝑟 (𝑓) |𝜓bad⟩ +

√︁
𝑟 (𝑓) |𝜓good⟩. (9.3)

This tells us that the uniform superposition is actually a linear combination of
two quantum states: the superposition of ‘bad inputs’ |𝜓bad⟩ and the superpo-
sition of ‘good inputs’ |𝜓good⟩. The amplitude in front of the superposition of
good inputs scales like the square root of the ratio of positive answers. This is a
small number, but not quite as small as 𝑟 (𝑓) itself. Amplitude amplification
ultimately leverages this quadratic discrepancy. To make our life easier later
on, we replace the amplitudes in Eq. (9.3) with trigonometric functions. Let
𝜃 ∈ [0, 2𝜋) be the angle that obeys√︁

𝑟 (𝑓) = sin(𝜃), such that |𝜔⟩ = cos(𝜃) |𝜓bad⟩ + sin(𝜃) |𝜓good⟩. (9.4)

118 Lecture 9: Amplitude amplification circuits

uniform superposition |𝜔⟩
contains both bad and good
bitstrings

We refer to Fig. 9.2 (top left) for a visual illustration. The problem is that for
𝜃 ≪ 1 (which happens if 𝑟 (𝑓) ≪ 1), cos(𝜃) ≈ 1 and sin(𝜃) ≈ 0. This is also
why our first quantum circuit needs so many trials to get a positive answer.
However, it is also true that the uniform superposition |𝜔⟩ = |𝑯 ⊗𝑛 |0 . . . 0⟩
does also contain a bit of the good answers: sin(𝜃) > 0 whenever 𝑟 (𝑓) > 0.
We refer to Fig. 9.2 (left) for a visual illustration. The second quantum idea
is designed to increase the amplitude of |𝜓good⟩ at the cost of diminishing the
amplitude of |𝜓bad⟩.

(ii) amplify the amplitude belonging to the superposition of ‘good’ bitstrings
Recall that quantum circuits act as unitary matrices on state vectors. What is
more, we can view Eq. (9.4) as an effective single-qubit state vector with only
two amplitudes:

|𝜔⟩ = cos(𝜃) |𝜓bad⟩ + sin(𝜃) |𝜓good⟩ =
(
cos(𝜃)
sin(𝜃)

)
with ⟨𝜓bad |𝜓good⟩ = 0.

Next, suppose that we are somehow able to implement the following rotation
gate on this effective qubit:

𝑹 =

(
cos(2𝜃) − sin(2𝜃)
sin(2𝜃) cos(2𝜃)

)
. (9.5)

We emphasize that this is not really a single-qubit gate, but a full-fletched
𝑛-qubit circuit (perhaps even larger). We demand, however, that it transforms
the two special states |𝜓bad⟩, |𝜓good⟩ in exactly this fashion. In particular,

𝑹 |𝜔⟩ =
(
cos(2𝜃) − sin(2𝜃)
sin(2𝜃) cos(2𝜃)

) (
cos(𝜃)
sin(𝜃)

)
=

(
cos(2𝜃) cos(𝜃) − sin(2𝜃) sin(𝜃)
sin(2𝜃) cos(𝜃) + cos(2𝜃) sin(𝜃)

)
=

(
cos((2 + 1)𝜃)
sin((2 + 1)𝜃)

)
,

because sin(𝛼+𝛽) = sin(𝛼) cos(𝛽)+cos(𝛼) sin(𝛽) and cos(𝛼+𝛽) = cos(𝛼) cos(𝛽)−
sin(𝛼) sin(𝛽). More generally, we obtain for 𝑇 ≥ 2 iteratively increase amplitude

of good bitstrings within |𝜔⟩

𝑹×𝑇 |𝜔⟩ = 𝑹 × · · · × 𝑹 |𝜔⟩ =
(
cos ((2𝑇 + 1)𝜃)
sin ((2𝑇 + 1)𝜃)

)
.

In other words: 𝑇 sequential applications of 𝑹 increase the angle 𝜃 approx-
imately 𝑇 -fold. And a larger angle also makes the sin-contribution larger at
the cost of the cos-contribution. The extreme case occurs at angle 𝜋/2 where
sin(𝜋/2) = 1 and cos(𝜋/2) = 0. That is, if we choose

𝑇♯ ≥ 2 such that (2𝑇♯ + 1)𝜃 ≈ 𝜋/2, (9.6)

119 Lecture 9: Amplitude amplification circuits

the resulting quantum state will (almost) only feature good contributions:

𝑹×𝑇♯𝑯 ⊗𝑛 |0 . . . 0⟩ = cos
(
(2𝑇♯ + 1)𝜃

)
|𝜓bad⟩ + sin ((2𝑇 + 1)𝜃) |𝜓good⟩

≈ cos(𝜋/2) |𝜓bad⟩ + sin(𝜋/2) |𝜓good⟩ = 0 × |𝜓bad⟩ + 1 × |𝜓good⟩

=|𝜓good⟩ =
1√︁
𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=1

|𝒃⟩.

Note that the final expression only features ‘good’ bit strings 𝒃 ∈ {0, 1}𝑛 such
that 𝑓 (𝒃) = 1. Any one of them solves our problem. And performing the
readout will provide us with precisely one of them. Finally, note that 𝜃 is
in one-to-one correspondence with 1/

√︁
𝑟 (𝑓), courtesy of Eq. (9.4) and the

fact that sin(𝜃) ≈ 𝜃 for 𝜃 ≪ 1 (in fact sin(𝜃) ≤ 𝜃 for all 𝜃 ∈ [0, 2𝜋)). The
following rigorous proposition is an immediate consequence of our analysis.

Proposition 9.4 (amplitude amplification, high-level). Fix a Boolean function 𝑓 :
{0, 1}𝑛 → {0, 1} with ratio of positive events 𝑟 (𝑓) and set 𝜃 ∈ [0, 2𝜋) such
that sin(𝜃) =

√︁
𝑟 (𝑓). Suppose that it is possible to generate a 𝑛-qubit circuit

𝑹 that acts as Eq. (9.5) on |𝜓bad⟩ and |𝜓good⟩. Then, 𝑇♯ ≤ 𝜋/(4
√︁
𝑟 (𝑓))

sequential applications of 𝑹 (approximately) turn the uniform superposition
|𝜔⟩ = 𝑯 ⊗𝑛 |0 . . . 0⟩ into a superposition |𝜓good⟩ of only positive answers.

Note that the term approximately is actually necessary in Proposition 9.4.
The optimal choice of 𝑇♯ in Eq. (9.6) requires us to approximate the possibly
irrational fraction 𝜋/(2𝜃) with an integer 2𝑇♯ + 1. This necessarily introduces
rounding errors. Fortunately, these rounding errors are small and sin is a
smoothly varying function. In particular, 2𝑇♯ + 1 ≈ 𝜋/(2𝜃) is enough to ensure
sin

(
(2𝑇♯ + 1)𝜃

)
≈ sin(𝜋/2) = 1 via a continuity argument.

9.4 Concrete circuit construction
Proposition 9.4 provides us with a clear strategy on how to look for positive
answers with the help of a quantum architecture. What is still missing is
a concrete realization of the (effective) rotation matrix 𝑹 in Eq. (9.5). The
following concrete construction dates back to Grover’s work from 1996. It
combines two big quantum circuits that each act as a geometric reflection
(think: mirrors). Both are illustrated in Fig. 9.3 and deserve a bit of extra
attention.

9.4.1 Circuit 1: reflection about good solutions (‘Grover oracle’)
Let us first take a closer look at the lhs circuit in Fig. 9.3, the so-called function
oracle.

Lemma 9.5 (action of function oracle). The first circuit displayed in Fig. 9.3 acts
on the first 𝑛 qubits as the function oracle acts as a

reflection about ‘good
bitstrings’ (𝒃 s.t. 𝑓 (𝒃) = 1)𝑼 𝑓 =

∑︁
𝒃∈{0,1}𝑛

(−1) 𝑓 (𝒃) |𝒃⟩⟨𝒃 |. (9.7)

120 Lecture 9: Amplitude amplification circuits

Figure 9.3Quantum circuit blocks that achieve amplitude amplification:
(left): the function oracle𝑼 𝑓 uses a reversible implementation of 𝐶 𝑓 to change
the sign of good bitstring answers: 𝑼 𝑓 |𝒃⟩ = (−1) 𝑓 (𝒃) |𝒃⟩ for 𝒃 ∈ {0, 1}𝑛 .
(right): the diffusion operator acts as a reflection about the uniform superposition:
𝑺 |𝜔⟩ = −|𝜔⟩ and 𝑺 |𝜈⟩ = +|𝜈⟩ whenever ⟨𝜔 |𝜈⟩ = 0 (orthogonality).

In words: This unitary matrix reflects ‘good input states’ and leaves ‘bad
input states’.

Proof. We can without loss restrict our attention to the first 𝑛 qubits plus the
last one. The part in the middle is only required to reversibly implement logical
∧,∨. It starts in 0 and ends in 0. The remaining circuit prepares the last qubit
in the state |−⟩ = 𝑯𝑿 |0⟩ = 𝑯 |1⟩ = (|0⟩ − |1⟩)/

√
2. We then XOR the value of

𝑓 (𝒃) to it. For 𝒃 ∈ {0, 1}𝑛 , we obtain

𝑪 𝑓 ×
(
𝕀⊗𝑛 ⊗ (𝑯𝑿)

)
|𝒃0⟩ =|𝒃⟩ ⊗ (|0 ⊕ 𝑓 (𝒃)⟩ − |1 ⊕ 𝑓 (𝒃)⟩) /

√
2

=(−1) 𝑓 (𝒃) |𝒃⟩ ⊗ |−⟩.
The final 𝑿 and 𝑯 convert the |−⟩-state back into the |0⟩-state we start with:

𝑼 𝑓 |𝒃0⟩ = (−1) 𝑓 (𝒃) |𝒃0⟩ for 𝒃 ∈ {0, 1}𝑛 .
Eq. (9.7) subsumes all these actions on different bit strings into a single
display. ■

We can use Lemma 9.5 to infer the action of 𝑼 𝑓 on the effective qubit
spanned by |𝜓b⟩ = |𝜓bad⟩ and |𝜓g⟩ = |𝜓good⟩. Linearity ensures

𝑼 𝑓 |𝜓b⟩ =
√︁
1 − 𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=0

𝑼 𝑓 |𝒃⟩ =
√︁
1 − 𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=0

(−1) 𝑓 (𝒃) |𝒃⟩

=
√︁
1 − 𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=0

|𝒃⟩ = |𝜓b⟩

and, likewise

𝑼 𝑓 |𝜓g⟩ =
√︁
𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=1

𝑼 𝑓 |𝒃⟩ =
√︁
𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=1

(−1) 𝑓 (𝒃) |𝒃⟩

= −
√︁
𝑟 (𝑓)

∑︁
𝒃 :𝑓 (𝒃)=1

|𝒃⟩ = −|𝜓g⟩.

121 Lecture 9: Amplitude amplification circuits

Putting everything together produces

𝑼 eff
𝑓 =|𝜓b⟩⟨𝜓b | − |𝜓g⟩⟨𝜓g | =

(
1 0
0 −1

)
. (9.8)

9.4.2 Circuit 2: reflection about uniform superposition (‘diffusion operator’)
Let us now take a closer look at the rhs circuit in Fig. 9.3, the so-called diffusion
operator. At the heart of this diffusion operator is a 𝑛-fold controlled-NOT gate
– a straightforward generalization of the Toffoli gate to (𝑛 + 1) qubits.
Lemma 9.6 The second circuit displayed in Fig. 9.3 acts on the first 𝑛 qubits as the diffusion operator acts as

a reflection about |𝜔⟩
(uniform superposition)𝑺 = 𝕀⊗𝑛 − 2|𝜔⟩⟨𝜔 |. (9.9)

In words: this is a reflection about the state |𝜔⟩, i.e. 𝑺 |𝜔⟩ = −|𝜔⟩ and
𝑺 |𝜈⟩ = +|𝜈⟩ whenever ⟨𝜔 |𝜈⟩ = 0 (orthogonality).

Exercise 9.7 (Proof of Lemma 9.6). Show that the circuit depicted in Fig. 9.3 is
indeed described by Eq. (9.9).

We can use |𝜔⟩ = cos(𝜃) |𝜓bad⟩ + sin(𝜃) |𝜓good⟩ (Eq. (9.4)) to infer the
action of 𝑺 on the effective qubit spanned by |𝜓bad⟩ and |𝜓good⟩:

𝑺 eff =
(
|𝜓b⟩⟨𝜓b | + |𝜓g⟩⟨𝜓g |

)
− 2

(
cos(𝜃) |𝜓b⟩ + sin(𝜃) |𝜓g⟩

) (
cos(𝜃)⟨𝜓b | + sin(𝜃)⟨𝜓g |

)
=
(
1 − 2 cos2(𝜃)

)
|𝜓b⟩⟨𝜓b | − sin(𝜃) cos(𝜃) |𝜓b⟩⟨𝜓g |

− sin(𝜃) cos(𝜃) |𝜓g⟩⟨𝜓b | + (1 − 2 sin2(𝜃)) |𝜓g⟩⟨𝜓g |

=

(
1 − 2 cos2(𝜃) − sin(𝜃) cos(𝜃)
− sin(𝜃) cos(𝜃) 1 − 2 sin2(𝜃)

)
= −

(
cos(2𝜃) sin(2𝜃)
sin(2𝜃) − cos(2𝜃)

)
. (9.10)

Here, we have used some additional trigonometric identities1. Although
it looks similar, this is not a rotation. The determinant, in particular, is
− cos2(𝜃) − sin2(𝜃) = −1 which is indicative of a reflection (think mirror
image).

9.4.3 Combination of the two circuit blocks
We now have effective single-qubit actions of both the function oracle (Eq. (9.8))
and the diffusion operator (Eq. (9.10)). A combination of the two yields the
following effective gate matrix:

𝑹 =𝑺 eff ×𝑼 eff
𝑓 = −

(
cos(2𝜃) sin(2𝜃)
sin(2𝜃) − cos(2𝜃)

)
×
(
1 0
0 −1

)
= −

(
cos(2𝜃) − sin(2𝜃)
sin(2𝜃) cos(2𝜃)

)
. (9.11)

a combination of diffusion
and function oracles acts as
an effective rotation

This is now a proper rotation matrix, at least up to a global sign (−1) that does
not matter for quantum logic. Note furthermore that this effective single-qubit
functionality has exactly the form we need for Proposition 9.4.

1In particular: sin(𝜃) cos(𝜃) = sin(2𝜃), 1 − 2 sin2 (𝜃) = cos(2𝜃) and 1 − 2 cos2 (𝜃) =

2 sin2 (𝜃) − 1 = − cos(𝜃) (because cos2 (𝜃) + sin2 (𝜃) = 1).

122 Lecture 9: Amplitude amplification circuits

Figure 9.4 Full amplitude amplification circuit: generate a uniform superposition
over all 𝑛-bit strings and then sequentially apply 𝑇♯ combinations of diffusion
operator and function oracle. A proper choice of 𝑇♯ ≈ 𝜋/(4𝑟 (𝑓)) amplifies
the amplitudes of ‘good bit strings’ (𝒃 s.t. 𝑓 (𝒃) = 1) while essentially erasing
the amplitudes of ‘bad bit strings’ (𝒃 s.t. 𝑓 (𝒃) = 0). The total circuit size is
𝑂

(
𝑇♯(𝑛 + size(𝑓)

)
.

9.5 Full quantum search algorithm
We now have all the pieces in place for a fully-fletched quantum search
algorithm. At the heart of it are two building blocks:

(i) the function oracle which is essentially a reversible implementation of
the function 𝑓 (Fig. 9.3, left) and

(ii) the diffusion operator with a 𝑛-fold controlled NOT-gate at its center
(Fig. 9.3, right).

In contrast to our quantum implementation of random search in Fig. 9.1, we
now group many of these elementary blocks into a single quantum circuit. A
total of 𝑇♯ ≈ 𝜋 (2𝜃) ≳ 𝜋/(4

√︁
𝑟 (𝑓)) to be precise. The last missing ingredient

is an initial preparation of the uniform superposition |𝜔⟩ = 𝑯 ⊗𝑛 |0 . . . 0⟩ on the
first 𝑛 qubits. We refer to Fig. 9.4 for a visual illustration. Proposition 9.4 and
the explicit construction of the required rotation matrix in Eq. (9.11) readily
imply the following theoretical underpinning.

Theorem 9.8 (amplitude amplification circuit). amplitude amplification
achieves quadratic speedup

Let 𝑓 : {0, 1}𝑛 → {0, 1} be a
Boolean function with ratio of positive answers 𝑟 (𝑓) and circuit size size(𝑓).
Set𝑇♯ ≈ 𝜋/(4

√︁
𝑟 (𝑓). Then, the circuit displayed in Fig. 9.4 almost produces

a uniform superposition of all bitstrings 𝒃 such that 𝑓 (𝒃) = 1. A readout of
the first 𝑛 qubits produces one of them with a very high probability.

