
Introduction to Computational Complexity
(Berechenbarkeit und Komplexität)

Johannes Kepler University Linz / Fall term 2021/2022

Assist.-Prof. Dr. Richard Kueng

Special thanks to Sibylle Möhle and Nina Brandl for carefully checking and
revising these lecture notes.

Date: April 2022
Copyright ©2022. All rights reserved.

These lecture notes are composed using an adaptation of a template designed by
Mathias Legrand, licensed under CC BY-NC-SA 3.0 (http://creativecommons.
org/licenses/by-nc-sa/3.0/).

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Contents

1 Motivation, overview and (some) background 1
1.1 Motivating example: traveling salesperson (TSP) 1
1.2 Overview of topics 3
1.3 Background: alphabets and binary encodings 5

2 Finite state automata . 8
2.1 Motivating examples 8
2.1.1 Motivating example: automatic door . 8
2.1.2 Closer to actual computation: a parity checking machine 11
2.2 Deterministic finite automata (DFAs) 13
2.2.1 Formal definition . 13
2.2.2 DFA computations . 16
2.3 Nondeterministic finite automata (NFAs) 16
2.3.1 Determinism vs. nondeterminism . 16
2.3.2 Nondeterministic finite state automata (NFAs) . 17
2.3.3 Equivalence between NFAs and DFAs . 18

3 Turing machines . 22
3.1 The palindrome challenge 22
3.1.1 Palindromes . 22
3.2 Attempting to identify palindromes with finite state automata 24
3.3 A better approach to identify (even) palindromes 27

3.4 Turing machines 29
3.4.1 Intuitive definition . 29
3.4.2 Formal definition . 31
3.4.3 Turing machine computations . 33
3.4.4 Specifications . 34
3.5 History 35

4 Decision problems and languages . 38
4.1 Three points of view on computational challenges 38
4.1.1 Decision problems . 38
4.1.2 Computing a Boolean function . 39
4.1.3 Languages . 39
4.2 Regular languages 40
4.2.1 Recapitulation: finite state automata . 40
4.2.2 Regular languages . 41
4.2.3 Regular operations . 41
4.2.4 Fundamental limitations . 42
4.3 (Semi-)decidable languages 45
4.3.1 Recapitulation: Turing machines . 45
4.3.2 Decidable languages . 45
4.3.3 Semidecidable languages . 46
4.3.4 Fundamental limitations . 47
4.4 The Church-Turing thesis 49

5 Universal Turing machines and undecidability 51
5.1 Bit encoding of Turing machines 51
5.1.1 Encoding tuples into bitstrings . 51
5.1.2 Encoding Turing machines into bitstrings . 53
5.2 Universal Turing machines 54
5.3 Uncomputable & undecidable decision problems 56
5.3.1 Variants of halting problems . 56
5.3.2 Two undecidable languages . 58
5.3.3 Two uncomputable languages . 59
5.4 Interpretations and implications 59

6 Time-bounded computations . 62
6.1 Motivation: multiplication vs. factorization 63
6.1.1 Multiplication . 63
6.1.2 Integer factorization . 64
6.2 Big-O notation 66
6.3 Time complexity 68
6.4 P and EXP 69

6.5 Example problems 70
6.5.1 Elementary algebraic operations . 70
6.5.2 Elementary logical operations . 71
6.5.3 Computing the determinant of a matrix . 72
6.5.4 Criticisms and extensions . 73

7 The problem class NP . 74
7.1 Motivation: Factoring 74
7.2 The problem class NP 75
7.3 Examples 77
7.4 Origin story: non-deterministic Turing machines 77
7.5 Philosophical implications of P vs. NP 79

8 The Cook-Levin Theorem . 81
8.1 9-SAT, aka Boolean satisfiability 82
8.2 The Cook-Levin Theorem 84
8.3 Proof sketch for Theorem 8.6 84
8.4 Context and implications 89

9 Karp reductions and NP-completeness 90
9.1 Karp reductions 90
9.2 Properties of Karp reductions 93
9.3 NP-completeness 94
9.4 A method for proving NP-completeness 95
9.5 Implications 95

10 Space complexity . 96
10.1 Space-bounded computations 96
10.2 The problem class PSPACE 98
10.3 The problem class NPSPACE 100
10.4 PSPACE completeness and a PSPACE complete problem 100
10.5 The essence of PSPACE: optimal strategies for 2-player games 103

11 co-NP and the polynomial hierarchy 105
11.1 Motivation: Factoring is special 105
11.2 The problem class co-NP 107
11.3 The Polynomial hierarchy 109

12 Circuits . 113
12.1 (Logical) circuits 114

12.2 Circuit size and circuit depth 115
12.3 Representing logical functions as circuits 117
12.4 Representing TM computations via circuits 119
12.5 Circuits for universal TMs 123

13 Circuit size-bounded computations . 125
13.1 (Circuit) size-bounded computations 125
13.2 Turing machines that take advice 130
13.3 The Karp-Lipton Theorem 132

14 Circuit lower bounds & Circuit-SAT . 136
14.1 Circuit lower bounds 136
14.2 CIRCUIT-SAT & an alternative proof of the Cook-Levin theorem 140

Bibliography . 144

1. Motivation, overview and (some) background

Date: 7 Oktober 2021

Agenda:

1 Motivating example:
traveling salesperson

2 Overview of topics
3 Background: alphabets

and strings

1.1 Motivating example: traveling salesperson (TSP)
In theoretical computer science, we try to make absolute statements about
computation. One of the core objectives – and a core focus of this lecture
– is to determine whether a given computational problem is ‘easy’ or ‘hard’.
Some computational tasks, like finding a certain item within a list, or adding
two natural numbers, are very ‘easy’ to solve on computing devices. Other
computational problems, however, seem to be much more ‘harder’.

Computational Problem (traveling salesperson (TSP)). Given a map with <

cities, find the shortest possible routes that visits all cities exactly once and
terminates at the origin city.

We refer to Figure 1.1 for an illustration. Before moving on to discuss
potential solutions, let us first see how a given TSP problem can be fully
specified. A moment of reflection reveals that the actual map is not that
important. What matters are pairwise distances between cities.

Fact 1.1 A given TSP instance involving < cities is completely specified by ≈ <2

pairwise city distances (in, say, kilometers). �

Exercise 1.2 For < cities, it is not necessary to store all possible <2 pairwise
distances, because there are redundancies (e.g. the distance Linz↔Wien is the
same as Wien↔Linz). What is the minimal number of parameters (pairwise
distances) that is required to completely specify a TSP instance?

Fact 1.1 asserts that a complete description of a given TSP problem scales
quadratically in the number of cities <.

2 Lecture 1: Motivation, overview and (some) background

We see that every TSP instance involving < cities can be specified by roughly
<2 parameters. An Austrian TSP problem (9 state capitals), for instance, is fully
characterized by 36 pairwise city distances. For Germany (16 state capitals),
this number grows to is 120, while 1225 pairwise distances are required for the
US (50 state capitals),

It is somewhat inconvenient that the description size of TSP grows faster
than linear with the problem size (number of cities <). But, on the other
hand, this growth is also not very extreme. Especially if we compare it to more
explosive growth phenomena, like the one we are going to discuss next.

Now, that we have specified a given TSP problem, let us discuss how to
solve it. We can specify each route by a list of < + 1 city names such that the
first and last entry must be identical (the salesperson must return to the city
of origin). For the Austrian TSP, Bregenz→ Eisenstadt→ Graz→ Innsbruck
→ Klagenfurt→ Linz→ Salzburg→ St. Pölten→ Wien→ Bregenz (visit all
Austrian state capitals in alphabetical order) is one possible route, albeit a very
bad one. See Figure 1.1 (left) for visual proof.

Given access to pairwise city distances, it is easy to compute the total
distance in kilometers: it requires exactly (< + 1) additions (one for each leg of
the route). That is, the cost of computing a route actually scales linearly with
the number of cities <. This is very good, but keep in mind that we are tasked to
find the shortest possible route. And a naive approach, like brute-force search,
may require us to compare very many possible routes.

Fact 1.3 A given TSP instance involving < cities admits ≈ <! = < (< − 1) (< −
2) · · · 1 different routes. �

Exercise 1.4 Every permutation of < city names gives rise to a possible route
(this is where the scaling with <! comes from). But, do all these <! reorderings
lead to actually different routes? Determine the actual number of possible
routes as a function of the number of cities.

The factorial of < quickly becomes enormous (<! scales roughly like << ≈
exp(< log(<) which grows faster than any exponential). And this does affect a
brute-force search over all possible route distances. Suppose, for illustration,
that we can compute the distance of a given route in 1ms = 10−3s (and we can
keep track of the smallest kilometer count seen so far at almost zero extra cost).
Then, solving the Austrian TSP (9 state capitals) with brute-force search would
require ≈ 9! × 10−3 ≈ 6min, which is still doable. But the German TSP (16
state capitals) would already require 16! × 10−3s ≈ 663.5ys! For the US (50
state capitals), the rough number of different routes is ≈ 3×1064. This number
is astronomically large in a very real sense. It is almost comparable to the total
number of atoms contained in the milky way galaxy (roughly 2.4×1067 atoms).
We cannot hope to compare all these route distances.

