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1. Introduction

1.1 What is Information?
We all have an intuitive understanding of the term information. It refers to the abstract con-
cept that data is being obtained/received, memorized/stored, and transmitted/communicated.
Information is physical in the sense that it is carried by physical objects or systems such as
hard disks or electromagnetic waves, and that it is interpreted or used by physical entities
such as computers or humans. Information is quantifiable in the sense that these physical
objects can carry different amounts of information.

Information theory is the scientific field that studies storage, quantification, and com-
munication of information. It dates back to the 1920s, and then in particular to Claude
Shannon’s seminal work “A Mathematical Theory of Commuication” from 1948, where
(negative) entropy was established as a measure of uncertainty reduction by a message. We
will of course discuss this important concept later in this lecture.

The invention of the transistor in 1947 is typically considered as the starting point of our
information age. The corresponding rise of telecommunication, personal computers, and
the internet has had an enormous socio-economic impact on our world and has completely
transformed the way we live – how we communicate, learn and teach, work, and spend our
free time.

1.2 What is Quantum Information?
Since information is physical, it needs to be carried by physical systems. In our everyday
macroscopic world, nature is governed by the laws of classical physics, in particular
classical mechanics and electromagnetism. The microscopic world of atoms and photons
(the “particles” of light), however, is governed by physical laws which are radically
different, namely by the laws of quantum mechanics.

Quantum mechanics is a theory of the beginning of the 20th century. Its mathematical
formulation took place in the 1920s and early 1930s due to, among others, Werner Heisen-
berg and Erwin Schrödinger. The strange and counter-intuitive characteristics of quantum
mechanics gave rise to fiercely contested debates within the community of physicists.
While some problems regarding the interpretation (i.e. the understanding of the “meaning”)
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of certain quantum mechanical concepts still remain open until today, quantum physics has
proven to be an extremely accurate and successful description of our natural world, and
it has paved the way for many technological breakthroughs. This so-called first quantum
revolution led to the atomic bomb, the transistor, the laser, magnetic resonance imaging,
and many other developments.

Currently, we are entering the second quantum revolution, also known as the quantum
information age. Here, quantum information – i.e. information carried by quantum systems
such as atoms or photons – is harnessed to solve tasks which are impossible classically.
Quantum computation and quantum cryptography are two such modern quantum informa-
tion technologies. While the majority of funding may still be dominated by governmental
funding, private investments have seen a stellar increase in the last decade (Figure 1.1).

This course provides and introduction to the field of Quantum Information – from its
basic concepts and mathematical foundations to specific schemes and protocols.
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Figure 1.1: Top: Total historic announced public funding for quantum technologies
as of May 2023. Bottom: Private investment history from 2012 to 2023 for quantum
technologies.





2. Basic Concepts

2.1 Quantum States
2.1.1 From Bits to Qubits

The fundamental concept in classical information theory is the bit, which can take on only
two possible values. As the allowed bit values (or bit states) b, we typically use 0 and 1:

b ∈ {0,1}. (2.1)

While all bits are eventually represented by physical systems, we can describe them as
mathematical objects, i.e. integer numbers or Boolean (or logical or truth) values “false”
and “true”. A classical bit is a discrete mathematical object.

Similarly, the most important building block in quantum information is the quantum
bit, or qubit for short. The qubit states |0⟩ and |1⟩ are two such specific states. They are
called the computational basis states. The symbol |.⟩ belongs to the Dirac notation and is
called a ket (the last letters of the word “bracket”).

The most important difference between classical bits and qubits is that the latter are
not discrete but continuous. A qubit can be in superposition state of the two basis states
|0⟩ and |1⟩. A superposition state |ψ⟩ is a linear combination of the states |0⟩ and |1⟩. The
most general form reads:

|ψ⟩= α |0⟩+β |1⟩. (2.2)

Here, α and β are in general complex numbers with the normalization constraint

|α|2 + |β |2 = 1. (2.3)

These computational basis states |0⟩ and |1⟩ – and hence all states |ψ⟩ which they span –
are two-dimensional vectors. And since the coefficients α and β are complex numbers, |ψ⟩
is a vector in a two-dimensional complex vector space. (Later, we will use scalar products
of vectors, so this vector space is a Hilbert space.) This all may sound a bit complicated at
first. We will see in a moment why complex numbers are important and why the kets are
indeed vectors.



10 Chapter 2. Basic Concepts

When a qubit in the state (2.2) is measured in the computational basis, then one
obtains the result 0 with probability |α|2, and the result 1 with probability |β |2. The total
probability must be 1, which explains the normalization condition (2.3).

2.1.2 The Bloch Sphere
To get a better (geometrical) understanding of our qubit state, let us rewrite (2.2) in terms
of two real parameters θ ∈ [0,π] and ϕ ∈ [0,2π):

α = cos θ

2 , (2.4)

β = eiϕ sin θ

2 . (2.5)

With the parametrization (2.4)-(2.5), our quantum state (2.2) reads:

|ψ(θ ,ϕ)⟩= cos θ

2 |0⟩+ eiϕ sin θ

2 |1⟩. (2.6)

This obeys the normalization constraint (2.3) from above as |cos(θ

2 )|
2 + |eiϕ sin(θ

2 )|
2 = 1.

But wait a second. At the start, we had two complex numbers α and β , each of which has
a real and an imaginary part. Hence, we effectively had 4 real numbers: Re(α), Im(α),
Re(β ), and Im(β ). And now we are down to two real values θ and ϕ . Did we lose
generality now?

No, we did not. The normalization constraint (2.3) reduces our free parameters from
4 to 3. The cosine and sine prefactors, parametrized by only one angle θ , allow all valid
“weightings” of the computational basis states, i.e. they can reach all values of |α2| and
|β 2| under the normalization condition. Moreover, we do have a complex phase factor
with the phase ϕ in front of the ket |1⟩. But why no complex phase factor for the |0⟩ state?
If we had a state of the form |ψ(θ ,ϕ)⟩= eiϕ0 cos θ

2 |0⟩+ eiϕ1 sin θ

2 |1⟩, i.e. with two phase
factors, we can rewrite this as: |ψ(θ ,ϕ)⟩= eiϕ0(cos θ

2 |0⟩+eiϕ sin θ

2 |1⟩) with ϕ = ϕ1−ϕ0.
The global phase ϕ0 has is not observable effect until it becomes a relative phase (e.g. in
an interference experiment) with respect to another qubit.

One can depict all possible qubit states as being on the surface of the so-called Bloch
sphere (see Figure 2.1). Any point on this surface is parametrized by a polar angle θ and
an azimuthal angle ϕ . The condition (2.3) ensures that all qubit states are normalized to
length 1.

Let us look at some especially important states on the Bloch sphere, namely the basis
states along the z, x, and y axis directions:

|ψ(0,0)⟩= |0⟩ =: |z+⟩, (2.7)
|ψ(π,0)⟩= |1⟩ =: |z−⟩, (2.8)

|ψ(π

2 ,0)⟩=
1√
2
(|0⟩+ |1⟩) =: |x+⟩=: |+⟩, (2.9)

|ψ(π

2 ,π)⟩=
1√
2
(|0⟩− |1⟩) =: |x−⟩=: |−⟩, (2.10)

|ψ(π

2 ,
π

2 )⟩=
1√
2
(|0⟩+ i |1⟩) =: |y+⟩=: |R⟩, (2.11)

|ψ(π

2 ,
3π

2 )⟩= 1√
2
(|0⟩− i |1⟩) =: |y−⟩=: |L⟩, (2.12)

Our computational basis states |0⟩ and |1⟩ are on the north and south pole, respectively,
i.e. in the +z and −z direction, respectively. With θ = π

2 , we are positioned on the equator.
Then, with ϕ = 0 and ϕ = π , we point into the +x and −x direction, respectively. These
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Figure 2.1: Graphical illustration of the Bloch sphere. The state of a single quantum bit
lives on the surface of a sphere with radius 1. Any point on the Bloch sphere is parametrized
by a polar angle θ and an azimuthal angle ϕ . Image taken from Ref. [19].

states are typically abbreviated with |+⟩ and |−⟩. Similarly, with ϕ = π

2 and ϕ = 3π

2 , we
point into the +y and −y direction, respectively. These states are usually abbreviated
with |R⟩ and |L⟩, where – in case you wondered – the notation refers to right and left
circular polarised light. The 6 states listed above are the basis states of the z, x, and y basis
respectively.

Exercise 2.1 Show that the computational (z) basis states |0⟩ and |1⟩ are equal-weight
superpositions of the x-basis states |+⟩ and |−⟩. ■

Solution:

|+⟩+|−⟩√
2

= 1√
2

[
|0⟩+|1⟩√

2
+ |0⟩−|1⟩√

2

]
= |0⟩, (2.13)

|+⟩−|−⟩√
2

= 1√
2

[
|0⟩+|1⟩√

2
− |0⟩−|1⟩√

2

]
= |1⟩. (2.14)

Whether a quantum state is a superposition state or not, depends on the choice of basis.
What is a basis state in one basis, is a superposition state in another basis.

Exercise 2.2 Show that the computational (z) basis states |0⟩ and |1⟩ are equal-weight
superpositions of the y-basis states |R⟩ and |L⟩. ■

Solution: Very similar to the previous exercise.

Exercise 2.3 Write the state |R⟩ in the x-basis. ■

Solution: |R⟩= 1+i
2 |+⟩+ 1−i

2 |−⟩.

Exercise 2.4 Write down, approximately, the state |ψ⟩ shown in Figure 2.1 in the
z-basis. ■

Solution: Try to estimate θ and ϕ and then use Eq. (2.6).
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2.1.3 Information Amount in a Qubit
There are infinitely many points on the surface of the Bloch sphere. So, while there are
only two possible states (0 and 1) for a classical bit, there are infinitely many possible
states for a qubit. Can we therefore store an infinite amount of information into a single
qubit? We certainly could fit the whole Wikipedia into the (bit representation of the) real
numbers θ and ϕ .

Unfortunately, a single qubit cannot represent that amount of information directly.
Any measurement of our qubit will only give one of two possible results. However, as
we will see throughout this course, there is indeed some “hidden” information in these
continuous variables θ and ϕ which is of central importance for the advantages of quantum
information processing compared to its classical counterpart.

2.1.4 Physical Realizations of Qubits
There are many physical realizations of qubits. One very prominent example are photons,
the quanta of light. For a single photon, its polarization state is a qubit. The computational
basis states |0⟩ and |1⟩ are the horizontal and vertical polarization states |H⟩ and |V ⟩. A
general polarisation state is an arbitrary superposition of horizontal and vertical polarization
and can thus be written as

|ψphoton⟩= α |H⟩+β |V ⟩. (2.15)

The |+⟩/|−⟩ basis corresponds to diagonally polarised light in the +45◦-plane. This
is why this basis (the x-basis) is also called the diagonal basis. A measurement in the
diagonal basis is implemented by putting a polarizer oriented at +45◦. The |R⟩/|L⟩ basis
corresponds to (right and left) circular polarization states.

Another example is the spin of an electron. The basis states are spin up | ↑⟩ along
the z-axis and spin down | ↓⟩ along the z-axis. In general, the electron spin can be in an
arbitrary superposition state:

|ψelectron⟩= α |↑⟩+β |↓⟩. (2.16)

If the electron is, e.g., prepared with spin along +x direction, its state is |+⟩ = |→⟩ =
1√
2
(|↑⟩+ |↓⟩).
Another example is the electronic state of an atom. For simplicity, let us imagine the

hydrogen atom which has only one electron. And let us only consider the ground state |g⟩
and the first excited electronic state |e⟩, while ignoring all higher excitations. You may
think of an experiment, where, e.g., a laser can stimulate transitions between the ground
and excited state but no transition to any higher energy states. Then the electronic energy
state of this atom is a two-level quantum system, i.e. a qubit. In general, it can be in an
arbitrary superposition of the ground and the first excited state:

|ψatom⟩= α |g⟩+β |e⟩. (2.17)

There are many more physical realizations of qubits such as trapped ions, quantum
dots, nuclear spins, superconducting qubits, etc.

While enormous efforts have been made in the last decades to push the quantum nature
of matter to the macroscopic regime, we have not (yet?) reached the realm of biological
systems. In 1935, the Austrian physicist Erwin Schrödinger put forward a famous thought
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Figure 2.2: Illustration of Schrödinger’s famous thought experiment. Picture taken from
Ref. [14].

experiment, where a cat is positioned in a sealed chamber. A radioactive atom may or
not decay – these two possibilities exist in a quantum superposition. If a decay happens,
a Geiger counter will detect it and release a hammer which destroys a flask with poison,
killing the cat. After a suitable time, within which there is a 50% chance that a decay
happened and a 50% chance that no decay took place, the cat will be in an equal-weight
superposition of “dead” and “alive”:

|ψcat⟩= 1√
2
(|dead⟩+ |alive⟩. (2.18)

Whether it is possible to create such states, is an open scientific question. Quantum
mechanics in principle allows it. But the more massive the objects become, the stronger
the tension with the general theory of relativity.

2.2 Quantum Measurements
2.2.1 The Born Rule

A fundamental postulate for measurements in quantum mechanics is the Born rule. It says
that the probability of finding a system in a certain state it given by the squared modulus of
the (complex) amplitude of the system in that state. Let us look at a simple example by
revisiting the qubit state (2.2):

|ψ⟩= α |0⟩+β |1⟩. (2.19)

We ask ourselves: What is the probability that, given a measurement in the computational
basis, we get the result 0?

We first have to build the scalar product between state |0⟩ (i.e. the outcome state in
question) and the input state (2.19) itself. Mathematically, this is done by multiplying
the covector of the ket |0⟩, i.e. the bra ⟨0| with the vector |ψ⟩. The bra-ket is the scalar
product:

⟨0|ψ⟩= ⟨0|(α |0⟩+β |1⟩)
= α ⟨0|0⟩+β ⟨0|1⟩. (2.20)

For the last equation, we have used linearity of the scalar product.
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Now, it is time to introduce the vector notation for our computational basis states. After
all, qubits states live in a two-dimensional (i.e. there exist two computational basis states)
vector space. By convention, we use the first dimension of the vector space for |0⟩ and the
second dimension for |1⟩:

|0⟩ ≡
(

1
0

)
, |1⟩ ≡

(
0
1

)
. (2.21)

The corresponding covectors are

⟨0| ≡ (1 0), ⟨1| ≡ (0 1). (2.22)

This helps us to see the orthonormality of the basis states:

⟨0|0⟩= (1 0) ·
(

1
0

)
= 1 ·1+0 ·0 = 1, (2.23)

⟨0|1⟩= (1 0) ·
(

0
1

)
= 1 ·0+0 ·1 = 0, (2.24)

⟨1|0⟩= (0 1) ·
(

1
0

)
= 0 ·1+1 ·0 = 0, (2.25)

⟨1|1⟩= (0 1) ·
(

0
1

)
= 0 ·0+1 ·1 = 1. (2.26)

This means: The scalar product of any basis vector with itself is 1. And the scalar product
between two different basis vectors is 0.

We can continue the scalar product from above and find

⟨0|ψ⟩= α ⟨0|0⟩+β ⟨0|1⟩= α. (2.27)

This (complex) value is the probability amplitude. The probability itself is given by the
modulus squared (Born rule) of this amplitude. Hence, the answer to our question from
above – what is the chance to obtain outcome 0 in the state |ψ⟩ – is given by

P(0|ψ) = |⟨0|ψ⟩|2 = |α|2. (2.28)

Similarly, the probability for outcome 1 reads

P(1|ψ) = |⟨1|ψ⟩|2 = |β |2. (2.29)

Exercise 2.5 Compute the probability for outcome 0 for a measurement in the compu-
tational basis for all 6 basis states (2.8)-(2.12). ■

Solution:

P(0|0) = |⟨0|0⟩|2 = |1|2 = 1, (2.30)

P(0|1) = |⟨0|1⟩|2 = |0|2 = 0,

P(0|+) = |⟨0|+⟩|2 = |⟨0| 1√
2
(|0⟩+ |1⟩)|2 = | 1√

2
(⟨0|0⟩+ ⟨0|1⟩)|2 = | 1√

2
|2 = 1

2 ,

P(0|−) = |⟨0|−⟩|2 = |⟨0| 1√
2
(|0⟩− |1⟩)|2 = | 1√

2
(⟨0|0⟩−⟨0|1⟩)|2 = | 1√

2
|2 = 1

2 ,



2.2 Quantum Measurements 15

P(0|R) = |⟨0|R⟩|2 = |⟨0| 1√
2
(|0⟩+ i|1⟩)|2 = | 1√

2
(⟨0|0⟩+ i⟨0|1⟩)|2 = | 1√

2
|2 = 1

2 ,

P(0|L) = |⟨0|L⟩|2 = |⟨0| 1√
2
(|0⟩− i|1⟩)|2 = | 1√

2
(⟨0|0⟩− i⟨0|1⟩)|2 = | 1√

2
|2 = 1

2 .