The total size of this circuit is𝑂
(
size(𝑓)/

√︁
𝑟 (𝑓)

)
(assuming size(𝑓) ≥ 𝑛).

For sufficiently large input sizes 𝑛 ≫ 1, this becomes much cheaper than the

123 Lecture 9: Amplitude amplification circuits

total cost of 3 × size(𝑓)/𝑟 (𝑓) required to execute a random search protocol
(Algorithm 9.1). This quadratic discrepancy becomes particularly pronounced if
the ratio of positive answers 𝑟 (𝑓) is very small (𝑟 (𝑓) ≈ 1/2𝑛).

Next, we point out that the quantifier ‘almost’ in Theorem 9.8 takes into
account rounding issues when choosing the optimal number of iterations
𝑇♯ ≈ 𝜋/(4

√︁
𝑟 (𝑓). We can handle this by repeating the circuit multiple times

until we get an output 𝒃 that fulfils 𝑓 (𝒃) = 1 (evaluating the function for a
single input is very cheap by comparison). And continuity arguments ensure
that the probability of getting a good string is very close to sin(𝜋/2) = 1.

A more serious issue is the fact that the number of repetitions 𝑇♯ depends
on the ratio of positive answers 𝑟 (𝑓). And this ratio may not be known
in advance! To make matters worse, it is absolutely possible to overshoot
amplitude amplification. amplitude amplification can

overshoot
If we get 𝑇♯ wrong by a factor of 2, for instance, we

effectively end with a superposition of bad answers:(
𝑺 ×𝑼 𝑓

)2𝑇♯ |𝜔⟩ ≈ cos (2(𝜋/2)) |𝜓bad⟩ + sin (2(𝜋/2)) |𝜓good⟩ = −|𝜓bad⟩.

This periodicity is an unavoidable feature when constructing amplitude amplifi-
cation the way we have done it here (which dates back to Grover in the 90s).
However, much more recently, researchers have developed an alternative way
to construct amplitude amplification circuits that don’t have this problem. This
construction is based on a technique called quantum singular value transform.
Discussing it would go beyond the scope of this introductory lecture.

10. Fourier-type transforms

Date: 10 January 2024 Lecturer: Alexander Ploier

Agenda:

1 Fourier transform
2 Discrete Fourier trans-

form
3 Quantum Fourier trans-

form
4 Quantum phase estima-

tion

10.1 Fourier transform
10.1.1 Motivation

The Fourier transform is one of the most powerful tools in signal processing,
data analysis and applied math. But, its utility extends to quantum computing
as well. Shor’s algorithms, for instance, use a (quantum) Fourier transform as
an important subroutine. This is more than enough justification to look at this
transformation and its quantum realization. For starters, let us discuss what a
Fourier transform does and why (classical) people care. From that point on,
we can derive the quantum Fourier transform. So what exactly is the Fourier
transform anyway? Here is an informal definition from audio processing:

Example 10.1 (Fourier transform in audio processing). The Fourier transform takes
a signal in the time domain, e.g. an audio signal, and transforms it into its
different components in the frequency domain: Fourier transform

𝑓 (𝜉) =
∫ ∞

−∞
𝑓 (𝑥)e−2𝜋𝑖𝑥𝜉d𝑥.

■

Imagine we have a smoothie in front of us, any kind of smoothie, and we
want to find out what it is made of. Of course, we can drink it, and see if we
can guess all the ingredients, but that is not very scientific, is it? A better way to
handle this would be to pour the smoothie through a series of filters. Each and
every one of those filters has exactly one ingredient until there is nothing left
of our smoothie. Of course, we do want additional restrictions for our filters.

125 Lecture 10: Fourier-type transforms

• Filters must be independent of each other. (E.g. Banana filter only
captures the amount of bananas in the smoothie.)

• Filters must be complete. (E.g. We won’t get the real recipe if we do not
check for something.)

• Ingredients must be combineable. (E.g. Recombining the ingredients in
any order has to lead back to the same smoothie)

The Fourier transform finds the recipe for a signal, in the same way filtering a
smoothie will give us the recipe to make a new one.

For example, earthquake vibrations can be separated into vibrations of
different frequencies and amplitudes, which allows buildings to be designed to
withstand the strongest ones.

10.1.2 Discrete Fourier transform
The traditional Fourier transform is an analogue operation that is defined for
analogue signals (functions). There is, however, also a discrete variant thereof.
This transformation is characterized by the (discrete) dimension𝐷 and features
prominently in modern (digital) audio+image processing tasks. There, the
dimension 𝐷 is typically finite, but very large.

Example 10.2 (Discrete Fourier transform in audio processing). Imagine we have
a messed-up audio signal, with some annoying frequencies. We want to
filter those out to get a clear signal. We have a 10 second audio clip with
4.4 × 105 data points. To transform this signal into the frequency domain, to
get rid of those unwanted ones, we apply the straight-forward discrete Fourier
transform. It takes 𝐷2 operations to transform, with 4.4 × 105 data points,
this yields around 1011 operations i.e. a hundred billion operations. Which is
quite a lot. ■

Let us now take a look at the discrete Fourier transform on a smaller scale,
i.e. two data points or 𝐷 = 2. Let us denote the associated discrete Fourier
transform by 𝑫𝑭𝑻 2. To construct it, we use the following important fact from
algebra (fundamental theorem of algebra).

Fact 10.3 (𝐷-th roots of unity). 𝐷 -th roots of unityFor𝐷 = 1, 2, 3, . . . ,, there are exactly𝐷 solutions
to the polynomial equation 𝑥𝐷 = 1. These are complex phases and take the
following form: exp ((𝑘 × 2𝜋 i)/𝐷) with 𝑘 = 0, . . . , 𝐷 − 1. ■

If 𝐷 = 2, the equation is 𝑥2 = 1 and we know that there are two solutions:
𝑥 = +1 and 𝑥 = −1. We can also write them using the language of complex
phases. Define 𝜔 = e2𝜋 i/𝐷 . For 𝐷 = 2 we have

𝜔 =e2𝜋 i/2 = −1,
𝜔2 =e2𝜋 i = +1,
𝜔3 =e3𝜋 i = −1,

...

126 Lecture 10: Fourier-type transforms

For 𝐷 = 3, we get three solutions, namely:

𝜔 =𝑒2𝜋 i/3 = −0.5 + 0.866i

𝜔2 =(𝑒2𝜋 i/3)2 = −0.5 − 0.866i

𝜔3 =(𝑒2𝜋 i/3)3 = 1

𝜔4 = − 0.5 + 0.866i
...

This construction extends to general 𝐷 . At the heart is the 𝐷-th root of unity
𝜔𝐷 = exp (2𝜋 i/𝐷) ∈ ℂ which is one solution to 𝑥𝐷 = 1. The other solutions
can be obtained by taking powers of this complex amplitude: 𝜔𝑘

𝐷
obeys 𝑥𝐷 = 1

for 𝑘 = 0, . . . , 𝐷 −1. Powers of𝐷 -th roots of unity are the main building blocks
of the discrete Fourier transform.

Theorem 10.4 (Discrete Fourier Transform (DFT) matrix in𝐷 dimensions). Fix a
dimension 𝐷 ≥ 2. Then, the discrete Fourier transform is defined by the
action of the following discrete Fourier transform𝐷 ×𝐷 matrix:

𝑫𝑭𝑻𝐷 =
1
√
𝐷

©«

1 1 1 1 · · · 1
1 𝜔𝐷 𝜔2

𝐷
𝜔3
𝐷

· · · 𝜔𝐷−1
𝐷

1 𝜔2
𝐷

𝜔4
𝐷

𝜔6
𝐷

· · · 𝜔2𝐷−2
𝐷

1 𝜔3
𝐷

𝜔6
𝐷

𝜔9
𝐷

· · · 𝜔3𝐷−3
𝐷

...
...

...
...

. . .
...

1 𝜔𝐷−1
𝐷

𝜔2𝐷−2
𝐷

𝜔3𝐷−3
𝐷

· · · 𝜔
(𝐷−1) (𝐷−1)
𝐷

ª®®®®®®®®¬
.

Let us illustrate this construction by means of a couple of examples. For
𝐷 = 2, the DFT matrix becomes

𝑫𝑭𝑻 2 =
1
√
2

(
1 1
1 𝜔

)
=

1
√
2

(
1 1
1 −1

)
As you can see, 𝑫𝑭𝑻 2 is equal to the matrix representation of the single-qubit
Hadamard gate . For 𝐷 = 3, we instead obtain

𝑫𝑭𝑻 3 =
1
√
3
©«
1 1 1
1 −0.5 + 0.866i −0.5 − 0.866i
1 −0.5 − 0.866i −0.5 + 0.866i

ª®¬
Example 10.5 (computing discrete Fourier transforms). For 𝐷 = 3, the discrete
Fourier transform acts on vectors of dimension 3 via matrix-vector multiplication.
The vector 𝒆1 = (1, 0, 0)𝑇 , for instance, gets mapped to

𝒆1 = DFT3𝒆1 =
1
√
3
©«
1 1 1
1 −0.5 + 0.866i −0.5 − 0.866i
1 −0.5 − 0.866i −0.5 + 0.866i

ª®¬ ©«
1
0
0

ª®¬ = 1
√
3
©«
1
1
1

ª®¬ .
■

Exercise 10.6 Find the Fourier transform for 𝐷 = 4.

127 Lecture 10: Fourier-type transforms

10.2 Quantum Fourier transform
For the quantum Fourier transform, we set 𝐷 = 2𝑛 . Then we can implement
the 𝐷𝐹𝑇 algorithm on a 𝑛-qubit circuit as a 2𝑛 × 2𝑛 unitary matrix. But we
can do better than that. We are going to derive an 𝑛-qubit circuit which yields
an exponential speed-up over this straight-forward approach. We show that by
being clever and looking really hard at the matrix we can reduce the number of
layers in our quantum circuit to 𝑛2. Before we can do that, we first have to
show that our general 𝑫𝑭𝑻𝐷 matrix is, in fact, a unitary matrix.

Proposition 10.7 The matrix 𝑫𝑭𝑻𝐷 is unitary. 𝑫𝑭𝑻𝐷 is unitary

Proof. It is known that an operator is unitary if its columns are orthonormal.
Denote the 𝑘 -th column vector of 𝑫𝑭𝑻𝐷 as follows:

𝒇 𝑘 =
1
√
𝐷

©«
1

𝜔𝑘×1

...

𝜔𝑘×(𝐷−1)

ª®®®®¬
∈ ℂ𝐷

This leads to the following result for the inner product:

⟨𝒇 𝑘 , 𝒇 𝑙 ⟩ = 𝒇 †
𝑘
𝒇 𝑙 = 𝑛

1
𝐷

∑︁𝐷−1
𝑛=0

𝜔𝑛𝑘𝜔𝑛𝑙 =
1
𝐷

∑︁𝐷−1
𝑛=0

(𝜔𝑘−𝑙)𝑛

From here it is easy to see that if 𝑘 = 𝑙 , the result is 1. If that is not the case,
we notice that 1

𝐷

∑𝐷−1
𝑛=0 (𝜔𝑘−𝑙)𝑛 is a geometric series, therefore we expand the

sum yielding:
1
𝐷

∑︁𝐷−1
𝑛=0

(𝜔𝑘−𝑙)𝑛 =
1
𝐷

𝜔𝐷 (𝑘−𝑙) − 1
𝜔𝑘−𝑙 − 1

= 0,

with 𝜔𝐷 (𝑘−𝑙) − 1 = 0 because 𝜔 is a 𝐷-th root of unity (and therefore
𝜔𝐷 (𝑘−𝑙) =

(
𝜔𝐷

)𝑘−𝑙
= (+1)𝑘−𝑙 = +1). ■

Now that we have established that𝑫𝑭𝑻𝐷 is unitary we can think about how
to implement this as a combination of simple unitary quantum gates. Before
doing that we want to shown an easy quantum circuit example and calculate
the Fourier transform of one of our two basis states, when only having one
qubit available.

Example 10.8 (computing quantum Fourier transform). Let us now calculate the
(quantum) Fourier transform of |0⟩ = (1 0)𝑇 . We have already shown that
𝑫𝑭𝑻 1 = 𝑯 . Therefore,

|̂0⟩ = 𝑯 |0⟩ = 1
√
2

(
1 1
1 −1

) (
1
0

)
=

1
√
2

(
1
1

)
= |+⟩.

■

128 Lecture 10: Fourier-type transforms

Due to 𝑫𝑭𝑻𝐷 being unitary, we have an exponentially large matrix, which
can be used in straight-forward calculations, but we can do better than that.
Looking really hard at our 𝑫𝑭𝑻𝐷 matrix one can see that we have certain
symmetries that we can use to our advantage. The first step is to separate our
matrix into even and odd columns. Similarly, we separate the vector that is to
be transformed as well. All we did was basically re-organize the basis vectors.
Furthermore, due to 𝜔

𝐷
2 = −1 we have

𝜔𝑘+𝐷
2 = −𝜔𝑘 .

Now if 𝜔 is the primitive 𝐷-th root of unity, then 𝜔2 is the primitive 𝐷
2 -th

root of unity. Therefore, the matrices whose 𝑘 , 𝑙 -th entry is 𝜔2𝑘𝑙 are just
𝑫𝑭𝑻𝐷/2. Now we can write 𝑫𝑭𝑻𝐷 as four smaller matrices 𝑫𝑭𝑻𝐷/2. Turns
out the calculation then goes from one application of𝑫𝑭𝑻𝐷 to two applications
of 𝑫𝑭𝑻𝐷/2. Which can also turn into a total of four applications of 𝑫𝑭𝑻𝐷/4.
As long as 𝐷 = 2𝑛 for some 𝑛, we can break this down into 𝑁 calculations of
𝑫𝑭𝑻 1.

Figure 10.1 Illustration on how symmetries can be used to break up a large DFT
matrix-vector multiplications into smaller chunks.

10.2.1 Quantum implementation
Let us now move on to the main part of today’s lecture. The action of the DFT
can be implemented by a remarkably short and elegant quantum circuit. This
realization of the DFT only works in 2𝑛 dimensions (𝑛 qubits) and is known as
the quantum Fourier transform (QFT).

Theorem 10.9 (quantum Fourier transform). We can implement the functional-
ity of a 2𝑛 discrete Fourier transform on 𝑛-qubits with 𝑛2 one- and two-qubit
gates. quantum Fourier transform

Now the question arises, how does one implement that in a quantum algorithm?
We need to separate the odd and even terms, with the latter being the one
where the least significant bit is 0. Therefore, we can apply the𝑫𝑭𝑻𝐷/2 to both
the even and odd parts together. We do this by applying it to the 𝑚 − 1 most
significant bits, recombining these two sets appropriately is done by applying
the Hadamard gate to the least significant bit.

129 Lecture 10: Fourier-type transforms

Figure 10.2𝑄𝐹𝑇𝐷/2 and a Hadamard gate

The next step is to apply the phase multiplication. We use the controlled
phase shift, where the least significant bit is our control qubit, to multiply only
the odd terms by the shift without doing anything to the even terms. The phase
associated with each shift is equal to 𝜔2𝑛 . constructing 𝑸𝑭𝑻 circuit

with one- and two-qubit gates

Figure 10.3𝑫𝑭𝑻𝐷 is reduced to 𝑫𝑭𝑻𝐷/2 and 𝐷 additional gates

Example 10.10 (construct𝑸𝑭𝑻 circuit for three qubits). Let us now construct the
quantum Fourier transformation for three qubits together. We turn 𝑫𝑭𝑻 3 into
𝑫𝑭𝑻 2, a Hadamard gate and two controlled phase rotations. A controlled
phase rotation with angle 𝜃 is a 2-qubit gate whose action is characterized by
the following 4 × 4 matrix:

𝑪𝑹 𝜃 =

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei𝜃

ª®®®¬
Then we turn 𝑫𝑭𝑻 2 into 𝑫𝑭𝑻 1 = 𝐻 and into 1 additional controlled rotation.

■

Figure 10.4Quantum circuit for the DFT with 3 qubits.

130 Lecture 10: Fourier-type transforms

In general the 𝑛 qubit quantum Fourier transform can be implemented in
the fashion shown in Fig. 10.5 The inverse of the quantum Fourier transform is

Figure 10.5 𝑛-qubit circuit with only one- and two-qubit gates

then constructed in the usual fashion. The order of the gates, from right to left,
is inverted. Furthermore, the controlled phase rotations are replaced by their
inverse, 𝑅†

𝜃𝑘
. Hadamard gates are not replaced due to them being their own

inverse. 𝑸𝑭𝑻 and 𝑸𝑭𝑻 −1

Figure 10.6 𝑛-qubit circuit of the inverse quantum Fourier transform

𝐶𝑅†
𝜃𝑘

=

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−i𝜃

ª®®®¬
Exercise 10.11 Construct the four-qubit quantum circuit that implements 𝑸𝑭𝑻 4
with only one- and two-qubit gates.