So, what is happening here? Is brute-force search for TSP merely a very
bad algorithm design choice? Or is TSP perhaps an intrinsically difficult
problem where the solution cost must, at least sometimes, scale very poorly

3 Lecture 1: Motivation, overview and (some) background

Figure 1.1 Illustration of the traveling salesperson problem (TSP): A traveling
salesperson intends to visit all Austrian state capitals (black dots) exactly once
during a business trip. After the trip is completed, she also wants to return to
the origin city. The goal is to find the shortest possible route. (Left): a very bad
route, actually the worst possible route. (Right): a very good route, actually
the best possible route. These two extremal solutions have been identified by
Severin Mairinger, see http://bsc.is/.

with the input size (number of cities)? Of course it is possible to get much
better solution strategies by actually looking at the map in question, or even
implementing a smarter search procedure. But there may, actually, also be
fundamental limitations to such improvements. Most computer scientists,
myself included, believe that an exponential scaling in the number of cities
< might be unavoidable in general. That is, even the best possible algorithm
must sometimes require & exp(2<) seconds, where 2 > 0 is some (unknown)
constant. In words: there are scenarios, where solving TSP is really expensive.
Throughout the course of this lecture, we will see why so many researchers
believe that problems like TSP are intrinsically difficult.

At this point, it is worthwhile to emphasize that the above statement does
not claim that all TSP problems are difficult. Certainly, there exist TSP problems
that are very easy to solve. A concrete example from our real world is Asian
Russia, where all noteworthy cities are arranged in a one-dimensional line –
the Trans-Siberian Railway. Instead, the above claim states that there are, at
least some, TSP problem instances that must be challenging for every solution
strategy conceivable.

1.2 Overview of topics
This course will consist of, in total, 14 lectures. A tentative list of topics is as
follows: tentative list of topics

1 Motivation and (some) background
2 Finite state machines
3 Turing machines

http://bsc.is/

4 Lecture 1: Motivation, overview and (some) background

4 Decision problems and languages
5 Universal Turing machines and uncomputability
6 The problem class P
7 The problem class NP
8 Cook-Levin theorem and NP completeness
9 Karp reductions and some NP complete problems

10 PSPACE, coNP and the polynomial hierarchy
11 Circuits
12 Circuit complexity and P/poly
13 Circuit lower bounds and the Carp Lipton theorem
14 Cook-Levin theorem via circuit complexity

computabilityThe first batch of lectures (lectures 2-4) is dedicated to fundamental
questions about computability. We will first introduce an abstract model – the
finite state automaton – that allows us to model simple computing devices.
Subsequently, we will see that the addition of a working memory will make
such simple computing devices much more powerful. The resulting Turing
machine is so powerful, in fact, that it can simulate every possible computing
device (think: universal compiler) and, therefore, can solve a lot of computing
problems. Nonetheless, we will see that there are computing problems that
even a Turing machine cannot solve. Such problems are uncomputable.

computational complexityIn the second batch of lectures (lectures 5 – 10), we are going to take a (com-
paratively) deep dive into the computational complexity theory. Roughly
speaking, this is the art of distinguishing between easy problems – in the sense
that they can be computed efficiently – and hard problems. To achieve this
goal, we will define different problem classes which can be used to group
computational problems by difficulty. The problem class P, for instance, sub-
sumes all computational tasks that we consider to be efficiently solvable. The
problem class NP, on the other hand, subsumes all computational tasks where
we can efficiently check whether a proposed solution is correct. Computa-
tional complexity theory studies the relations and interdependencies between
complexity classes. For instance, it is easy to see that every problem in P is also
in NP (it is easy to check correctness of a solution to a problem that can itself
be solved efficiently; simply solve the problem and compare). But it also seems
reasonable to believe that the two classes are distinct (P ≠ NP): checking
correctness of a solution should, after all, be easier than coming up with a
solution ourselves. But, perhaps puzzingly, we do not (yet) have mathematical
proof. The V ≠ NP-conjecture is one of the seven Millenium Size Problems
in mathematics (should you be able to solve it, you’ll get a 1 000 000USD
prize and eternal fame as a mathematician). For context, the TSP problem
from Section 1.1 is closely related to a problem in NP. And, because we believe
P ≠ NP, we also believe that TSP should be a difficult problem.

circuit complexityIn the final batch of lectures (lectures 11 – 14), we will revisit computational
complexity from the perspective of logical circuits. In the circuit picture, a
computational problem is easy if we can solve it by evaluating a circuit that is

5 Lecture 1: Motivation, overview and (some) background

not too large (and not needlessly complicated). It is hard if this is not always
possible. Although a well-established subfield in its own right, an early focus
on circuit complexity theory is not standard for a course in computational
complexity. But, in order to truly understand a topic, it is often beneficial to
approach it from multiple angles. Moreover, the circuit complexity picture
plays into core strengths of the JKU curriculum (hardware design) and is also
the point of departure for quantum computational complexity theory (which
problems are to solve if we had access to a fully functional quantum computer;
which problems would still remain challenging).

On first sight, theoretical computer science can seem like a cumbersome,
old-fashioned research field with few actual implications. But this could
not be further from the truth. Over the past decades, computing and, by
extension, computer science has made a lasting impression on virtually all
scientific disciplines. And theoretical computer science studies the fundamental
possibilities and limitation of this toolbox. Results of this form have profound
implications in a variety of scientific disciplines. We will use roughly half of our
exercise classes to discuss such implications. Here is a tentative list of topics: some modern implications of

theoretical computer science
1 Toy models for swarm intelligence
2 Computing power is everywhere
3 NP problems are hard, but solvable
4 Toy models for amorphous materials, like glass
(possibly featuring work by 2021 Nobel laureate Parisi)

5 Quantum advantage
6 Factoring and the game-changing potential of quantum computers

Since these topics will also be part of actual exercises, we will not cover
them in this set of lecture notes.

1.3 Background: alphabets and binary encodings
The fundamental building blocks of information processing is a collection of
symbols that we use for writing down things and/or performing computations.

Definition 1.5 (alphabet). alphabetsAn alphabet is a finite (and nonempty) set of symbols.

We will typically use capital Greek letters, e.g. Σ, to denote a given alphabet.
Our favorite alphabet will be the binary alphabet binary alphabetwhich consists of exactly two
symbols: {0, 1}. Once we have agreed on an alphabet, we can combine the
permitted symbols to represent more complicated expressions.

Definition 1.6 (strings and length). strings and lengthA string over an alphabet is a finite sequence
of symbols drawn from the alphabet. The length of a string is the total number
of symbols it contains (including repetitions).

Strings are very intuitive objects for computer scientists. We typically
denote them by lower-case latin letters, e.g. F , and write |F | for the length. For
the binary alphabet {0, 1}, strings correspond to, well, bitstrings. For instance,

6 Lecture 1: Motivation, overview and (some) background

F = 1111110 is a bitstring of length |F | = 7. Alphabets and, by extension,
strings can contain any number of symbols. Sometimes, they have an intuitive
meaning, but this is not necessary. Different choices, such as

{�, �,� , . . . , / }︸ ︷︷ ︸
latin alphabet, capital letters

and {0, 1, . . . , 9}︸ ︷︷ ︸
decimal digits

are both equally valid alphabets (albeit with a different number of symbols).
In fact, the actual symbols that appear within a given alphabet does not really
matter all that much. In fact, we can immediately forget about a given alphabet
and, instead, represent the symbols by bitstrings. This is the content of the
following mathematical statement.

Theorem 1.7 (bit encodings). bit encodingf Every symbol from a given alphabet can be
represented as a bitstring. This representation is one-to-one and only scales
logarithmically in alphabet size.

It is worthwhile to dissect the actual meaning of this succinct formal
statement. Suppose that we have an alphabet Σ with # different symbols. We
can denote different symbols by 01, . . . , 0# (remember that the actual form
of symbols does not matter). Theorem 1.7 asserts that we can replace each
symbol 07 with a bitstring F7 (where 1 ≤ 7 ≤ #). One-to-one means that the
identification 07 ↔ F7 is unique: each F7 represents exactly one 07 and vice
versa. The final part of the statement asserts that these bitstrings need not be
very long: |F7 | ≈ log2(#) for all 1 ≤ 7 ≤ # .

Exercise 1.8 Prove Theorem 1.7.
Hint: It is helpful to first replace original alphabet symbols by integers ranging
from 0 to # − 1 (convince yourself that this replacement is one-to-one) and
take it from there.

Bit encodings are ubiquitous in computer science (i.e. they occur every-
where). Concrete examples are binary encodings of natural numbers,e.g. 7↔
0111, or ASCII encodings of characters, e.g. ?↔ 011 1111.

Idea: Throughout this course, we will make liberal use of the bit encoding
theorem. Whenever possible, we will try to formulate models & concept
in terms of the binary alphabet {0, 1} and bitstrings. Not only is this the
‘language’ computers actually speak, but it will also liberate us from overly
cumbersome exposition.