The probabilty for outcome 1 is always the complement: P(1|.) = 1−P(0|.), as the two
outcome probabilities need to sum to 1. While the state |0⟩ is identical to itself (i.e. the
scalar product is 1, see first equation above) and while it is orthogonal to the state |1⟩ (i.e.
the scalar product is 0, see second equation above), it has a partial overlap of size 1/

√
2

with the other 4 basis states. The probability to measure outcome 0 in these 4 basis states
is 1

2 .
It is important to note that states are orthogonal (i.e. have scalar product 0) if they are

at opposite points on the Bloch sphere, and not rotated by 90 degrees. In other words,
while the x, y, and z directions on the Bloch sphere are orthogonal in our three-dimensional
space, they do not correspond to orthogonal quantum states in the vector space. The three
most prominent cases of orthogonal state pairs are the basis states themselves:

⟨0|1⟩= 0, (2.31)

⟨+|−⟩=
[ 1√

2
(⟨0|+ ⟨1|)

][ 1√
2
(|0⟩− |1⟩)

]
= 1

2

(
⟨0|0⟩+ ⟨1|0⟩+ ⟨0|1⟩−⟨1|1⟩

)
= 1

2 (1+0+0−1) = 0, (2.32)

⟨R|L⟩=
[ 1√

2
(⟨0|− i⟨1|)

][ 1√
2
(|0⟩− i|1⟩)

]
= 1

2

(
⟨0|0⟩− i⟨1|0⟩− i⟨0|1⟩+ i2⟨1|1⟩

)
= 1

2 (1+0+0−1) = 0. (2.33)

Here, we had to be careful with the bra ⟨R| as we need to complex conjugate all amplitudes.
More formally, the bra is the conjugate transpose (also called: Hermitian transpose) of the
corresponding ket. For an arbitrary state (2.19), we can write:

⟨ψ|= |ψ⟩† = (α |0⟩+β |1⟩)† = ᾱ ⟨0|+ β̄ ⟨1|, (2.34)

where ᾱ and β̄ are the complex conjugates of α and β , respectively. The Hermitian
transpose symbol is called “dagger”. Applying the Hermitian transpose again, brings back
the original state:

(|ψ⟩†)† = ⟨ψ|† = |ψ⟩. (2.35)

Exercise 2.6 Compute the Hermitian transpose of the state |R⟩ in both the Dirac and
the vector notation. ■

Solution:

|R⟩† =
[ 1√

2
(|0⟩+ i |1⟩)

]†
= 1√

2
(⟨0|− i⟨1|), (2.36)

|R⟩† =

[
1√
2

((
1
0

)
+ i
(

0
1

))]†

=

[
1√
2

(
1
i

)]†

= 1√
2
(1 − i). (2.37)

2.2.2 Post-Measurement States
A fundamental property of quantum mechanics is that, in general, a measurement changes
– often we say: collapses – the state. This is distinctly different from the classical case,
where you can measure a classical bit as often as you like without any change.
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Let us once again use our general qubit state (2.19) and let us measure it in the
computational basis |0⟩/|1⟩. Then, we can symbolically write:

|ψ⟩= α |0⟩+β |1⟩

P=|α|2−−−−→
|0⟩/|1⟩

|0⟩

P=|β |2−−−−→
|0⟩/|1⟩

|1⟩
(2.38)

Below each arrow, we write the measurement basis. Above the arrow, we write the outcome
probability. With probability |α|2, we will obtain result 0. If that outcome occurs, the
quantum system becomes projected into state |0⟩ and all further measurements in the
computational basis will give result 0 with probability 1. If, however, outcome 1 occurs in
the first measurement, which happens with probability |β |2, then the quantum system will
be projected into the state |1⟩.

This “active” role of measurements is very important. And it also already forecasts a
fundamental experimental challenge when working with quantum bits. They are fragile in
the sense that any unwanted measurement can alter the qubit state. One needs to shield
and protect them from their environment.

From (2.38), we can see that we can alter the state by measurements. This implies
that we can – merely by measurements – bring a qubit into its orthogonal state. Let’s start
with a qubit in state |0⟩. Any measurement in the computational basis has probability 0 to
obtain outcome 1 (i.e. end up in state |1⟩). We can write P(1|0) = 0 also like this:

|0⟩ P=0−−−−→
|0⟩/|1⟩

|1⟩. (2.39)

But what if we first measure in the |+⟩/|−⟩ basis? In such a |+⟩/|−⟩ measurement,
starting from state |0⟩, the probability to obtain state |+⟩ or |−⟩, is given by

P(+|0) = |⟨+|0⟩|2 = 1
2 , (2.40)

P(−|0) = |⟨−|0⟩|2 = 1
2 . (2.41)

Compare this to Exercise 2.5, where we computed “the other way round”, but the proba-
bility is the same: P(+|0) = P(0|+). And once we are in one of these states, if we then
measure again in the |0⟩/|1⟩ computational basis, how large is the probability that we
obtain result 1? We can calculate

P(1|+) = |⟨1|+⟩|2 = 1
2 , (2.42)

P(1|−) = |⟨1|−⟩|2 = 1
2 . (2.43)

We can summarize this as follows:

|0⟩

P=1/2−−−−→
|+⟩/|−⟩

|+⟩ P=1/2−−−−→
|0⟩/|1⟩

|1⟩

P=1/2−−−−→
|+⟩/|−⟩

|−⟩ P=1/2−−−−→
|0⟩/|1⟩

|1⟩
(2.44)

Hence, with this “intermediate measurment” procedure, there is a 50% chance that we will
obtain result 1:

|0⟩ P=1/2−−−−−−−→
interm. meas.

|1⟩. (2.45)

Compare this to (2.39).
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Exercise 2.7 Quantum state dragging: Starting in state |0⟩, let us make a measurement
in the |u1⟩/|v1⟩ basis with basis states |u1⟩ = cos ε

2 |0⟩+ sin ε

2 |1⟩, |v1⟩ = −sin ε

2 |0⟩+
cos ε

2 |1⟩. Show that this is indeed a basis by calculating ⟨u1|v1⟩. Here, ε is a number
much smaller than 1. Compute the probability Pε to find the starting state |0⟩ in the
state |u1⟩. If we indeed find |u1⟩ (and not |v1⟩), let us call that a “success”. Then
we define a new basis, rotated by another angle ε , i.e. |u2⟩ = cos 2ε

2 |0⟩+ sin 2ε

2 |1⟩,
|v2⟩ = −sin 2ε

2 |0⟩+ cos 2ε

2 |1⟩. Show that the transition (“success”) probability from
|u1⟩ to |u2⟩ is the same as it was in the first step from |0⟩ to |u1⟩. (You can use the
trigonometric identity: cosε cos ε

2 + sinε sin ε

2 = cos ε

2 .) This process can now be
continued again and again. Show that after N = π

ε
such steps, we will reach |uN⟩= |1⟩.

The probability that we succeed at every step is the product of all individual success
probabilities: Ptotal = PN

ε . Compute Ptotal in the limit of very small ε . ■

Solution: Blackboard or homework. The result is remarkable, namely limN→∞Ptotal = 1.
In the limit of many measurements with very small rotations, we can “drag” the state from
|0⟩ to its orthogonal state |1⟩ with certainty.

2.3 Quantum State Transformations
2.3.1 Unitary Operations

In the previous section, we discussed quantum state changes via measurements. This type
of (non-linear) state change only works probabilistically. There is also a “deterministic”
way to (linearly) transform a quantum state |ψ⟩ into another state |ψ ′⟩. This is done via a
unitary operation U :

|ψ ′⟩=U |ψ⟩. (2.46)

Unitary operators are exactly those operators whose Hermitian transpose is equal to the
inverse:

U† =U−1. (2.47)

This implies that U preserves the inner product: Let us take two quantum states |ψ⟩ and
|φ⟩ and apply U to both states, i.e. |ψ ′⟩=U |ψ⟩ and |φ ′⟩=U |φ⟩. Then the inner product
of the transformed states reads:

⟨ψ ′|φ ′⟩= ⟨ψ|U†U |φ⟩= ⟨ψ|φ⟩. (2.48)

Here, we used ⟨ψ ′| = |ψ ′⟩† = (U |ψ⟩)† = ⟨ψ|U† and U†U =U−1U = 1, where 1 is the
identity operator.

Equation (2.48) is very important. Take |φ⟩= |ψ⟩. Then we can see that ⟨ψ ′|ψ ′⟩=
⟨ψ|ψ⟩. Since |ψ⟩=α|0⟩+β |1⟩ is a normalized state with |α|2+ |β |2 = 1 (i.e. ⟨ψ|ψ⟩= 1),
also |ψ ′⟩ = α ′|0⟩+ β ′|1⟩ must be normalized with |α ′|2 + |β ′|2 = 1 (i.e. ⟨ψ ′|ψ ′⟩ = 1).
Unitary transformations preserve state normalization, and they are, in general, the only
operations which have this property.

We remark that in quantum mechanics U = exp(−iHt/ℏ) is the time-evolution operator,
with H the Hamiltonian (i.e. energy operator the system), t the time, and ℏ the reduced
Planck constant. All unitary transformations are continuous processes that need a certain
time to be implemented.
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2.3.2 Quantum Gates
From the quantum information perspective, in particular from the perspective of computer
science, we may think of unitary transformations as quantum gates.

Classically, there is only one non-trivial gate for a single bit, namely the NOT gate.
It takes a bit as input value and outputs its negation, i.e. 0 → 1 and 1 → 0. Analytically,
given a bit b ∈ {0,1}:

NOT(b) = 1−b. (2.49)

How does a quantum analogue of the NOT gate look like? The quantum NOT gate is
called the Pauli X gate and, in matrix notation, it has the form

X =

(
0 1
1 0

)
. (2.50)

Taking an arbitrary input state

|ψ⟩= α |0⟩+β |1⟩=
(

α

β

)
, (2.51)

the X gate acts as follows:

X |ψ⟩=
(

0 1
1 0

)(
α

β

)
=

(
β

α

)
= β |0⟩+α |1⟩. (2.52)

So it indeed switches the amplitudes in front of the basis states. In particular, X |0⟩= |1⟩
and X |1⟩= |0⟩. The X gate is therefore often called the bit-flip gate. (There is also a Pauli
Y and a Pauli Z gate. We will come across them later.)

Exercise 2.8 Compute the action of the X gate on the states |+⟩ and |−⟩. ■

Solution:

X |+⟩= 1√
2

(
0 1
1 0

)(
1
1

)
= 1√

2

(
1
1

)
= |+⟩, (2.53)

X |−⟩= 1√
2

(
0 1
1 0

)(
1
−1

)
= 1√

2

(
−1
1

)
=−|−⟩. (2.54)

In words: The states (vectors) |+⟩ and |−⟩ are eigenstates (eigenvectors) of the operator
(matrix) X . The eigenvalues are +1 and −1, respectively.

Another important single-qubit operation is the Hadamard gate:

H = 1√
2

(
1 1
1 −1

)
. (2.55)

When acting on computational basis states, it creates the diagonal basis states:

H |0⟩= 1√
2

(
1 1
1 −1

)(
1
0

)
= 1√

2

(
1
1

)
= |0⟩+|1⟩√

2
= |+⟩, (2.56)

H |1⟩= 1√
2

(
1 1
1 −1

)(
0
1

)
= 1√

2

(
1
−1

)
= |0⟩−|1⟩√

2
= |−⟩. (2.57)
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Exercise 2.9 Apply the Hadamard gate onto the state |+⟩. ■

Solution: H|+⟩= |0⟩. In fact, H2 = 1.
All unitary transformations on single qubits can be decomposed into 3 subsequent

rotations (about suitable angles around the z-y-z axes) of the state vector moving it along
the surface of the Bloch sphere and a global phase factor eiα :

U(α,β ,E,δ ) = eiα

(
e−iβ/2 0

0 eiβ/2

)(
cos E

2 −sin E
2

sin E
2 cos E

2

)(
e−iδ/2 0

0 eiδ/2

)
. (2.58)

Exercise 2.10 Show that the Hadamard gate is realized by the unitary (2.58) using
α = π

2 , β = 0, E = π

2 , and δ = π . ■

Solution: Blackboard or homework.
We note again: All gates must be physically implemented (via a Hamiltonian) and

are therefore continuous (in time) transformations, not “jumps” from an input state to an
output state.

2.3.3 The Measurement Problem
Unitary transformations U have the following properties:

• Deterministic: The final state U |ψ⟩ is reached with certainty.
• Invertible: We can undo a unitary transformation U by applying the transformation

U†. Since U†U = 1, we get U†U |ψ⟩= 1|ψ⟩= |ψ⟩.
• Continuous: Every unitary transformation (in physics) is the result of a continuous

dynamical process through time.
Note the fundamental difference to quantum measurements, which are:

• Probabilistic: Quantum mechanics only specifies outcome probabilities. Measure-
ment results are in general random.

• Irreversible: The post-measurement state contains less information than the state
before measurement. In general, you can’t go back. Measurements cannot be
undone.

• Discontinuous: The collapse of the state vector is (mathematically) treated as a
discontinuous and instantaneous process.

These two processes – unitary evolution on one side and measurement on the other –
are fundamentally incompatible. They are mathematically contradictory. This is at the heart
of the so-called measurement problem of quantum mechanics: Under which circumstances
should we use the continuous (Schrödinger) time evolution and unitary transformations,
and when are we supposed to apply the discontinuous effect of measurement? If all
physical processes are governed by the Schrödinger equation and if all measurements are
eventually physical processes, why are they incompatible?

Don’t worry if you can’t answer these questions. No one can! They are debated since
almost 100 years without a generally satisfying solution.

The measurement problem is closely linked to the problem of the different interpreta-
tions of quantum mechanics. There are radically different views about the “meaning” of
the quantum state and about the nature of reality, such as the Copenhagen interpretation,
the many-worlds interpretation, and Bohmian mechanics.
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2.3.4 Notation Summary
Let us briefly summarize the most important mathematical concepts of this chapter:

Notation Description
|ψ⟩ State vector (or ket).
⟨ψ| Covector (or bra) of the vector |ψ⟩.
z̄ = a− ib Complex conjugate of complex number z = a+ ib.
⟨φ |ψ⟩ Scalar product between the states |φ⟩ and |ψ⟩.
AT Transpose of the matrix A, rows and columns are exchanged.
Ā Conjugate matrix of A, all entries are complex conjugated.
A† Hermitian transpose (or conjugate transpose) of the matrix

A, A† = ĀT .
U Unitary matrix, U† =U−1.



3. Single-Qubit Quantum
Experiments

3.1 The Double-Slit Experiment
In the 17th century, Isaac Newton put forward the hypothesis that light consists of particles.
Later, the wave nature of light was shown, in particular by Thomas Young’s 1801 famous
double-slit interference experiment. In this experiment, it was demonstrated that the pattern
observed after a double slit is not simply the sum of two one-slit patterns. In particular, in
the two-slit pattern shows interference fringes, i.e. there are minima (where no light hits
the screen) at locations where light would be detected behind an individual slit.

In 1905, Albert Einstein suggested that light consists of “energy packets” or quanta to
explain the photoelectric effect. This – yet again – particle nature, together with the wave-
like behaviour in interference experiments, has established the so called wave-particle
duality. Light consists of quanta in the sense that on a detection screen individual detection
events (“clicks”) occur. Also, light is a wave in the sense that it the emerging pattern shows
interference fringes (see Figures 3.1 and 3.2).

The wave picture and the particle picture are both mental constructs that help in an
intuitive understanding of the observed phenomena. But ultimately, photons are neither
particles nor waves but are described by quantum mechanics. The photonic wavefunction
(i.e. an infinitely-dimensional state vector that assigns a complex number to each point
in our real 3-dimensional space) obeys the Schrödinger equation. It propagates through
both slits simultaneously and can then interfere with itself. This gives rise to an interfer-
ence pattern. While the (complex-valued) wavefunction is not a real wave but rather a
mathematical object, its modulus squared amplitude at every point in space corresponds to
probability to detect a photon.

What if we put an apparatus in one of the two slits, say the left one. The apparatus is
built such that it contains a detector and photon source. If the apparatus detects a photon, it
emits a new photon in the same direction the old would have travelled. Surely, this will
not change anything, right? Well, it does! The measurement destroys the superposition
character of the photon’s state at the screen

ψphoton =
1√
2
(|left⟩+ |right⟩) (3.1)

and collapses it into either |left⟩ (when the apparatus detected and re-emitted a photon)
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Figure 3.1: Left: If photons are sent through a single slit and then detected at a screen,
an interference pattern with a main maximum and side maxima of smaller intensity will
emerge. Right: The double slit experiment. Picture adapted from Ref. [18].

Figure 3.2: Experimental results of a single-slit (left) and double-slit (right) experiment.
Picture taken from Wikipedia, then color inverted.

or |right⟩ (when the apparatus did not detect a photon). The resulting pattern on the
screen over many repetitions will be the “boring” sum of two one-particle pattern without
interference fringes.

In fact, any (partial or full) information leakage about the photon’s path will (partially
or fully) destroy the interference pattern. It need not be via measurements. It could also
be via interaction with the environment. This process is called decoherence. And it is
the main reason why it is so hard to experimentally realize superpositions of macroscopic
objects. The tiniest interaction with surrounding atoms or photons decoheres a Schrödinger
cat within (a tiny fraction of) the blink of en eye.

3.2 The Elitzur-Vaidman Bomb
Is it possible to ascertain the existence of an object in a given region of space without
interacting with it? That would be particularly useful for, e.g., “detecting” – without
destruction – a bomb which would detonate already under the tiniest form of interaction,
say with a single photon. Classically, this task is impossible to accomplish. In 1993,
Elitzur and Vaidman put forward a quantum solution to the problem. The heart of it is a
Mach-Zehnder interferometer (see Figure 3.3).

We have a source which emits a single photon in the path 0, i.e. we can write its
quantum state as |0⟩, with 0 denoting the path. The photon hits a 50-50 beam splitter (BS1)
which makes a unitary transformation that creates an equal-weight superposition of the
photon traveling in path 1 and 2, where every reflection produces a phase factor i:

|0⟩ BS1−−→ |1⟩+i|2⟩√
2

. (3.2)

In each path, there is a mirror. Each mirror (reflection) produces a phase factor i:

|1⟩+i|2⟩√
2

mirrors−−−−→ i|3⟩−|4⟩√
2

. (3.3)
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Figure 3.3: A Mach-Zehnder interferometer, potentially with a bomb in one of its arms.
Image taken from Wikipedia and adapted (added path numbers).

Assuming that there is no bomb in path 4, the photon states will “meet” again on the
second beam splitter BS2. It acts in the same way as BS1, i.e. it creates a superposition of
the outgoing paths and puts a phase factor i on the reflected one. This will transform our
quantum state as follows:

i|3⟩−|4⟩√
2

BS2−−→ 1√
2

[
i |A⟩+i|B⟩√

2
− |B⟩+i|A⟩√

2

]
=−|B⟩. (3.4)

The final phase factor −1 is not important. All photons will travel to the detector in path
B. We say that there is a completely constructive interference in path B, and a completely
destructive interference in path A.

But what if there is an extremely sensitive bomb in path 4 which explodes upon impact
of a single photon? The bomb acts as measurement device. With probability 1/2, the bomb
will detect the photon and explode, as the amplitude for the state |4⟩ in the right hand side
in (3.3) is 1/

√
2. With probability 1/2, the bomb does not explode. Since the bomb is a

perfect measurement device, its non-explosion collapses the state into state |3⟩. Then, BS2
creates an equal-weight superposition of paths A and B. Hence, overall we have:

• Probability 1
2 : The bomb explodes. We now know that is existed. Well, bad luck.