10.2.2 Fast (classical) Fourier transform
We have just constructed an 𝑛-qubit circuit that implements the functionality
of a 2𝑛 -dimensional Fourier transform. Our circuit consists either of a single
layer comprised of single-qubit Hadamard gates or controlled phase gates,
with the least significant qubit being the controlling one. The circuit contains
𝑛 (𝑛 + 1)/2 layers. Each layer contains a single Hadamard gate or a controlled
phase gate. This reformulation is desirable when we attempt to simulate this
circuit on classical hardware. Indeed, from

O(𝐷2) −→ O(𝐷 log22(𝐷))
𝑾 =

(
𝕀⊗(𝑛−1) ⊗ 𝑯

)
×
(
𝕀⊗(𝑛−2) ⊗ 𝑪𝑹𝒙

)
× · · · ×

(
𝑯 ⊗ 𝕀⊗(𝑛−1)

)
︸ ︷︷ ︸

𝑛 (𝑛 + 1)/2 matrix products

and each matrix on the RHS is sparse. This observation allows us to decompose
the matrix-vector multiplication𝑾𝒙 with 𝒙 ∈ ℂ2𝑛 into a sequence of 𝑛 (𝑛+1)/2

131 Lecture 10: Fourier-type transforms

sparse matrix-vector multiplications:

𝒚 0 = 𝒙 , 𝒚 1 =
(
𝑯 ⊗ 𝕀⊗(𝑛−1)

)
𝒚 0, . . . , 𝒚𝑛−1 =

(
𝕀⊗(𝑛−1) ⊗ 𝑯

)
𝒚𝑛−2.

Each matrix-vector multiplication only costs about 2 × 2𝑛 resources, because
the matrix involved is extremely sparse. This produces a total cost of 𝑛2 × 2𝑛

operations to compute𝑾𝒙 – a result that looks more impressive when we set
𝐷 = 2𝑛 and 𝑛2 = log22(𝐷).

Theorem 10.12 (Fast Fourier Transform). In dimension 𝐷 = 2𝑛 , the fast Fourier
transform admits a fast matrix-vector multiplication. For any 𝒙 ∈ ℂ𝐷 , we
can compute𝑾 𝐷𝒙 with (order) 𝐷 log22(𝐷) operations. fast Fourier transform

It is even possible to further improve the cost to order𝐷 log2(𝐷) operations
only. Note, however, that (order) 𝐷 log22(𝐷) is already much better than the
naive cost of 𝐷2 associated with naive matrix-vector multiplication. This was
achieved by using the sparsity. This might not be obvious by just looking at
the matrix displayed in Theorem 10.4. Breaking this down into basic quantum
gates revealed that we can rewrite this matrix as a product of 𝑛 (𝑛 + 1)/2
sparse matrices. Fast transformations, like the FFT, are the backbone of signal
processing as we know it.

Example 10.13 (discrete and quantum Fourier transform in audio processing). Let us
consider that we have an audio signal (44 kHz) with 4.4 × 105 data points.
Using the𝑫𝑭𝑻𝐷 for the transformation would yield us around 1011 operations.
Our𝑄𝐹𝑇𝐷 ansatz would yield 107 operations with the best-case scenario being
106 operations. Were we to calculate one operation a second the difference
would be going from 3169 years to 116 days. ■

10.3 QFT as a subroutine - Quantum phase estimation
Now that we have established a quantum circuit with only one- and two-qubit
gates for the quantum Fourier transform, let us take a look at the phase
estimation problem, where the QFT is used as a subroutine. There, the task is
to approximate a certain eigenvalue1 exp (i2𝜋𝜃) with 𝜃 ∈ [0, 2𝜋). In order to
achieve this, we will need a quantum circuit that implements the unitary𝑼
and a quantum state |𝜆⟩ that obeys

𝑼 |𝜆⟩ = e2𝜋 i𝜃 |𝜆⟩. (10.1)

In the terminology of linear algebra, the state vector representation of |𝜆⟩ forms
an eigenvector of𝑼 with eigenvalue exp (i2𝜋𝜃) .

1Eigenvalues of unitary matrices can be complex valued, but they must have modulus one,
(because𝑼 †𝑼 = 𝕀)

132 Lecture 10: Fourier-type transforms

Figure 10.7Quantum circuit for the quantum phase estimation: this circuit acts
on (𝑁 + 𝑛) qubits, features two quantum Fourier transforms, as well as 𝑁
conditional applications of the unitary𝑼 .

Theorem 10.14 (quantum phase estimation). Suppose that we can implement
a 𝑛-qubit unitary𝑼 and can also generate a quantum state |𝜆⟩ that obeys
Eq. (10.1). Then, we can embed these into a larger (𝑛 +𝑁)-qubit circuit
that approximates the associated eigenvalue exp (i2𝜋𝜃) up to 𝑁 digits.
This circuit is displayed in Fig. 11.1 and prominently features the QFT. quantum phase estimation

Quantum phase estimation is a very useful meta-strategy in quantum
computing. Let us now analyze step by step what’s going on.

Example 10.15 (basic quantum phase estimation example). Let us build some
intuition on what it is that we are trying to achieve with the quantum phase
estimation algorithm. As already mentioned in the previous theorem we have
access to a unitary matrix 𝑼 . We can use this quantum circuit to create a
controlled-𝑼 operation. We can do this by adding a control qubit and then

Figure 10.8 Creating a controlled operation from a quantum circuit.

replacing every gate with a controlled version of that gate. Now let us consider
the circuit shown in Fig. 10.9 The initial state of the circuit is given by

|𝜋0⟩ = |𝜆⟩|0⟩.

133 Lecture 10: Fourier-type transforms

Figure 10.9One qubit phase estimation.

The Hadamard gate on the zero state turns this into

|𝜋1⟩ = |𝜆⟩|+⟩ = 1
√
2
|𝜆⟩|0⟩ + 1

√
2
|𝜆⟩|1⟩.

Now the controlled operation of our unitary matrix is applied to that, but only
if the control qubit is one, yielding

|𝜋2⟩ =
1
√
2
|𝜆⟩|0⟩ + 1

√
2
|𝑼 (𝜆)⟩|1⟩.

Now we can use the previous theorem, assuming that |𝜆⟩ is an eigenvector of
the unitary matrix, we can rewrite this in the following form

|𝜋2⟩ =
1
√
2
|𝜆⟩|0⟩ + 1

√
2
|𝑒2𝜋𝑖𝜃 |𝜆⟩|1⟩ = |𝜆⟩ ⊗

(
1
√
2
|0⟩ + 1

√
2
𝑒2𝜋𝑖𝜃 |1⟩

)
.

Finally the second Hadamard gate is applied which results in the state

|𝜋3⟩ = |𝜆⟩ ⊗
(
1 + 𝑒2𝜋𝑖𝜃

2
|0⟩ + 1 − 𝑒2𝜋𝑖𝜃

2
|1⟩

)
.

Measuring this now yields the outcomes for 0 and 1 with the following proba-
bilities

𝑝0 =

����1 + 𝑒2𝜋𝑖𝜃

2

����2 = cos2 𝜋𝜃

𝑝1 =

����1 − 𝑒2𝜋𝑖𝜃

2

����2 = sin2 𝜋𝜃

The following table shows results for some 𝜃

𝜃 cos2 𝜋𝜃 sin2 𝜋𝜃

0.0000 1.0000 0.0000
0.1250 0.8536 0.1464
0.2500 0.5000 0.5000
0.5000 0.0000 1.0000

134 Lecture 10: Fourier-type transforms

These two probabilities always sum up to one. Only in the case 𝜃 = 0 or
𝜃 = 0.5 we know for a fact what the result of the circuit is without an error.
If we were to write 𝜃 in binary notation and round it off to one bit after the
binary point we would have a number like 0.𝑎 with 𝑎 being either 0 if 𝜃 = 0 or
it being 1 if 𝜃 = 0.5. If it is any other number, there is room for error, but the
closer we get to either 0 or 0.5 the smaller it gets. ■

Now the question arises, how can we learn more about 𝜃?

Proof. (Sketch) The circuit above approximates 𝜃 to a single bit of accuracy,
which is fine in some cases, but in others it is not. For example Shor’s algorithm
needs a lot more than that. The first idea one might have is to double the
phase, meaning to replace our controlled-𝑼 operation with two copies of that
operation. We are effectivly performing the same calculation just replacing

Figure 10.10 One qubit phase estimation with two copies of the controlled
operation.

𝜃 with 2𝜃 . If now we can represent 𝜃 = 0.𝑎1𝑎2𝑎3... then 2𝜃 = 𝑎1.𝑎2𝑎3....
And because 𝜃 = 1 is equal to 𝜃 = 0 on the unit circle, we see that 𝑎1 has
no influence on our probabilities. We are now getting a guess for the second
bit after the binary point. Now we can combine the estimate for the first and
second bit to a new two-qubit quantum circuit which has the structure shown
in Fig. 10.11

Figure 10.11 Two qubit phase estimation.

Repeating the aforementioned steps again. We double the number of controlled-
𝑼 operations, doubling the angle 2𝜃 in the process to 4𝜃 , we can get a guess
for the third bit after the binary point. Repeating this step more often yields us

135 Lecture 10: Fourier-type transforms

better and closer results, but the more bits we want to guess, the more qubits
we have to add to our final quantum circuit and the bigger our𝑄𝐹𝑇 block has
to be. ■

Problems
Problem 10.16 Find the Fourier transform for 𝐷 = 4.

Problem 10.17 Construct the four-qubit quantum circuit that implements 𝑸𝑭𝑻 4
with only one- and two-qubit gates.

Problem 10.18 Use quantum phase estimation to approximately count the ratio
of positive answers in a Boolean search problem. Note that this closes a loophole
we encountered when discussing amplitude amplification in the previous lecture.
Hint: the unitary 𝑼 is closely related to one amplitude amplification block.
The state |𝜆⟩ is closely related the uniform superposition |𝜔⟩.

11. Shor’s algorithm for integer factorization

Date: 17 January 2024

Agenda:

1 motivation: hard in-
teger factorization in-
stances

2 (classical) reduction of
integer factorization to
order finding

3 (quantum) algorithm
for order finding

4 synopsis: Shor’s algo-
rithm

11.1 Motiviation: hard instances of integer factorization
Today, we finally have all the pieces in place to properly discuss the most
prominent quantum algorithm: Shor’s algorithm for integer factorization from
1994. Integer factorization is the problem of decomposing a (large) integer 𝑁
into a product of smaller numbers that are all prime. The first algorithms to
solve integer factorization date back to Fibonacci in the 1202. Methods like
trial division work well for products of many small primes. But, they become
really expensive if 𝑁 is the product of two distinct prime numbers:

𝑁 = 𝑝 × 𝑞 where 𝑝, 𝑞 prime. (11.1)

In this worst case, trial division may require up to
√
𝑁 different attempts at

division – a number that scales exponentially in the bit length 𝑛 = ⌊log2(𝑁)⌋ +1
of 𝑁 . Even the best algorithms known to date scale like best classical factorization

scaling is exponential in 𝑛1/3

𝑂
(
exp

(
𝑐 ×

(
𝑛 log2(𝑛)

)1/3))
,

which is still exponential in 𝑛1/3. The apparent hardness of such integer
factorization problems is not only a curse, but also a blessing. Hardness of
factoring forms the basis of several cryptographic primitives, most notably RSA.

The main result of today is Shor’s algorithm for integer factorization from
1994. This is really a hybrid classical-quantum approach, where the bulk is
fully classical. It does, however, use a (3𝑛 + 1) =𝑂 (𝑛)-qubit architecture to
(exponentially) speed up one crucial subroutine. This is achieved by cleverly
employing quantum phase estimation – the main topic of the last lecture.

137 Lecture 11: Shor’s algorithm for integer factorization

The remainder of today’s lecture discusses different aspects of this algorithm.
In Sec. 11.2 we use modular arithmetic to reduce the (classically hard) problem
of integer factorization to another (classically hard) problem that looks very
different: finding the order of an exponential modulo 𝑁 . Subsequently, we
adapt quantum phase estimation to solve this order finding problem much
faster than the best-known classical procedure. This will require (3𝑛 + 1)
qubits, a total of𝑂 (𝑛3) elementary one- and two-qubit gates and (possibly) a
few rounds of repetitions to guarantee that we read out the correct solution by
measuring the first (2𝑛 + 1) qubits. This is the content of Sec. 11.3. Finally,
Sec. 11.4 combines both parts and states Shor’s algorithm in its full glory.

11.2 Reducing Integer Factorization to order finding
Let us now present a fully classical analysis that reduces integer factorization
to another problem called order finding.

11.2.1 The order finding problem
Let us first introduce a couple of concepts from arithmetic. For two positive
integers 𝑎,𝑁 , the greatest common divisor (gcd) is the largest number that
divides both 𝑎 and 𝑁 . We denote it by writing gcd(𝑎,𝑁). greatest common

divisor (gcd)
For example,

gcd(8, 12) = 4 and gcd(11, 27) = 1. Note that we can compute gcd’s efficiently
on a classical computer. Euclid’s algorithm, for instance, runs in time𝑂 (𝑛2),
where 𝑛 is the bit length of max {𝑎,𝑁 }.

Let us now move on to review the basics of modular arithmetic (think:
binary math, but extended to 𝑁 ary number systems). For a positive integer 𝑁 ,
we define

ℤ𝑁 = {0, 1, 2, . . . , 𝑁 − 1} .
For example ℤ2 = {0, 1} (binary alphabet), ℤ3 = {0, 1, 2} (ternary alphabet)
and ℤ16 = {0, . . . , 15} (integer representation of the hexadecimal alphabet).

arithmetic modulo 𝑁Every ℤ𝑁 is a set of integers which we can endow with arithmetic operations
modulo 𝑁 :

𝑥 + 𝑦 mod 𝑁 and 𝑥 × 𝑦 mod 𝑁 .

For instance, the following modular relations should be very familiar for
computer scientists:

1 × 1 mod 2 = 1 = 1 mod 2,
2 × 1 mod 2 = 1 + 1 mod 2 = 0 mod 2,
3 × 1 mod 2 = 1 + 1 + 1 mod 2 = 1 mod 2,

...

Example 11.1 (first 10 digits modulo𝑁 for𝑁 = 3, 4, 5). The first then digits (ℤ10 =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) assume the following values in different modular

138 Lecture 11: Shor’s algorithm for integer factorization

arithmetic frameworks:

𝑁 = 3 : ℤ10 ↦→ {0, 1, 2, 0, 1, 2, 0, 1, 2, 0} ,
𝑁 = 4 : ℤ10 ↦→ {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2} ,
𝑁 = 5 : ℤ10 ↦→ {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0} .

Notice the repeating patterns that occur if we represent 10 numbers in arithmetic
modulo 𝑁 < 10. This periodicity is a general feature of modular arithmetic
that will become crucial later on. ■

The set ℤ𝑁 from Eq. (11.2.1) is guaranteed to contain elements 𝑎 ∈ ℤ𝑁

that don’t share a gcd with 𝑁 .We accumulate all of them and define

ℤ∗
𝑁 = {𝑎 ∈ ℤ𝑁 : gcd(𝑎,𝑁) = 1} .

These numbers are special, because each 𝑎 ∈ ℤ∗
𝑁

and 𝑁 are coprime. For
instance,

ℤ∗
15 = {1, 2, 4, 7, 8, 11, 13} , (11.2)

ℤ∗
35 = {1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22,

23, 24, 26, 27, 29, 31, 32, 33, 34} . (11.3)

We are now ready to present a key fact from modular arithmetic on which we
build our integer factorization algorithm.

Fact 11.2 (order of 𝑎 inℤ∗
𝑁
). order finding problemFix 𝑁 ∈ ℕ. Then, for every 𝑎 ∈ ℤ∗

𝑁
there must exist

a positive integer 𝑟 such that 𝑎𝑟 = 1 mod 𝑁 . The smallest such 𝑟 is called the
order of 𝑎 in ℤ∗

𝑁
. ■

For this fact to hold, it is important that 𝑎 ∈ ℤ∗
𝑁

to begin with. If
gcd(𝑎,𝑁) ≠ 1, there can be no order to begin with (why?). Note that the
order 𝑟 of 𝑎 in ℤ∗

𝑁
is closely related to periodicities, like the ones we saw above.

More precisely, it is the period of the function 𝑓𝑎,𝑁 (𝑥) = 𝑎𝑥 mod 𝑁 . Indeed,

𝑓𝑎,𝑁 (𝑥 + 𝑟) = 𝑎𝑥+𝑟 mod 𝑁 = 𝑎𝑥 × 𝑎𝑟 mod 𝑁 = 𝑎𝑥 × 1 mod 𝑁 = 𝑓𝑎,𝑁 (𝑥).