Problems
Problem 1.9 (TSP: parameter counting). How many parameters (pairwise dis-
tances) are required to fully specify a TSP problem involving < cities? What is
the total number of inequivalent routes?

7 Lecture 1: Motivation, overview and (some) background

Numerics 1.10 (TSP for Austrian state capitals). Solve TSP for all 9 Austrian state
capitals. Use map services, like Google maps, to extract all (relevant) pairwise
distances between Austrian state capitals. Then, write a piece of software (in
the programming language of your choice) that computes all possible route
distance and subsequently compares them. What is the best possible route to
visit all 9 state capitals? And what is the worst?

Problem 1.11 (bit encoding). Prove the bit encoding theorem presented in
Theorem 1.7.

2. Finite state automata

Date: 14 Oktober 2021

Agenda:

1 Motivating examples

• automatic door
• computing parity

2 Deterministic finite au-
tomata (DFAs)

• formal definition
• Computations

3 Nondeterministic finite
automata (NFAs)

• Determinism vs.
nondeterminism

• equivalence rela-
tions (no proof)

In this lecture we introduce one of the most basic computational models – the
finite state automaton. By itself, it is not particularly powerful, but it lends itself
to a clean and self-contained analysis. More powerful computational models,
like the Turing machine model, build upon these core ideas. Also, when many
finite state automata act together in unison, they can achieve truly amazing
things. This will be the topic of our first special lecture on ‘swarm intelligence’
(not included in these lecture notes).

2.1 Motivating examples
2.1.1 Motivating example: automatic door

As we shall see later on, finite state automatons are abstract models of computing
devices that have extremely limited memory. On first sight, a tiny memory may

closed door

front
pad

rear
pad

open door

front
pad

rear
pad

Figure 2.1 Setup for an automatic door (top view): the door in question does not
open sideways (like most automatic doors in shopping centers), but towards the
rear (like the entrance door to the Open Innovation Center on JKU campus).

9 Lecture 2: Finite state automata

seem extremely restricting. But there are many useful machines that get by
with it. In fact, we interact with such devices all the time. The controller for an
automatic door is one such example. And we interact with it every time we go
shopping. So let’s give it the attention it deserves1. To make things a bit more
interesting, we consider an automatic door that opens towards the rear and
not the sides, see Figure 2.1

The job description of such an automatic door is simple: If a person
approaches, open the door long enough to let them pass and then close it again.
In order to do its job, the automatic door must be able to sense if a person
approaches from the front. And, towards the rear, it must also be able to sense
the presence of a person. Because closing the door is only possible if the rear
area is empty. Both requirements can be achieved by two pads – one in the
front and one in the rear – that detect whether a person is standing in either of
the two critical locations (the blue and red squares in Figure 2.1). So, for all
practical purposes, our door machine lives in a world where there only exist
four possible ‘inputs’ at any time:

Σ = {‘neither, ‘only front’, ‘only rear’, ‘both’} .

This is, of course, a valid alphabet. And nothing prevents us from combining
symbols from that alphabet into strings, e.g.

F = ‘neither’ · · · ‘neither’︸ ︷︷ ︸
9 times

‘only front’ ‘only rear’ ‘neither’ · · · ‘neither’︸ ︷︷ ︸
9 times

is a string of length |F | = 20 over the alphabet Σ. We can actually interpret
this string in the original context of an automatic door: F describes 20 frames
of a (boring) movie where a person approaches an automatic door, passes
through it, and leaves again. Starting from the left, we see that the initial
configuration is F [0] = ‘neither’. That is, no person is close to the automatic
door. And this situation remains unchanged for 9 time steps, i.e. F [B] = ‘neither’
for B = 0, . . . , 8. At time B = 9, finally something interesting happens:
F [9] = ‘front’. Somebody is approaching the automatic door from the front.
Since F [10] = ‘rear’, we can conclude that it took the person one time step
to enter the building. Afterwards, the person has crossed and the automatic
door environment remains empty for another 9 time steps: F [B] = ‘neither’ for
B = 11, . . . , 20.

Let us now check how our automatic door machine reacts to this movement
pattern under the extra assumption that the door is initially closed. Let
? [B] ∈ {‘CLOSED’, ‘OPEN’} denote the state of the automatic door at time B .
Then, by assumption ? [0] = ‘CLOSED’. Also, F [0] = ‘neither’ (the person is
still far away), so there is no reason for the automatic door to open at time
B = 0. This configuration remains unchanged for the next 8 time steps. But,

1This instructive motivating example is taken from Sipser’s textbook Introduction to the Theory
of Computation [Sip97].

10 Lecture 2: Finite state automata

‘CLOSED’

‘only rear’
‘both’

‘neither’

‘OPEN’

‘only front’
‘only rear’
‘both’‘only front’

‘neither’

Figure 2.2 State diagram describing an automatic door controller: circles denote
different states the door can be in (‘OPEN’ or ‘CLOSED’). Possible transitions
between states are depicted by directed arrows. E.g. the trigger ‘only front’
makes the door change states from ‘CLOSED’ to ‘OPEN’.

‘neither’ (00) ‘only front’ (01) ‘only rear’ (10) ‘both’ (11)
‘CLOSED’ ‘CLOSED’ ‘OPEN’ ‘CLOSED’ ‘CLOSED’
‘OPEN’ ‘CLOSED’ ‘OPEN’ ‘OPEN’ ‘OPEN’

Table 2.1 Transition table describing an automatic door controller.

at time step B = 9, the person has closed the distance and is now standing on
the front pad. The door sensor recognizes the configuration ‘only front’ which
prompts the automatic door to change its state to ‘OPEN’, as it should. This
allows the person to enter and at time step B = 10, she is already on top of the
rear pad. The door recognizes the configuration ‘only rear’ which stops it from
closing (if the door closed now, there would be a collision). But, at B = 11, the
passing person has left the rear area and the door is free to close again. This
configuration also doesn’t change anymore for the remaining time steps. In
summary, the door configurations should be

? [0] =‘CLOSED’, . . . , ? [9] = ‘CLOSED’,
? [10] =‘OPEN’, ? [11] = ‘OPEN’,
? [12] =‘CLOSED’, . . . , ? [19] = ‘CLOSED’.

Note that the time evolution of our automatic door would only slightly change
if we started in configuration ? [0] = ‘OPEN’. Since the first pad configuration
is ‘neither’, the door would simply close and remain so until our passenger
approaches at time B = 9. There are two appealing ways to concisely summarize
the inner workings of our automatic door: (i) a visual illustration in terms
of a state diagram presented in Figure 2.2; (ii) a transition table presented in
Table 2.1.

We can take inspiration from this description by interpreting the reaction
of the automatic door to external ‘person configurations’ as a certain type of
‘computation’. And building up on this idea will pilot us into more interesting

11 Lecture 2: Finite state automata

?0

0

?1

1

1

0

Figure 2.3 State diagram for a simple machine that processes bitstrings: The two
possible internal states are denoted by circles, directed arrows between the
two label transitions. The single arrow coming from the left marks the starting
state (?0 in this case). The ‘double circle’ singles out final states that allows the
computation to terminate and ‘accept’ (?1 in this case).

territory. For now let us emphasize that our automatic door computer has a
fatal flow: the ‘computation’ never stops. Our automatic door machine requires
a constant stream of new inputs from the alphabet and reacts accordingly.
Of course, we want an automatic door to behave exactly like that. But for a
computing device this is dangerous. Programs that never halt are a scary thing!

2.1.2 Closer to actual computation: a parity checking machine
We have seen that we can interpret very simple, mechanical, devices as certain
types of computing devices. But this correspondence can seem a bit artificial.
Here, we present another simple example that is closer to digital computation.
The machine, we envision, is designed to process bits. I.e. it works on our
favorite alphabet Σ = {0, 1}. And, similar to the automatic door discussed
above, it can be in one of two states. This time, we are a bit more fancy
(and less creative) and denote them by ?0 and ?1, respectively. Such pristine
mathematical notation should remind us that the actual label we assign to
these states does not matter. And this time, we also resolve two weaknesses we
encountered when discussing the automatic door:

1 We should fix an initial state (to resolve ambiguities at the beginning of
the computation). Let us pick ?0 as starting state.

2 We should also identify a final state that allows the computation to
terminate and report a result. Let us pick ?1 as accept state.