• Probability 1
4 : Photon detection in detector B. This is the same result as in the case

above, when there is no bomb. Thus, we cannot deduce whether or not there is a
bomb in path 4.

• Probability 1
4 : Photon detection in path A. This outcome is only possible, if there is

a bomb in path 4. Hence, we have determined the existence of the bomb without
destroying it.

Elitzur and Vaidman then extended this scheme to build a bomb tester that can distin-
guish between live bombs and duds. We will not elaborate this further here. In any case,
the above analysis shows how information about an object can be obtained in a quantum
setup, which is impossible to achieve in classical physics.





4. Multi-Qubit States

4.1 Product States
Until this point, we only discussed one-qubit states. Now, we would like to go to an
arbitrary number of qubits.

Let’s start with two qubits, denoted by A and B, in the arbitrary states

|ψ⟩A = α |0⟩A +β |1⟩A =

(
α

β

)
, (4.1)

|φ⟩B = γ |0⟩B +δ |1⟩B =

(
γ

δ

)
. (4.2)

The product state of these two-qubits is the four-dimensional tensor product

|Ψ⟩AB = |ψ⟩A ⊗|φ⟩B = (α |0⟩A +β |1⟩A)⊗ (E |0⟩B +δ |1⟩B)

=

(
α

β

)
⊗
(

γ

δ

)
=


αγ

αδ

βγ

βδ


= αγ |0⟩A ⊗|0⟩B +αδ |0⟩A ⊗|1⟩B +βγ |1⟩A ⊗|0⟩B +βδ |1⟩A ⊗|1⟩B. (4.3)

We have used “full” notation here. Typically, one writes the final state concisely as

|Ψ⟩= αγ |00⟩+αδ |01⟩+βγ |10⟩+βδ |11⟩. (4.4)

For the sake of completeness, let us write down the four computational basis states of the
four-dimensional two-qubit space:

|00⟩=
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

, |01⟩=
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

,
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|10⟩=
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

, |11⟩=
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

. (4.5)

These 4 states form an orthonormal basis.
If both qubits are measured in the computational basis, then the probabilities for the

results 00, 01, 10, and 11 are given by |αγ|2, |αδ |2, |βγ|2, |βδ |2, respectively. These are
simple products, e.g., the probability to measure both qubits in state 0 is the probability
to measure the first qubit in state 0 (which is |α|2) times the probability to measure the
second qubit in state 0 (which is |γ|2): P(00) = |α|2|γ|2 = |αγ|2.

Exercise 4.1 Show that state (4.3) is normalized. ■

Proof: Using the fact that the single qubit states are normalized, we can compute

|αγ|2 + |αδ |2 + |βγ|2 + |βδ |2 = |α|2|γ|2 + |α|2|δ |2 + |β |2|γ|2 + |β |2|δ |2

= |α|2(|γ|2 + |δ |2)+ |β |2(|γ|2 + |δ |2)
= |α|2 + |β |2 = 1. (4.6)

Analogously to the case of two qubits, the product state of three qubits A, B, and C,
which are in states |ψ⟩A, |φ⟩B, and |χ⟩C, respectively, is the 8-dimensional tensor product
of three one-qubit states:

|Ψ⟩ABC = |ψ⟩A ⊗|φ⟩B ⊗|χ⟩C. (4.7)

Unfortunately, there is no Bloch sphere representation anymore for quantum states
with more than one qubit.

4.2 Entanglement
The state (4.3) is not the most general two-qubit state. We have chosen the two quantum
bits being “separated” in the sense that each qubit had its own state. Then, their joint state
is simply the product state. This exactly what we are used to from our classical world. To
describe the state of two systems, you simply describe both systems individually.

However, the most general two-qubit state has the form

|Ψ⟩= a |00⟩+b |01⟩+ c |10⟩+d |11⟩, (4.8)

where |a|2 + |b|2 + |c|2 + |d|2 = 1. So what is the difference to (4.4)? Well, in (4.8) the
parameters a, b, c, and d are (except for the normalization) “free”. But in the state (4.4),
there are very special relations. Hence, (4.4) is a special instance of (4.8), using a = αγ ,
b = αδ , c = βγ , and d = βδ

Consider this state:

|Φ+⟩= 1√
2
(|00⟩+ |11⟩) =


1√
2

0
0
1√
2

. (4.9)
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It obviously obeys the normalization condition. However, the system of equations

αγ = a = 1√
2
, αδ = b = 0, (4.10)

βγ = c = 0, βδ = d = 1√
2
, (4.11)

does not have a solution. To see this, multiply the first and the last equation. That gives:
αγβδ = 1

2 . Then, multiply the second and the third: αδβγ = 0. That is a contradiction.
Thus, the state (4.9) cannot be written as a tensor product of two individual quantum states.
We call such a state entangled.

More formally, a state is entangled if and only if it cannot be written in the form of a
product state (4.3). For two qubits A and B:

|Ψ⟩ent ̸= |ψ⟩A ⊗|φ⟩B. (4.12)

Entanglement is the phenomenon when two or more quantum systems are correlated in
such a (non-classical) way that even a perfect and complete description of all individual
systems does not fully specify their joint state. And vice versa, knowing everything about
their joint state, does not imply maximal knowledge about the individual constituents.
When two or more systems are in an entangled state, they – in some sense – cannot be
thought of as individual systems anymore, even if they are separated in space. This is,
in fact, what Erwin Schrödinger called the “essence of quantum physics”. There is no
classical analogon for entanglement, i.e. there is no way how in our everyday world around
us classical objects would have such a characteristic.

As we will see later, entangled states can give rise to correlations (of measurement
results) whose “strength” cannot be achieved by any classical process. Moreover, entangle-
ment is a necessary resource for many quantum information technologies such as quantum
computing and entanglement-based quantum cryptography.

A very important set of entangled states are the so-called Bell states, one of which we
have seen already above. Let us introduce all four of them now:

|Φ+⟩= 1√
2
(|0⟩A ⊗|0⟩B + |1⟩A ⊗|1⟩B) =

|00⟩+|11⟩√
2

, (4.13)

|Φ−⟩= 1√
2
(|0⟩A ⊗|0⟩B −|1⟩A ⊗|1⟩B) =

|00⟩−|11⟩√
2

, (4.14)

|Ψ+⟩= 1√
2
(|0⟩A ⊗|1⟩B + |1⟩A ⊗|0⟩B) =

|01⟩+|10⟩√
2

, (4.15)

|Ψ−⟩= 1√
2
(|0⟩A ⊗|1⟩B −|1⟩A ⊗|0⟩B) =

|01⟩−|10⟩√
2

. (4.16)

There are many experimental ways to realize Bell states. One is spontaneous parametric
down conversion (see Figure 4.1), which creates a Bell state in the polarisation of two
photons, such as the so called singlet state

|Ψ−⟩= 1√
2
(|HV ⟩− |V H⟩). (4.17)

Measuring the two photons in the computational H/V basis will always lead to anti-
correlated outcomes: either the first photon is horizontally polarised and the second
is vertically polarised, or the first photon is vertically polarized and the second one is
horizontally polarised.
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Figure 4.1: Spontaneous parametric down conversion. A laser shines light on a non-linear
crystal. Individual photons can decay into a pair of two photons which exit along cones of
different opening angles and colors (photon frequencies). All photons on the left cones are
horizontally polarised. All photons on the right cones are vertically polarized. If a pair of
photons has the same color (green) and is selected along the cone intersection (drawn in
white), they become indistinguishable. This leads to a polarisation entangled Bell state of
the form (4.17). Picture taken from Ref. [9].

A prominent entangled state of three qubits is the so-called Greenberger-Horne-
Zeilinger (GHZ) state, which lives in an (23 = 8)-dimensional complex vector space:

|GHZ⟩= |000⟩+|111⟩√
2

. (4.18)

Exercise 4.2 Show that the 4 Bell states (4.13)-(4.16) form an orthonormal basis of
2-qubit states. ■

Solution: Blackboard or homework.

4.3 Post-Measurement States
Assume we are given the general two-qubit state

|Ψ⟩= α00 |00⟩+α01 |01⟩)+α10 |10⟩+α11 |11⟩. (4.19)

Let us perform a measurement in the computational basis. The (complex-valued) probabil-
ity amplitude for an outcome is the scalar product of the bra-vector of the outcome state
with the state |Ψ⟩. For the four possible outcomes 00, 01, 10, and 11, we get

⟨00|Ψ⟩= ⟨00|(α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩) = α00, (4.20)
⟨01|Ψ⟩= ⟨01|(α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩) = α01, (4.21)
⟨10|Ψ⟩= ⟨10|(α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩) = α10, (4.22)
⟨11|Ψ⟩= ⟨11|(α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩) = α11. (4.23)
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Here, we have used the orthonormality conditions: ⟨i j|i′ j′⟩= 1 only if i = i′ and j = j′.
Otherwise, it is 0. Have a look at (4.5) again.

We can also choose to measure only one qubit. Say, we measure only the second qubit
B and are interested in the probability amplitude to observe result 1:

⟨1|B|Ψ⟩= ⟨1|B
[
α00 |0⟩A|0⟩B +α01 |0⟩A|0⟩B +α10 |0⟩A|1⟩B +α11 |1⟩A|1⟩B

]
= α01 |0⟩A +α11 |1⟩A. (4.24)

The result is now not a scalar, but a state vector for qubit A. The probability to indeed
observe this outcome 1 for qubit B is |α01|2+ |α11|2 which is in general smaller than 1. We
have to divide (4.24) by the square root of this probability to get the correctly normalized
post-measurement state of qubit A:

|ψ⟩A = α01|0⟩A+α11|1⟩A√
|α01|2+|α11|2

. (4.25)

Exercise 4.3 Given the GHZ state (|000⟩ABC + |111⟩ABC)/
√

2, perform a measurement
on the third qubit, i.e. C, in the diagonal basis. What are the two possible post-
measurement states (depending on C’s outcomes + and −, respectively) of the first two
qubits A and B? ■

Solution: Blackboard or homework.

4.4 Multi-Qubit Gates
Two-qubit gates are unitary 4×4 matrices. A prominent example is the controlled NOT
gate, called CNOT (see Figure 4.2):

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (4.26)

If the first qubit (the control) is in state |0⟩, it leaves the second qubit (the target) unchanged.
If the control is in state |1⟩, a NOT operation on the target is performed. The first qubit
remains unchanged in any case. In the computational basis with a,b ∈ 0,1 and with ⊕
denoting the XOR operation, we can write:

|a,b⟩ CNOT−−−→ |a,a⊕b⟩, (4.27)
CNOT [a|00⟩+b|01⟩+ c|10⟩+d|11⟩] = a|00⟩+b|01⟩+ c|11⟩+d|10⟩. (4.28)

Let us compute one case explicitly, namely for the initial state |11⟩:

CNOT |11⟩=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
1

=


0
0
1
0

= |10⟩. (4.29)
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Figure 4.2: Each horizontal line represents a qubit. The CNOT gate consists of a control
(black dot) and and a target (the cross).

Figure 4.3: An entangling circuit: A Hadamard followed by a CNOT.

While classical computer circuits are composed of wires and logic gates, quantum
circuits are composed of wires and quantum gates. We are now in the position to cre-
ate a simple but powerful quantum circuit, i.e. a sequence of quantum gates (unitary
transformations) acting on a known initialization (see Figure 4.3).

Let us initialize our input qubits as |00⟩= |0⟩A|0⟩B. First, we apply the Hadamard gate
H on the first qubit. Since no action is performed on the second qubit, we apply the 2×2
identity matrix 12 = diag(1,1) on it. The total operation is the tensor product:

(H ⊗12)|00⟩AB = H|0⟩A ⊗12|0⟩B = |+⟩|0⟩AB

= 1√
2
(|0⟩A + |1⟩A)|0⟩B = 1√

2
(|00⟩AB + |10⟩AB). (4.30)

This is still a product state. Next, we apply the CNOT gate (and omit qubit labels):

CNOT 1√
2
(|00⟩+ |10⟩) = 1√

2
(|00⟩+ |11⟩). (4.31)

You hopefully immediately recognize the |Φ+⟩ Bell state. Our circuit created entanglement
out of an initially non-entangled product state.

There are, of course, also gates that act on more than 2 qubits. However, it is always
possible to decompose any given N-qubit gate into a sequence of 2-qubit gates.

Designing quantum circuits for useful applications is the field of quantum computation.
The most famous quantum algorithm is Shor’s algorithm that allows to find prime factors
of integers exponentially faster than the best known classical algorithm, which makes it an
existential threat to RSA cryptography. We refer to the winter semester lecture “Quantum
Computing”.
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5.1 No-Cloning
Typically, it is a rather trivial feature of classical bits that they can be copied. We can
simply read out the bit and obtain its value, and then create a second bit with the same
value as the first. In quantum mechanics, the situation is much trickier.

We are given a qubit in an unknown quantum state |ψ⟩= α|0⟩+β |1⟩, i.e. we do not
know the amplitudes α and β , and we would like to create another qubit in the same state.
If we measure our unknown qubit, we will collapse it into the basis of our choice. That
will tell us, in general, very little about α and β . E.g. if we measure in the computational
basis and get result 1, then we know that β cannot be 0 and that probably, but not certainly
|β |> |α|. But we don’t know much more than that. And since we had only this one qubit
and since this is now in the collapsed state, we are out of luck. Any future measurement
will act on the collapsed state. There is no more information to be gained from the original
state. Game over.

If we had (infinitely) many copies of our unknown qubit, then we could indeed measure
repeatedly and along multiple bases and find the unknown amplitudes. But in the task at
hand, we are given only one copy the state. Hence, the measurement approach does not
work.

Alternatively, let us try to construct a unitary transformation which acts as a copy
machine. We are seeking a unitary evolution U which, given any unknown input state |ψ⟩
and some “standard blank state” |s⟩, can copy the unknown state onto the blank state (see
Figure 5.1):

|ψ⟩|s⟩ U−→U(|ψ⟩|s⟩) = |ψ⟩|ψ⟩. (5.1)

That transformation should work for arbitrary input states. Let us denote by |φ⟩ another
state to be copied. And let us put qubit labels A (the unknown qubit) and B (the initally
blank qubit)

U(|ψ⟩A|s⟩B) = |ψ⟩A|ψ⟩B, (5.2)
U(|φ⟩A|s⟩B) = |φ⟩A|φ⟩B. (5.3)
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Figure 5.1: A unitary transformation U which can clone or copy any arbitrary input state
|ψ⟩ onto a standard blank input state |s⟩, e.g. the |0⟩ state. Does such a transformation
exit?

Now we take the scalar products of the left hand sides and the right hand sides: We multiply
the conjugate transpose of the left hand side of the first equation with the left hand side of
the second equation. And we multiply the conjugate transpose of the right hand side of the
first equation with the right hand side of the second equation

⟨ψ|A⟨s|BU†U |φ⟩A|s⟩B = ⟨ψ|A⟨ψ|B|φ⟩A|φ⟩B. (5.4)

Since U is unitary (i.e. U†U = 1) and since the blank state is properly normalized (i.e.
⟨s|s⟩= 1) we obtain

⟨ψ|A|φ⟩A = ⟨ψ|A|φ⟩A ⟨ψ|B|φ⟩B. (5.5)

These are all numbers, and we can write more concisely:

⟨ψ|φ⟩= ⟨ψ|φ⟩2. (5.6)

But this last equation holds only in very special cases, namely when |ψ⟩ and |φ⟩ are the
same (then 1 = 1) or when they are orthogonal (then 0 = 0). For all other unknown input
states with ⟨ψ|φ⟩ ̸∈ {0,1}, we have reached a contradiction.

The only way to resolve this contradiction is to conclude that the universal quantum
cloning machine U from Equation (5.1) does not exist. This is the no-cloning theorem due
to Wootters and Zurek [15]: It is impossible to perfectly copy an unknown quantum state
using using a unitary transformation.

5.2 Superdense Coding
In communication protocols, two or more parties transmit information to each other via
some physical process. In the following, let us consider only two parties named Alice and
Bob.

A natural question that we can ask ourselves is: How much information – measured in
terms of classical bits – can Alice communicate to Bob by sending N qubits? The answer
is: At most N bits.

Assume that Bob knows nothing about the incoming qubits, i.e. in particular Alice
has not told him in which basis he should measure them. For example, Alice may have
chosen the |+⟩/|−⟩ basis to encode information. She prepares a |+⟩ state to encode bit
0 and state |−⟩ to encode 1. If Bob measures the incoming N qubits in the |+⟩/|−⟩
basis, he will completely retrieve the information Alice has sent him. If, however, he
measures, for instance, in the computational basis, he will have complete randomness for
his outcomes. His outcome sequence of N bits will contain no information about Alice’s
message whatsoever.
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Superdense coding (also simply called dense coding) is a quantum communication
protocol in which transmitting N qubits allows to communicate more than N bits of
information – given the two parties share entangled states. It was proposed by Bennett and
Wiesner in 1970 and later published in 1992 [3]. Let us go through the protocol:

Step 1: Entanglement sharing. The Bell state

|Φ+⟩= 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) (5.7)

is created by a third party named Charlie and shared between Alice and Bob, i.e. qubit A
is sent to Alice’s laboratory and qubit B is sent to Bob’s laboratory. (Alternatively, Alice
could create the Bell state, send one qubit to Bob, and keep one qubit for herself.)

Step 2: Encoding. Alice would like to send a 2-bit string a1a2 ∈ {00,01,10,11} to
Bob. If she wants to send 00, then she leaves her qubit untouched, i.e. she applies the
identity operation 1A. The joint quantum state will not change:

00 : |Φ+⟩ 1A−→ |Φ+⟩= 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B). (5.8)

We have not explicitly written (and also subsequently will not write) Bob’s action above
the arrow, which is always an identity operation 1B on his qubit, as he waits passively in
his lab and does nothing in the encoding step.