Let us familiarize ourselves with this concept by executing two concrete example
calculations.

Example 11.3 (order of 𝑎 = 13 inℤ∗
15). Let us consider the set ℤ∗

15 from Eq. (11.2)
and choose 𝑎 = 13. We can then evaluate the order by trial search over
candidate exponents 𝑟 = 1, 2, 3, . . .:

131 =13 mod 15, 132 = 169 = 4 mod 15,

133 =2197 = 7 mod 15, 134 = 28561 mod 15.

So, the order of 𝑎 = 13 in ℤ∗
15 is 𝑟 = 4. ■

139 Lecture 11: Shor’s algorithm for integer factorization

Example 11.4 (order of 𝑎 = 2 inℤ35). Let us consider the set ℤ∗
15 from Eq. (11.3)

and choose 𝑎 = 2. We can then evaluate the order by trial search over the
candidate exponent. Since 21, 22, 23, 24, 25 < 35 = 𝑁 , we can start our search
at 𝑟 = 6:

26 =64 mod 35 = 29 mod 35, 27 = 128 mod 35 = 23 mod 35,

28 =256 mod 35 = 11 mod 35, 29 = 512 mod 35 = 22 mod 35,

210 =1024 mod 35 = 9 mod 35, 211 = 2048 mod 35 = 18 mod 35,

212 =4096 mod 35 = 1 mod 35.

This allows us to conclude that the order of 𝑎 = 2 in ℤ∗
35 is 𝑟 = 12. We can also

see that the cost of trial search over possible exponents can grow very quickly
once 𝑁 becomes somewhat large. ■

These examples highlight that order finding is possible. But the number
of trial exponentiations can grow quickly once 𝑁 becomes (somewhat) large.
This increase in cost seems to be a fundamental problem. To date, no efficient
classical algorithm is known that can determine the order of 𝑎 in ℤ∗

𝑁
with

polynomial resources in 𝑛 = ⌊log2(𝑁)⌋ + 1. We will, however, develop an
efficient quantum algorithm in Sec. 11.3 below.

11.2.2 Solving integer factorization via order finding
Let us now present a (classical) protocol that solves the (worst case of) integer
factorization, see Eq. (11.1), via the order finding problem defined in Fact 11.2.
Formally speaking, this is a proper reduction: every step in our procedure
will be (very) efficient – with the sole exception of order finding. We refer to
Algorithm 11.1 for details.

Theorem 11.5 (integer factorization via order finding). (classical) reduction from
integer factorization to order
finding

Suppose that𝑁 = 𝑝 ×𝑞 is
an odd product of two distinct primes. Then, Algorithm 11.1 is guaranteed
to terminate and output (at least) one factor: 𝑓0 ∈ {𝑝, 𝑞} or 𝑓1 ∈ {𝑝, 𝑞}.

This result implies that order finding is at least as difficult as (our special
case of) integer factorization. Typically, such reduction arguments are used
to argue that a problem is difficult. Here, we will do the opposite. We will
develop an efficient algorithm for order finding in order to argue that integer
factorization becomes cheap if we had access to a quantum computer.

Proof of Theorem 11.5. The input 𝑁 allows us to initialize arithmetic modulo
𝑁 and sample 𝑎 ∈ ℤ𝑁 uniformly. Although very unlikely, it can happen that 𝑎
shares a nontrivial greatest common divisor with 𝑁 . In this case, 𝑁 = 𝑝 × 𝑞

and 𝑝, 𝑞 prime demands that this gcd is either 𝑝 or 𝑞 . In other words: we have
found a factor by chance!

Let us now focus on the much more likely case, where gcd(𝑎,𝑁) = 1. In
this case, the order of 𝑎 in ℤ∗

𝑁
is well-defined. We can identify the smallest

𝑟 such that 𝑎𝑟 = 1 mod 𝑁 (e.g. via brute force search). Two situations can

140 Lecture 11: Shor’s algorithm for integer factorization

Algorithm 11.1 Integer Factorization via order finding
Input: 𝑁 ∈ ℕ ⊲ integer to be factorized
Output: two positive integers 𝑓0, 𝑓1 ∈ ℕ ⊲ pair of candidate factors

1 while
2 dochoose 𝑎 ∈ ℤ𝑁 = {0, 1, . . . , 𝑁 } randomly
3 if gcd(𝑎,𝑁) > 1 then ⊲ we found a factor by chance
4 success, set 𝑓0 = gcd(𝑎,𝑁), 𝑓1 = 1 and break while loop
5 else if 𝑓 = gcd(𝑎,𝑁) = 1 then
6 identify smallest 𝑟 s.t. 𝑎𝑟 = 1 mod 𝑁 ⊲ find order of 𝑎 in ℤ∗

𝑁

7 if 𝑎 is odd then
8 failure, move to step 2
9 else if 𝑎 is even then
10 set 𝑥 = 𝑎𝑟 /2 mod 𝑁 and define (𝑥 + 1), (𝑥 − 1)
11 if (𝑥 ± 1) = 0 mod 𝑁 then
12 failure, move to step 2
13 else if (𝑥 ± 1) ≠ 0 mod 𝑁 then
14 success, compute 𝑓0 = gcd(𝑥 + 1, 𝑁) and 𝑓1 = gcd(𝑥 − 1, 𝑁)

and break while loop
15 output 𝑓0 and 𝑓1

arise: 𝑟 is odd or 𝑟 is even. If 𝑟 is odd, the attempt fails and we re-try with
a different 𝑎 ∈ ℤ𝑁 . Else if 𝑟 is even, then 𝑟/2 is a positive integer and we
can define 𝑥 = 𝑎𝑟 /2 mod 𝑁 . The modular version of (𝑎 + 𝑏) (𝑎 − 𝑏) = 𝑎2 − 𝑏2

then ensures

(𝑥 + 1) × (𝑥 − 1) mod 𝑁 = 𝑎𝑟 − 1 mod 𝑁 = 0 mod 𝑁 ,

because 𝑎𝑟 = 1 mod 𝑁 . Returning to ordinary arithmetic, this is equivalent to

(𝑥 + 1) × (𝑥 − 1) = 𝑘𝑁 for some 𝑘 ∈ ℕ. (11.4)

This starts to look very close to a factorization. However, this display becomes
completely trivial if either (𝑥 + 1) or (𝑥 − 1) is itself equal to a multiple of 𝑁 .
The last if-condition in line 11 of Alg. 11.1 checks for precisely this possibility.
If (𝑥 ± 1) = 0 mod 𝑁 , then we have learned nothing new and restart. Else if
(𝑥 ± 1) ≠ 0 mod 𝑁 , Eq. (11.4) must contain nontrivial information about the
factors. Using 𝑁 = 𝑝𝑞 , we rewrite it as (𝑥 + 1) (𝑥 − 1) = 𝑘𝑝𝑞 for some 𝑘 ∈ ℕ

and (𝑥 ± 1) ≠ 𝑘 ′𝑝𝑞 . This is only possible if either gcd(𝑥 + 1, 𝑁) ∈ {𝑝, 𝑞} or
gcd(𝑥 − 1, 𝑁) ∈ {𝑝, 𝑞} (or both). ■

So far, Algorithm 11.1 looks rather abstract and difficult to grasp. It is
therefore instructive to execute it in small-scale examples.

Example 11.6 (Factoring𝑁 = 15 with Algorithm 11.1). Suppose that we start with
𝑎 = 13 which obeys gcd(13, 15) = 1 and therefore doesn’t yet provide any
information about the factors of 𝑁 = 15. To change this, we use trial

141 Lecture 11: Shor’s algorithm for integer factorization

exponentiation to find the order of 𝑎 = 13 in ℤ∗
15. We already did that in

Example 11.3: 𝑟 = 4. This number is even and we can use it to define
𝑥 = 𝑎𝑟 /2 mod 15 = 132 mod 15 = 4 and, in turn, (𝑥 + 1) = 5, (𝑥 − 1) = 3.
Neither of these numbers is a multiple of 15, so the last condition is also met
and we are guaranteed to learn something about the factors of 15. Indeed,

gcd(𝑥 + 1, 𝑁) = gcd(5, 15) = 5 and gcd(𝑥 − 1, 𝑁) = gcd(3, 15) = 3.

Remarkably, we have learned both factors of 𝑁 = 3 × 5 in one go. This is even
better than the promise from Theorem 11.5. ■

Example 11.7 (Factoring 𝑁 = 35 with Algorithm 11.1). Here, we will also discuss
choices of 𝑎 for which the algorithm fails. If this happens, we start over with a
new choice of 𝑎 ∈ ℤ35:

Try 𝑎 = 11 and use brute force to identify the order of 11 in ℤ∗
35: 𝑟 = 3

which is not even and we have to start over.
Try 𝑎 = 2 and use brute force to identify the order of 2 in ℤ∗

35: 𝑟 = 12
which is even and allows us to define 𝑥 = 𝑎𝑟 /2 mod 35 = 26 mod 35 = 29.
Fortunately, neither (𝑥 + 1) = 30 nor (𝑥 − 1) = 28 are themselves multiples of
𝑁 . So, computing their gcds with 𝑁 reveals at least one factor (and, by chance,
we in fact get both of them again):

gcd(𝑥 + 1, 𝑁) = gcd(30, 35) = 5 and gcd(𝑥 − 1, 𝑁) = gcd(28, 35) = 7.

■

11.3 Efficiently solving order finding on a quantum computer
Section 11.2 provided an alternative approach for (hard instances of) integer
factorization. This method is very different from well-known factoring methods,
like trial division. It isolates most of the hardness in a single sub-task: find the
order of 𝑎 in ℤ∗

𝑁
(where gcd(𝑎,𝑁) = 1):

find 𝑟 ∈ ℤ𝑁 such that 𝑎𝑟 = 1 mod 𝑁 .

We don’t know any classical algorithm for this order finding problem that scales
polynomially in the bit length of 𝑁 . Trial and error, for instance, may take
us (exponentially in 𝑛) many attempts to find the order. However, unlike the
original factoring problem, order finding is much more amenable to a genuine
quantum solution. In fact, we can use phase estimation for it. This was Shor’s
seminal insight in 1994.

11.3.1 Recapitulation: quantum phase estimation
Quantum phase estimation is a versatile quantum circuit architecture that
exploits the (very, very fast) quantum Fourier transform. quantum phase estimation for

eigenvalue+eigenvector pair
of 𝑛-qubit unitary𝑼

At the heart are a
𝑛-qubit unitary circuit𝑼 and a 𝑛-qubit state (vector) |𝜓⟩ that obey

𝑼 |𝜓⟩ = exp (2𝜋 i𝜃) |𝜓⟩. (11.5)

142 Lecture 11: Shor’s algorithm for integer factorization

Figure 11.1 Quantum phase estimation circuit: Let𝑼 be a 𝑛-qubit unitary and let
|𝜓⟩ be a state vector representation of an eigenvector exp (2𝜋 i𝜃) of𝑼 . Then,
for 𝑚 ≥ 1, the advertised (𝑚 + 𝑛)-qubit circuit approximates the first 𝑚 bits
of the (eigen-)phase 𝜃 ∈ (0, 2𝜋). More precisely, the 𝑛-bit readout ⌞𝑦 ⌟ is a bit
encoding of 𝑦 ≈ 2𝑚 × 𝜃 .

In mathematical terms,𝑼 reflects a unitary matrix, |𝜓⟩ reflects an eigenvector
and the associated eigenvalue is exp (2𝜋 i𝜃). Our task is to approximate the
phase 𝜃 up to 𝑚 bits of accuracy.

There is a quantum solution to phase estimation. It requires that we
can create the state |𝜓⟩ and know a quantum circuit realization for𝑼 . The
associated circuit uses (𝑚 +𝑛) qubits and is displayed in Fig. 11.1. It combines
a 𝑚-qubit quantum Fourier transform (QFT) with 𝑚 controlled applications
of powers of 𝑼 on the lower batch of 𝑛 qubits. Finally, we apply a reverse
QFT to the first 𝑚 qubits and perform a readout. This produces a bit string
⌞𝑦 ⌟ ∈ {0, 1}𝑚 which we interpret as bit encoding of 0 ≤ 𝑦 ≤ 2𝑚 − 1.
Remarkably, the fraction 𝑦/2𝑚 is likely to be an approximation of 𝜃 up to
accuracy 1/2𝑚+1.

Fact 11.8 (performance guarantee for quantum phase estimation). Suppose that
𝑼 and |𝜓⟩ obey Eq. (11.5) with phase 𝜃 and choose 𝑚 ∈ ℕ. Then, with
probability at least 40%, the (𝑚 + 𝑛)-qubit circuit displayed in Fig. 11.1
produces an outcome ⌞𝑦 ⌟ ∈ {0, 1} which can be viewed as bit encoding of
𝑦 ∈ {0, 2𝑚 − 1} that obeys ��� 𝑦

2𝑚
− 𝜃

��� ≤ 1
2𝑚+1 . (11.6)

■

143 Lecture 11: Shor’s algorithm for integer factorization

Note that this fact says nothing about the cost of executing the phase
estimation circuit. This depends on the way we construct |𝜓⟩ and – which is
much more severe – how we implement the controlled application of 𝑼 2𝑘 =

𝑼 × · · · ×𝑼 for 𝑘 = 1, . . . , 2𝑚 − 1. This gate count quickly explodes if one is
not careful. Fortunately, for Shor’s algorithm, a trick will allow us to deal with
this issue nicely.

11.3.2 Identifying the order parameter in eigenvalues of a simple reversible circuit
In order to build a bridge between (classical) order finding and quantum phase
estimation, we need to identify qubit encodings ofℤ𝑁 , the ‘right’ unitary circuit
𝑼 and a promising eivenvector |𝜓⟩.

A qubit encoding of ℤ𝑁 is easy to accomplish. 𝑛-qubit encoding of ℤ𝑁

(𝑛 =𝑂 (log(𝑁))
Set 𝑛 = ⌊log2(𝑁)⌋ + 1 and

identify each 𝑧 ∈ ℤ𝑁 with its bit encoding ⌞𝑧⌟ ∈ {0, 1}𝑛 . In a second step,
we associate such bit encodings with deterministic 𝑛-bit input state vectors:

|𝑧⟩𝑁 := |⌞(𝑧 mod 𝑁)⌟⟩ for 𝑧 ∈ ℤ𝑁 and ⌞𝑧⌟ ∈ {0, 1}𝑛 .

With a slight abuse of notation, we denote an entire bit string by the number
𝑧 ∈ ℤ𝑁 it encodes. Note, moreover, that we can also encode modular arithmetic
in these state vector labels. In particular,

|𝑧 + 𝑧 ′⟩𝑁 = | (𝑧 + 𝑧 ′ mod 𝑁)⟩𝑁 = |⌞(𝑧 + 𝑧 ′ mod 𝑁)⌟⟩,
|𝑧 × 𝑧 ′⟩𝑁 = | (𝑧 × 𝑧 mod 𝑁)⟩𝑁 = |⌞(𝑧 × 𝑧 ′ mod 𝑁)⌟⟩.

This (qu-)bit encoding allows us to represent modular addition and multiplica-
tion as classical reversible circuits. For 𝑎 ∈ ℤ∗

𝑁
fixed, we define

𝑨𝑎 |𝑧⟩𝑁 =|𝑧 + 𝑎⟩𝑁 (addition by 𝑎 modulo 𝑁), (11.7)
𝑴 𝑎 |𝑧⟩𝑁 =|𝑎 × 𝑧⟩𝑁 (multiplication by 𝑎 modulo 𝑁). (11.8)

for all possible 𝑧 ∈ ℤ𝑁 . Modulo some technical fineprint1, these operations
map 𝑛-bit encodings of 𝑧 ∈ ℤ𝑁 to 𝑛-bit encodings of 𝑧 ′ ∈ ℤ𝑁 in a reversible
fashion. The reverse of 𝑨𝑎 is simply 𝑨 (𝑁 −𝑎) :

𝑨 (𝑁 −𝑎)𝑨𝑎 |𝑧⟩𝑁 = 𝑨 (𝑁 −𝑎) |𝑧 + 𝑎⟩𝑁 = | (𝑧 + 𝑎) + (𝑁 − 𝑎)⟩𝑁 = |𝑧 +𝑁 ⟩𝑁 = |𝑧⟩𝑁 .

The reverse operation of 𝑴 𝑎 is much more interesting by comparison. It is
𝑴 𝑎𝑟−1 , where 𝑟 is the order of 𝑎 ∈ ℤ∗

𝑁
:

𝑴 𝑎𝑟−1𝑴 𝑎 |𝑧⟩𝑁 =𝑴 𝑎𝑟−1 |𝑎 × 𝑧⟩𝑁 = |𝑎𝑟 × 𝑧⟩𝑁 = |1 × 𝑧⟩𝑁 = |𝑧⟩.