Of course, we must also specify the actual workings of our machine. Since it is
intended to process bits (Σ = {0, 1}) and possesses only two possible states, a
2 × 2 transition table suffices. We choose

0 1
?0 ?0 ?1
?1 ?0 ?1

,

and can, equivalently, represent the entire machine by a diagram, see Figure 2.3.
Let us denote our freshly assembled computing machine by" . After all, we

12 Lecture 2: Finite state automata

haven’t explored yet what it actually does. To find that out, we have to play
around a bit. Our machine starts in the state ?0 and is hard-wired to process
individual bits in a certain fashion. Hence, we can use it to process bitstrings
from left to right. The machine accepts a bitstring if, after the entire string is
processed, it ends up at the accept state. Otherwise it rejects the string. We
can use the state diagram to conveniently cycle through the first couple of
bitstrings. The notation might seem a bit cumbersome, but should explain itself
from context. (Recall, that we are computer scientists and start counting with
0. In particular, F [0] denotes the first element of a bitstring (from the left)):

F = 0, |F | = 1 : ?0
F [0]=0
−→ ?0 ⇒ reject,

F = 1, |F | = 1 : ?0
F [0]=1
−→ ?1 ⇒ accept,

F = 00, |F | = 2 : ?0
F [0]=0
−→ ?0

F [1]=0
−→ ?0 ⇒ reject,

F = 01, |F | = 2 : ?0
F [0]=0
−→ ?0

F [1]=1
−→ ?1 ⇒ accept,

F = 10, |F | = 2 : ?0
F [0]=1
−→ ?1

F [1]=0
−→ ?0 ⇒ reject,

F = 01, |F | = 2 : ?0
F [0]=1
−→ ?1

F [1]=1
−→ ?1 ⇒ accept.

Now, we can see that a pattern emerges. Our machine seems to accept
precisely those strings that end with a 1. A couple of test calculations with
longer bitstrings (which we won’t do here) confirm this intuition. This pattern
is far from arbitrary. And it gains additional meaning, when we view the
bitstrings to be processed as bit encodings x<y of natural numbers < ∈ ℕ:
x0y = 0, x1y = 1, x2y = 10, x3y = 11, etc. Let us write " (<) = 1 if our
machine" accepts the bit encoding x<y of <. And if it rejects the string, we
write" (<) = 0. Then, the pattern we identified translates to

" (0) = 0, " (1) = 1, " (2) = 0, " (3) = 1, " (4) = 0.

This pattern generalizes and we can, in fact, conclude

" (<) =
{
1 if < ∈ ℕ is an odd number,
0 else if < ∈ ℕ is an even number.

Our simple machine" accepts precisely those bitstrings that encode natural
numbers that are odd. In mathematics, the function that computes whether an
integer number is odd or even is called parity. paritySo, our machine computes the
parity of any natural number. This is pretty cool, because the parity is also a
very useful function in computer science. And we only needed a machine with
two internal states to compute it. In fact, this machine, is even less complicated
than an automatic door!

Our device, however, is not limited to process bitstrings of length two. It
can compute the parity of arbitrary natural numbers. The runtime (number

13 Lecture 2: Finite state automata

of steps) it requires to do that is equal to the length of the bit encoding. This
is a very fast operation, because the length of bit encodings x<y only scales
logarithmically in the size of the actual number:

runtime" (<) = |x<y | = dlog2(<) + 1e. (2.1)

The logarithm is one of the most slowly growing functions we know. So,
computing the parity remains tractable even for very, very large numbers2.
Additional improvements are possible if we instead compute the parity using a
decimal alphabet, or even a hexadecimal alphabet.

Exercise 2.1 (decimal parity function). Design a machine that computes parity by
processing decimal numbers instead of binary ones. Show that the resulting
runtime is comparable to, but slightly faster than, the runtime of a binary parity
checking machine.

We can use similar ideas to construct machines that execute other important
functionalities.

Exercise 2.2 (parity of sums). Construct a machine that computes the parity of a
sum of bits, i.e. " (F0 · · · F<−1) = parity(F0 + F1 + · · · F<−1) for any bitstring
length < ∈ ℕ. If we restrict attention to bitstrings F0F1 of length < = 2, then
this machine computes a very prominent logical function (gate). Which one is
it?

We see that several fundamental primitives in computation and hardware
design seem to correspond to simple machines that check bits one at a time
and change their internal state based on a pre-specified set of transition rules.
This is not a coincidence.

2.2 Deterministic finite automata (DFAs)
2.2.1 Formal definition

The two examples above motivate the first model of computation we will
discuss in this course. It is very simple, not particularly powerful, and called
the (deterministic) finite automata model. Deterministic finite automate are
also called finite state machines.

Definition 2.3 (deterministic finite automaton (DFA)). A deterministic finite automa-
ton (DFA) is a machine that can either accept or reject strings by sequentially
processing symbols (from left to right). It is fully characterized by

• a (finite and nonempty set of internal states& ;
• the alphabet Σ of symbols it can process;
• a transition function X : & × Σ→ & that describes the inner working;
• a designated start state ?0 ∈ & and;
• a subset of accept states � ⊆ & .

2The (base-2) logarithm of our favorite astronomically large number – 2.4 × 1067, aka the
number of atoms in the milky way galaxy – is ‘only’ 223.832.

14 Lecture 2: Finite state automata

0

0, 1 0

1 1

1

0

1 0, 10

?0 ?1 ?2

?3 ?4 ?5

Figure 2.4 Example of a more involved DFA state diagram.

Formally, we identify a DFA with the 5-tuple" = (&, Σ, X , ?0, �). formal definition as 5-tuple

We already have seen a concrete example. The parity check machine from
Section 2.1.2 can be succinctly characterized as

" =

(
{?0, ?1}︸ ︷︷ ︸

&

, {0, 1}︸︷︷︸
Σ

, X , ?0, {?1}︸︷︷︸
�

)
,

where the transition function X : {?0, ?1} × {0, 1} → {?0, ?1} acts as

X (?0, 0) = ?0, X (?0, 1) = ?1, X (?1, 0) = ?0, X (?1, 1) = 1.

Note that this is simply another way of writing down the information stored
in the transition table. It is common to express DFA visually by using state
diagrams. state diagramsWe have already seen two examples in Figure 2.1 and Figure 2.3,
respectively. Here are the general rules:

1 States are denoted by circles.
2 These circles are connected by (directed) arrows. And alphabet symbols
label these arrows.

3 The transition function is characterized by the arrows, their labels and
the circles they connect.

4 The start state is determined by the arrow coming in from nowhere.
5 Accept states are highlighted by double circles.

Figure 2.4 depicts a somewhat more involved state diagram that is taken
from [Wat20]. Let us try to convert it into more formal language. The alphabet

15 Lecture 2: Finite state automata

0 1
?0 ?0 ?1
?1 ?3 ?2
?2 ?5 ?5
?3 ?3 ?3
?4 ?4 ?1
?5 ?4 ?2

Table 2.2Transition table for the DFA introduced in Figure 2.4. Rows label different
states (?0, . . . , ?5) while columns label different binary inputs (0 or 1).

is Σ = {0, 1}, because arrows are either labeled by 0 or 1. Also, there are six
internal states labeled by ?7 (0 ≤ 7 ≤ 5), so & = {?0, ?1, ?2, ?3, ?4, ?5}. The
starting state is ?0 and there are three accept states: � = {?0, ?2, ?5}. Finally,
the transition function X : & × Σ→ & acts as follows: transition function

X (?0, 0) = ?0, X (?0, 1) = ?1,
X (?1, 0) = ?3, X (?1, 1) = ?2,
X (?2, 0) = ?5, X (?2, 1) = ?5,
X (?3, 0) = ?3, X (?3, 1) = ?3,
X (?4, 0) = ?4, X (?4, 1) = ?1,
X (?5, 0) = ?4, X (?5, 1) = ?2.

(2.2)

See also Table 2.2 for the corresponding transition table. To summarize, the
DFA described in Figure 2.4 corresponds to the 5-tuple

" =

(
{?0, ?1, ?2, ?3, ?4, ?5}︸ ︷︷ ︸

&

, {0, 1}︸︷︷︸
Σ

, ?0, X , {?0, ?2, ?5}︸ ︷︷ ︸
�

)
,

where the transition function is characterized by Eq. (2.2).

Exercise 2.4 Which of the following bitstrings are accepted by the DFA visualized
in Figure 2.4: a) 00000010, b) 11101110, c) 11001100, d) 11010101.

Note that Figure 2.4 contains an arrow that is labeled by two alphabet
symbols (‘0, 1′). This means that there are actually multiple arrows, each
labeled by a single symbol. Summarizing several single-symbol arrows with
the same start and end location by a single arrow with multiple symbols
declutters presentation and makes the entire diagram easier to read. Being
able to read state diagrams can come in handy throughout various stages
of computer science studies (and career). One way to make sure that one
actually understands them, is to convert them into the formal language from
Definition 2.3. Of course, you can also go the other way and draw a state
diagram from a formal description of a 5-tuple. The problem section at the end
of this chapter contains one problem for each direction.

16 Lecture 2: Finite state automata

2.2.2 DFA computations
We have already seen that DFAs can be used to perform computations. In
particular, we showcased how a simple DFA – the parity check machine from
Section 2.1.2 – accepted bit encodings of odd numbers and rejected bit encodings
of even numbers. Thinking in terms of state diagrams makes it easy to say in
words what that actually means. We begin at the start state and iteratively
transition from one state to another based on the symbols of the input string
(starting on the left and iteratively processing to the right). We accept if and
only if we end up on an accept state. Otherwise we reject. accepting and rejecting inputs

This all makes sense intuitively, but it is not yet a formal definition. How do
we define in precise, mathematical terms what it means for a DFA to accept or
reject a string? In particular, intuitive guidelines, like ‘follow transitions’ and
‘end up on an accept state’ should be replaced by more precise mathematical
statements. There is more than one way to achieve this goal. The following
formal definition is taken from Watrous’ lecture notes [Wat20].