In case Alice wants to transmit the string 01, she applies the Pauli X (or quantum NOT)
gate X =

(
0 1
1 0

)
onto her qubit, which will cause a bit flip. The total quantum state will

transform into yet another Bell state, namely |Ψ+⟩:

01 : |Φ+⟩ XA−→ |Ψ+⟩= 1√
2
(|0⟩A|1⟩B + |1⟩A|0⟩B). (5.9)

If Alice wants to send the string 10, then she applies the Pauli Z (or phase flip) gate
Z =

(
1 0
0 −1

)
. This will put a −1 factor in front of Alice’s |1⟩ state and transform the 2-qubit

quantum state into a different Bell state, namely |Φ−⟩:

10 : |Φ+⟩ ZA−→ |Φ−⟩= 1√
2
(|0⟩A|0⟩B −|1⟩A|1⟩B). (5.10)

If she wants to transmit 11, she first applies X and then Z. This will first create a bit flip
and then put a factor −1 on her |1⟩ state. This can also be written as Z X = iY =

(
0 1
−1 0

)
,

where Y is the Pauli Y gate. This transformation will lead to the last Bell state |Ψ−⟩:

11 : |Φ+⟩ ZA XA−−−→ |Ψ−⟩= 1√
2
(|0⟩A|1⟩B −|1⟩A|0⟩B). (5.11)

In summary, Alice can encode one of the 4 possible 2-bit strings a1a2 ∈ {00,01,10,11}
by choosing one out of 4 different transformations Za1

A Xa2
A which each creates one of the 4

possible Bell states.
Step 3: Transmission. This step is conceptually simple – Alice sends her qubit to Bob.

Experimentally, this requires a quantum channel. A photon, e.g., may be sent in a glass
fiber or through free space via telescopes. Other physical qubit realizations require their
own techniques.

Step 4: Decoding. The last step in the dense coding protocol is for Bob, who is now
in possession of both qubits, to perform a measurement in the Bell basis. Since the Bell
states form an orthonormal basis, he can distinguish the 4 possible states with certainty.
How can he do this?
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Figure 5.2: Dense coding: Charlie prepares a |Φ+⟩ Bell state for Alice and Bob. Alice
encodes a 2-bit message a1a2 into her qubit by applying Za1

A Xa2
A . After Bob receives Alice’s

qubit, he can decode the message with a sequence of a CNOT and a Hadamard gate and
measurement in the computational basis. This allows Alice to transmit 2 bits by only
sending 1 qubit. Picture adapted from Ref. [16].

Bob first applies a CNOT operation with A as control and B as target. Let’s do this for
all four possible states:

CNOT |Φ+⟩= 1√
2
(|0⟩A|0⟩B + |1⟩A|0⟩B), (5.12)

CNOT |Ψ+⟩= 1√
2
(|0⟩A|1⟩B + |1⟩A|1⟩B), (5.13)

CNOT |Φ−⟩= 1√
2
(|0⟩A|0⟩B −|1⟩A|0⟩B), (5.14)

CNOT |Ψ−⟩= 1√
2
(|0⟩A|1⟩B −|1⟩A|1⟩B). (5.15)

Then, Bob applies the operation HA ⊗1B, i.e. the Hadamard transformation on qubit A
and the identity on qubit B. Recall that H|0⟩= |+⟩ and H|1⟩= |−⟩, see (2.56) and (2.57).
Again, let’s do this for all four options from above:

(HA ⊗1B)
1√
2
(|0⟩A|0⟩B + |1⟩A|0⟩B) =

1√
2
(|+⟩A|0⟩B + |−⟩A|0⟩B)

= 1
2 [(|0⟩A + |1⟩A)|0⟩B +(|0⟩A −|1⟩A)|0⟩B] = |0⟩A|0⟩B, (5.16)

(HA ⊗1B)
1√
2
(|0⟩A|1⟩B + |1⟩A|1⟩B) =

1√
2
(|+⟩A|1⟩B + |−⟩A|1⟩B)

= 1
2 [(|0⟩A + |1⟩A)|1⟩B +(|0⟩A −|1⟩A)|1⟩B] = |0⟩A|1⟩B, (5.17)

(HA ⊗1B)
1√
2
(|0⟩A|0⟩B −|1⟩A|0⟩B) =

1√
2
(|+⟩A|0⟩B −|−⟩A|0⟩B)

= 1
2 [(|0⟩A + |1⟩A)|0⟩B − (|0⟩A −|1⟩A)|0⟩B] = |1⟩A|0⟩B, (5.18)

(HA ⊗1B)
1√
2
(|0⟩A|1⟩B −|1⟩A|1⟩B) =

1√
2
(|+⟩A|1⟩B −|−⟩A|1⟩B)

= 1
2 [(|0⟩A + |1⟩A)|1⟩B − (|0⟩A −|1⟩A)|1⟩B] = |1⟩A|1⟩B. (5.19)

After these operations, Bob can measure both qubits in the computational basis. As
outcomes, Bob will exactly obtain the 2-bit string that Alice has encoded earlier: b1b2 =
a1a2. The dense coding scheme is depicted in Figure 5.2. Note that Alice’s and Bob’s
laboratories can be arbitrarily widely separated in space.

In summary, superdense coding teaches us one of Bennett’s laws of information. Let’s
denote the resource of a shared entangled state as 1 ebit (short for “entanglement bit”). Note
that 1 ebit involves 2 qubits. This 1 ebit together with 1 bit of (classical) communication
allows to communicate 2 bits of information:

1 ebit+1 bit ≥ 2 bits. (5.20)
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Here, where ≥ means "can do the job of".
Superdense coding is a secure form of communication. A potential eavesdropper,

typically named Eve, who may intercept the qubit which Alice sends to Bob would be
unable to decode the message. Without access to Bob’s B qubit, the intercepted qubit A
does not contain any information at all and will give random results (in all measurement
bases). In a later chapter about mixed states, we will learn the technique to prove this
statement.

5.3 Quantum Teleportation
Teleportation is usually a term we know from Science Fiction. Many of you may think
about “beaming” in Star Trek. (Legend has it that the transporter in Star Trek was only
invented because the landing scenes of shuttles would have been too expensive.) In
teleportation, some material object, e.g. a human, disappears in one place and appears
almost instantaneously at a remote location.

Quantum teleportation is a scheme where Alice is provided with an unknown quantum
bit which should be “reconstructed” at Bob’s remote location. No physical object – in
particular not the qubit itself – but only (classical) information is transmitted. Quantum
teleportation was proposed in 1993 [2] and experimentally realized for the first time in
1997 [4].

Assume for a moment that Alice would somehow know the quantum state that needs
to be teleported to Bob. (Either she prepared the state herself. Or she was provided
with (infinitely) many copies which allowed her to precisely determine the amplitudes,
which are complex numbers in a continuous space.) Then she would have to transmit an
(infinitely) large amount of classical information to Bob such that he can prepare the qubit
state. Remarkably, quantum teleportation works

(i) with only one copy at Alice’s side of the unknown quantum state to be teleported,
(ii) without Alice ever knowing the amplitudes of this state, and

(iii) with transmission of only 2 bits of classical information from Alice to Bob.
The prerequisite for this “magic” is that Alice and Bob initially share a Bell state (also
called an EPR pair). Figure 5.3 schematically illustrates the setup.

Let’s go through the protocol step by step: First, just like in dense coding, Alice and
Bob share an entangled Bell state. Any of the four Bell states will work, so let us take –
without loss of generality, the |Φ+⟩ state:

|Φ+⟩AB = 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B). (5.21)

Qubit A is in Alice’s laboratory, and qubit B is in Bob’s. Alice is now provided with
another qubit C in an arbitrary (and unknown) state to be teleported:

|ψ⟩C = α |0⟩C +β |1⟩C. (5.22)

The total 3-qubit state reads:

|ψ⟩C|Φ+⟩AB = (α |0⟩C +β |1⟩C) 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B). (5.23)

The crucial step of the protocol is that Alice now measures her two qubits A and C in the
Bell basis. Such a measurement effectively projects her two qubits – which had nothing to
do with each other unitl now – into an entangled sate.
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Suppose particle 1 which Alice wants to teleport is in the initial
state jw〉1 ¼ aj ↔ 〉1 þ bj l 〉1 (Fig. 1a), and the entangled pair of
particles 2 and 3 shared by Alice and Bob is in the state:

jw2 〉23 ¼
1
���

2
p j↔〉2j l 〉3 2 j l 〉2j↔〉3

ÿ �

ð2Þ

That entangled pair is a single quantum system in an equal
superposition of the states | ↔〉2 | l 〉3 and | l 〉2 | ↔〉3. The entangled
state contains no information on the individual particles; it only
indicates that the two particles will be in opposite states. The
important property of an entangled pair is that as soon as a
measurement on one of the particles projects it, say, onto |↔〉 the
state of the other one is determined to be | l 〉, and vice versa. How
could a measurement on one of the particles instantaneously
influence the state of the other particle, which can be arbitrarily

far away? Einstein, among many other distinguished physicists,
could simply not accept this ‘‘spooky action at a distance’’. But this
property of entangled states has now been demonstrated by numer-
ous experiments (for reviews, see refs 9, 10).

The teleportation scheme works as follows. Alice has the particle 1
in the initial state | w〉1 and particle 2. Particle 2 is entangled with
particle 3 in the hands of Bob. The essential point is to perform a
specific measurement on particles 1 and 2 which projects them onto
the entangled state:

jw2 〉12 ¼
1
���

2
p j↔〉1j l 〉2 2 j l 〉1j↔〉2

ÿ �

ð3Þ

This is only one of four possible maximally entangled states into
which any state of two particles can be decomposed. The projection
of an arbitrary state of two particles onto the basis of the four states
is called a Bell-state measurement. The state given in equation (3)
distinguishes itself from the three other maximally entangled states
by the fact that it changes sign upon interchanging particle 1 and
particle 2. This unique antisymmetric feature of |w−〉12 will play an
important role in the experimental identification, that is, in mea-
surements of this state.

Quantum physics predicts1 that once particles 1 and 2 are
projected into | w−〉12, particle 3 is instantaneously projected into
the initial state of particle 1. The reason for this is as follows. Because
we observe particles 1 and 2 in the state |w−〉12 we know that whatever
the state of particle 1 is, particle 2 must be in the opposite state, that
is, in the state orthogonal to the state of particle 1. But we had
initially prepared particle 2 and 3 in the state |w−〉23, which means
that particle 2 is also orthogonal to particle 3. This is only possible if
particle 3 is in the same state as particle 1 was initially. The final state
of particle 3 is therefore:

jw〉3 ¼ aj↔〉3 þ bj l 〉3 ð4Þ

We note that during the Bell-state measurement particle 1 loses its
identity because it becomes entangled with particle 2. Therefore the
state |w〉1 is destroyed on Alice’s side during teleportation.

This result (equation (4)) deserves some further comments. The
transfer of quantum information from particle 1 to particle 3 can
happen over arbitrary distances, hence the name teleportation.
Experimentally, quantum entanglement has been shown11 to survive
over distances of the order of 10 km. We note that in the teleporta-
tion scheme it is not necessary for Alice to know where Bob is.
Furthermore, the initial state of particle 1 can be completely
unknown not only to Alice but to anyone. It could even be quantum
mechanically completely undefined at the time the Bell-state mea-
surement takes place. This is the case when, as already remarked by
Bennett et al.1, particle 1 itself is a member of an entangled pair and
therefore has no well-defined properties on its own. This ultimately
leads to entanglement swapping12,13.

It is also important to notice that the Bell-state measurement does
not reveal any information on the properties of any of the particles.
This is the very reason why quantum teleportation using coherent
two-particle superpositions works, while any measurement on one-
particle superpositions would fail. The fact that no information
whatsoever is gained on either particle is also the reason why
quantum teleportation escapes the verdict of the no-cloning
theorem14. After successful teleportation particle 1 is not available
in its original state any more, and therefore particle 3 is not a clone
but is really the result of teleportation.

A complete Bell-state measurement can not only give the result
that the two particles 1 and 2 are in the antisymmetric state, but with
equal probabilities of 25% we could find them in any one of the
three other entangled states. When this happens, particle 3 is left in
one of three different states. It can then be brought by Bob into the
original state of particle 1 by an accordingly chosen transformation,
independent of the state of particle 1, after receiving via a classical
communication channel the information on which of the Bell-state

Figure 1 Scheme showing principles involved in quantum teleportation (a) and

the experimental set-up (b). a, Alice has a quantum system, particle 1, in an initial

state which she wants to teleport to Bob. Alice and Bob also share an ancillary

entangled pair of particles 2 and 3 emitted by an Einstein–Podolsky–Rosen (EPR)

source. Alice then performs a joint Bell-state measurement (BSM) on the initial

particle and one of the ancillaries, projecting them also onto an entangled state.

After she has sent the result of her measurement as classical information to Bob,

he canperform aunitary transformation (U) on the otherancillaryparticle resulting

in it being in the state of the original particle. b, A pulse of ultraviolet radiation

passing through a nonlinear crystal creates the ancillary pair of photons 2 and 3.

After retroflection during its second passage through the crystal the ultraviolet

pulse creates another pair of photons, one of which will be prepared in the initial

state of photon 1 to be teleported, the otherone servingas a trigger indicating that

a photon to be teleported is under way. Alice then looks for coincidences after a

beam splitter BS where the initial photon and one of the ancillaries are

superposed. Bob, after receiving the classical information that Alice obtained a

coincidence count in detectors f1 and f2 identifying the |w−〉12 Bell state, knows that

his photon 3 is in the initial state of photon 1 which he then can check using

polarization analysis with the polarizing beam splitter PBS and the detectors d1

and d2. The detector p provides the information that photon 1 is under way.

Figure 5.3: Quantum teleportation scheme. An Einstein-Podolsky-Rosen (EPR) source
creates a Bell pair which is shared between Alice and Bob. An arbitrary initial state is sent
to Alice. In a Bell state measurement (BSM), she measures that input state jointly with her
entangled qubit. The measurement result – corresponding to one of the four possible Bell
states, i.e. 2 bits of information – is transmitted to Bob, who uses this classical information
to perform a simple transformation on his qubit which restores the initial state. Picture
taken from the article of the first experimental demonstration [4].

We need to rewrite our state (5.23) such that Alice’s two-qubit computational basis
states |00⟩AC, |01⟩AC, |10⟩AC, and |11⟩AC are expressed in the Bell basis. This can be done
with the help of the following superpositions of Bell states:

1√
2
(|Φ+⟩CA + |Φ−⟩CA) =

1
2 (|00⟩CA + |11⟩CA + |00⟩CA −|11⟩CA) = |00⟩CA, (5.24)

1√
2
(|Ψ+⟩CA + |Ψ−⟩CA) =

1
2 (|01⟩CA + |10⟩CA + |01⟩CA −|10⟩CA) = |01⟩CA, (5.25)

1√
2
(|Ψ+⟩CA −|Ψ−⟩CA) =

1
2 (|01⟩CA + |10⟩CA −|01⟩CA + |10⟩CA) = |10⟩CA, (5.26)

1√
2
(|Φ+⟩CA −|Φ−⟩CA) =

1
2 (|00⟩CA + |11⟩CA −|00⟩CA + |11⟩CA) = |11⟩CA. (5.27)

The state (5.23) has four terms. We rewrite them one by one:

1√
2

α |00⟩CA|0⟩B = 1
2 α
(
|Φ+⟩CA + |Φ−⟩CA

)
|0⟩B, (5.28)

1√
2

α |01⟩CA|1⟩B = 1
2 α
(
|Ψ+⟩CA + |Ψ−⟩CA

)
|1⟩B, (5.29)

1√
2

β |10⟩CA|0⟩B = 1
2 β
(
|Ψ+⟩CA −|Ψ−⟩CA

)
|0⟩B, (5.30)

1√
2

β |11⟩CA|1⟩B = 1
2 β
(
|Φ+⟩CA −|Φ−⟩CA

)
|1⟩B. (5.31)

We add up all four terms and simplify:

|ψ⟩C|Φ+⟩AB =1
2

[
|Φ+⟩CA (α|0⟩B +β |1⟩B)+ |Φ−⟩CA (α|0⟩B −β |1⟩B)

+ |Ψ+⟩CA (α|1⟩B +β |0⟩B)+ |Ψ−⟩CA (α|1⟩B −β |0⟩B)
]
. (5.32)

This is the same state as (5.23), just written in the Bell basis of qubits A and C. And,
remarkably, we can already see that Bob’s qubit is in a state that is either equal to or closely
resembles the unknown input state.

We have already established in our analysis of superdense coding that a measurement
in the Bell basis can be performed perfectly. Alice needs to apply a CNOT and a Hadamard
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Figure 5.4: Circuit representation of quantum teleportation. The top wire corresponds
to the input state |ψ⟩ of qubit C which is sent to Alice. The center wire (A) and bottom
wire (B) represent the shared Bell state |β00⟩ = |Φ+⟩AB. Alice performs a Bell state
measurement on qubits C and A via a CNOT and Hadamard. The two classical output bits
M1 and M2 are communicated to Bob who can perform a unitary transformation ZM1XM2

on his qubit B to perfectly recreate the input state |ψ⟩. Picture adapted from Ref. [19].

and then measure in the computational basis. Her outcome bits are called M1 ∈ {0,1}
and M2 ∈ {0,1}. All four outcomes M1M2 ∈ {00,01,10,11} have the same probability
1
4 . Once Alice has performed the Bell state measurement, she transmits the outcome as a
string of two classical bits M1M2 to Bob:

|Φ+⟩CA → M1M2 = 00 (5.33)

|Ψ+⟩CA → M1M2 = 01 (5.34)

|Φ−⟩CA → M1M2 = 10 (5.35)

|Ψ−⟩CA → M1M2 = 11 (5.36)

What should Bob do now? Well, since he also knows the state decomposition (5.32), he
can act accordingly:

• If Bob receives the bit string M1M2 = 00, he knows that Alice has found |Φ+⟩AC.
Therefore, he does not need to do anything (i.e. he applies the identity operation).
His qubit B is already exactly in the state α|0⟩B +β |1⟩B in which qubit C was.

• If Bob receives the bit string M1M2 = 01, he knows that Alice has measured |Ψ+⟩AC
and that his qubit is in state α|1⟩B +β |0⟩B. All he needs to do is apply the (bit flip)
X gate. This will transform his qubit to the desired teleported state.

• If Bob receives M1M2 = 10 (Alice measured |Φ−⟩), his qubit is in state α|0⟩B −
β |1⟩B. He needs apply the (phase flip) Z gate.