These displays ensure that both 𝑨𝑎 and 𝑴 𝑎 are classical reversible circuits
(and therefore also unitary). What is more, they can be implemented with only
𝑂 (𝑛2) elementary quantum gates.

1Whenever 𝑁 ≠ 2𝑛 −1, there are 𝑛-bit strings 𝑦 ∈ {0, 1}𝑛 that do not describe bit encodings
of any 𝑧 ∈ ℤ𝑁 . To complete the formal definition of 𝑨𝑎 and 𝑴 𝑎 , we let both of them act
trivially on such input configurations: 𝑨𝑎 |𝑦 ⟩ = |𝑦 ⟩ and 𝑴 𝑎 |𝑦 ⟩ = |𝑦 ⟩.

144 Lecture 11: Shor’s algorithm for integer factorization

Exercise 11.9 (quantum circuit implementation of reversible addition and reversible
multiplication). efficient quantum circuits for

addition & multiplication by 𝑎
modulo 𝑁 (𝑂 (𝑛2) gates)

Sketch how you would construct a quantum implementation of
the permutation matrices 𝑨𝑎 (addition by 𝑎 modulo𝑁) and𝑴 𝑎 (multiplication
by 𝑎 modulo 𝑁) on 𝑛 = ⌊log2(𝑁)⌋ + 1 qubits. Show that the number of
elementary gates required does not exceed𝑂 (𝑛2).

We leave the proof as an instructive exercise. Instead, let us emphasize
that the multiplication operator 𝑴 𝑎 looks to be connected to the order 𝑟 of
𝑎 in ℤ∗

𝑁
in a nontrivial fashion that we might be able to exploit. In order to

make this correspondence precise, we must take a look at the eigenvalues and
eigenvectors of 𝑴 𝑎 .

Proposition 11.10 (eigenvalues+eigenvectors of the modular multiplication operator).
(many) eigenvalues of
modular multiplication circuit
by 𝑎 isolate order 𝑟

For 𝑁 , 𝑎 ∈ ℤ∗
𝑁

with gcd(𝑎,𝑁) = 1, let 𝑟 be the order of 𝑎 in ℤ∗
𝑁

and set
𝜔𝑟 = exp (2𝜋 i/𝑟) (𝑟 -th root of unity). Then, the modular multiplication circuit
𝑴 𝑎 defined in Eq. (11.8) has the following 𝑟 eigenvalue+eigenvector pairs:

𝜆𝑗 = 𝜔
𝑗
𝑟 = exp (2𝜋 i(𝑗/𝑟)) and |𝜓𝑗 ⟩ =

1
√
𝑟

∑︁𝑟−1
𝑘=0

𝜔
−𝑗×𝑘
𝑟 |𝑎𝑘 ⟩𝑁

for 𝑗 = 0, . . . , 𝑟 − 1.

Proof sketch. Let us start with an explicit calculation for the special case 𝑗 = 0:

𝑴 𝑎 |𝜓0⟩𝑁 =
1
√
𝑟

(
𝑴 𝑎 |1⟩𝑁 +𝑴 𝑎 |𝑎⟩𝑁 + · · · +𝑴 𝑎 |𝑎𝑟−2⟩𝑁 +𝑴 𝑎 |𝑎𝑟−1⟩𝑁

)
=

1
√
𝑟

(
|𝑎⟩𝑁 + |𝑎2⟩𝑁 + · · · + |𝑎𝑟−1⟩𝑁 + |𝑎𝑟 ⟩𝑁

)
=

1
√
𝑟

(
|𝑎⟩𝑁 + |𝑎2⟩𝑁 + · · · + |𝑎𝑟−1⟩𝑁 + |1⟩𝑁

)
=(+1) |𝜓0⟩ = 𝜔0

𝑟 |𝜓0⟩𝑁 .

Here, we have used |𝑎𝑟 ⟩𝑁 = |1⟩𝑁 which follows from the fact that 𝑟 is the
order of 𝑎 in ℤ∗

𝑁
(𝑎𝑟 = 1 mod 𝑁). In short, 𝑴 𝑎 |𝜓0⟩ = 𝜔0

𝑟 |𝜓0⟩ which is the
defining property of an eigenvector |𝜓0⟩ with eigenvalue 𝜔0

𝑟 . Verifying the
remaining (𝑟 − 1) eigenvalue equations with 𝑗 = 1, . . . , 𝑟 − 1 can be achieved
in a similar fashion (hint: use 𝜔𝑟

𝑟 = 1). We leave it as an exercise. ■

Exercise 11.11 (eigenvalues and eigenvectors of modular addition operator). Fix 𝑁 ∈
ℕ, 𝑎 ∈ ℤ∗

𝑁
and let 𝑟 be the order of 𝑎 in ℤ∗

𝑁
. Identify at least 𝑟 eigenvector-

eigenvalue pairs of the modular addition operator 𝑨𝑎 defined in Eq. (11.7).
Hint: take inspiration from our analysis of𝑴 𝑎 and/or Fourier series with finite
periodicity.

11.3.3 Approximate eigenvalues of this simple reversible circuit via phase estimation
Proposition 11.10 is noteworthy for the following reason: 𝑴 𝑎 admits a sim-
ple reversible circuit (see Lemma 11.9) and the eigenvalue associated with

145 Lecture 11: Shor’s algorithm for integer factorization

eigenvector |𝜓𝑗 ⟩ is a complex phase that encodes the period we are looking for:

𝑴 𝑎 |𝜓𝑗 ⟩𝑁 = exp (2𝜋 i (𝑗/𝑟)) |𝜓𝑗 ⟩𝑁 = exp
(
2𝜋 i𝜃 𝑗

)
|𝜓𝑗 ⟩ with 𝜃 𝑗 = 𝑗/𝑟 .

Quantum Phase estimation now looks to be almost tailor-made for this task!
But with quantum phase estimation, we always have to be careful that the
requirements for approximation accuracy are not too large. Otherwise, the
required number 𝑚 of readout qubits can explode and the entire procedure
becomes infeasible. The following fact provides good news: the number of
additional qubits 𝑚 can be chosen to linear in the original qubit size 𝑛. This is
as good as it gets.

Fact 11.12 (required accuracy for quantum phase estimation). quantum phase estimation
with 𝑚 =𝑂 (𝑛) qubits
suffices to read out order 𝑟

Suppose that we can
run quantum phase estimation with 𝑚 control qubits for 𝑴 𝑎 (unitary matrix)
and |𝜓𝑗 ⟩ (eigenvector with phase 𝜃 𝑗 = 𝑗/𝑟), where 𝑗 = 0, . . . , 𝑟 − 1:

• worst case: 𝑗 = 0, 𝜃0 = 0/𝑟 = 0 and we learn nothing about the order
whatsoever;

• best case: 𝑗 = 1, 𝜃1 = 1/𝑟 and we can approximate 𝑟 by the closest
integer to (𝑦/2𝑚)−1 = 2𝑚/𝑦 .

• general case: 𝜃 𝑗 = 𝑗/𝑟 is an actual fraction. We can use a classical
algorithm – called continued fractions – to efficiently find the closest
fraction 𝑢/𝑣 in lowest terms satisfying 𝑢,𝑣 ∈ ℤ𝑁 (and 𝑣 ≠ 0).

Unless 𝑗 = 0, setting 𝑚 = ⌞log2(2𝑁 2)⌟ = 2⌊log2(𝑁)⌋ + 1 ≤ 2𝑛 + 1 is enough
to determine 𝑗/𝑟 as fraction with probability (at least) 40%. ■

We refer to standard textbooks for a proof of this fact and a review of the
continued fraction algorithm which also allows to recover the order 𝑟 itself.
Note also that this fact only guarantees a successful approximation with a
certain probability of success, namely greater than 40%. So, it can happen
that we get unlucky with our quantum phase estimation approximation ⌞𝑦 ⌟.
This issue can be offset by repeating the entire procedure multiple times and
classically checking the observed outcomes ⌞𝑦𝑘 ⌟ for consistency (is it really a
fraction? is it really minimal? and does the period 𝑟 feature?)

Here is another noteworthy feature that renders the quantum phase estima-
tion circuit more efficient than one might naively assume

Lemma 11.13 (efficient circuit implementation of𝑴 2𝑘
𝑎). For each 𝑘 = 0, . . . ,𝑚, we

can implement the 2𝑘 -th power 𝑴 2𝑘
𝑎 of 𝑴 𝑎 as 𝑴

𝑎2𝑘 . The latter is another
multiplication matrix that can be implemented with only𝑂 (𝑛2) elementary
quantum gates.

Proof. The following equation is valid for all 𝑛-bit strings 𝑧 ∈ {0, 1}𝑛

𝑴 2𝑘
𝑎 |𝑧⟩𝑁 = 𝑴 𝑎 × · · · ×𝑴 𝑎︸ ︷︷ ︸

2𝑘 times

|𝑧⟩𝑁 = |𝑎2𝑘 𝑧⟩𝑁 = 𝑴
𝑎2𝑘 |𝑧⟩𝑁 .

146 Lecture 11: Shor’s algorithm for integer factorization

The technical fineprint2 from above ensures that this suffices to conclude that
the two matrices 𝑴 2𝑘

𝑎 and 𝑴
𝑎2𝑘 must be identical overall. ■

Lemma 11.13 ensures that we can implement each controlled operation in
quantum phase estimation (central part of Fig. 11.1) efficient implementation of

phase estimation circuit
(𝑂 (𝑛3) gates)

with only𝑂 (𝑛2) gates.
Since there are 𝑚 = (2𝑛 + 1) such controlled circuits, this produces a total
cost of𝑂 (𝑛3) gates for the central block. The cost of the two quantum Fourier
transforms is only𝑂 (𝑚2) =𝑂 (𝑛2), so we obtain a total gate count of𝑂 (𝑛3)
to execute the quantum phase estimation circuit. The only thing missing
now, is the preparation of an eigenvector |𝜓𝑗 ⟩ (ideally with 𝑗 ≠ 0). Explicitly
constructing one |𝜓𝑗 ⟩ in a deterministic fashion is a daunting task. We can,
however, easily prepare the uniform superposition over all possible eigenvectors
|𝜓𝑗 ⟩. This is the content of the following lemma.

Lemma 11.14 efficient preparation of (a
superposition of) eigenvectors

Let |𝜓𝑗 ⟩𝑁 be the eigenvectors of 𝑴 𝑎 defined in Proposition 11.10.
Then, we have

1
√
𝑟

∑︁𝑟−1
𝑗=0

|𝜓𝑗 ⟩𝑁 = |1⟩𝑁 = |0 · · · 01⟩.

In words: the uniform superposition of all 𝑛-qubit eigenvectors |𝜓𝑗 ⟩ is the
computational basis state |1⟩𝑁 = |0 · · · 01⟩ ∈ {0, 1}𝑛 .

Proof. This follows from an identity that we saw in the last lecture. Summing
over all (powers) of an 𝑟 -th root of unity produces 0 (amplitudes cancel):

1
√
𝑟

∑︁𝑟−1
𝑗=0

|𝜓𝑗 ⟩𝑁 =

(
1
𝑟

∑︁𝑟−1
𝑗=0

𝜔0
𝑟

)
|1⟩𝑁 +

(
1
𝑟

∑︁𝑟−1
𝑗=0

𝜔
−𝑗
𝑟

)
|𝑎⟩𝑁

+ · · · +
(
1
𝑟

∑︁𝑟−1
𝑗=0

𝜔
−𝑗 (𝑟−1)
𝑟

)
|𝑎𝑟−1⟩𝑁

=1 × |1⟩𝑁 + 0 × |𝑎⟩𝑁 + · · · + 0 × |𝑎𝑟−1⟩𝑁
=|1⟩𝑁 .

■

This is the last ingredient that we needed to implement order finding on
a quantum computer: we can simply initialize the second 𝑛-qubit register in
|0 · · · 01⟩ = |1⟩𝑁 and view this deterministic bit string as a uniform superposi-
tion of all 𝑟 eigenvectors |𝜓𝑗 ⟩. Linearity of quantum mechanics (matrix-vector
multiplication) then ensures that the remaining (𝑛 +𝑚)-qubit circuit produces
a superposition of all 𝑟 phase estimation protocols – one for each eigenvec-
tor. Reading out the first 𝑚 qubits then collapses this superposition into
one particular branch, i.e. one particular 𝑗 = 0, . . . , 𝑟 − 1. Out of these 𝑟

possible trajectories, only 𝑗 = 0 is completely useless. So, with probability
(𝑟 − 1)/𝑟 ≥ 1/2, we are in a position to extract useful information about
𝑟 . This, however, is contingent on the quantum phase estimation subroutine

2This is a continuation of the previous footnote. We let every modular multiplication circuit act
trivially on input configurations 𝑦 that don’t encode elements 𝑧 ∈ ℤ𝑁 : 𝑴 𝑎 |𝑦 ⟩ = |𝑦 ⟩ = 𝑴

𝑎2𝑘 |𝑦 ⟩.

147 Lecture 11: Shor’s algorithm for integer factorization

Figure 11.2 quantum part of Shor’s algorithm: This adaptation of quantum phase
estimation is designed to solve the order finding problem for 𝑎 in ℤ𝑁 . The
circuit requires 3𝑛 + 1 qubits, where 𝑛 = ⌊log2(𝑁)⌋ + 1, and initializes them
in the bit string 0 · · · 01. Subsequently, we apply a Quantum Fourier Transform
on the first𝑚 = (2𝑛 + 1) gates and follow it up with𝑚 controlled applications
of different arithmetic multiplication circuits 𝑴 𝑎 ′ . Finally, we apply an inverse
Quantum Fourier Transform on the first (2𝑚 + 1) qubits and read them out to
obtain a bit string representation of 𝑦 ∈ {0, 2𝑚 − 1} that is likely to encode
the order 𝑟 of 𝑎 in ℤ𝑛 : 𝑦/2𝑚 ≈ 𝑗/𝑟 for some 𝑗 = 0, . . . , 𝑟 − 1 with ‘reasonable’
probability.

succeeding. According to Theorem 11.8, this happens with probability at least
40%. Total odds of about (𝑟 − 1)/𝑟 × 0.4 ≥ 0.2 are not bad at all. A constant
number of repetitions should suffice to learn 𝑗/𝑟 and, by extension, the period
𝑟 . This realization deserves a prominent display and even its own synopsis
section.

11.4 Synopsis: implementation of Shor’s algorithm

Theorem 11.15 (quantum order finding). order finding via quantum
phase estimation works with
gate count𝑂 (𝑛3)

Fix 𝑁 ∈ ℕ, set 𝑛 = ⌊log2(𝑁)⌋ + 1
and let 𝑎 ∈ ℤ𝑁 be such that gcd(𝑎,𝑁) = 1. Then, the quantum circuit
displayed in Fig. 11.2 is comprised of𝑂 (𝑛3) elementary one- and two-qubit
gates and identifies the smallest integer 𝑟 such that 𝑎𝑟 = 1 mod 𝑁 with a
constant probability of success.

To paraphrase: this quantum circuit solves the order finding problem
with only𝑂 (𝑛3) quantum resources!

Note that this circuit has a lot of structure and can be divided into three
qualitatively different blocks: a quantum Fourier transform (one part of the
qubits) followed by a classical reversible circuit followed by the inverse quantum

148 Lecture 11: Shor’s algorithm for integer factorization

Fourier transform:

𝑼 =
(
QFT22𝑛+1 ⊗ 𝕀⊗𝑛

)
𝑹
(
QFT22𝑛+1 ⊗ 𝕀⊗𝑛

)†
.

What is more, we apply this circuit to a very simple starting configuration:
|0 . . . 01⟩ ∈ {0, 1}3𝑛+1. This is remarkable, because(

QFT22𝑛+1 ⊗ 𝕀⊗𝑛
)
|𝒃⟩, 𝑹 |𝒃⟩ and

(
QFT22𝑛+1 ⊗ 𝕀⊗𝑛

)† |𝒃⟩
would be easy to compute classically for every |𝒃⟩ ∈ {0, 1}3𝑛+1. A sequential
combination of these three quantum subroutines, however, would yield an
exponential improvement over the best known approach for order finding. This
exponential speedup becomes much more relevant if we use it as a (quantum)
subroutine in Algorithm 11.1. There, all other computational steps can be
executed on a classical computer in cubic runtime𝑂 (𝑛3). Hence, the following
corollary is an immediate consequence of Theorem 11.15 and Theorem 11.5
(reformulate factoring as an order finding problem).