Definition 2.5 (DFA computations). Let " = (&, Σ, X , ?0, �) be a DFA and let
F = F0 · · · F<−1 be a length-< string (< ≥ 1) over the alphabet Σ. We say that
the DFM" accepts F if there exist states @0, . . . , @< ∈ & such that

@0 = ?0, @9+1 = X (@9 , F9) for 9 = 0, . . . , < − 1 and @< ∈ � . (2.3)

The DFA also accepts the empty string F = Y (not a single symbol, < = 0) if
?0 ∈ � . If" doesn’t accept F , then we say that" rejects F .

Note that the definition addresses the special case F = n separately. This
is important, because there are often multiple ways to deal with ‘nothing’, in
particular empty strings, or empty sets. But often, there is only one way that
leads to consistent behavior across all possibilities. And while it may seem
overly pedantic to deal with the empty string at all, these things can start to
matter if we want to combine simple formal statements (like this one) to obtain
more interesting, and typically more involved, statements.

For nonempty strings (< ≥ 1), the formal definition of acceptance is that
there must exist a sequence of states @0, . . . , @< such that the first state is the
start state, the last state is an accept state and each state in the sequence is
determined from the previous state and the corresponding symbol read from
the input as the transition function dictates. If we are in the state @9 and read
the symbol F9 , then the new state must be @9+1 = X (@9 , F9). In other words:
the entire computation must be correct (and deterministic, as we shall discuss
next).

2.3 Nondeterministic finite automata (NFAs)
2.3.1 Determinism vs. nondeterminism

Note that the transition rules of a DFA follow stringent, yet intuitive, rules.
They become apparent if we study DFA state diagrams, like the ones presented
in Figure 2.3 and Figure 2.4, a bit more closely. determininistic computations

17 Lecture 2: Finite state automata

First and foremost, every DFA state (circle) has exactly one exiting transition
arrow for each symbol of the alphabet. And secondly, arrows can only be labeled
by symbols from the alphabet Σ in question. These properties ensure that the
machine is perfectly predictable. If we know the internal state @9 at time step 9
and the next alphabet symbol F9 to be read, then we know with certainty that
the machine will transition into state @9+1 = X (@9 , F9). The philosophical view
that events are determined completely by preciously existing causes is called
determinism.This is why we call these machines deterministic finite automatas.
The opposite of determinism is some kind of nondeterminism or randomness.

Determinism vs. nondeterminism has long been, and still is, an important
conceptual debate in various scientific disciplines. Physics is a good example.
Newtonian mechanics, for instance, is completely deterministic (e.g. if you
know the current location of an asteroid, as well as its momentum, Newton’s
equations of motion allow you, in principle, to perfectly compute its future
trajectory) and so is (special and general) relativity, as well as electromagnetism.
Quantum mechanics, by contrast, is a probabilistic theory and therefore not
deterministic. In the first half of the 20th century, this inherent randomness
has worried some of the greatest scientific minds. Einstein’s famous quote

"I, at any rate, am convinced that [God] does not throw dice"
(German: Jedenfalls bin ich überzeugt, daß der nicht würfelt.)

from 1926 (in a letter to Max Born, one of the fathers of quantum mechanics) is
a testimony of such a spirited debate.

2.3.2 Nondeterministic finite state automata (NFAs)
The determinism vs. nondeterminism debate is also very important for computer
science. nondeterministic

computations
In the remainder of this chapter, we briefly discuss it in the context of

finite state machines. But, we will also see certain aspects of this question in
later chapters of the course.

State diagrams describing a nondeterministic finite automaton (NFA) can
break the rules of DFAs in two ways:

1 For each state (circle) and alphabet symbol, there can be zero, one, or
more than one exiting transition arrows (state diagrams describing a
DFA always have exactly one). Multiple arrows provide the NFA with a
choice (that is hidden from us): it can choose which arrow to follow. The
absence of an arrow instead prevents the computation from proceeding.

2 We introduce a new type of arrow, labeled by Y (or symbol for the empty
string). This arrow enables the NFA to change its internal state without
reading a string symbol (and moving on to the next symbol).

Figure 2.5 describes a possible state diagram. Nondeterminism may be viewed
as a kind of parallel computation. Multiple independent ‘threads’ can be
executed concurrently. And, if at least one of these subthreads accepts, then
the entire computation accepts.

18 Lecture 2: Finite state automata

0, 1 0, 1

?0 ?1 ?2 ?3
1 0, Y 0, 1

Figure 2.5 State diagram of a NFA: this state diagram violates the rules of a DFA.
In particular, there are two 1-arrows at state ?0 (leftmost circle). The state
?1 has one exiting arrow for 0, but note for 1. The Y-arrow (empty string)
between ?1 and ?2 indicates that such a transition is possible without reading
a symbol from the string in question.

Exercise 2.6 Consider the NFA from Figure 2.5 that performs computations over
the binary alphabet Σ = {0, 1}. Which of the following strings is not accepted:
a) 11, b) 101, c) 010, d) 11011 (can you recognize a pattern?)

We can also think of NFAs in terms of randomness. Each time, the automaton
faces a situation with multiple ways to proceed (arrows to follow), it picks
one uniformly at random. Conversely, it is also possible to end up at a state
where there is no way of moving forward. Consider, for instance, the NFA from
Figure 2.5: if we are in state ?1 and read in a 1, we cannot proceed. In this
case, this particular thread ‘dies’ and is discarded.

We say that a NFA accepts a state if the probability of ending up in an accept
state is strictly larger than zero. acceptance for NFAsNote, in particular, that it is perfectly fine if
this probability to accept is positive, but astronomically small. E.g. a numerical
value of 1/(2.4×1067) – one over the number of atoms in the milky way galaxy
– still leads us to say that the NFA accepts a given string. This is in stark contrast
to models of randomized computation, where we require accept probabilities
to be strictly larger than 1/2 (which can then be boosted arbitrary close to
one by running the computation multiple times and taking a majority vote).
Nondeterminism is really a statement about possibilities, not probabilities.

2.3.3 Equivalence between NFAs and DFAs
It is not entirely wrong to view NFAs as ‘untrustworthy’ DFAs that are allowed
to cheat sometimes. And, on first sight, this ability should make them more
powerful at accepting complicated bitstring configurations. Perhaps surprisingly,
this is not really the case. NFAs and DFs are equivalent

Theorem 2.7 (equivalence between NFAs and DFAs). All computations per-
formed by a NFA can be perfectly reproduced by a deterministic finite
automaton DFA. However, there may be an exponential overhead in the
number of states required.

This is a standard result in the theory of finite automata. Most introductory

19 Lecture 2: Finite state automata

courses in theoretical computer science dedicate a considerable amount of
attention to properly discuss and prove this statement. We, however, have
neither the time, nor the proper background, to do that. Instead we refer
the interested reader to standard textbooks [Sip97] or earlier versions of this
course [Sch20] for further reading. Instead, we quickly elaborate on the content
of Theorem 2.7 in words: Everything that can be done with a NFA can also be
done with a DFA. This is very interesting from a philosophical point of view.
Nondeterminism, which is stronger than performing computation with the
help of additional randomness, does not increase the expressive power of finite
automata at all. It can, however, be very expensive to build a DFA that does the
same job as a NFA. The number of states required to make it work can, and often
does, scale exponentially in the original number of NFA-states: &DFA ≈ 2&NFA .
This is a consequence of the mathematical proof behind Theorem 2.7 (The key
idea is as follows: for a NFA that contains # states & = {?0, . . . , ?#−1}, we
construct a DFA with (up to) 2# states, each of which describes a subset of NFA
states, e.g. the (sub-)set {?0, ?#−1} ⊆ & would be one state of the DFA to be
constructed).

Problems
Problem 2.8 (decimal parity, see also Exercise 2.1). The aim is to design a DFA that
computes parity by processing decimal numbers instead of binary ones. Only
two states will be required. Let’s call them ?even and ?odd.

1 Draw a state diagram that characterizes this DFA (it should contain two
circles and 10 outgoing arrows for each of them; do use multiple labels to
declutter presentation).

2 Convert this state diagram into a formal description according to Defini-
tion 2.3. Specify the transition function by completing the following table
and inserting the correct states:

X (?even, 0) =?, X (?even, 1) =?, · · · X (?even, 8) =?, X (?even, 9) =?,
X (?odd, 0) =?, X (?odd, 1) =?, · · · X (?odd, 8) =?, X (?odd, 9) =?.

Hint: Formally, this is a table with 10 rows and 2 columns, but there is
underlying structure that can be exploited.