• If Bob receives M1M2 = 11 (Alice measured |Ψ−⟩), his qubit is in state α|1⟩B −
β |0⟩B. He needs to first apply X and then Z.

In summary, by applying ZM1XM2 , Bob can restore the unknown input state of qubit C
“in” his qubit B on his side. The circuit representation of quantum teleportation is shown in
Figure 5.4. In the circuit, where time runs from left to right, XM2 is applied before ZM1 .
This corresponds to the transformation ZM1XM2 , which acts from the left onto a state, i.e.
XM2 is applied first.

Some interesting questions emerge:
1. Does quantum teleportation violate the physical principle that nothing – neither

an object nor information – can propagate faster than the (vacuum) speed of light? This
principle is a cornerstone of relativity theory and thus of all physics. The answer is
no. Qubit C is physically not transmitted at all, only its state is teleported. And for the
teleportation to succeed, Alice needs to classically communicate information to Bob, e.g.,
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Figure 5.5: Quantum teleportation over 143 km from Tenerife (left: the optical ground
station) to La Palma, 2400 meters above sea level. Picture taken from Ref. [10].

via electromagnetic waves or a telephone line. This communication is bounded by the
speed of light. Without this classical information, teleportation does not provide Bob with
any information at all about qubit C.

2. Does quantum teleportation violate the the no-cloning theorem? The answer is again
no. After teleportation, qubit B is in the correct teleported quantum state. Qubit C, however,
is not anymore in its original state but in the post-measurement state corresponding to
Alice’s measurement outcome.

3. What can we learn from teleportation? We can deduce another one of Bennett’s
laws of information, namely that 1 ebit together with 2 bits of classical information is as
powerful as directly communicating a qubit:

1 ebit+2 bits ≥ 1 qubit. (5.37)

Using photons, quantum teleportation can be achieved over very long distances. In
glass fibers, dozens or hundreds of kilometers are feasible. In free space, the Earth based
record is 143 km (using telescope ground stations, see Figure 5.5) [12], and with satellites
thousands of kilometers have been reached.

5.4 Entanglement Swapping and Quantum Repeaters
Entanglement swapping was put forward in 1993 [17] and is closely related to quantum
teleportation. The schematic setup is shown in Figure 5.6. It works as follows: There are
two EPR sources. The first source produces a Bell pair of qubits labelled 1 and 2. The
second source produces a Bell pair of qubits 3 and 4. Qubits 2 and 3 are then subjected to
a Bell state measurement (BSM), which “projects” qubits 1 and 4 into a Bell pair although
these two qubits have never interacted in any way whatsoever. Which particular Bell state
qubits 1 and 4 end up in, depends on the initially produced Bell pair and the result of the
Bell state measurement.
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We experimentally entangle freely propagating particles that never physically interacted with one
another or which have never been dynamically coupled by any other means. This demonstrates that
quantum entanglement requires the entangled particles neither to come from a common source nor to
have interacted in the past. In our experiment we take two pairs of polarization entangled photons and
subject one photon from each pair to a Bell-state measurement. This results in projecting the other two
outgoing photons into an entangled state. [S0031-9007(98)05913-4]

PACS numbers: 03.65.Bz, 03.67.–a, 42.50.Ar

Entanglement is one of the most fundamental features
of quantum mechanics. It is at the heart of the Einstein-
Podolsky-Rosen paradox, of Bell’s inequalities, and of
the discussions of the nonlocality of quantum mechanics.
Thus far, entanglement has been realized either by having
the two entangled particles emerge from a common source
[1], or by having two particles interact with each other [2].
Yet, an alternative possibility to obtain entanglement is to
make use of a projection of the state of two particles onto
an entangled state. This projection measurement does not
necessarily require a direct interaction between the two
particles: When each of the particles is entangled with
one other partner particle, an appropriate measurement, for
example, a Bell-state measurement, of the partner particles
will automatically collapse the state of the remaining two
particles into an entangled state. This striking application
of the projection postulate is referred to as entanglement
swapping [3–5], and in this Letter we report its first
experimental realization.

Consider two EPR sources, simultaneously emitting
each a pair of entangled particles (Fig. 1). In anticipation
of our experiments we assume that these are polarization
entangled photons in the state

jCl1234 ­
1
2 sjHl1jV l2 2 jV l1jHl2d

3 sjHl3jV l4 2 jV l3jHl4d . (1)

Here jHl or jV l indicates the state of a horizontally or a
vertically polarized photon, respectively. The total state
describes the fact that photons 1 and 2 (3 and 4) are
entangled in an antisymmetric polarization state. Yet, the
state of pair 1-2 is factorizable from the state of pair 3-4;
that is, there is no entanglement of any of the photons 1 or
2 with any of the photons 3 or 4.

We now perform a joint Bell-state measurement on
photons 2 and 3; that is, photons 2 and 3 are projected onto
one of the four Bell states which form a complete basis for

FIG. 1. Principle of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. One photon from each pair (photons 2 and
3) is subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.

0031-9007y98y80(18)y3891(4)$15.00 © 1998 The American Physical Society 3891

Figure 5.6: In entanglement swapping, two entangled Bell pairs are created by two EPR
sources. Qubit 2 from the first pair and qubit 3 from the second pair are then subjected to a
Bell state measurement. This projects qubits 1 and 4 into a Bell state. Picture taken from
Ref. [17].

Figure 5.7: A quantum repeater allows to create entanglement between two distant locations
using multiple pair sources and entanglement swapping sites. Picture from Ref. [13].

Exercise 5.1 Start with the initial 4-particle state of two Bell (singlet) pairs |Ψ⟩1234 =
|Ψ−⟩12|Ψ−⟩34. Project qubits 3 and 4 onto the singlet state by applying the bra ⟨Ψ−|23
from the left. Compute the resulting state of qubits 1 and 4. ■

Solution: Blackboard or homework.
Entanglement swapping is at the heart of the quantum repeater which itself is likely an

essential tool for building large scale quantum networks. Assume that Alice and Bob would
like to share entangled Bell pairs but are too far apart from each other such that this is
technologically not possible, e.g. due to transmission loss in glass fibers. Figure 5.7 shows
the solution: In a quantum repeater scheme, many Bell pairs are created simultaneously at
different spatially distant locations. Entanglement swapping (and quantum memories) are
then used to create an entangled pair between Alice and Bob.





6. Bell’s Inequality

6.1 The EPR Argument
Already in the early years of quantum mechanics, some of its founding fathers – in particu-
lar Albert Einstein and Erwin Schrödinger – were very unsatisfied with its probabilistic
nature. Einstein famously wrote in 1926 in a letter to Max Born: “Jedenfalls bin ich
überzeugt, daß der [Alte] nicht würfelt.” (“I, at any rate, am convinced that [He] does not
throw dice.”) And, also in 1926, Schrödinger wrote: “Wenn es doch bei dieser verdammten
Quantenspringerei bleiben soll, so bedaure ich, mich mit der Quantentheorie überhaupt
beschäftigt zu haben.” (“If all this damned quantum jumping were really here to stay, I
should be sorry I ever got involved with quantum theory.”)

In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) put forward a
thought experiment in which two position-momentum entangled particles at distant loca-
tions – say one qubit is with Alice and the other one with Bob in a different laboratory
– show quantum correlations in mutually exclusive properties [7]. Position and momen-
tum can be thought as analogs to the computational and the diagonal basis. These are
so-called non-commuting properties, i.e. you cannot measure them simultaneously, and a
measurement of one property will change the outcome statistics of the other property.

We will discuss the EPR argument in a variant due to David Bohm, i.e. we will not
use position and momentum (as in the original paper) but qubits, as we have developed
the necessary formalism already: Assume that Alice and Bob share an entangled singlet
state. The singlet state has the remarkable property that Alice’s and Bob’s results are
anti-correlated not only in the computational basis, but also in the x (and y, for that matter)
basis:

|Ψ−⟩= |01⟩−|10⟩√
2

=− |+−⟩−|−+⟩√
2

. (6.1)

If Alice chose to measure her particle in the computational |0⟩/|1⟩ basis and observed
result Az ∈ {0,1}, she would know with certainty that a computational basis measurement
on Bob’s particle would yield the opposite outcome, i.e. Bz = 1 if Az = 0, and Bz = 0 if
Az = 1. If, however, Alice chose to measure her particle in the diagonal |+⟩/|−⟩ basis and
observed result Ax ∈ {+,−}, she would know with certainty that a measurement of Bob’s
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particle in the diagonal basis would lead to the opposite result, i.e. Bx =− if Ax =+, and
Bx =+ if Ax =−.

Which property to measure on her particle, is Alice’s free choice. And since Bob’s
laboratory is at a distant location, the “reality” of his particle must not depend on what
Alice does in her lab. So, actually, both the computational basis state and the diagonal basis
state of Bob’s particle must “exist” independent of and prior to Alice’s measurement. In
other words: Both outcomes of Bob – the one in the computational (Bz) and the one in the
diagonal basis (Bx) – must simultaneously be elements of reality as they can be predicted
with certainty. This contradicts quantum mechanics which cannot give such a “complete”
description of Bob’s particle. In quantum mechanics, there exists no qubit state which can
simultaneously define with certainty the outcome of a computational-basis measurement
and the outcome of a diagonal-basis measurement. Therefore, EPR deduced that quantum
mechanics is incomplete. In the final sentence of the paper, they expressed their believe
that a complete description should be possible.

Niels Bohr – as the leading proponent of the Copenhagen interpretation – rejected
EPR’s viewpoint by stressing that one is not allowed to draw conclusions about (Bob’s)
reality based on unperformed measurements (by Alice). However, the search for hidden
variables had started. These hidden variables would allow a complete description of
physical reality “underneath” the quantum state.

Exercise 6.1 Prove the second equality sign in (6.1). ■

Solution: Blackboard or homework.

6.2 Local Realism
It was an open question for many decades after the EPR paper, how to find a hidden
variable description – i.e. a completion – of quantum mechanics. Einstein himself was
certain that it should exist. In 1964, however, John Bell demonstrated that the world view
of local realism is, in fact, incompatible with the predictions of quantum mechanics [1].

Local realism is the classical worldview in which the following two assumptions hold:
• Realism: All properties of objects exist prior to and independent of measurement.

This means that there are hidden variables which, in principle, allow a complete
description of physical reality.

• Locality: No physical influence can travel faster than the vacuum speed of light. This
is the cornerstone of the special theory of relativity and one of the most fundamental
principles in all of physics.

There is a third assumption called Freedom of Choice (or Measurement Independence)
which postulates that measurement settings can be chosen statistically independently from
the hidden variables.

Bell’s theorem proves the incompatibility of local hidden variable theories and quantum
mechanics. It implies that either local realism or quantum mechanics must be wrong.
Moreover, an experiment can now decide between the two theories in the sense that it can
rule out one of them. (No experiment can, of course, prove the other surviving theory.
In fact, no scientific theory can ever be proven as that would require infinitely many
experiments in infinitely many different circumstances. Experiments can only falsify a
theory, on the one hand, or give more credibility to it, on the other. Natural science differs
radically from mathematics in that sense, as in the latter statements can really be proven.)
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Alice

a2a1

A =+1
A =−1 Bob

b2b1

B =+1
B =−1Source

Figure 6.1: In a CHSH setup, a source emits pairs of entangled particles. For each arriving
particle, Alice and Bob can each choose between two measurement settings. And each
party observes one of two possible outcomes for every measured particle.

6.3 The CHSH Inequality
We will go through this groundbreaking result of Bell not via his original paper but using a
simpler derivation due to Clauser, Horne, Shimony, and Holt (CHSH) [6]. Let us consider
Figure 6.1.

A source in the middle of the setup sequentially emits pairs of particles. Let’s denote
the pairs by i = 1, ...,n, i.e. there are n runs of the experiment. From each pair, one particle
is sent to Alice, and the other is sent to Bob. In each run i, each particle carries a hidden
variable (vector) λ(i) which should be thought of as a complete “instruction list” how it
should behave upon future measurements. It is not in any way restrictive that Alice’s
and Bob’s particle of pair i carry the same λ(i). Rather the opposite. You can think that
λ(i) = (λ

(i)
A ,λ

(i)
B ), i.e. that Alice’s particle not only carries all instructions for itself but also

all instructions for Bob’s particle.
For each arriving particle i, Alice can choose her measurement setting a(i) between

two options (angles) a1 and a2. Similarly for Bob, who chooses his setting b(i) between b1
and b2. E.g. for run i = 3, Alice may choose setting a(3) = a1 and Bob may choose setting
b(3) = b2.

Each particle is then measured in the corresponding basis, and the results are denoted
as A(i) and B(i), respectively. The outcomes are dichotomic, i.e. only the two values +1
and −1 are possible. E.g. in run 5, Alice may choose setting a2 and Bob may choose b1.
Her outcome is +1 and his is −1. Then we would write this as A(5)2 =+1 and B(5)

1 =−1,
i.e. the subscripts denote the setting choices.

The assumption of realism implies that in every run, the hidden variable determines
Alice’s outcomes for both setting choices. Although only one choice can actually be
implemented, both measurement results “exist”. Similar for Bob. We still need to explicitly
allow that the measurement results not only depend on the hidden variable and the local
setting choice, but also on the setting choice of the other party. That means, in realism we
have:

A(i) = A(λ(i),a(i),b(i)), (6.2)

B(i) = B(λ(i),b(i),a(i)). (6.3)

The assumption of locality implies that – given Alice’s and Bob’s choices and mea-
surements are space-like separated in the sense of special relativity such that not even light
can travel fast enough to communicate information – Alice’s result does not depend on
Bob’s setting choice and vice versa. Hence, we obtain

A(i) = A(λ(i),a(i)), (6.4)
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B(i) = B(λ(i),b(i)). (6.5)

Thus, local realism implies the existence of all four outcome values and the fact that they
depend only on the hidden variable and the local setting choice (let us suppress the index i
for better readability):

A1 = A(λ ,a1), (6.6)
A2 = A(λ ,a2), (6.7)
B1 = B(λ ,b1), (6.8)
B2 = B(λ ,b2). (6.9)

Now, let us consider the following algebraic combination:

A1 (B1 +B2)+A2 (B1 −B2) =±2. (6.10)

It holds in every run i. Proof: If B1 = B2, the second bracket vanishes. The first bracket
is either 1+ 1 = 2 or −1− 1 = −2. This gets multiplied by A1 which is +1 or −1. In
any case, the result is +2 or −2. If, on the other hand, B1 ̸= B2, the first bracket vanishes.
Then the second bracket is either +2 or −2. Multiplication with A2, which is +1 or −1,
leads again to result +2 or −2.

We reintroduce proper notation with indices and rewrite the above expression:

A(i)1 B(i)
1 +A(i)1 B(i)

2 +A(i)2 B(i)
1 −A(i)2 B(i)

2 =±2. (6.11)

Now, let us calculate the expectation value over all runs i:

⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩=
1
n

n

∑
i=1

[A(i)1 B(i)
1 +A(i)1 B(i)

2 +A(i)2 B(i)
1 −A(i)2 B(i)

2 ].

Clearly, the average over lots of +2’s and −2’s cannot exceed +2. Similarly, it cannot fall
below −2. Thus, we can write:

S ≡ |⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩| ≤ 2. (6.12)

This is the famous CHSH inequality, which holds for all local hidden variable theories.
If Alice and Bob perform n runs and randomly choose their settings in each run, then

in roughly n/4 cases they have chosen settings a1,b1. The outcomes A1,B1 – which they
communicate to each other – of all those runs allows them to calculate the expectation
value ⟨A1B1⟩. Similarly, the other three expectation values are obtained. No local realistic
theory – this includes classical mechanics, electrodynamics, optics, etc. – can violate the
CHSH inequality (6.12). The correlations cannot violate the local realistic bound (i.e. the
right hand side) of 2.

So what about quantum mechanics? How can it violate the CHSH inequality (6.12)
and yield S > 2? Let us assume that in every run the source emits the Bell singlet state

|Ψ−⟩= 1√
2
(|0⟩A ⊗|1⟩B −|1⟩A ⊗|0⟩B) =

|01⟩AB−|10⟩AB√
2

, (6.13)

where A and B denote the parties Alice and Bob, respectively (and not outcome values).
Alice’s measurement a1 corresponds to a measurement in the |a1⟩/|a1⟩⊥ basis:

|a1⟩= cos α1
2 |0⟩+ sin α1

2 |1⟩, |a1⟩⊥ =−sin α1
2 |0⟩+ cos α1

2 |1⟩, (6.14)
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where ⟨a1|a1⟩⊥ = 0. If |a1⟩ is obtained, the outcome is called A1 = +1, and if |a1⟩⊥ is
obtained, the outcome is called A1 = −1. Similarly, the basis states of Alice’s second
measurement setting a2 and Bob’s basis states for his measurement settings b1,b2 read:

|a2⟩= cos α2
2 |0⟩+ sin α2

2 |1⟩, |a2⟩⊥ =−sin α2
2 |0⟩+ cos α2

2 |1⟩, (6.15)

|b1⟩= cos β1
2 |0⟩+ sin β1

2 |1⟩, |b1⟩⊥ =−sin β1
2 |0⟩+ cos β1

2 |1⟩, (6.16)

|b2⟩= cos β2
2 |0⟩+ sin β2

2 |1⟩, |b2⟩⊥ =−sin β2
2 |0⟩+ cos β2

2 |1⟩. (6.17)

The expectation (or correlation) value ⟨A jBk⟩, with j,k ∈ {1,2}, is given as follows:

⟨A jBk⟩= p(A j =+1,Bk =+1)+ p(A j =−1,Bk =−1)
− p(A j =+1,Bk =−1)− p(A j =−1,Bk =+1)

= p(A j = Bk)− p(A j ̸= Bk)

= p(A j = Bk)− [1− p(A j = Bk)]

= 2 p(A j = Bk)−1
= 2 [p(A j =+1,Bk =+1)+ p(A j =−1,Bk =−1)]−1. (6.18)

So, we are left to compute p jk(+1,+1)≡ p(A j =+1,Bk =+1), i.e. the probability that,
with setting choices a j,bk, both parties obtain the result +1, and p jk(−1,−1)≡ p(A j =
−1,Bk =−1), i.e. the probability that both parties obtain the result −1. Let’s start with
the first one:

p jk(+1,+1) = |⟨a j|⟨bk|Ψ−⟩|2

=
∣∣(cos α j

2 ⟨0|A + sin α j
2 ⟨1|A

)(
cos βk

2 ⟨0|B + sin βk
2 ⟨1|B

) |01⟩AB−|10⟩AB√
2

∣∣2
= 1

2

∣∣cos α j
2 sin βk

2 − sin α j
2 cos βk

2

∣∣2
= 1

2 sin2 α j−βk
2 . (6.19)

Similarly, we can calculate the second probability:

p jk(−1,−1) = |⟨a j|⊥⟨bk|⊥Ψ
−⟩|2

=
∣∣(− sin α j

2 ⟨0|A + cos α j
2 ⟨1|A

)(
− sin βk

2 ⟨0|B + cos βk
2 ⟨1|B

) |01⟩AB−|10⟩AB√
2

∣∣2
= 1

2

∣∣− sin α j
2 cos βk

2 + cos α j
2 sin βk

2

∣∣2
= 1

2 sin2 α j−βk
2 . (6.20)

This is actually the same result as for p jk(+1,+1) due to the symmetry of the state. Hence,
for the expectation value (6.18), we can write

⟨A jBk⟩= 2 sin2 α j−βk
2 −1

=−cos(α j −βk). (6.21)

We can obtain an optimal – in the sense of leading to the largest possible value for S –
result, if we choose, for example, the following measurement settings (see Figure 6.2):

α1 = 0, α2 =
π

2 , β1 =
π

4 , β2 =−π

4 . (6.22)
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|a1⟩= |0⟩

|a2⟩= |+⟩

|b1⟩|b2⟩

Figure 6.2: For the Bell singlet state, one example for a set of optimal settings for Alice’s
(blue) and Bob’s (orange) measurements is α1 = 0,α2 =

π

2 ,β1 =
π

4 ,β2 =−π

4 .