Corollary 11.16 (efficient hybrid quantum-classical algorithm for Integer Factorization
(Shor, 1994)). hybrid quantum-classical

algorithm solves integer
factorization at𝑂 (𝑛3) cost

Let 𝑁 = 𝑝 ×𝑞 , with 𝑝, 𝑞 prime and set 𝑛 = ⌊log2(𝑁)⌋ + 1. Then,
we can determine one factor (𝑝 or 𝑞) by repeating Algorithm 11.1 sufficiently
often. The order finding step, in particular, is outsourced to a (3𝑛 + 1)-qubit
architecture which executes a circuit of size𝑂 (𝑛3). This also bounds the overall
cost of all remaining classical computing steps.

Contrast this𝑂 (𝑛3) scaling with the best known fully classical factorization
strategy for 𝑁 = 𝑝 × 𝑞 with 𝑝, 𝑞 prime that scales exponentially in 𝑛1/3.

Problems
Problem 11.17 (quantum circuit implementation of reversible addition and reversible
multiplication). Sketch how you would construct a quantum implementation of
the permutation matrices 𝑨𝑎 (addition by 𝑎 modulo𝑁) and𝑴 𝑎 (multiplication
by 𝑎 modulo 𝑁) on 𝑛 = ⌊log2(𝑁)⌋ + 1 qubits. Show that the number of
elementary gates required does not exceed𝑂 (𝑛2).
Problem 11.18 (eigenvalues and eigenvectors of modular addition operator). Fix 𝑁 ∈
ℕ, 𝑎 ∈ ℤ∗

𝑁
and let 𝑡 the smallest integer that obeys 𝑡 × 𝑎 = 1 mod 𝑁 . Identify

at least 𝑡 eigenvector-eigenvalue pairs of the modular addition operator 𝑨𝑎

defined in Eq. (11.7). textbfHint: take inspiration from our analysis of 𝑴 𝑎

and/or Fourier series with finite periodicity.

12. Learning from quantum experiments

Date: 24 January 2024

Agenda:

1 motivation
2 stylized learning chal-

lenge: data hiding
3 two approaches: con-

ventional and quantum-
enhanced

4 execution on real quan-
tum computer

12.1 Motivation
Broadly speaking, the main promise and raison d’être of quantum computers
is that they may have the potential to solve certain problems more efficiently
than traditional processing units. Exponential improvements in resource cost
are therefore the ultimate objective.

And we do know a couple of computational problems, where fully functional
quantum computers can make a substantial difference. Shor’s quantum-classical
approach to integer factorization comes into mind here, as does amplitude
amplification. These approaches isolate quantum circuit size (and classical
runtime) as the main cost parameter. And they focus on computational tasks
that seem to be hard for existing computing platforms. This, however, means
that the proposed quantum solutions must also reflect some of this complexity.
And this demand goes way beyond the capabilities of today’s nascent quantum
computers. current quantum hardware

too noisy to execute
traditional quantum
algorithms

These are not perfect and each applied gate is prone to errors.
This, unfortunately, restricts us from executing quantum circuits with very
short depth. And although the number of qubits 𝑛 is growing, the polynomial
scaling of famous quantum circuits – like the𝑂 (𝑛3)-size of Shor’s algorithm –
grows even faster. So, the more qubits we use, the larger these circuits must
become. For now, this unavoidable scaling prevents us from executing Shor’s
algorithm on existing quantum hardware. If 𝑛 = 51, then we simply can’t
run execute order 533 = 1.5 × 105 elementary quantum gates in a sufficiently
reliable fashion.

But, at the same time, the qubit sizes of existing quantum computing
platforms do become respectable. The Google sycamore chip, for instance,

150 Lecture 12: Learning from quantum experiments

boasts 𝑛 = 53 qubits. So, there should be ‘something’ new and unexpected
that we can actually do with them. (Machine) learning can serve as a guiding
motivation in this regard. There, the broad goal is not to solve a computationally
hard problem, but to learn something that is initially hidden from us. switch cost from runtime

(algorithms) to training data
size (machine learning)

And
such learning processes come with their own reasonable cost parameters, in
particular training data size. This is not a computational cost parameter, but a
statistical one. How much information do we need in order to distil underlying
principles? And this statistical nature plays nicely with quantum computing
architectures which also produce outcome bit strings that are statistical in
nature.

In fact, this correspondence goes even deeper. Because in quantum comput-
ing, we can manipulate the way we generate data by adjusting the quantum
circuit we use prior to measurements. And it is reasonable to expect that some
quantum circuit executions produce more valuable outcome data than others.
This effect is also well-known in machine learning: ‘good data’ lets you learn
quickly while ‘bad data’ may require a lot more training effort.

And today, we shall use an ML-inspired view on learning problems based
on quantum (computing) experiments to identify exponential quantum advan-
tages.

12.2 Stylized learning challenge: data hiding
Let us approach the broad topic of learning from the quantum world by means
of a concrete example. This example is very stylized, but intended to illustrate
the underlying principles and possibilities. The key idea is based on data hiding
and involves two players. stylized data hiding challengePlayer 1 possesses a private string 𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛
of length 𝑛 and Player 2 wants to learn that string. Player 1 encodes the
message/string into a quantum state |𝜓 (𝒘)⟩ where the encoding process itself
is known to both players. She can now be asked to send a copy of that quantum
state to Player 2, but every copy is costing Player 2, let’s say, 1000USD. Player
2 has to learn the message as fast as possible, meaning with as few copies as
possible (because they are expensive). She can do whatever she wants with that
state. Apply more gates, leave it lying around for a year, measure the qubits to
gather classical data, you name it you get it. The only burden she is carrying is
that she should request as few copies as possible from Player 1 and that the
ultimate goal is to learn the hidden string. And it turns out that the strategy
of how to learn the message influences heavily how many copies are needed
to learn the message with certainty. Since this stylized scenario is designed
such that in the full quantum realm the learning process is exponentially faster
(by exploiting entanglement), there are a few steps involved to ensure that
speed-up. For example that the message consists out of three symbols {𝑥, 𝑦 , 𝑧},
and not as usual out of bits {0, 1} is necessary for the quantum approach to
excel. The preparation of the quantum state which is send and the encoding
process itself also makes sure that the learning process is not ’too easy’.

Let us get a bit more concrete and jump into the details of preparing the

151 Lecture 12: Learning from quantum experiments

initial quantum state |𝜓0⟩ (where then the message is imprinted on).
Again, Player 1 possesses a private ternary string 𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 and

imprints it into a 𝑛-qubit state vector . This state vector is a randomly assigned
bit string 𝑏0, . . . , 𝑏𝑛−1

unif∼ {0, 1} with the additional constraint that the parity
of the total sum is even:

|𝜓0⟩ = |𝑏0, 𝑏1 . . . , 𝑏𝑛−1⟩ with 𝑏𝑘
iid∼ {0, 1} and 𝑏0 ⊕ · · · ⊕ 𝑏𝑛−1 = 0. (12.1)

We use a ‘hat’ to denote the fact that this input state is randomly generated.
The even parity of sum constraint can, for instance, be enforced by setting
𝑏𝑛−1 = 𝑏0 ⊕ · · · ⊕ 𝑏𝑛−2. randomly generated qubit

initialization |𝜓0⟩Example 12.1 (|𝜓0⟩ for 𝑛 = 1 and 𝑛 = 2 qubits). For a single qubit, the sum of
parity constraint is completely binding. The result is

(𝑛 = 1) : |𝜓0⟩ = |0⟩ with certainty.

For 𝑛 = 2, there are two bit strings with even parity. The state vector assumes
either with equal probability:

(𝑛 = 2) : |𝜓0⟩ =
{
|0, 0⟩ with prob. 1/2,
|1, 1⟩ with prob. 1/2.

■

The randomization of initial quantum states used to imprint the same
message ensure the exponential grow of needed copies when not choosing the
optimal quantum strategy.

The encoding strategy𝒘 ↦→ |𝜓 (𝒘)⟩ =𝑼 (𝒘) |𝜓0⟩ is known to both players
and will be explained in the next section. secret 𝑛-trit string is

imprinted on |𝜓0⟩
At this point it is worthwhile to

emphasize that Player 2 will have to readout the qubits involved in order to
get any actionable advice at all. And measurements destroy the underlying
quantum state (collapse of the wave function). So Player 2 must be prepared
to invest several 1000USD to learn anything at all.

The overarching questions now are:

1 How does the number of state copies required (i.e. the money spent),
scale with the number of qubits 𝑛 and, by extension, with the size of the
hidden string? This is our toy model for training data size. It is reasonable
to expect that this cost will grow. But, how does it grow (polynomial vs.
exponential)?

2 Does the way the state copies are processed have an impact on this cost
parameter? After all, different ways of accessing this quantum state
vector may lead to readout bits that carry more or less information about
the underlying secret. This is our way of varying the quality of training
data.

Today, we construct a variant of this data-hiding game, where discrepancies are
as pronounced as possible. Any quantum-classical learning approach conceivable

152 Lecture 12: Learning from quantum experiments

that only addresses individual copies of |𝜓 (𝒘)⟩ must scale exponentially with
qubit size 𝑛. We will call this the conventional approach and an exponential
scaling is probably not too surprising. After all, there are 3𝑛 possibilities for
the hidden string𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 . What is surprising, is that we also offer an
alternative that is (exponentially) more efficient. It is possible to construct
a quantum-enhanced readout protocol that processes pairs of |𝜓 (𝒘)⟩ in a
genuine quantum fashion. We call this the quantum-enhanced approach. It
is cheap (short circuits) and uncovers the hidden string after only a constant
number of iterations. In turn, the cost associated with both secret learning
approaches deviates exponentially in the size 𝑛 of the task: exponential discrepancy in

cost to learn hidden secret
𝑇conv (𝑛) = 2Ω(𝑛) while 𝑇qe(𝑛) = O(𝑛).

The first statement highlights that the cost for the conventional approach scales
(at least) exponentially in the number of qubits 𝑛. The second statement, in
stark contrast, states that the cost for the quantum-enhanced approach scales
(at most) linearly in the number of qubits 𝑛.

12.2.1 Encoding strategy
We are now ready to explain the high-level rules of our learning challenge that
result in the provably exponential cost discrepancy displayed in Eq. (12.2). To
this end, we must first specify the encoding procedure

{𝑥, 𝑦 , 𝑧}𝑛 ∋ 𝒘 ↦→ |𝜓 (𝒘)⟩ =𝑼 (𝒘) |𝜓0⟩ ∈
(
ℂ2)⊗𝑛 .

The reason why this string involves trits instead of bits is based on the elementary
building blocks of our encoding. It uses the three most prominent single-qubit
gates, namely identity, Hadamard and phase gates:

𝕀 =

(
1 0
0 1

)
, 𝑯 =

1
√
2

(
1 1
1 −1

)
, 𝑺 =

(
1 0
0 i

)
.

We will use these gates to imprint the secret key onto (probabilistic mixtures
of) 𝑛-qubit computational basis states. For𝑤 ∈ {𝑥, 𝑦 , 𝑧}, we set

𝑽 𝑧 = 𝕀, 𝑽 𝑥 = 𝑯 and 𝑽 𝑦 = 𝑺 ×𝑯 . (12.2)

The labels 𝑥, 𝑦 , 𝑧 respect an intimate connection between these three unitaries
and the three Pauli matrices.

Exercise 12.2 (connection between Eq. (12.2) and Pauli matrices). The three non-
trivial Pauli matrices are defined as

𝑿 =

(
0 1
1 0

)
, 𝒀 =

(
0 −i
i 0

)
, 𝒁 =

(
1 0
0 −1

)
.

Verify the following relation between these Pauli matrices and the unitary
transformations in Eq. (12.2):

𝑿 = 𝑽 †
𝑥 × 𝒁 ×𝑽 𝑥 , 𝒀 = 𝑽 †

𝑦 × 𝒁 ×𝑽 𝑦 , 𝒁 = 𝑽 †
𝑧 × 𝒁 ×𝑽 𝑧 .

153 Lecture 12: Learning from quantum experiments

These three unitaries allow us to imprint exactly one trit𝑤 ∈ {𝑥, 𝑦 , 𝑧} on a
single qubit computational basis state. This encoding strategy readily extends
to 𝑛-trit strings𝒘 = (𝑤0, . . . ,𝑤𝑛−1) ∈ {𝑥, 𝑦 , 𝑧}𝑛 and 𝑛 qubits: concrete encoding strategy

(12.3)

Here, |𝜓0⟩ = |𝑏0, . . . , 𝑏𝑛−2, 𝑏0 ⊕ · · · ⊕ 𝑏𝑛−2⟩ is the randomly constructed input
string from Eq. (12.1). With the encoding strategy at hand, we can introduce
the two different approaches on how to access this quantum state.

12.2.2 Conventional approach
Our first approach is inspired by the way people have performed experiments
for centuries now. This is why we dub it the conventional approach. The key
idea consists of three steps:

(i) acquire a probe (buy the state |𝜓 (𝒘)⟩),
(ii) do something with the given probe (apply a unitary circuit),
(iii) perform a 𝑛-qubit readout to observe the underlying behavior.

These three basic steps are then repeated many times to get enough data in
order to draw credible solutions. Here is an illustration of such an approach for
our hidden-data challenge: conventional approach

(sequential): modify single
states, readout, repeat.

(12.4)

In this illustration, we always start with buying a single copy of |𝜓 (𝒘)⟩. We
then apply a unitary circuit (blue) and perform a 𝑛-qubit readout to get a

154 Lecture 12: Learning from quantum experiments

classical bit string (magenta). This conversion is probabilistic and destructive.
Hence, a single run of this procedure will not provide us with enough statistical
data. This is why we repeat it 𝑇conv times. Note, however, that the type
of experiment – i.e. the choice of unitary circuit – can, and should, change
between repetitions. This allows us, for instance, to sequentially check different
aspects of the underlying state |𝜓 (𝒘)⟩ one at a time. But more sophisticated
methods can also come into play. For instance, we could use powerful learning
algorithms in order to execute optimised scheduling procedures to make the
most of the data we generate. Machine learning comes to mind here. What
is more, we don’t impose any constraint on the computational cost associated
with individual unitary transformations. Every conceivable quantum circuit
(even if it is arbitrarily large) is fair game.

Although brief and high-level, these arguments should highlight that the
conventional readout approach from Eq. (12.4) is extremely general. It virtually
encompasses every conceivable readout strategy that uses quantum measure-
ments in a sequential fashion to learn something about a quantum system.
Given this level of generality – and the absence of any computational restrictions
on both the quantum computation and the conventional data-processing – the
following rigorous result might be surprising.

Theorem 12.3 (Lower bound on any conventional strategy [HKP21]). Consider
the data hiding strategy {𝑥, 𝑦 , 𝑧}𝑛 ∋ 𝒘 ↦→ |𝜓 (𝒘)⟩ from Eq. (12.3) for 𝑛
qubits. Then, any conventional (data) readout procedure illustrated in
Eq. (12.4) requires

𝑇conv (𝑛) = 2Ω(𝑛)

repetitions to recover𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 with probability of success > 50%.

The big-Ω notation highlights that the cost grows (at least) exponentially
in 𝑛. This is a very general statement and the proof is not easy. Technically
speaking it requires an additional randomization over one sign factor for each
qubit and employs sophisticated techniques from statistical learning theory,
probability theory and quantum computing. Such a level of sophistication
is necessary to handle arbitrary quantum circuits and arbitrary classical data
processing, including any machine learning model.

The underlying idea, however, is rather simple and boils down to our data
hiding strategy (12.3). Although it looks simple, it does imprint the secret trit
string into a 𝑛-qubit system |𝜓 (𝒘)⟩ that must be interpreted as a probability
distribution over 2𝑛/2 different quantum state vectors

𝑼 (𝒘) |𝑏0, . . . , 𝑏𝑛−2, 𝑏0⊕· · ·⊕𝑏𝑛−1⟩ =𝑼 (𝑤1) |𝑏0⟩⊗· · ·⊗𝑼 (𝑤𝑛−1) |𝑏0⊕· · ·⊕𝑏𝑛−2⟩.

with 𝑏0, . . . , 𝑏𝑛−2 ∈ {0, 1}𝑛−1. So there are a lot of degrees of freedom
available to maliciously hide even 3𝑛 different trit strings. What is more, the
encoding strategy is based on very specific single-qubit unitaries that are as
different from each other as possible. This ensures that we actually occupy
radically different corners of this huge space of possibilities. And this makes it

155 Lecture 12: Learning from quantum experiments

extremely difficult to do anything (substantially) smarter than iteratively asking
binary questions: is 𝒘 = 𝒗 , where 𝒗 ∈ {𝑥, 𝑦 , 𝑧}𝑛 is our current best guess.
And since there are 3𝑛 possible guesses, we are forced to ask this question
exponentially often (in 𝑛). We will sketch a single-qubit caricature of this effect
in Annex 1 below.