3 Which of the following statements is correct:
a) runtime(<) = dlog10(<) + 1e ≈ d3.32 × log2(<) + 1e which is faster than

the runtime for computing binary parity, see Eq. (2.1).
b) runtime(<) = dlog10(<) + 1e ≈ d3.32 × log2(<) + 1e which is slower than

the runtime for computing binary parity, see Eq. (2.1).
c) runtime(<) = dlog10(<) + 1e ≈ d0.3 × log2(<) + 1e which is faster than

the runtime for computing binary parity, see Eq. (2.1).
d) runtime(<) = dlog10(<) + 1e ≈ d0.3 × log2(<) + 1e which is slower than

the runtime for computing binary parity, see Eq. (2.1).

Hint: Remember (or look up) how to change the basis of logarithms.

20 Lecture 2: Finite state automata

Problem 2.9 (parity of sums, see also Exercise 2.2). The aim is to construct a DFA
that computes the parity of a sum of bits, i.e." (F1 · · · F<) = parity(F1 + F2 +
· · · F<) for any bitstring length < ∈ ℕ. Only two states will be required. Let’s
call them ?even and ?odd.

1 Draw a state diagram that characterizes this DFA (it should contain two
circles and 2 outgoing arrows for each of them).

2 Convert this state diagram into a formal description according to Defini-
tion 2.3. Specify the transition function by completing the following table
and inserting the correct states:

X (?even, 0) =?,X (?odd, 1) =?,
X (?odd, 0) =?,X (?even, 1) =?.

3 If we restrict attention to length-2 bitstrings F1F2, then this DFA computes
a very prominent logical function (gate). Which one is it?
a) AND (F1 ∧ F2)
b) NAND (¬(F1 ∧ F2),
c) OR (F1 ∨ F2),
d) XOR ((F1 ∨ F2) ∧ ¬(F1 ∧ F2)).

Problem 2.10 (state diagram to 5-tuple). Consider the following state diagram of
a DFA working over the binary alphabet {0, 1}:

A
0 1>0 ?0

>1 ?1

0 1

1 00 1

1 0
1 Convert this state diagram into a formal description according to Def-
inition 2.3 (5-tuple). Specify the transition function by replacing the
question marks in the following table by the correct states:

X (A , 0) =? X (A , 1) =?,
X (>0, 0) =?, X (>0, 1) =?,
X (>1, 0) =?, X (>1, 1) =?,
X (?0, 0) =?, X (?0, 1) =?,
X (?1, 0) =?, X (?1, 1) =?.

21 Lecture 2: Finite state automata

2 Which one of the following statements is true:
a) This DFA accepts all bitstrings that start and end with a different symbol.
b) This DFA accepts all bitstrings that start and end with the same symbol.
c) This DFA accepts all bitstrings that start with a 1.
d) This DFA accepts all bitstrings that end with a 1.

Problem 2.11 (5-tuple to state diagram). Consider the DFA defined by the 5-tuple
" = ({?0, ?1, ?2} , {0, 1} , X , ?0, {?2}}, where the transition function X acts
like

X (?0, 0) = ?0, X (?0, 1) = ?1,
X (?1, 0) = ?2, X (?1, 1) = ?1,
X (?2, 0) = ?1, X (?2, 1) = ?1.

1 Draw the associated state diagram.
2 Which one of the following statements is true:

a) This DFA accepts all bitstrings that contain at least one 1 and an even
number of 0s that follow the last 1.

b) This DFA accepts all bitstrings that contain at least one 0 and an even
number of 1s that follow the last 0.

c) This DFA accepts all bitstrings that contain at least one 1 and an odd
number of 0s that follow the last 1.

d) This DFA accepts all bitstrings that contain at least one 0 and end with ’10’
following the last 0.

Problem 2.12 Which of the following bitstrings are accepted by the DFA visualized
in Figure 2.4: a) 00000010, b) 11101110, c) 11001100, d) 11010101.

Problem 2.13 (NFA-to-DFA conversion (challenging)). Consider the NFA over the
binary alphabet {0, 1} described by the following state diagram:

0

?2

0, 1

1
?1

Construct a state diagram that describes a DFA that perfectly reproduces its
functionality.
Hint: there are four subsets of the set {?1, ?2} of NFA states: ∅ (the ‘empty
set’), {?1} (‘only ?1’), {?2} (‘only ?2’) and {?1, ?2} (‘both ?1 and ?2’). The DFA
in question works on the binary alphabet {0, 1}, has 4 states in total (one for
each subset) and 8 transition arrows (one outgoing 0-arrow and one outgoing
1-arrow for each state).

3. Turing machines

Date: 14 Oktober 2021

Agenda:

1 Palindrome challenge
2 How DFAs fail
3 A better approach
4 Turing machines
5 History

Last time we have introduced finite state automata (DFA). We discussed the
underlying ideas, how to describe them properly and also mentioned some
interesting applications and possibilities. Today, we will instead focus on their
limitations. More precisely, we will pose a challenge – the recognizing (long)
palindromes – that turns out to be very hard for DFAs. But some, seemingly
modest, manipulations do allow us to tackle the palindrome challenge with
relative ease. The resulting computational model is called the Turing machine
and has formed the backbone of theoretical computer science from the 1930s
till today.

3.1 The palindrome challenge
3.1.1 Palindromes

A palindrome is a string (word) which backwards reads the same as forwards.
Of course, this depends on the alphabet in question. For the (lower-case) latin
alphabet, examples are

‘anna’, ‘hannah’, ‘civic’ or ‘reliefpfeiler’ (German). (3.1)

But palindromes exist for any alphabet. Here is a formal definition.

Definition 3.1 (palindrome). A (finite) string F = F0 · · · F<−1 is called a palindrome
if

F<−1F<−2 · · · F1F0 = F0F1 · · · F<−2F<−1.
It is easy to verify that the examples from Eq. (3.1) are all palindromes over

the lower-case latin alphabet Σ = {0, 1, 2 , . . . , H}. The following strings are

23 Lecture 3: Turing machines

examples of palindromes over the binary alphabet Σ = {0, 1}:

11100111, 10111101, and also 1010101, 1011101.

The first two bitstrings are examples of palindromes, where the total number
of symbols is even (‘anna’ and ‘hannah’ also have this feature). In contrast, the
second two bitstrings are palindromes where the total number of symbols is
odd (‘civic’ and ‘reliefpfeiler’ also have odd length). Looking at these examples
suggests that even-length palindromes are slightly more restrictive than odd-
length palindromes. Indeed, for odd palindromes, we are allowed to choose
the symbol in the very center of the string completely arbitrarily. The following
reformulation of Definition 3.1 pinpoints this slight discrepancy.

Lemma 3.2 (palindrome). Fix an alphabet Σ. A (finite) string F = F0 · · · F<−1
over Σ is called a palindrome if and only if

F9 = F<−1−9 for all 9 = 1, . . . , b</2c, (3.2)

where b·c denotes the ‘rounding down function’, e.g. b1/2c = 0, b1c = 1,
b3/2c = 1, etc.

Small mathematical statements, like this one, are called Lemma or ‘Hilfssatz’
in German. This one is a (very) easy reformulation of Eq. (3.1).

Exercise 3.3 Prove Lemma 3.2.

By looking at Lemma 3.2, we see where the discrepancy between even- and
odd-length palindromes comes from. If |F | = < is even, then there are exactly
b</2c = </2 constraints that a palindrome must satisfy. But, for odd-length
palindromes, this number of constraints drops down to b</2c = (< − 1)/2.

In the remainder of this lecture, we restrict our attention to even-length
palindromes. Statements about odd-length palindromes are qualitatively
similar, but can differ in one (or more) details. Adapting the ideas discussed
here to odd-length palindromes is a good way of understanding what is really
going on in this lecture.

But, for now, we conclude this introductory section by exactly counting the
number of binary palindromes that have a given length.

Proposition 3.4 Consider the binary alphabet Σ = {0, 1} and let < be an even
number. Then, exponential growth of the

number of palindromesNr. of length-< palindromes = 2</2. (3.3)

This mathematically rigorous statement asserts that the total number of
(binary, even-length) palindromes grows exponentially in the length <. That
is, there are 2 palindromes of length < = 2 (00, 11), 4 palindromes of length
< = 4 (0000, 0110, 1001, 1111), and, for instance, 1024 palindromes of length
< = 20 (we won’t list them all here). The main gist is that Eq. (3.3) grows
extremely quickly with <. Mathematical statements, like this one, are called
‘Proposition’, because they are more interesting than a ‘Lemma’, but still don’t
quite deserve the title ‘Theorem’.

24 Lecture 3: Turing machines

Proof of Proposition 3.4. We start with the reformulation of palindrome proper-
ties from Lemma 3.2. By assumption, the length < is even, so each palindrome
must obey exactly </2 constraints (3.2). We can rewrite them as

F</2+1 =F</2,

F</2+2 =F</2−1,

...

F<−1 =F0.