They lead to the correlation values

⟨A1B1⟩= ⟨A1B2⟩= ⟨A2B1⟩=− 1√
2
, (6.23)

⟨A2B2⟩=+ 1√
2
. (6.24)

Hence, the quantum mechanical Bell value becomes

SQM = |⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩|
= |− 1√

2
− 1√

2
− 1√

2
− 1√

2
|

= 2
√

2 ≈ 2.828. (6.25)

This is larger than the local realistic bound of 2 in the CHSH inequality (6.12). The
predictions of quantum mechanics violate Bell’s inequality.

Bell experiments have been performed since 1972 with ever increasing levels of sophis-
tication and certainty, closing potential loopholes that would still allow an explanation of
the observed Bell violation in terms of local hidden variables. The conclusion of all these
experiment is that Bell’s inequality can be violated using quantum mechanically entangled
states. The predictions of quantum mechanics agree with the experimental results. This
means that quantum mechanics prevailed and that local realism is an untenable view of the
world. (Bell’s inequality, however, does not say anything about non-local hidden variable
theories such as Bohmian mechanics.)

The 2022 Nobel Prize in Physics was awarded to Alain Aspect, John Clauser and
Anton Zeilinger for seminal Bell experiments. In 2015, three “loophole-free” experiments
were performed; the one of the Zeilinger group was set up in the Vienna Hofburg and
allowed only a less than 10−30 probability for an explanation of the observed correlations
in terms of local hidden variables [11].

Exercise 6.2 Show numerically (using some computer software tool) that no set of
angles α1,α2,β1,β2 can lead to a larger S-value than 2

√
2. ■

Solution: Homework.
The “quantum bound” of 2

√
2 is called Tsirelson bound. We remark that there are

theories – so called PR boxes – which are no-signalling (i.e. not violating the locality
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[the inequalities pðabjxyÞ ≥ 0] using the same polytope
algorithms that allow one to list the facets of L given its
vertices. The vertices of L, the local deterministic points dλ,
are clearly also vertices ofNS (since they cannot be written as
a convex combination of any other behavior). All other
vertices of NS are nonlocal.
The geometry of the no-signaling set and its relation to L is

particularly simple for the Δ ¼ 2, m ¼ 2 Bell scenario. In this
case, the no-signaling behaviors form an 8-dimensional sub-
space of the full probability space P. The local polytope
consists of 16 vertices, the local deterministic points, and 24
facets. Sixteen of these facets are positivity inequalities and
eight are different versions, up to relabeling of the inputs and
outputs, of the CHSH inequality. The no-signaling polytope,
on the other hand, consists of 16 facets, the positivity
inequalities, and 24 vertices. Sixteen of these vertices are
the local deterministic ones and eight are nonlocal vertices, all
equivalent up to relabeling of inputs and outputs to the
behavior

pðabjxyÞ ¼
�
1=2; if a⊕b ¼ xy;
0; otherwise;

(36)

which is usually referred to as a PR box. It is easily verified
that the PR box violates the CHSH inequality (4) up to the
value s · p ¼ 4 > 2, the algebraic maximum. In the language
of games, this means that the CHSH game can be won with
probability pCHSH

win ¼ 1. There exists a one-to-one correspon-
dence between each version of the PR box and of the CHSH

inequality, in the sense that each PR box violates only one of
the CHSH inequalities. The PR box was introduced by
Khalfin and Tsirelson (1985), Rastall (1985), and Popescu
and Rohrlich (1994). Since the maximal quantum violation of
the CHSH inequality is 2

ffiffiffi
2

p
, it provides an example of a no-

signaling behavior that is not quantum, implying that in
general Q ≠ NS. The relation between L, Q, and NS in
the Δ ¼ 2, m ¼ 2 case is represented in Fig. 4.
The complete list of all no-signaling vertices is also known

in the case of two inputs (m ¼ 2) and an arbitrary number of
outputs (Barrett, Linden et al., 2005) and in the case of two
outputs (Δ ¼ 2) and an arbitrary number of inputs (Jones and
Masanes, 2005; Barrett and Pironio, 2005). In both cases, the
corresponding nonlocal vertices can be seen as straightfor-
ward generalizations of the PR box.

D. Multipartite correlations

Although we focused for simplicity in the preceding
sections on Bell scenarios involving n ¼ 2 systems, most
of the above definitions and basic results extend straightfor-
wardly to the case of an arbitrary number n > 2 of systems.
For instance, in the tripartite case a behavior pðabcjxyzÞ is no
signaling when

X
c

pðabcjxyzÞ¼
X
c0
pðabc0jxyz0Þ ∀ a;b;x;y;z;z0 (37)

and similar relations obtained from permutations of the
parties; a behavior is local if it can be written as a convex
combination of a finite number of deterministic behaviors
dλðabcjxyzÞ; Bell inequalities correspond to faces of the
corresponding polytope, and so on. Next we discuss a few
notable results obtained in the multipartite case. Note that
many references cited in the previous sections also contain
results for more than two parties.
As in the bipartite case, one can consider Bell inequalities

that involve only full correlators in the case where all
measurements have binary outcomes. In the n ¼ 3 case, for
instance, such an inequality would involve only terms of the
form hAxByCzi ¼

P
a;b;c¼�1abcpðabcjxyzÞ, and similarly

for more parties. All correlation Bell inequalities with
m ¼ 2 inputs have been derived by Werner and Wolf
(2001b) and Zukowski and Brukner (2002) for an arbitrary
number n of parties. There are 22

n
such inequalities (with

redundancies under relabeling) which can be summarized in a
single, but nonlinear inequality. Notable inequalities that are
part of this family are the inequalities introduced by Mermin
(1990a) and further developed by Ardehali (1992) and
Belinskii and Klyshko (1993). In the case n ¼ 3, the
Mermin inequality takes the form

jhA1B2C2i þ hA2B1C2i þ hA2B2C1i − hA1B1C1ij ≤ 2: (38)

It is associated with the Greenberger-Horne-Zeilinger (GHZ)
paradox (see Sec. II.E) in the sense that correlations that
exhibit the GHZ paradox violate it up to the algebraic bound
of 4. Werner and Wolf (2001b) also investigated the structure
of the quantum region in the full correlation space. In
particular, it was shown that the quantum bound of all

FIG. 4 (color online). A two-dimensional section of the no-
signaling polytope in the CHSH scenario (m ¼ Δ ¼ 2). The
vertical axis represents the CHSH value S, while the horizontal
axis represents the value of a symmetry of the CHSH expression
S0 (where inputs have been relabeled). Local correlations satisfy
jSj ≤ 2 and jS0j ≤ 2. The PR box is the no-signaling behavior
achieving the maximum CHSH value S ¼ 4. Tsirelson's bound
corresponds to the point where S ¼ 2

ffiffiffi
2

p
, i.e., the maximum

CHSH value that a quantum behavior can achieve.

Brunner et al.: Bell nonlocality 433

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

Figure 6.3: A two-dimensional section of the no-signalling polytope N S . The vertical
axis represents the CHSH value S, while the horizontal axis represents the value of a
symmetry of the CHSH expression S′ where settings have been relabeled. Local hidden
variable correlations are in the polytope L and satisfy S < 2. PR boxes can achieve a
CHSH value of S = 4. Quantum mechanical correlations form a smooth region Q, not a
polytope, and can reach the Tsirelson bound of S = 2

√
2. Picture from Ref. [5].

assumption) but distinct from quantum mechanics that would allow to reach the algebraic
bound of S = 4. However, they seem to not be realised in nature. Figure 6.3 illustrates the
achievable S-values for different theories.

6.4 The CHSH Game
One can rephrase the CHSH setup into a game, involving two cooperating but separated
parities, Alice and Bob, and a referee called Charlie. Here are the rules of the game:

• Charlie chooses two random bits a ∈ {0,1} and b ∈ {0,1}.
• He sends a to Alice and b to Bob.
• Alice responds to Charlie with bit A ∈ {0,1}, and Bob responds with B ∈ {0,1}.
• For a = b = 1, Alice and Bob win if their answers were different, i.e. A ̸= B. In

the other three cases {a = b = 0},{a = 0, b = 1},{a = 1, b = 0}, they win if their
outputs are the same, i.e. A = B. In summary, they win if A⊕B = a∧b, and lose
otherwise.

The four combinations of Charlie’s bits all occur with 1
4 probability. Hence, Alice’s and

Bob’s success probability for winning the CHSH game is

psucc =
1
4

[
p(A=B|a=0,b=0)+ p(A=B|a=0,b=1)

+ p(A=B|a=1,b=0)+ p(A ̸=B|a=1,b=1)
]
. (6.26)

In full analogy to the previous section but taking the Bell state, one can show that
with classical strategies – i.e. within local realism – the success probability of Alice
and Bob is bounded by p(LR)

succ ≤ 3
4 . However, quantum mechanically and using the Bell
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|a1⟩,|b3⟩

|a2⟩

|b1⟩,|a3⟩|b2⟩

Figure 6.4: In the E91 protocol, Alice (blue) and Bob (orange) each choose between 3
settings. They again use the CHSH angles α1,α2,β1,β2, see Figure (6.2). In addition,
Alice uses α3 = β1 and Bob uses β3 = α1.

state |Φ+⟩= 1√
2
(|00⟩+ |11⟩), the two parties can reach a success probability of p(QM)

succ =

cos2 π

8 = 1
4(2+

√
2)≈ 0.854.

6.5 Entanglement-Based Quantum Key Distribution
In 1991, Artur Ekert devised a protocol (nowadays called “E91”) where entangled states
are employed to create a private and secure key between two distant parties [8]. This key
can then be used in one-time-pad cryptography, which is the only information-theoretically
secure cryptographic scheme, i.e. it remains safe even if an adversary has infinite computing
power.

The E91 protocol works as follows: Alice and Bob, who are in distant laboratories,
share singlet states which are emitted from some source at another location. For each
particle they obtain, they randomly pick a setting. The setting choices are illustrated in
Figure 6.4. Again, the CHSH angles α1,α2,β1,β2 from Figure (6.2) are used. In addition,
Alice has the option α3 = β1 and Bob may choose β3 = α1.

Hence, in total there are 9 possible setting combinations. If n pairs are created, each
setting combination appears roughly n/9 times. After all n pairs are measured, Alice and
Bob communicate (openly and classically) their setting choices to each other, but not their
outcomes. Let us analyze the different combinations:

• (α1,β3) and (α3,β1): In these two combinations, Alice and Bob chose the same
measurement direction. Due to the anti-symmetric nature of the singlet state, their
results are opposite: A = −B. If Alice converts her “+1” outcomes to bits with
value 1 and her “−1” outcomes to bits with value 0, and if Bob does the opposite
(“+1”→ 0, “−1”→ 1), then they will obtain the same bit string of 0’s and 1’s. This
is their secret key.

• (α1,β1), (α1,β2), (α2,β1), and (α2,β2): These four setting combinations are rel-
evant for the CHSH inequality. Alice and Bob need to communicate also their
outcomes to each other in order that they can compute the S-value.

• (α3,β2), (α2,β3) and (α3,β3): The results of these combinations are discarded.
They are neither relevant for the CHSH inequality nor for the key.

Quantum key distribution uses quantum mechanics to distribute a key to two distant parties.
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Entanglement guarantees perfect anti-correlation of their results when they measure in
the same basis. And the violation of a Bell inequality ensures that no eavesdropper has
intercepted their qubits and tampered with them. If the Bell value S is (close to) 2

√
2, they

know that an eavesdropper – a “man in the middle” or even someone who controls the pair
source – can have (almost) no information about their key. If the S-value is below 2, Alice
and Bob are fully insecure and must not use their key.

While a full security proof is far beyond the scope of this lecture, let us consider three
possible attack scenarios: (1) An eavesdropper intercepts some of the qubits, measures
them to obtain knowledge about the key, and then re-emits them to Alice or Bob. Such
an attack would destroy the entanglement in these pairs and lead to a degradation of the
Bell value which would be detected by Alice and Bob. (2) If the eavesdropper could copy
qubits without measuring them, the scheme would indeed be insecure. But such copying
is forbidden due to the no-cloning theorem. (3) And finally, monogamy of entanglement
prevents Eve from creating a three-partite entangled state which would allow her to learn
the key and simultaneously allow Alice and Bob to violate the CHSH inequality. The GHZ
state is a three-partite entangled state, but it will not violate the CHSH inequality – the
entanglement in the GHZ state is between all three parties, not between only two.

In summary, entanglement-based quantum key distribution is a method whose security
is guaranteed by the laws of nature, and not by the mere complexity of some mathematical
task.





7. Mixed States

7.1 Density Matrices
Until now, we have represented quantum states as vectors. An alternative approach – which
is mathematically equivalent and yet often more practical – is to use a density matrix (or
density operator). The formalism of density matrices will later also allow us to describe
quantum systems which are statistical mixtures.

Given the most general one-qubit state vector |ψ⟩=
(

α

β

)
, the corresponding density

matrix ρ is defined as the outer product

ρ ≡ |ψ⟩⟨ψ|=
(

α

β

)
(ᾱ β̄ ) =

(
|α|2 αβ̄

ᾱβ |β |2
)
. (7.1)

Let’s write down the density matrices of our z, x, and y basis states:

|0⟩⟨0|=
(

1
0

)
(1 0) =

(
1 0
0 0

)
, (7.2)

|1⟩⟨1|=
(

0
1

)
(0 1) =

(
0 0
0 1

)
, (7.3)

|+⟩⟨+|= 1
2

(
1
1

)
(1 1) =

1
2

(
1 1
1 1

)
, (7.4)

|−⟩⟨−|= 1
2

(
1
−1

)
(1 −1) =

1
2

(
1 −1
−1 1

)
, (7.5)

|R⟩⟨R|= 1
2

(
1
i

)
(1 − i) =

1
2

(
1 −i
i 1

)
, (7.6)

|L⟩⟨L|= 1
2

(
1
−i

)
(1 i) =

1
2

(
1 i
−i 1

)
. (7.7)

The same logic applies for states of multiple qubits. For a general two-qubit state |ψ⟩=
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(α,β ,E,δ )T , the density matrix reads:

ρ = |ψ⟩⟨ψ|=


α

β

E
δ

(ᾱ β̄ Ē δ̄ ) =


|α|2 αβ̄ αĒ αδ̄

ᾱβ |β |2 β Ē β δ̄

ᾱE β̄E |E|2 Eδ̄

ᾱδ β̄δ Ēδ |δ |2

 . (7.8)

Let’s consider two concrete examples, namely the product state |00⟩ and the Bell singlet
state:

|00⟩⟨00|=


1
0
0
0

(1 0 0 0) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (7.9)

|Ψ−⟩⟨Ψ−|= 1
2


0
1
−1
0

(0 1 −1 0) =
1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 . (7.10)

Density matrices have the following 4 properties:
• Hermitian: ρ† = ρ

• Normalized: Tr(ρ) = 1
• Positive-semidefinite: ρ ≥ 0

Applying a unitary transformation U to a state ρ = |ψ⟩⟨ψ|, leads to a transformed state ρ ′

in the following way:

ρ
′ =UρU† =U |ψ⟩⟨ψ|U†. (7.11)

7.2 Pure and Mixed States
We are now in the position to introduce a more general class of quantum states. Until now,
we have only considered so-called pure states, where we know (for certain) the quantum
state the system is in. But how do we treat a situation where we have a statistical ensemble
of states?

Consider the situation where a source emits N possible quantum states |ψi⟩, with i =
1, . . . ,N, where each has probability pi to be emitted, with ∑

N
i=1 pi = 1. In the state vector

formalism, we cannot represent this ensemble. (The state |ψ⟩ =√
p1|ψ1⟩+

√
p2|ψ2⟩+

. . .+
√

pN |ψN⟩ does not represent the above described ensemble, as it is still pure state
where all possible states are superposed.) The density matrix formalism, however, allows
us to mix the individual states ρi = |ψi⟩⟨ψi| into an ensemble. The so-called mixed state
has the form

ρ =
N

∑
i=1

pi ρi =
N

∑
i=1

pi |ψi⟩⟨ψi|. (7.12)

Mixed states are weighted (convex) sums of at least two pure states. Pure states are states,
where only one probability pi = 1, and all others are 0.