12.2.3 Quantum-enhanced approach
In the previous section, we have outlined very powerful arguments that seem
to suggest that the data hiding procedure from Eq. (12.3) is very secure. In our
data hiding game, this means that Player 2 is forced to buy exponentially many
copies of |𝜓 (𝒘)⟩ in order to learn a secret string𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 . This binds
despite the fact that the underlying data extraction model looks very general
and powerful. However, the conventional approach from the previous section
is still deeply rooted in a classical way of thinking. And if one is willing to
accept the quantum computing paradigm, it is not the only way to approach
this challenge.

If we assume access to a (sufficiently large) quantum computer, we can
envision processing multiple copies of the unknown state |𝜓 (𝒘)⟩ at the same
time and within the same quantum circuit. The easiest setup for such a quantum
paralleldata processing routine involves two state copies and looks as follows: quantum-enhanced approach

(parallel): modify state pairs,
readout, repeat.

(12.5)

It is easy to see that this framework is at least as general as the conventional
approach. After all, we can always choose to divide up the general 2𝑛-qubit
unitary circuit into two parallel (and uncorrelated) 𝑛-qubit unitary circuits.
Doing so effectively reduces one run of this protocol into two independent
runs of the conventional protocol. But from this new point of view, such a
separation starts to look a bit wasteful. What if we instead use this additional
expressiveness to insert correlations (think: CNOTs) and superpositions (think:

156 Lecture 12: Learning from quantum experiments

Figure 12.1Quantum enhanced learning protocol: this 2𝑛-qubit circuit processes
two copies of |𝜓 (𝒘)⟩ in parallel. The circuit executes a total of 𝑛 Bell basis
measurements that each connect the 𝑘 -th qubit of the first copy with the
𝑘 -th qubit of the second copy. This readout stage requires exactly 𝑛 single
qubit gates (𝕀,𝑯 ,𝑺 × 𝑯) and exactly 𝑛 two-qubit CNOT gates. Each data
hiding state is also comparatively cheap to create: we need two random 𝑛-bit
initializations and (at most) 2𝑛 single qubit gates (𝕀,𝑯 ,𝑺 ×𝑯). Viewed as one
circuit from beginning to end, this demonstration requires 2𝑛 qubits, (at most)
3𝑛 single-qubit gates and exactly 𝑛 CNOT gates. This is doable even on noisy,
intermediate-scale quantum hardware.

Hadamards) between qubits from the first copy of |𝜓 (𝒘)⟩ (top) and the second
copy of |𝜓 (𝒘)⟩ (bottom)? Thinking further along these lines highlights that
this new, quantum-enhanced approach is capable of doing something that the
conventional approach cannot fully mimic (at least not with an exponential
overhead in repetitions): creating entanglement between qubits from each
copy directly at the quantum level. The following constructive result highlights
that such quantum-enhanced readout protocols become a game changer for
our data hiding challenge:

Theorem 12.4 (Upper bound for a fixed quantum-enhanced strategy [HKP21]).
Consider the data hiding strategy {𝑥, 𝑦 , 𝑧}𝑛 ∋ 𝒘 ↦→ |𝜓 (𝒘)⟩rom Eq. (12.3)
for 𝑛 qubits.Then, there is a simple quantum-enhanced procedure that
allows for uncovering the hidden string𝒘 after already

𝑇qe = O(𝑛)

repetitions. The quantum part of this procedure is very cheap and illustrated
in Fig. 12.1. A total 𝑇qe repetitions produce enough statistical data to check
𝒗

?
= 𝒘 for every candidate 𝒗 ∈ {𝑥, 𝑦 , 𝑧}𝑛 in linear time.

In contrast to Theorem 12.3, this result is constructive. We have one
concrete solution strategy and need to show that it actually works (efficiently).

157 Lecture 12: Learning from quantum experiments

In turn, the actual proof is also much simpler by comparison. In fact, a thorough
analysis of the single-qubit case (𝑛 = 1) already conveys much of the main
ideas. We will provide such an analysis in Annex 2 below. The key idea is to
use Bell-type measurements on both single-qubit states to unravel information
about all possible encoding unitaries𝑼 (𝑤) at once. This general idea extends
to 𝑛-qubit systems, because we have fine-tuned the (randomized) initial state
|𝜓0⟩ from Eq. (12.1) in precisely the right way to make it work.

To summarize: Our data imprinting strategy is designed to be hard for
conventional readout procedures, but also contains a deliberate loophole:
it is very easy to crack with a simple quantum-enhanced procedure. This
is deliberate: after all, we are looking for stylized example challenges that
admit a quantum advantage. And the discrepancy between Theorem 12.3
(exponential lower bound on any conventional strategy) and Theorem 12.4
(linear upper bound for one quantum-enhanced strategy) achieves just that. At
this point, it is worthwhile to re-emphasize that this exponential discrepancy
does not (necessarily) manifest itself in algorithm runtime. Instead, it targets
the number of repetitions that are required to learn the underlying secret. This
is an appropriate and very general model for ‘training data size’ in machine
learning.

12.3 Demonstration on an actual quantum computer
In the previous section, we have laid out a new approach towards quantum
advantage.We have presented a (stylized) learning challenge where we first
imprint a trit string 𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 onto a mixed 𝑛-qubit quantum state
and subsequently analyze how many experiments it takes to acquire enough
(training) data in order to confidently recover this now hidden string. And
we have seen that the type of data acquisition makes a huge difference: any
conventional data acquisition procedure necessarily requires exponentially
many repetitions (in 𝑛) while a quantum-enhanced approach gets by with only
a linear number of repetitions. And, what is more, all steps in this protocol are
relatively simple, even for large qubit sizes 𝑛.

Let us first see how expensive it is to create |𝜓 (𝒘)⟩ for a fixed (and
arbitrary) trit string 𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 . To this end, we must first prepare |𝜓0⟩
which is a (classical) probabilistic average over all possible 2𝑛/2 input states
|𝑏0, . . . , 𝑏𝑛−1⟩ with even sum of parity. We can effectively generate such a
state by sampling one even parity initialization |𝑏0, . . . , 𝑏𝑛−1⟩ uniformly at
random whenever we prepare |𝜓0⟩ (the probabilistic average over all possible
even parity initialization will then create the mixed state |𝜓0⟩. To create such
a string, we simply sample the first (𝑛 − 1) bits uniformly at random and
adjust the last bit to ensure even (sum of) parity. Subsequently, we need to
imprint the string𝒘 by applying𝑽 𝑤0 ⊗ · · · ⊗𝑽 𝑤𝑛−1 to our random initialization
|𝑏0, . . . , 𝑏𝑛−1⟩ (with even parity). But this is also cheap, because we apply one
single qubit unitary to each qubit.

Next, we need to have a look at the different readout protocols. The

158 Lecture 12: Learning from quantum experiments

conventional readout protocol is a bit tricky, because the model is very general.
Moreover, this is also not the main point. Rigorous math tells us that any such
approach must be bad. So, let us instead focus on the quantum-enhanced
protocol. There, we must first prepare two copies of |𝜓 (𝒘)⟩ in parallel. This
is not difficult, but requires 2𝑛 available (and working) qubits. If we have a
quantum computer with, say, 53 qubits, then we can only play the data hiding
game up to 𝑛 = ⌊53/2⌋ = 26 qubits. The subsequent entangling procedure
involves a total of 𝑛 parallel CNOT gates followed by 𝑛 parallel Hadamard gates.
And, finally, we need to perform measurements on all 2𝑛 qubits involved. This
is again a routine task for any working quantum computer. So, in summary, a
full execution of our data hiding game with quantum-enhanced readout boils
down to the following depth-4 circuit which involves 4𝑛 gates:

(12.6)

(all CNOTs affect different qubits and can therefore be stacked into a depth-1
layer). This looks doable even on existing quantum computers that are noisy
(which limits available circuit depth) and comparatively small (which limits
the maximum 𝑛 we can go to). And, in fact, it has been done. Google – who
operates one of the largest and most reliable quantum computers to date –
teamed up with researchers from Caltech and JKU (yours truly) to actually
run a slight modification of our data hiding game [Hua+22]. The results are
depicted in Figure 12.2

For technical reasons1 we could only scale up to 𝑛 = 20 (for one 𝜌 (𝒘)) i.e.
2𝑛 = 40 qubits in total. But this is enough to actually witness a substantial
discrepancy between conventional strategies and quantum-enhanced strategies:
220 ≈ 1.04 × 106 is much larger than 𝑛 = 20. The plot in Fig. 12.2 shows
just that. The dashed solid line is the lower bound from Theorem 12.3. Any
conventional readout strategy must be north-west of this exponential growth
line. The green dots depict one such strategy which essentially involves
randomly guessing the correct imprinting unitaries in a hardware-friendly and

1One qubit is broken and connectivity becomes an issue.

159 Lecture 12: Learning from quantum experiments

(a)
<latexit sha1_base64="5apB7lXzKjkwwSZDiO8XpiM/Cvs=">AAAB63icdVDLSsNAFJ34rPVVdelmsAiuQtJEW3cFNy4r2Ae0oUymk2bozCTMTIQS+gtuXCji1v/wG9z5N07aCip64MLhnHu5954wZVRpx/mwVlbX1jc2S1vl7Z3dvf3KwWFHJZnEpI0TlsheiBRhVJC2ppqRXioJ4iEj3XByVfjdOyIVTcStnqYk4GgsaEQx0oU0kHEyrFQd2603PN+DhviOV68Z4l3W/PMGdG1njipYojWsvA9GCc44ERozpFTfdVId5EhqihmZlQeZIinCEzQmfUMF4kQF+fzWGTw1yghGiTQlNJyr3ydyxJWa8tB0cqRj9dsrxL+8fqajRpBTkWaaCLxYFGUM6gQWj8MRlQRrNjUEYUnNrRDHSCKsTTxlE8LXp/B/0qnZ7oXt3fjVpnxbxFECx+AEnAEX1EETXIMWaAMMYnAPHsGTxa0H69l6WbSuWMsIj8APWK+f1JaPiQ==</latexit>⇢ <latexit sha1_base64="5apB7lXzKjkwwSZDiO8XpiM/Cvs=">AAAB63icdVDLSsNAFJ34rPVVdelmsAiuQtJEW3cFNy4r2Ae0oUymk2bozCTMTIQS+gtuXCji1v/wG9z5N07aCip64MLhnHu5954wZVRpx/mwVlbX1jc2S1vl7Z3dvf3KwWFHJZnEpI0TlsheiBRhVJC2ppqRXioJ4iEj3XByVfjdOyIVTcStnqYk4GgsaEQx0oU0kHEyrFQd2603PN+DhviOV68Z4l3W/PMGdG1njipYojWsvA9GCc44ERozpFTfdVId5EhqihmZlQeZIinCEzQmfUMF4kQF+fzWGTw1yghGiTQlNJyr3ydyxJWa8tB0cqRj9dsrxL+8fqajRpBTkWaaCLxYFGUM6gQWj8MRlQRrNjUEYUnNrRDHSCKsTTxlE8LXp/B/0qnZ7oXt3fjVpnxbxFECx+AEnAEX1EETXIMWaAMMYnAPHsGTxa0H69l6WbSuWMsIj8APWK+f1JaPiQ==</latexit>⇢

<latexit sha1_base64="5apB7lXzKjkwwSZDiO8XpiM/Cvs=">AAAB63icdVDLSsNAFJ34rPVVdelmsAiuQtJEW3cFNy4r2Ae0oUymk2bozCTMTIQS+gtuXCji1v/wG9z5N07aCip64MLhnHu5954wZVRpx/mwVlbX1jc2S1vl7Z3dvf3KwWFHJZnEpI0TlsheiBRhVJC2ppqRXioJ4iEj3XByVfjdOyIVTcStnqYk4GgsaEQx0oU0kHEyrFQd2603PN+DhviOV68Z4l3W/PMGdG1njipYojWsvA9GCc44ERozpFTfdVId5EhqihmZlQeZIinCEzQmfUMF4kQF+fzWGTw1yghGiTQlNJyr3ydyxJWa8tB0cqRj9dsrxL+8fqajRpBTkWaaCLxYFGUM6gQWj8MRlQRrNjUEYUnNrRDHSCKsTTxlE8LXp/B/0qnZ7oXt3fjVpnxbxFECx+AEnAEX1EETXIMWaAMMYnAPHsGTxa0H69l6WbSuWMsIj8APWK+f1JaPiQ==</latexit>⇢ <latexit sha1_base64="5apB7lXzKjkwwSZDiO8XpiM/Cvs=">AAAB63icdVDLSsNAFJ34rPVVdelmsAiuQtJEW3cFNy4r2Ae0oUymk2bozCTMTIQS+gtuXCji1v/wG9z5N07aCip64MLhnHu5954wZVRpx/mwVlbX1jc2S1vl7Z3dvf3KwWFHJZnEpI0TlsheiBRhVJC2ppqRXioJ4iEj3XByVfjdOyIVTcStnqYk4GgsaEQx0oU0kHEyrFQd2603PN+DhviOV68Z4l3W/PMGdG1njipYojWsvA9GCc44ERozpFTfdVId5EhqihmZlQeZIinCEzQmfUMF4kQF+fzWGTw1yghGiTQlNJyr3ydyxJWa8tB0cqRj9dsrxL+8fqajRpBTkWaaCLxYFGUM6gQWj8MRlQRrNjUEYUnNrRDHSCKsTTxlE8LXp/B/0qnZ7oXt3fjVpnxbxFECx+AEnAEX1EETXIMWaAMMYnAPHsGTxa0H69l6WbSuWMsIj8APWK+f1JaPiQ==</latexit>⇢

… …

Aggregate

 N
 re

pe
tit

io
ns Predict

(b)

Prediction Accuracy (Q)

Prediction Accuracy (C)

Training Loss (Q)

(c)

Rigorous
LB

 (C
)

…

Gated recurrent
neural network

data hiding case study on
53-qubit processor (Google)

Figure 12.2 Empirical performance of conventional (gray) and quantum-enhanced
(purple) learning on the 53-qubit Google Sycamore chip [Hua+22]: The task
is to recover a hidden trit string 𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 that is imprinted onto a
randomized 𝑛-qubit state |𝜓 (𝒘)⟩). This log plot displays the number of
quantum executions/training data size as a function of qubit number 𝑛. The
dashed line illustrates the fundamental lower bound from Theorem 12.3.

automated fashion. The purple dots are where things get interesting. These
depict the performance of the quantum-enhanced readout protocol and it is way
south-west of the dashed line. This is strong empirical support for the theoretic
assertion from Theorem 12.4 and one of the first large-scale demonstrations of
a quantum advantage on real quantum hardware.

Annex 1: single-qubit analysis of a conventional approach
For 𝑛 = 1 qubit, our initial state collapses to a simple (deterministic) initaliza-
tion:

|𝜓0⟩ = |0⟩.
Now, let us implement the encoding strategy. It is based on mapping a single
trit 𝑤 ∈ {𝑥, 𝑦 , 𝑧} onto this initial state by applying a single-qubit unitary
that depends on 𝑤 . According to our encoding strategy, we have 𝑽 𝑥 = 𝑯
(Hadamard),𝑽 𝑦 = 𝑺 ×𝑯 (Hadamard+phase) and𝑽 𝑧 = 𝕀 (do nothing). It is
easy to determine the resulting states:

|𝜓 (𝑤)⟩ = 𝑽 |0⟩ =

𝑯 |0⟩ = |+⟩ if𝑤 = 𝑥,

𝑺 ×𝑯 |0⟩ = |i+⟩ else if𝑤 = 𝑦 ,

𝕀|0⟩ = |0⟩ else if𝑤 = 𝑧.

Note that both

|+⟩ = 𝑯 |0⟩ = 1
√
2
(|0⟩ + |1⟩) and |i+⟩ = 𝑺 ×𝑯 |0⟩ = 1

√
2
(|0⟩ + i|1⟩) .

are perfect superpositions between |0⟩ and |1⟩, but the pre-factor differs.

160 Lecture 12: Learning from quantum experiments

The task is now to devise a quantum circuit that can identify the single
trit𝑤 ∈ {𝑥, 𝑦 , 𝑧} hidden within |𝜓 (𝑤)⟩. We will not do the fully general case
advertised in Sec. 12.2, but instead, consider a special case. Since the encoding
strategy is known to us, we can try to undo it. Here is a guessing circuit that
attempts to achieve this goal:

(12.7)

Here, we have already suggestively included the encoding procedure on the
right hand side. A quick look at this single-qubit circuit architecture already
tells us that two things can happen:

1 𝑣 = 𝑤 (correct guess): in this case, the two unitaries in Eq. (12.7) cancel
out and we end up simply measuring the zero state |0⟩. More formally,

Pr𝑽 †
𝑣 |𝜓 (𝑤) ⟩ [0] =

���⟨0|𝑽 †
𝑣𝑽 𝑤 |0⟩

���2 = 1 = |⟨0|𝕀|0⟩|2 = 1.

(Here we have sticked to the density matrix formalism, because it is this
one that will generalize to 𝑛 qubits).