These equalities highlight that the choice of the first </2 bits (F0, . . . , F</2−1)
completely determines what the final </2 bits must look like. Other than
that, there are no restrictions. We have, in fact, established a one-one relation
between palindromes of length < and bitstrings of length </2 (Every length-</2
bitrstring can be completed to form a length-< palindrome and, conversely,
every length-< palindrome can be chopped up into two pieces. And, knowing
the first piece unambiguously characterizes the second one). But, it is easy to
count the number of (distinct) length-</2 bitstrings. There are two possible
choices (0 or 1) for each bit which accumulates to a total of

2 × 2 · · · 2 × 2︸ ︷︷ ︸
</2 times

= 2</2

distinct choices. �

This proof is our first example of a counting argument counting argument. Sometimes, though
not always, disputes in theoretical computer science can be settled by simply
counting the number of possibilities. Working largely with 0s and 1s turns out
to be a major blessing in this regard (by contrast, it is actually impossible to
count the number of real-valued numbers between 0 and 1). For the task at
hand, the counting can readily be generalized to cover odd-length palindromes
and/or more general alphabets.

Exercise 3.5 (number of more general palindromes).

1 Generalize Proposition 3.4 (and the underlying proof) to odd-length
palindromes.

2 Generalize Proposition 3.4 (and the underlying proof) to palindromes
over an alphabet Σ comprised of # symbols.

3 Combine 1., 2. and Proposition 3.4 into a single growth formula that is
valid for all (finite) alphabet sizes |Σ | = # and both, even and odd, string
length <.

3.2 Attempting to identify palindromes with finite state automata
We will now show that DFAs are very bad at recognizing palindromes. Recall the
concept of a (deterministic) finite state automaton (DFA) from the last lecture.

25 Lecture 3: Turing machines

These are simple computing devices whose inner working is governed by a
finite set of internal states& , as well as a (deterministic) transition function
X : & × Σ → & between these states. This transition function is governed
by (external) symbols in a given alphabet Σ. This allows us to process strings
F = F0 · · · F<−1 over Σ by initializing the DFA in a specified starting state
(called ?0) and iteratively applying state transitions according to the symbols
F9 ∈ Σ (0 ≤ 9 ≤ < − 1) that make up the string. If we happen to end up at a
pre-determined accept state ? ∈ � ⊆ & , we say that our DFA accepts string F .
Formally, a DFA is described by a 5-tuple" = (&, Σ, X , ?0, �), where& is the
set of states and � ⊆ & is a subset of accepting states.

DFAs can, and should, be used to identify interesting structure within
strings of symbols. Last week, for instance, we constructed a DFA that accepts
bitstrings with odd parity, i.e. F = F0 · · · F<−1 with F9 ∈ {0, 1} and F<−1 = 1,
regardless of the actual length <. Another example is bitstrings that contain an
odd number of 1s (parity of sums), which is one topic of Exercise Sheet I. And,
we will see several more examples when we talk about regular languages next
week. For now, it suffices to appreciate that it is often possible to develop DFAs
that accept (bit-)strings with certain structural properties. But, does this also
work for identifying (even) palindromes?

The perhaps surprising answer is no, not really! Here, we content ourselves
with illustrating what can go wrong when we try to design DFAs that accept
palindromes. For now, it is enough to consider bitstrings of (even) length <,
where < is a somewhat large number, e.g. < = 550. The task is to design a DFA
that accepts length-< bitstrings if and only if they are palindromes. But this
is already a challenging endeavor, because Proposition 3.4 tells us that there
are exponentially many length-< palindromes. And, to make matters worse,
they are apparently structureless. As shown in the proof of Proposition 3.4,
every length-</2 bitstring can be completed to form a palindrome that is twice
as long. And, there is one, and only one, correct way to do that. Reverse the
ordering and append it to the original string:

F0 · · · F</2−1 ∈ {0, 1}</2︸ ︷︷ ︸
bitstrings of length </2

↦→ F0 · · · F</2−1F</2−1 · · · F0 ∈ {0, 1}<︸ ︷︷ ︸
palindromes of length <

.

The problem is, that the palindrome structure only manifests itself after we
have processed exactly one half of the input bitstring. And, to make matters
worse, (even) palindromes are highly ‘case-sensitive’ as well. This has a very
unfortunate consequence. In order to check for palindromes, our DFA is forced
to ‘remember’ every possible configuration of </2 bits in order to correctly check
consistency on the final </2 bits. And, the number of different length-</2
bitstrings scales as 2</2, see Proposition 3.4. In order to remember all these
configurations, our hypothetical DFA requires at least 2</2 distinct internal
states (in fact, it will require many more than that). Figure 3.1 illustrates such
a construction for < = 4. In other words: the number of internal states must
scale (at least) exponentially in half the length of the bitstrings. exponential growth of DFA

states

26 Lecture 3: Turing machines

maximum layer of 2</2 DFA states

1

0

F0 = 1

1 F0 = 1
F1 = 1

F0 = 0

0
F0 = 1
F1 = 0

1 F0 = 0
F1 = 1

0 F0 = 0
F1 = 0

1

0

1

0

F2 = 1

F2 = 0

F2 = 1

F2 = 0

1

1

0

0

Figure 3.1 Illustration of a DFA that accepts palindromes of length < = 4: transition
arrows not shown here would lead to a rejection of the palindrome property.
This could be implemented, for instance, by self loops in the second and third
layer.

This is scary growth behavior! E.g. for < = 550, this lower bound on the
number of distinct states becomes 2</2 = 2225 = 5.4 × 1067 – which is twice
as large as the total number of atoms in the milky way galaxy. This seems to
indicate that palindrome recognition with DFAs quickly becomes very expensive.
Not in terms of runtime (the number of steps), which is always <, but in terms
of internal hard-wired functionalities (the number of states required). We
emphasize that the problem of designing DFAs that accept palindromes of a
fixed (and known) length < is strictly less challenging than developing a DFA
that accepts palindromes of all possible lengths. And we just discovered that
this restricted problem already looks very challenging. Chances are that it
doesn’t get any simpler if we allow for varying input length < as well.

However, care must be taken before jumping to conclusions.

Warning 3.6 Failing to construct a reasonable DFA does not (yet) imply that
such DFAs cannot exist. �

But for palindromes, and other similar-looking structures, it is actually possible
to rigorously prove that any DFA – no matter how ingenious the design – must
fail. We will discuss the proof idea in a future lecture or exercise challenge.

27 Lecture 3: Turing machines

� �1 10 01 1a lot of 0s and 1s

< symbols

Figure 3.2 Setup for identifying (even) palindromes: We are given a bitstring F of
even length < and must check whether it is a palindrome or not. We envision
that the bitstring in question is written onto a very long, checkered strip of
paper. The square symbol (�) denotes empty paper space at either side of the
input.

3.3 A better approach to identify (even) palindromes
We have just seen that DFAs struggle at identifying palindromes of largish
length <. The reason for that is that they suffer from two crucial limitations:

1 They must process input symbols sequentially from left to right in one go
(think: no random input access)

2 They can only read input symbols, but don’t have a way to write down
intermediate results (think: no actual memory).

We now discuss a simple procedure that can identify (even) palindromes by
using a simple computational model that is allowed to do either of these things.
For illustrative purposes, we assume that the length-< bitstring in question is
written down somewhere in the middle of a very long, checkered strip of paper.
In particular, we assume that the strip of paper contains much more than <
checkered boxes. This means that there is empty paper space towards the left
and right of our length-< bitstring. See Figure 3.2 for an illustration. We denote
empty paper space by the square symbol ‘�’ which happens to look a bit like an
empty box. � denotes empty spaceThe palindrome string visualized in Figure 3.2 contains 0, 1 and �:

� · · ·�101 · · · · · · 101� · · ·�.

We also assume that we can only process boxes one at a time. Processing may
involve reading a symbol and replacing it with a possibly different symbol.
And, after we have done that, we can only move one box to the left, or one
box to the right. Suppose that we start reading and processing the input string
somewhere in the middle, where all the relevant information is stored. How
could we check if bitstring F is an (even) palindrome? Well, we could first
traverse box-by-box to the left until we encounter the first �-symbol. This tells
us that we have found the beginning of the actual bitstring. Moving to the right
by one square allows us to read the first bit:

� · · ·�101 · · · · · · 101� · · ·�.

Here, the blue underline indicates our current focus (box) of attention. In our
example, the first bit is a 1. And so, if F is indeed a palindrome, the final bit

28 Lecture 3: Turing machines

better be a 1 as well (F<−1 = F0 = 1). But, this equivalence between two bits is
easy and cheap to check. We ‘remember’ that the first bit is 1, then move to the
very end of the bitstring to check whether F<−1 = 1. If this is not the case, F
cannot be a palindrome and we are done. Else if F<−1 = 1, the first palindrome
constraint from Lemma 3.2 is satisfied and we can move on to check the next
one (F1 = F<−2). But note that this constraint, and all other remaining ones,
do neither include F0, nor F<−1 anymore. So, we may as well erase the first
and last bit to make the remaining bitstring smaller and save resources. This
can be achieved by replacing the first bit by � (‘erasure’) just after reading
and remembering it. Likewise, we also replace the last bit by � (‘erasure’)
immediately after we compare its value to the bit we remembered. For the
example at hand, such a subroutine looks like

� · · ·�101 · · · · · · 101� · · ·� (find the first bit),
� · · ·��01 · · · · · · 101� · · ·� (remember first bit, erase F0, move right),
� · · ·��01 · · · · · · 101� · · ·� (find the last bit),
� · · ·��01 · · · · · · 10�� · · ·� (check equivalence, erase and move left).