Pure states ρ = |ψ⟩⟨ψ| have the property

ρ
2 = ρ ρ = |ψ⟩⟨ψ||ψ⟩⟨ψ|= |ψ⟩⟨ψ|= ρ. (7.13)
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Pure states Mixed states

State vector |ψ⟩ -

Density matrix ρ = |ψ⟩⟨ψ| ρ = ∑
N
i=1 pi |ψi⟩⟨ψi|

Trace Tr[ρ] = 1 Tr[ρ] = 1

Square ρ2 = ρ ρ2 ̸= ρ

Purity Tr[ρ2] = 1 1
N ≤ Tr[ρ2]< 1

Table 7.1: Pure versus mixed states.

For mixed states, on the other hand, we have

ρ
2 =

N

∑
i=1

N

∑
j=1

pi p j |ψi⟩⟨ψi|ψ j⟩⟨ψ j|=
N

∑
i=1

p2
i |ψi⟩⟨ψi| ̸= ρ. (7.14)

Here, we have assumed that all |ψi⟩ and |ψ j⟩ are orthonormal, i.e. their scalar product is 0,
except for the case i = j when it is 1.

All quantum states (pure or mixed) have trace equal to 1:

Tr[ρ] = ∑
k
⟨k|ρ|k⟩= ∑

k

N

∑
i=1

pi ⟨k|ψi⟩⟨ψi|k⟩= ∑
k

N

∑
i=1

pi |⟨k|ψi⟩|2 =
N

∑
i=1

pi = 1. (7.15)

Here, we have used that the trace can be computed by summing over a complete set of
basis states |k⟩ (for n qubits, there are 2n basis states). |⟨k|ψi⟩|2 are the probabilities to
obtain result k, and all these probabilities must sum up to 1: ∑k |⟨k|ψi⟩|2 = 1. Finally, the
sum over all probabilities pi sums up to 1 as well.

Hence, using (7.13), we have for pure states:

Tr[ρ2] = Tr[ρ] = 1. (7.16)

For mixed states (where at least two of the pi are larger than 0), we use (7.14) and obtain

Tr[ρ2] = ∑
k

N

∑
i=1

p2
i ⟨k|ψi⟩⟨ψi|k⟩= ∑

k

N

∑
i=1

p2
i |⟨k|ψi⟩|2 =

N

∑
i=1

p2
i < 1. (7.17)

In fact, Tr[ρ2] is a measure of how pure a quantum state is and is therefore called the state
purity. Pure states have the largest possible purity equal to 1 (when only one pi is 1, and
all others are 0). Mixed states have purity smaller than 1. The minimum purity is attained
for the completely mixed state when all pi are the same and equal to 1

N with N the state
dimensionality. (For n qubits, we have N = 2n.) Then Tr[ρ2] = ∑

N
i=1(

1
N )

2 = 1
N .

Table 7.1 summarizes some important information regarding pure and mixed states.

Exercise 7.1 Compute the mixed state ρz for an ensemble where state |0⟩ is produced
with probability 1/2, and state |1⟩ is produced with probability 1/2. Then compute the
mixed state ρx for an ensemble where state |+⟩ is produced with probability 1/2, and
state |−⟩ is produced with probability 1/2. Calculate the state purities. ■
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Solution:

ρz =
1
2 |0⟩⟨0|+

1
2 |1⟩⟨1|=

1
2

(
1 0
0 0

)
+ 1

2

(
0 0
0 1

)
= 1

2

(
1 0
0 1

)
= 1

2 1, (7.18)

ρx =
1
2 |+⟩⟨+|+ 1

2 |−⟩⟨−|= 1
4

(
1 1
1 1

)
+ 1

4

(
1 −1
−1 1

)
= 1

2

(
1 0
0 1

)
= 1

2 1, (7.19)

Tr[ρ2
z ] = Tr[ρ2

x ] = Tr[(1
2 1)

2] = 1
4 Tr[1] = 1

2 . (7.20)

This exercise shows us an important property of density matrices. Two different ensembles
can lead to the same mixed state. In the example above, both ensembles are in fact
completely mixed and lead to (half) the identity matrix. The attained state purity is the
minimum possible, namely 1 divided by the state dimensionality.

Exercise 7.2 Let us revist Eq. (5.32) in the teleportation protocol. If Bob does not
get the information of Alice’s Bell state measurement via a classical communication
channel, he is in fact left with a statistical mixture of the four states α|0⟩+ β |1⟩,
α|0⟩−β |1⟩, α|1⟩+β |0⟩, and α|1⟩−β |0⟩, each with probability 1/4. Show that Bob’s
density matrix is completely mixed (which reflects that, in teleportation, no information
is communicated faster than the speed of light). ■

Solution:

ρ =
1
4

[(
α

β

)
(ᾱ β̄ )+

(
α

−β

)
(ᾱ −β̄ )+

(
β

α

)
(β̄ ᾱ)+

(
−β

α

)
(−β̄ ᾱ)

]
=

1
4

[(
|α|2 αβ̄

ᾱβ |β |2
)
+

(
|α|2 −αβ̄

−ᾱβ |β |2
)
+

(
|β |2 ᾱβ

αβ̄ |α|2
)
+

(
|β |2 −ᾱβ

−αβ̄ |α|2
)]

=
1
4

(
2|α|2 +2|β |2 0

0 2|α|2 +2|β |2
)
=

1
2

(
1 0
0 1

)
=

1
2
1. (7.21)

Exercise 7.3 Compute the equal-weight mixture of the four Bell states. ■

Solution: Blackboard or homework. The result is the fully mixed two-qubit state ρ =
1
4 diag(1,1,1,1) = 1

4 14.

7.3 The Bloch Sphere
As we know already, pure single-qubit states lie on the surface of the Bloch sphere. For
mixed single-qubit states, there is an equally nice geometric representation, namely that
they live in the interior of the Bloch sphere (technically, the Bloch ball). Mathematically,
any qubit density matrix ρ can be expanded into the identity and the vector of Pauli
matrices, called the Pauli vector S⃗ = (X ,Y,Z)T :

ρ =
1
2

[
1+ a⃗ · S⃗

]
=

1
2
[1+ax X +ayY +az Z]

=
1
2

[(
1 0
0 1

)
+ax

(
0 1
1 0

)
+ay

(
0 −i
i 0

)
+az

(
1 0
0 −1

)]
=

1
2

(
1+az ax − iay

ax + iay 1−az

)
. (7.22)



7.3 The Bloch Sphere 55

Here, a⃗ = (ax,ay,az)
T is the so-called Bloch vector, which indicates the point within (or

on) the sphere that corresponds to the mixed state ρ . Pure states have radius |⃗a| = 1
(surface of the sphere), while mixed states have |⃗a|< 1 (interior of the sphere). The center
of the Bloch sphere at a⃗ = (0,0,0)T corresponds to the fully mixed state.

Exercise 7.4 Compute the three states for the Bloch vectors a⃗0 = (0,0,0)T , a⃗1 =
(1,0,0)T , a⃗2 = (0,1,0)T , and a⃗3 = (0,0,1)T . ■

Solution:

ρ0 =
1
2

[
1+ a⃗0 · S⃗

]
=

1
2
1, (7.23)

ρ1 =
1
2

[
1+ a⃗1 · S⃗

]
=

1
2
[1+X ]

=
1
2

[(
1 0
0 1

)
+

(
0 1
1 0

)]
=

1
2

(
1 1
1 1

)
= |+⟩⟨+|, (7.24)

ρ2 =
1
2

[
1+ a⃗2 · S⃗

]
=

1
2
[1+Y ]

=
1
2

[(
1 0
0 1

)
+

(
0 −i
i 0

)]
=

1
2

(
1 −i
i 1

)
= |R⟩⟨R|, (7.25)

ρ3 =
1
2

[
1+ a⃗3 · S⃗

]
=

1
2
[1+Z]

=
1
2

[(
1 0
0 1

)
+

(
1 0
0 −1

)]
=

(
1 0
0 0

)
= |0⟩⟨0|. (7.26)

Exercise 7.5 Compute the state purity of a mixed qubit state with Bloch vector a⃗. ■

Solution: We first note (1) that the Pauli matrices are traceless, (2) that squares of Pauli
matrices are the identity, and (3) that two different Pauli matrices anti-commute and that
their product is proportional to the other third Pauli matrix:

Tr[X ] = Tr[Y ] = Tr[Z] = 0, (7.27)

X2 = Y 2 = Z2 = 1, (7.28)
X Y =−Y X = iZ, (7.29)
Y Z =−ZY = iX , (7.30)
Z X =−X Z = iY. (7.31)

Let us then also compute:

(⃗aS⃗)2 = (ax X +ayY +az Z)2

= [a2
xX2 +a2

yY 2 +a2
z Z2 +axay(XY+Y X)+ayaz(Y Z+ZY )+azax(ZX+XZ)]

= |⃗a|21. (7.32)

Then, we can calculate the purity as follows:

Tr[ρ2] = Tr[1
2(1+ a⃗ S⃗)2] = 1

4 Tr[(1+ a⃗ S⃗)(1+ a⃗ S⃗)]

= 1
4 Tr[1+2 a⃗ S⃗+(⃗aS⃗)2] = 1

4 Tr[1+ |⃗a|21] = 1
4 (1+ |⃗a|2)Tr[1]



56 Chapter 7. Mixed States

= 1
2 (1+ |⃗a|2). (7.33)

In the second line, we used the tracelessness of Pauli operators, Tr[⃗aS⃗] = 0. Pure states
have |⃗a|= 1 and purity 1. Mixed states have purity smaller than 1. The fully mixed state
with |⃗a|= 0 has purity 1

2 .

7.4 Measurements
Let us now discuss measurements. We remind ourselves: In the case of a given pure state
|ψ⟩, the probability p to find some state |φ⟩ is given by

pφ = |⟨φ |ψ⟩|2 = ⟨ψ|φ⟩⟨φ |ψ⟩. (7.34)

Let us denote by Pφ = |φ⟩⟨φ | the observable corresponding to state |φ⟩, i.e. the projection
operator (matrix) onto state |φ⟩. Then, we can rewrite the equation above as

pφ = ⟨ψ|Pφ |ψ⟩. (7.35)

E.g., projecting onto Pφ = |0⟩⟨0| would be a measurement (in the computational basis),
asking for the probability of observing the |0⟩ state. Projectors are idempotent, i.e. P2 = P.

We can make this a little bit more general and define a measurement operator A as sum
over projectors

A = ∑
i

ai Pi, (7.36)

where the ai are the corresponding measurement outcomes. In general, A is not a projector
anymore, i.e. A2 ̸= A. The expectation value of the observable A is still computed in the
same way as in (7.35):

⟨A⟩= ⟨ψ|A|ψ⟩. (7.37)

For instance, A = |0⟩⟨0|−|1⟩⟨1| would be a measurement in the computational basis where
the state |0⟩ corresponds to outcome +1 and the state |1⟩ corresponds to outcome −1. For
every state, the expectation value would be value between −1 and +1.

For a mixed state ρ = ∑
N
i=1 pi |ψi⟩⟨ψi|, the expectation value is computed as follows:

⟨A⟩=
N

∑
i=1

pi ⟨ψi|A|ψi⟩=
N

∑
i=1

pi Tr[⟨ψi|A|ψi⟩]

= Tr
[ N

∑
i=1

pi |ψi⟩⟨ψi|A
]
= Tr[ρ A]. (7.38)

Here we have used that (1) a trace of a number is that number, (2) the trace is linear, and
(3) the trace is cyclic.

If – when measuring observable A in state ρ – the measurement outcome ai was found,
the post-measurement density matrix has the form

ρ
′
i =

Pi ρ Pi

Tr[ρ Pi]
=

Pi ρ Pi

Tr[Pi ρ Pi]
. (7.39)

The denominators are the same since the trace is cyclic and projection operators are
idempotent.
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Exercise 7.6 Compute the expectation value of A = |0⟩⟨0|− |1⟩⟨1| in the state ρ =
1
4 |0⟩⟨0|+

3
4 |1⟩⟨1|. Assume that outcome −1 is obtained. Calculate the post-measurement

state using Eq. (7.39). ■

Solution:

⟨A⟩= Tr[ρ A] = Tr
[(1

4 0
0 3

4

)(
1 0
0 −1

)]
= Tr

[(1
4 0
0 −3

4

)]
=−1

2 . (7.40)

With probability 1
4 outcome +1 is obtained, and with probability 3

4 outcome −1 is obtained.
Hence, the expectation value is 1

4(+1)+ 3
4(−1) =−1

2 . Given the outcome −1, the post-
measurement state is

ρ
′
i =

Pi ρ Pi

Tr[Piρ Pi]
=

1
Tr[Piρ Pi]

(
0 0
0 1

)(1
4 0
0 3

4

)(
0 0
0 1

)
=

1
Tr[Piρ Pi]

(
0 0
0 3

4

)(
0 0
0 1

)
=

1
Tr[Piρ Pi]

(
0 0
0 3

4

)
=

(
0 0
0 1

)
= |1⟩⟨1|, (7.41)

as it should be, by definition, given the measurement result.

7.5 Entanglement of Mixed States
In the case of pure states, we distinguished between product states and entangled states.
The situation is very similar in the case of mixed states.

Consider the bipartite case of two systems A and B. We call their joint state ρAB
separable if and only if it can be written as a mixture of product states:

ρ
sep
AB =

N

∑
i=1

pi ρ
(i)
A ⊗ρ

(i)
B . (7.42)

This state is produced by a source which emits an ensemble of product states, i.e. with
probability pi it emits the product state ρ

(i)
A ⊗ρ

(i)
B .

A state is entangled if and only if it is not separable, i.e. if only if it cannot be written
in the above form:

ρ
ent
AB ̸=

N

∑
i=1

pi ρ
(i)
A ⊗ρ

(i)
B . (7.43)

It is highly non-trivial, in general, to decide for a given density matrix whether it is
entangled or not. In fact, this is believed to be an NP-hard problem.

Exercise 7.7 Is the two-qubit state

ρAB =


1
4

1
4 0 0

1
4

1
2 0 −1

4
0 0 0 0
0 −1

4 0 1
4

 (7.44)

entangled? ■
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Solution: No, it is separable: ρAB = 1
2 |0⟩A⟨0| ⊗ |+⟩B⟨+|+ 1

2 |−⟩A⟨−|⊗ |1⟩B⟨1|. Note:
There is no easy way to find this solution. This exercise was reverse-engineered.

7.6 Reduced States
Assume we are given a state ρAB of two quantum systems A and B. What is the state ρA of
system A alone, i.e. when ignoring system B? The answer to this question is obtained by
performing the partial trace over system B:

ρA = TrB ρAB. (7.45)

The trace is obtained by summing over B’s basis states. In the case of qubits, we have

ρA = TrB ρAB = ∑
b=0,1

⟨b|ρAB|b⟩. (7.46)

Here, the notation is a bit lazy. In full notation, we would have to write: ρA = TrB ρAB =

∑b=0,1 (1a ⊗⟨b|B)ρAB (1A ⊗|b⟩B).
If the initial state ρAB is separable, we get

ρA = TrB ρAB =
N

∑
i=1

∑
b=0,1

pi (1A ⊗⟨b|B)(ρ i
A ⊗ρ

i
B)(1A ⊗|b⟩B)

=
N

∑
i=1

∑
b=0,1

pi (1ρ
i
A 1)⊗⟨b|Bρ

i
B|b⟩B =

N

∑
i=1

pi ρ
i
A Tr[ρ i

B].

If the initial state is entangled, the partial trace can only be calculated via (7.46).
The reduced density matrix ρA = TrB ρAB allows Alice to compute all her measurement

results (probabilities). Similarly, Bob’s state is ρB = TrA ρAB. Given three parties A,B,C,
the reduced state of A and B is ρAB = TrC ρABC. The reduced state of only A is then
ρA = TrB ρAB = TrBTrC ρABC.

Exercise 7.8 You are given the following states:

(1) ρAB = 3
4 |01⟩⟨01|+ 1

4 |10⟩⟨10|, (7.47)

(2) ρAB = |Ψ−⟩⟨Ψ−|, (7.48)
(3) ρABC = |GHZ⟩⟨GHZ|. (7.49)

For (1) and (2), compute the reduced state of system A. For (3), compute the reduced
state of systems AB. ■

Solution:

(1) ρA = TrB ρAB = ∑
b=0,1

⟨b|B (3
4 |01⟩AB⟨01|+ 1

4 |10⟩AB⟨10|) |b⟩B

= 3
4 |0⟩A⟨0|+ 1

4 |1⟩A⟨1|, (7.50)

(2) ρA = TrB ρAB = ∑
b=0,1

⟨b|B 1
2(|01⟩AB −|10⟩AB)(⟨01|AB −⟨10|AB) |b⟩B

= 1
2 ∑

b=0,1
⟨b|B (|01⟩AB⟨01|− |10⟩AB⟨01|)−|01⟩AB⟨10|+ |10⟩AB⟨10|) |b⟩B
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= 1
2 (|0⟩A⟨0|+ |1⟩A⟨1|) = 1

2 1A, (7.51)

(3) ρAB = TrC ρABC = ∑
c=0,1

⟨c|C 1
2(|000⟩ABC + |111⟩ABC)(⟨000|ABC + ⟨111|ABC) |c⟩C

= 1
2 (|00⟩AB⟨00|+ |11⟩AB⟨11|). (7.52)

The last two examples are noteworthy: (2) If Alice and Bob share a Bell state, then the
reduced state of Alice’s qubit is just the fully mixed state. Her local qubit has no individual
properties, i.e. her local measurement results are completely random in all bases. (3) If
Alice, Bob, and Charlie share a GHZ state, and if Charlie’s qubit is ignored or inaccessible,
then Alice and Bob have to describe their reduced two-qubit state with the reduced density
matrix. All of Alice’s and Bob’s measurement results can be computed from it. This is a
50:50 mixture of both qubits being 0 or both qubits being 1. That is a separable state, i.e.
there is no entanglement anymore. (This is the reason why an eavesdropper cannot use a
GHZ state to crack the E91 protocol. The reduced density matrix of Alice and Bob won’t
allow to violate the CHSH inequality.)

7.7 Decoherence
We are now equipped with the mathematical tools to develop a rudimentary and simplified
picture of quantum decoherence. It is the main reason why we do not see quantum effects
around us in the everyday macroscopic classical world. Decoherence offers a partial
partial solution to the measurement problem in the sense that it shows how constant unitary
interaction of a quantum system with its environment can have similar effects as what
measurements are doing.