2 𝑣 ≠ 𝑤 (incorrect guess): in this case, the two unitaries𝑽 𝑤 and𝑽 †
𝑣 cannot

cancel, but their combination produces a state that is always in perfect
superposition between |0⟩ and |1⟩. More formally,

Pr𝑽 †
𝑣 |𝜓 (𝑤) ⟩ [0] =

���⟨0|𝑽 †
𝑣𝑽 𝑤 |0⟩

���2 = 1
2

for all 𝑣,𝑤 ∈ {𝑥, 𝑦 , 𝑧} with 𝑣 ≠ 𝑤.

We leave a derivation as an instructive exercise.

Exercise 12.5 Verify the following general equation for 𝑣,𝑤 ∈ {𝑥, 𝑦 , 𝑧} by
directly computing all 3 × 3 = 9 state vector amplitudes:

Pr𝑽 †
𝑣𝑽 𝑤 |0⟩ [0] =

���⟨0|𝑽 †
𝑣 ×𝑽 𝑤 |0⟩

���2 = {
1 if 𝑣 = 𝑤,

1/2 else if 𝑣 ≠ 𝑤.

It is worthwhile to emphasize that the two possible outcome distributions
are radically different. One (correct guess) produces a deterministic outcome
of always 0, while the other (incorrect guess) produces a uniform distribution,
where 0 and 1 both occur with probability 1/2. It is very easy to distinguish
these two situations by re-running the quantum circuit a few times. If we ever
observe a 1, we know that our guess must have been incorrect. And 1 occurs
with probability 1/2, so we don’t have to wait very long. Already 4 quantum
circuit runs (coin tosses) are enough.

But this is also where the issues arise. Re-running the test circuit from
Eq. (12.7) only ever allows us to check whether our current guess 𝑣 equals the

161 Lecture 12: Learning from quantum experiments

hidden trit𝑤 . If this is not the case, i.e. 𝑣 ≠ 𝑤 , we do not get any actionable
advice on what string to try next. After all, every possible combination of 𝑣
(guess) and𝑤 with 𝑣 ≠ 𝑤 produces the same (uniform) outcome distribution.

So, what does that mean for us if we want to recover a hidden data trit
𝑤 ∈ {𝑥, 𝑦 , 𝑧} that is encoded into |𝜓 (𝑤)⟩? The strategy displayed above
only really leaves us with one option: making random guesses 𝑣 and using
repetitions of the corresponding quantum circuit to check whether 𝑣 = 𝑤 . For
𝑛 = 1 (a single trit of hidden data) this is not too costly (yet). There are only
31 = 3 possibilities and we obtain

𝑇conv (1) ≳ 4 × 31, (12.8)

where 4 takes into account the (expected) number of circuit evaluations required
to distinguish a deterministic distribution (correct guess) from the uniform one
(incorrect guess).

However, the form of Eq. (12.8) suggests an exponential dependence on
the number of qubits 𝑛 = 1. Indeed, as 𝑛 increases, the total number of secret
trit strings𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 grows as 3𝑛 . And, if randomly guessing the correct
string is essentially our only chance, we will feel this exponential growth in the
number of options.

Exercise 12.6 Extend this analysis to 𝑛 = 2 and 𝑛 = 3 qubits. Show that the
number of ‘guess circuits’ you need will grow indeed proportionally to 32 and
33, respectively. This is a strong indicator of exponential growth in the number
of qubits. Hint: the random initialization of |𝜓0⟩ plays an impportant role
here.

We emphasize that such a generalization is not enough to deduce Theo-
rem 12.3. After all, we are analyzing only one particular readout strategy (guess
the correct string by unravelling) and not all of them. It does, however, convey
the main gist: our secret imprinting is designed in a way that makes it very
difficult to extract ‘global information’ about the secret string𝒘 ∈ {𝑥, 𝑦 , 𝑧}𝑛 .

Annex 2: single-qubit analysis of the quantum-enhanced approach
For 𝑛 = 1, our quantum-enhanced circuit strategy boils down to the following
circuit on 2 × 1 = 2 qubits:

There are three different circuit configurations — one for each𝑤 ∈ {𝑥, 𝑦 , 𝑧} –
that want to be analyzed. We learn everything about the measurement outcome
if we compute the final 2-qubit quantum state

|𝜑 (𝑤)⟩ = (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 (𝑽 𝑤 ⊗𝑽 𝑤) |0, 0⟩.

162 Lecture 12: Learning from quantum experiments

1 𝑤 = 𝑥 , i.e. 𝑽 𝑤 = 𝑽 𝑥 = 𝐻 :

|𝜑 (𝑥)⟩ = (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 (𝑯 ⊗ 𝑯) |0, 0⟩
= (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 |+,+⟩
= (𝑯 ⊗ 𝕀) |+,+⟩ = |0,+⟩

=
1
√
2
(|0, 0⟩ + |0, 1⟩)

2 𝑤 = 𝑦 , i.e. 𝑽 𝑤 = 𝑽 𝑦 = 𝑺𝑯 :

|𝜑 (𝑦)⟩ = (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 (𝑺𝑯 ⊗ 𝑺𝑯) |0, 0⟩
= (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 |i+, i+⟩

= (𝑯 ⊗ 𝕀) 1
2
(|0, 0⟩ + i|0, 1⟩ + i|1, 1⟩ − |1, 0⟩)

=
1
√
2
(|1, 0⟩ + i|0, 1⟩) .

3 𝑤 = 𝑧 , i.e. 𝑽 𝑤 = 𝑽 𝑧 = 𝕀:

|𝜑 (𝑧)⟩ = (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 (𝕀 ⊗ 𝕀) |0, 0⟩
= (𝑯 ⊗ 𝕀)𝑪𝑵𝑶𝑻 |0, 0⟩
= (𝑯 ⊗ 𝕀) |0, 0⟩ = |+, 0⟩

=
1
√
2
(|0, 0⟩ + |1, 0⟩) .

So, in summary, the three different choices for 𝑤 lead to different outcome
probability distributions for the two readout bits. If we collect the probabilities
for obtaining 00, 01, 10 and 11 in a 4-dimensional vector, we obtain

𝒑𝑥 =
1
2

©«
1
1
0
0

ª®®®¬ , 𝒑𝑦 =
1
2

©«
0
1
1
0

ª®®®¬ , 𝒑𝑧 =
1
2

©«
1
0
1
0

ª®®®¬
Pr |𝜑 (𝑤) ⟩ [00]
Pr |𝜑 (𝑤) ⟩ [01]
Pr |𝜑 (𝑤) ⟩ [10]
Pr |𝜑 (𝑤) ⟩ [11]

. (12.9)

Note that these three possible outcome distributions are very different from
each other. A (small) constant number of quantum circuit repetitions (coin
tosses) allow us to do a 2-step identification procedure.

Suppose, for the sake of illustration, that the underlying secret is 𝑤 = 𝑥 .
Then, 𝒑𝑥 tells us that we obtain outcome 00 with probability 1/2. And we
expect to see this outcome after only 2 repetitions (stopping time for coin
tossing). As soon as we observe 00 once, we can exclude𝑤 = 𝑦 for the hidden
string (𝒑𝑦 has 0 weight on 00) and are left with two options: 𝑤 = 𝑥 or𝑤 = 𝑧 .
We then invest a couple of extra repetitions (coin tosses) to look for outcome
01. As soon as we observe this outcome, we can also rule out 𝒑𝑧 and can be
sure that the underlying hidden trit is 𝑤 = 𝑥 . We expect that 2 additional

163 Lecture 12: Learning from quantum experiments

repetitions are enough. The search procedure for other trits is analogous and
gets by with equally few runs of the quantum-enhanced readout procedure.

In summary, we can conclude that the quantum-enhanced readout protocol
gets by with

𝑇qe(1) = const where const ≈ 4

repetitions only. What is more, this procedure is fixed and not conditional on a
guess by us. The fixed Bell-type measurement allows us to correctly uncover
the secret trit𝑤 after very few repetitions of the same quantum circuit. These
are all excellent signs for a benign generalization to 𝑛 ≥ 1 qubits.

Bibliography

[Bel64] J. Bell. “On The Einstein Podolsky Rosen Paradox”. In: Physics 1.3 (1964),
pages 195–200.doi: https://doi.org/10.1103/PhysicsPhysiqueFizika.
1.195.

[BB14] C. H. Bennett and G. Brassard. “Quantum cryptography: Public key
distribution and coin tossing”. In: Theor. Comput. Sci. 560 (2014), pages 7–
11. doi: 10.1016/j.tcs.2014.05.025. url: https://doi.org/10.
1016/j.tcs.2014.05.025.

[Ben+93] C. H. Bennett et al. “Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels”. In: Phys. Rev. Lett. 70 (13
1993), pages 1895–1899. doi: 10.1103/PhysRevLett.70.1895. url:
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.

[DN05] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. 2005.
arXiv: quant-ph/0505030 [quant-ph].

[EWL99] J. Eisert, M. Wilkens, and M. Lewenstein. “Quantum Games and Quantum
Strategies”. In: Physical Review Letters 83.15 (1999), pages 3077–3080.
doi: 10.1103/physrevlett.83.3077. url: https://doi.org/10.
1103%2Fphysrevlett.83.3077.

[Eke91] A. Ekert. “Quantum Cryptography Based on Bell’s Theorem”. In: Phys. Rev.
Lett. 67.6 (1991), pages 661–663. doi: https://doi.org/10.1103/
PhysRevLett.67.661.

[GC99] D. Gottesman and I. L. Chuang. “Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations”.
In: Nature 402.6760 (1999), pages 390–393. doi: 10.1038/46503. url:
https://doi.org/10.1038/46503.

https://doi.org/https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://arxiv.org/abs/quant-ph/0505030
https://doi.org/10.1103/physrevlett.83.3077
https://doi.org/10.1103%2Fphysrevlett.83.3077
https://doi.org/10.1103%2Fphysrevlett.83.3077
https://doi.org/https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503

165 Lecture 12: Learning from quantum experiments

[HKP21] H.-Y. Huang, R. Kueng, and J. Preskill. “Information-Theoretic Bounds on
Quantum Advantage in Machine Learning”. In: Phys. Rev. Lett. 126 (19
2021), page 190505. doi: 10.1103/PhysRevLett.126.190505. url:
https://link.aps.org/doi/10.1103/PhysRevLett.126.190505.

[Hua+22] H.-Y. Huang et al. “Quantum advantage in learning from experiments”.
In: Science 376.6598 (2022), pages 1182–1186. doi: 10.1126/science.
abn7293. eprint: https://www.science.org/doi/pdf/10.1126/
science.abn7293. url: https://www.science.org/doi/abs/10.
1126/science.abn7293.

[Kit97] A. Y. Kitaev. “Quantum computations: algorithms and error correction”.
In: Russian Mathematical Surveys 52.6 (1997), page 1191. doi: 10.1070/
RM1997v052n06ABEH002155. url: https://dx.doi.org/10.1070/
RM1997v052n06ABEH002155.

[Kue22] R. Kueng. Introduction to Computational Complexity (lecture notes). JKU
Linz, Austria, 2022. url: https://iic.jku.at/files/eda/kueng-
complexity.pdf.

[Tom+13] M. Tomamichel et al. “A monogamy-of-entanglement game with appli-
cations to device-independent quantum cryptography”. In: New J. Phys.
15 (2013), pages 103002, 24. issn: 1367-2630. doi: 10.1088/1367-
2630/15/10/103002. url: https://doi.org/10.1088/1367-
2630/15/10/103002.

[Wil23] J. Wilkens. Quantum Circuit Library. 2023. url: https://github.com/
wilkensJ/drawio-library.

https://doi.org/10.1103/PhysRevLett.126.190505
https://link.aps.org/doi/10.1103/PhysRevLett.126.190505
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1126/science.abn7293
https://www.science.org/doi/pdf/10.1126/science.abn7293
https://www.science.org/doi/pdf/10.1126/science.abn7293
https://www.science.org/doi/abs/10.1126/science.abn7293
https://www.science.org/doi/abs/10.1126/science.abn7293
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://iic.jku.at/files/eda/kueng-complexity.pdf
https://iic.jku.at/files/eda/kueng-complexity.pdf
https://doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1088/1367-2630/15/10/103002
https://github.com/wilkensJ/drawio-library
https://github.com/wilkensJ/drawio-library

	1 Motivation and outline
	1.1 Motivation: integer factorization
	1.2 Quantum processing units (QPUs)
	1.2.1 Non-technical analogy
	1.2.2 Different types of quantum hardware

	1.3 Tentative overview of topics
	1.4 Open-source toolkits to play around with quantum circuits
	1.5 Exam and grading process

	2 Single qubit circuits I
	2.1 Introduction
	2.2 Gaining intuition
	2.2.1 Overall layout of single-qubit quantum circuits
	2.2.2 Classical options: identity and bit-flip gate
	2.2.3 Quantum options: superposition and sign-flip

	2.3 Rigorous formalism: matrix-vector multiplication
	2.4 Application: the BB84 quantum key distribution

	3 Single qubit circuits II
	3.1 Motivation and outline
	3.2 Excursion: complex numbers
	3.3 Ultimate limits of single-qubit logic
	3.3.1 Recapitulation
	3.3.2 Clifford gates
	3.3.3 Universal gate sets

	3.4 Pauli rotation gates
	3.5 Application: restricted sum of parity computations

	4 Two qubit circuits
	4.1 Classical reversible operations on 2 bits
	4.1.1 Combining single-bit operations in parallel
	4.1.2 The Kronecker product

	4.2 Quantum operations on 2 qubits
	4.2.1 Quantum gates on 2 qubits
	4.2.2 Quantum states on 2 qubit
	4.2.3 The CNOT gate
	4.2.4 Examples: CNOT10 and a random number generator

	5 Bell states & Superdense Coding
	5.1 Motivation: The Bell state
	5.1.1 Stronger than classical correlations

	5.2 More Bell states
	5.3 Bell measurement
	5.4 Superdense Coding
	5.5 Quantum Games: The Prisoner's Dilemma

	6 Entanglement
	6.1 Entanglement
	6.1.1 Rotated Bell states

	6.2 The CHSH game and Bell inequalities
	6.2.1 The CHSH game
	6.2.2 Optimal classical strategies
	6.2.3 Optimal quantum strategy

	6.3 CHSH rigidity and monogamy of entanglement
	6.4 Bell inequalities and the violation of local realism
	6.5 The E91 protocol for quantum key distribution

	7 Quantum teleportation
	7.1 Motivation
	7.2 Background: marginal and conditional probabilities
	7.2.1 Marginal probabilities
	7.2.2 Conditional probability distributions
	7.2.3 Example 1: Bell state readout
	7.2.4 Example 2: Drawing straws

	7.3 Quantum T-gate teleportation
	7.4 Quantum state teleportation

	8 General n-qubit architectures
	8.1 General n-qubit architectures
	8.2 Classical description of n-qubit architectures
	8.2.1 State vector representation of general n-qubit states
	8.2.2 Circuit matrix representation of general n-qubit circuits
	8.2.3 Classical simulation of n-qubit logic and readout

	8.3 Implementing classical circuits with quantum logic
	8.3.1 Quantum realizations of elementary logical gates
	8.3.2 Quantum realization of entire Boolean circuits

	8.4 Synopsis

	9 Amplitude amplification circuits
	9.1 Motivation
	9.2 Setup
	9.3 Overall idea for a quadratic quantum advantage
	9.3.1 high-level vision

	9.4 Concrete circuit construction
	9.4.1 Circuit 1: reflection about good solutions (`Grover oracle')
	9.4.2 Circuit 2: reflection about uniform superposition (`diffusion operator')
	9.4.3 Combination of the two circuit blocks

	9.5 Full quantum search algorithm

	10 Fourier-type transforms
	10.1 Fourier transform
	10.1.1 Motivation
	10.1.2 Discrete Fourier transform

	10.2 Quantum Fourier transform
	10.2.1 Quantum implementation
	10.2.2 Fast (classical) Fourier transform

	10.3 QFT as a subroutine - Quantum phase estimation

	11 Shor's algorithm for integer factorization
	11.1 Motiviation: hard instances of integer factorization
	11.2 Reducing Integer Factorization to order finding
	11.2.1 The order finding problem
	11.2.2 Solving integer factorization via order finding

	11.3 Efficiently solving order finding on a quantum computer
	11.3.1 Recapitulation: quantum phase estimation
	11.3.2 Identifying the order parameter in eigenvalues of a simple reversible circuit
	11.3.3 Approximate eigenvalues of this simple reversible circuit via phase estimation

	11.4 Synopsis: implementation of Shor's algorithm

	12 Learning from quantum experiments
	12.1 Motivation
	12.2 Stylized learning challenge: data hiding
	12.2.1 Encoding strategy
	12.2.2 Conventional approach
	12.2.3 Quantum-enhanced approach

	12.3 Demonstration on an actual quantum computer

	Bibliography