Let us consider the case of a generalized GHZ state of n qubits, where n can be thought
of being macroscopically large (n ∼ 1023):

|GHZ⟩S =
1√
2

(
|00 . . .0⟩S + |11 . . .1⟩S

)
, (7.53)

where S stands for “System”. This is a Schrödinger cat-like state. Now let us assume that
our cat interacts with one single photon in initial state |0⟩E from its environment (E) in a
CNOT like manner, where some qubit it the cat (the one which is hit by the photon) is the
control and the photon is the target. The resulting joint cat-photon state reads:

|Ψ⟩SE = CNOT |GHZ⟩S|0⟩E

= CNOT 1√
2

(
|00 . . .0⟩S + |11 . . .1⟩S

)
|0⟩E

= 1√
2

(
|00 . . .0⟩S|0⟩E + |11 . . .1⟩S|1⟩E

)
. (7.54)

This is still a very precious pure and entangled quantum state. Let us introduce the shortcuts

|00 . . .0⟩S = |d⟩S, (7.55)
|11 . . .1⟩S = |a⟩S, (7.56)

where “d” (“a”) stands for “dead” (“alive”). The density matrix of both the cat and the
photon reads:

ρSE = |Ψ⟩SE⟨Ψ|
= 1

2

(
|d⟩S|0⟩E + |a⟩S|1⟩E

)(
⟨d|S⟨0|E + ⟨a|S⟨1|E

)
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= 1
2

(
|d⟩S⟨d|⊗ |0⟩E⟨0|+ |a⟩S⟨d|⊗ |1⟩E⟨0|

+ |d⟩S⟨a|⊗ |0⟩E⟨1|+ |a⟩S⟨a|⊗ |1⟩E⟨1|
)
. (7.57)

Now let us – very reasonably – assume that the photon escapes with the speed of light
and that we will never be able again to extract information out of it. This implies that the
correct description of our cat, ρS, will be the reduced density matrix:

ρS = TrE [ρSE ]

= ∑
b=0,1

⟨b|EΨ⟩SE⟨Ψ|b⟩E

= 1
2

(
|d⟩S⟨d|+ |a⟩S⟨a|

)
. (7.58)

Only the diagonal terms survive and we end up with a “boring” classical 50:50 mixture of
the cat being dead and alive without any entanglement or interesting (quantum) features.
This is what one single photon can do to a Schrödinger cat in the fraction of a second.

Note that, given the state (7.54), one could – in theory – restore the Schrödinger cat
by “finding” the photon and projecting it onto the diagonal basis state (|0⟩E + |1⟩E)/

√
2.

But don’t forget: The environment of our every-day world consists not only of one photon
but of a myriad of them. So, in practise, there is no way to save the Schrödinger cat
unless you create a a completely controlled laboratory situation, totally isolating it from
its environment by putting it in a box near absolute zero temperature in an almost perfect
vacuum.



8. Entropy and Information

8.1 Shannon Entropy
The concept of entropy plays a fundamental role in both classical and quantum information
theory. It is a measure of the uncertainty in the description of a physical system. Vice
versa, it quantifies the information we gain, on average, when we learn the state of the
system.

Let us consider a discrete random variable X . The values x of the random variable
could be “heads” and “tails” for a coin, or “0” and “1” for a bit, or the numbers 1 to 6
for a die. However, these labels are not important. What does matter are the probabilities
p1, p2, . . . , pN , where ∑

N
i=1 pi = 1, for these, in general, N possible events to happen. The

Shannon entropy is a function only of these probabilities:

H(X)≡ H(p1, p2, . . . , pN)≡ H(p)≡−
N

∑
i=1

pi log pi. (8.1)

Here, p = (p1, p2, . . . , pN) denotes the probability distribution of the N possible events.
The choice of basis for the logarithm depends on the field of application. In physics, one
typically uses the natural logarithm. In computer science, base 2 ist commonly used and
gives the unit of bits. For the case of pi = 0, we note that limpi→0 pi log pi = 0.

Assume you have a source which produces a string X1,X2,X3, . . . of independent and
identically distributed random variables. What are the minimal physical resources to store
the information produced by the source? Shannon’s noiseless coding theorem states that
one requires H(X) bits per symbol.

So, loosely speaking and in summary: The Shannon entropy of a distribution measures
“prior uncertainty of state” = “information gain upon measurement” = “minimal storage
requirement”.

The Shannon entropy has the following properties:
• Non-negative: H(p1, p2, . . . , pN)≥ 0. Equality holds if and only if all pi = 0 except

for one which equals 1, corresponding to a distribution with perfect certainty.
• Upper-bounded: H(p1, p2, . . . , pN) ≤ logN. Equality is attained for the uniform

distribution pi =
1
N for all i.
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• Concave: Given two distributions p = (p1, p2, . . . , pN) and q = (q1,q2, . . . ,qN) and
a mixing parameter α ∈ [0,1], the Shannon entropy of the mixture is larger than or
equal to the mixture of entropies: H(α p+(1−α)q)≥ α H(p)+(1−α)H(q).

Exercise 8.1 A source produces a string of symbols, where the four possible symbols
are A, B, C, and D. The probabilities are: pA = 1

2 , pB = 1
4 , and pC = pD = 1

8 . What is
the optimal compression method into bits? ■

Solution: Straightforwardly, we could encode A → 00, B → 01, C → 10, and D → 11. This
requires 2 bits per symbol and is a good first attempt. We could then try to compress better
and use shorter bit strings for the more frequent symbols, for instance: A → 0, B → 1,
C → 00, and D → 01. However, this is not a valid solution due to lack of uniqueness, as
e.g. the bit string “0000” could stem from the symbol string “AAAA” or from “CC”. A
clever and unique encoding looks like this:

A → 0, B → 10, C → 110, D → 111. (8.2)

On average, this requires 1
2 · 1+

1
4 · 2+

1
8 · 3+

1
8 · 3 = 7

4 bits per symbol. This is indeed
optimal as it matches the Shannon entropy of the source, H(X) = −1

2 log 1
2 −

1
4 log 1

4 −
1
8 log 1

8 −
1
8 log 1

8 = 7
4 .

8.2 Von Neumann Entropy
The von Neumann entropy S is a measure for the mixedness of a quantum state, similar to
the purity. For a quantum state ρ it is defined as

S(ρ)≡ Tr[ρ logρ]. (8.3)

The logarithm of a matrix is usually computed via diagonalization. Given the density matrix
in its eigenbasis, ρ = ∑

N
i=1 λi|vi⟩⟨vi| with λi the eigenvectors and |vi⟩ the eigenvectors, the

von Neumann entropy can be written as

S(ρ) =−
N

∑
i=1

λi logλi. (8.4)

The von Neumann entropy has the following properties:
• Non-negative: S(ρ)≥ 0. Equality holds if ρ is a rank-1 projector, i.e. all eigenvalues

are 0 except for one which equals 1, corresponding to pure states.
• Upper-bounded: S(ρ)≤ logN. Equality is attained for the fully mixed state ρ = 1

N1.
• Concave: The von Neumann entropy of a mixture of quantum states (with mixing

probabilities pi) is larger than or equal to the mixture of entropies, S(∑i piρi) ≥
∑i pi S(ρi).

Exercise 8.2 Compute the von Neumann entropy of the fully mixed state of n = 3
qubits. ■

Solution: The Hilbert space dimension is N = 23 = 8. The fully mixed state of three qubits
is thus ρ = 1

818 = ∑
8
i=1

1
8 |vi⟩⟨vi|, where the |vi⟩ are the 8 computational basis states. The

von Neumann entropy hence is

S(1
818) =−

8

∑
i=1

λi logλi =−8 · 1
8 · log 1

8 = log8 = 3, (8.5)
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where we have used the logarithm with base 2 in the final step. This is the maximum
attainable entropy for 3 qubits.

Exercise 8.3 Compute the von Neumann entropy of the pure state |ψ⟩. ■

Solution: The density matrix |ψ⟩⟨ψ| is a rank-1 projector with only one non-zero eigen-
value, and that eigenvalue is 1. Hence, the von Neumann entropy is

S(|ψ⟩⟨ψ|) =−1log1 = 0. (8.6)

8.3 Conditional Entropy
The conditional entropy quantifies the amount of information needed, on average, to
describe the outcome of a random variable Y under the condition that the outcome of
another (correlated) random variable X is known. It is defined as

H(Y |X)≡−∑
x

∑
y

p(x,y) log
p(x,y)
p(x)

, (8.7)

where x and y are the possible outcomes of the random variables X and Y , respectively.
The conditional entropy has the following properties:
• Non-negativity: H(Y |X)≥ 0.
• Minimum: H(Y |X) = 0 if and only if Y is completely determined by X . Then

knowing X completely specifies Y and no more information is needed to decribe Y .
• Maximum: H(Y |X) =H(Y ) if and only if Y and X are independent random variables.

Then knowing X does not give any information about Y , such that describing Y
requires the full entropy of Y .

• Chain rule: H(X ,Y ) = H(Y |X)+H(X). One needs H(X ,Y ) bits to describe the
joint state of both random variables. If we first learn X , we gain H(X) bits of
information. Then we need only H(Y |X) bits to learn the full state. Similarly,
H(X ,Y ) = H(X |Y )+H(Y ).

Figure 8.1 shows the relationship between the individual entropies H(X) and H(Y ),
the conditional entropies H(X |Y ) and H(Y |X), the joint entropy H(X ,Y ), and the mu-
tual information I(X ;Y ) = H(X)+H(Y )−H(X ,Y ). The latter is the Kullback-Leibler
divergence (which is also called relative entropy) between the joint distribution and the
product of individuals: I(X ;Y ) = DKL(P(X ,Y )||PX PY ). The mutual information is the price
to pay for encoding (X ,Y ) as a pair of independent random variables when in fact they are
dependent.

Exercise 8.4 Consider two correlated random variables X ∈ {0,1} and Y ∈ {0,1},
representing two coin tosses. The joint distribution reads:

X \Y 0 1
0 0.45 0.00
1 0.05 0.50

Compute the conditional entropy H(Y |X). ■

Solution: The joint entropy is H(X ,Y ) =−∑x ∑y p(x,y) log p(x,y), i.e. −0.45log0.45−
0.05log0.05− 0.50log0.50 ≈ 1.23. The probabilities for X are p(x = 0) = 0.45 and
p(x = 1) = 0.55. Hence, the entropy for X is H(X) = −0.45log0.45− 0.55log0.55 ≈
0.99. Therefore, the conditional entropy of Y given X is H(Y |X)=H(X ,Y )−H(X)≈ 0.24.
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Figure 8.1: Venn diagram displaying information measures associated with correlated
variables X and Y . The left circle (red and violet area) is the individual entropy H(X). The
right circle (blue and violet area) is the individual entropy H(Y ). The total area (red and
violet and blue) is the joint entropy H(X ,Y ). The (red) area contained in the left but not the
right circle is the conditional entropy H(X |Y ). Similarly, the (blue) area contained in the
right but not the left circle is the is the conditional entropy H(Y |X). The violet intersection
is the mutual information I(X ;Y ). Picture adapted from Wikipedia.

Intuition: X and Y are quite correlated and likely to show the same outcome. If you learn
the value of X , you only need to learn, on average, 0.24 additional bits to also know Y .

8.4 Conditional Quantum Entropy
The conditional quantum entropy is the quantum generalization of the classical conditional
entropy. Given a bipartite quantum state ρAB, the entropy of the joint system is the von
Neumann entropy S(AB) = S(ρAB). The entropies of the subsystems are S(A) = S(ρA) =
S(TrBρAB) and S(B) = S(ρB) = S(TrAρAB). The quantum conditional entropy is defined as

S(A|B)≡ S(AB)−S(B) = S(ρAB)−S(ρB). (8.8)

Remarkably, the quantum conditional entropy can be negative, unlike the classical condi-
tional entropy, which is always non-negative. The negative conditional entropy measures
the additional number of bits above the classical limit which can be transmitted in a super-
dense coding protocol. If the quantum conditional entropy is positive, it implies that state
cannot reach the classical limit.

Exercise 8.5 Compute the conditional quantum entropy of the Bell state |Ψ−⟩. ■

Solution: The Bell state is pure, so its von Neumann entropy is S(ρAB) = 0. The reduced
state of Bob’s qubit is the fully mixed state, so its entropy is the logarithm of the dimension
of Bob’s Hilbert space, i.e. S(ρB) = log2 = 1. Therefore, the conditional quantum entropy
is S(A|B) = S(ρAB)− S(ρB) = −1. This implies, correctly, that in superdense coding 1
bit more than the classical limit (which is 1 transmitted bit), i.e. 2 bits in total can be
communicated using the Bell state as a resource.



9. Quantum Sensing

Strongly linked to quantum information science is the field of quantum sensing. Applica-
tions of quantum sensing are quantum metrology – the study of making high-resolution
measurements of physical parameters using quantum theory – and quantum imaging – the
study of imaging objects with a resolution that is beyond what is possible in classical
optics.

9.1 Standard Quantum Limit and Heisenberg Limit
Classical physics and classical electromagnetism cannot overcome the so-called standard
quantum limit (SQL), often called shot-noise limit (SNL). It poses a fundamental bound on
the precision of measurements when only “classical” states, i.e. separable quantum states
are used.

Consider a Mach-Zehnder interferometer which has a phase shift φ in one of its arms.
Classical interferometry uses (classical) laser light. If the light beam has, on average, n
photons, the SQL bounds the achievable resolution in estimating the phase φ . Concretely,
the SQL bounds the minimal variance of the parameter estimator:

(∆φ)2
SQL ≥ 1

n
. (9.1)

Using entangled states of light with n photons, this limit can be broken, and a much better
precision further down to the so-called Heisenberg limit (HL) can be achieved:

(∆φ)2
HL ≥ 1

n2 . (9.2)

Such quantum enhancement with (non-classical) “squeezed” light is, e.g., used in the
LIGO gravitational wave observatory.

9.2 The Fundamental Task of Quantum Metrology
In the following, we will discuss this fundamental task of quantum metrology in more
detail, namely estimating the unknown phase φ of a unitary operator

U(φ) =

(
eiφ 0
0 e−iφ

)
. (9.3)
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Figure 9.1: Quantum phase estimation. Read from left to right. We initialize n qubits in
the computational basis product state |00 . . .0⟩. (1) In the protocol without entanglement,
everything except the red part is implemented. All qubits are subject to a Hadamard
gate H, the unitary phase gate U(φ), again a Hadamard H, and a final measurement
in the computational basis. (2) In the protocol with entanglement, everything except
the blue part is implemented. The violet and red parts uses a single Hadamard as well
as a sequence of CNOTs to create a GHZ state and, after the phase gates, undoes it
before measurement. Circuit designed using the “Quantum Circuit Library”, https:
//github.com/wilkensJ/drawio-library.

Figure 9.1 illustrates our setup. Let us first calculate the separable case without
entanglement, where everything except the red part is applied. In the input state, all n
qubits are initialized in state |0⟩. Every qubit is subjected to a Hadamard gate. After the
layer of phase gates, again every qubit is subjected to a Hadamard gate and a measurement
in the computational basis. To read out phase information, we compute the probability to
measure a “0” outcome in all n detectors:

psep(00 . . .0) = |⟨00 . . .0|H⊗nU(φ)⊗nH⊗n|00 . . .0⟩|2

= |⟨++ . . .+ |U(φ)⊗n|++ . . .+⟩|2

= |⟨+|U(φ)|+⟩n|2

= |[1
2(e

iφ + e−iφ )]n|2

= cos2n(φ). (9.4)

To come from the third to the fourth line, we can use the vector notation: ⟨+|U(φ)|+⟩=
1
2(1 1)

(
exp(iφ) 0

0 exp(−iφ)

)(
1
1

)
= 1

2(e
iφ + e−iφ ).

Now let us compute the scenario where entanglement is used. The violet and red
part creates a GHZ state. After the phase gates, the reverse sequence of gates with a
measurement in the computational basis corresponds to a measurement of the GHZ state.
To read out phase information, we again compute the probability to measure a “0” outcome
in all n detectors:

pent(00 . . .0) = |⟨GHZ|U(φ)⊗n|GHZ⟩|2

= |1
2 [⟨00 . . .0|U(φ)⊗n|00 . . .0⟩+ ⟨11 . . .1|U(φ)⊗n|00 . . .0⟩

https://github.com/wilkensJ/drawio-library
https://github.com/wilkensJ/drawio-library
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π /2 π
ϕ
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p(00...0)
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Figure 9.2: Comparison of the final output probability between the separable (psep) and
the entangled (pent) scenario for the case of n = 10 qubits. In the entangled case, the
probability oscillates n times faster and therefore, for small parameter φ , deviates from
the value psep(00 . . .0) = 1 much faster than the separable one. This allows for a better
estimation of the parameter.

+ ⟨00 . . .0|U(φ)⊗n|11 . . .1⟩+ ⟨11 . . .1|U(φ)⊗n|11 . . .1⟩]|2

= |1
2 [⟨0|U(φ)|0⟩n +0+0+ ⟨1|U(φ)|1⟩n]|2

= |1
2 [(e

iφ )n +(e−iφ )n]|2

= cos2(nφ). (9.5)

Figure 9.2 compares the probability for the separable and the entangled case.
In parameter estimation theory, the Cramér-Rao bound states that the variance of any

unbiased estimator is at least the inverse Fisher information IF . The latter is given by
the negative (expected value of the) second derivative of the logarithm of the probability
distribution. In our cases, to first order in φ (and without proof):

IF(psep) =− ∂ 2

∂φ 2 log psep = 2n, (9.6)

IF(pent) =− ∂ 2

∂φ 2 log pent = 2n2. (9.7)

This gives us – except for a factor of 2, in complete analogy to the interferometer example
from above – the standard quantum limit for the separable case and the Heisenberg limit
for the entangled case:

(∆φ)2
sep ≥

1
IF(psep)

=
1

2n
, (9.8)

(∆φ)2
ent ≥

1
IF(pent)

=
1

2n2 . (9.9)

For large n, one has (∆φ)2
ent ≪ (∆φ)2

sep. Therefore, harnessing entanglement allows to
estimate the unknown parameter φ to much better precision than with a classical device
using only separable states. This is the core of quantum metrology.
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