(3.4)

Here, the first and last bit are both 1 and we don’t find a palindrome violation
immediately. But we do end up with a bitstring of length < − 2, because we
have erased the first and last bit. And it is easy to check that the original
string F is an (even) palindrome if and only if this slightly shorter string is.
But, we already know how to make progress on this slightly simpler question:
simply apply the subroutine from Eq. (3.4) all over again. This will either find
a violation of the second palindrome condition (F1 = F<−2), or produce an even
shorter string of length < − 4. All in all, there might be up to </2 iterative
applications of this one-sided tests and the bitstring F is an (even) palindrome
if and only if it passes all of them. iterative checking procedureSo, to summarize, we have found a simple
procedure that iteratively compares pairs of bits only to check for palindromes.
This procedure avoids the issues we faced for DFAs by sweeping back and forth
across the input and erasing input symbols that have already been processed.
This not only makes each subroutine invocation cheaper than the previous
one, but also allows us to find the next relevant pair of input bits with relative
ease. In fact, our procedure is so simple that it can be executed with a constant
number of internal states – 10 to be exact (see Figure 3.4 below for details)
– regardless of the actual length < of the bitstrings in question. As shown in
detail below, we use these internal states to ‘remember whether we have seen
a 0 or 1’ and similar simple things. constant number of internal

states
The constant number of internal states is

astronomically better than the 2</2 internal states that had been required for
our DFA attempt.

It is also interesting to estimate the maximum number of steps that might
be required to check (even) palindrome for length-< bitstrings. We call this
the worst-case runtime. Suppose that we are facing a bitstring of length
9 ∈ {2, 4, 6, . . . , <}, sandwiched by �-symbols. Then, identifying the leading
bit can take up to 9 + 1 iterative steps (if we start at the very last bit symbol, it
can take 9 steps to find the first �-symbol towards the left of the string and

29 Lecture 3: Turing machines

one additional step to move back one square). This bounds the cost for the
first step (sweep left) in Eq. (3.4). The second operation only requires a single
computation step, while the third one (sweep right) requires 9 steps (9 − 1 to
find the first �-symbol towards the right and one additional step to move back
one square). The fourth and last operation is again cheap and always requires
a single step. All in all, we require

(9) = (9 + 1) + 1 + 9 + 1 = 29 + 3 for 9 ∈ {0, 2, 4, 6, . . . , <}

elementary steps to execute the subroutine displayed in Eq. (3.4) on a length-9
string and either find a palindrome violation or end up with a string of length
9 −2. Since we start with a length-< string, the total number of steps is at most

#tot =# (<) +# (< − 2) +# (< − 4) + · · · +# (2)

=
∑</2

8=1
(28) =

∑</2
8=1
(2 × (28) + 3)

=4
∑</2

8=1
8 + 3

∑</2
8=1

1

=4
<

4

(<
2
+ 1

)
+ 3<

2

=
1
2
<2 + 5

2
<.

Note that the actual runtime can be much lower if we happen to find a
palindrome violation early on. In this derivation, we have used

∑</2
8=1 8 =

(</2) (</2 + 1)/2 (Gauss summation) and
∑</2
8=1 1 = </2 (adding a total of

</2 ones produces </2) to obtain a nice and exact closed-form expression for
the sums involved.

Exercise 3.7 (Gauss summation). Show that
∑"
8=0 8 = " (" + 1)/2 is true for

any natural number" ∈ ℕ.
The worst-case number of steps #tot = <

2/2 + 5</2 scales quadratically in
the length < of bitstrings to be processed. quadratic (worst-case)

runtime
This is worse than the linear runtime

(#tot = <) a DFA would achieve. But, on the plus side, we do now get by with
a fixed and constant number of hardwired internal states.

Exercise 3.8 (Identifying odd palindromes). How would you have to modify our
procedure to be able to check odd-length palindromes?

3.4 Turing machines
3.4.1 Intuitive definition

The computing model we designed in the previous section contains three
components: finite state control, tape and

tape head
1 The finite state control: at each instant, this component is in one of a
finite number of states. (E.g. remember that the first bit was 1 and move
towards the right)

30 Lecture 3: Turing machines

� � � 1 0 1 0 0 1 1 1 0

?0 finite state control

TM head (read/write)

tape (memory & scrap space)

Figure 3.3 Schematic illustration of a TM.

2 The tape: this component consists of an infinite number of tape squares.
Each of these squares can store a single symbol taken from a specified
alphabet Σ, but can also be empty (�). Furthermore we assume that the
tape is infinite both to the left and to the right.

3 The tape head: the tape head keeps track of the current position. It
can move either left (!) or right (') on the tape. At the start of each
computational step, the tape head accesses exactly one tape square. It
can read which symbol is stored there and can also write a new symbol
into that square.

See Figure 3.3 for a visualization. This model of computation is called the
Turing machine model. Turing machine modelToday, the terminology and analogies may seem a bit
outdated (it is reminiscent of tape recorders and the like), but the underlying
idea very much isn’t. We will discuss important connections to machine
language and algorithms in Sec. 3.4.4 below. For now, we emphasize that the
action of a Turing machine at each instant is determined by the state of the
finite state control together with the single symbol it has currently access to
(‘computation is local’). Thus, the action of the machine is determined by a
finite number of possible transitions: one for each state/symbol pair. This is
very reminiscent of a DFA. And similar to DFAs, finite resources are enough
to completely specify a Turing machine. And yet, we have just seen that the
resulting computing power can be much more impressive than what a DFA
could ever hope to do. Again similar to DFAs, Turing machines can perform
computations on input strings with varying length <. But they may loop back
and forth a lot which can lead to runtimes that are much larger than < (e.g.
our palindrome checking machine had a quadratic worst-case runtime). But in
order to even talk about runtime, we must provide Turing machines with the
option to stop its computation and actually produce an outcome. We ensure
this by including two special types of internal states: accept states and reject
states. accept and reject statesIf the machine enters one of these states, it stops immediately and either
accepts or rejects the input string. We also call such states halting states.

It is here, where we start seeing notable deviations from DFA computation.
For DFAs, it was enough to only specify accept states. This is, because the
number of DFA computational steps is always equal to the input length <.

31 Lecture 3: Turing machines

This guaranteed stopping time has allowed us to implicitly define reject states
as those states which are not accept states. For Turing machines, this is
not possible anymore, because the actual number of computing steps is not
stringently pre-defined. In fact, even with accept and reject states, it is entirely
possible that certain Turing machine computations do not terminate at all. This
issue will be the content of a future lecture.

3.4.2 Formal definition
We are now ready to convert the intuitive notion of a Turing machine into a
mathematically rigorous definition.

Definition 3.9 (Turing machine (TM)). A Turing machine (TM) is a machine that
can either accept or reject strings by locally processing (read/write) symbols
stored on an infinite tape. It is fully characterized by

• a finite (nonempty) set of internal states& ;
• the alphabet Σ of symbols it can process, called the input alphabet;
• another alphabet Γ, called the tape alphabet, that also contains the blank

symbol ‘�’: Σ ∪ {�} ⊆ Γ;
• a transition function X : (& \

{
?accept, ?reject

}
) × Γ→ & × Γ × {!,'};

• a designated start state ?0 ∈ & ;
• a (single) designated accept state ?accept ∈ & ; and
• a (single) designated reject state ?reject ∈ & .

TMs are 7-tuplesFormally, we identify a TM with the 7-tuple" =
(
&, Σ, Γ, X , ?0, ?accept, ?reject

)
.

We know several of these objects already from our formal definition of DFAs.
The set of states & , the input alphabet Σ, the start state ?0 and the accept
state ?accept are all virtually identical (the only difference is that DFAs allow for
multiple accept states, while we only allow a single one for TMs). Other objects,
like the tape alphabet Γ (think: input alphabet plus blank symbol) and the
single reject state ?reject, are straightforward extensions of these DFA concepts.

It is mainly the transition function X that becomes more involved. TM transition functionIn
fact, there is quite a lot to unpack here. First, note that entering either the
accept and the reject state immediately terminates the computation. So, we
can exclude these two states as possible inputs for the transition function (a
transition away from ?accept or ?reject is never going to happen). This is the
meaning of& \

{
?accept, ?reject

}
which denotes the set of all states except ?accept

and ?reject. Next, we should make sure that the TM is capable of processing,
reading and writing blank tape symbols �, as well as symbols from the input
alphabet Σ. This is why we allow the second input of X to be selected from the
tape alphabet Γ which is guaranteed to contain all these symbols.

But, it is the output of the transition function, where things truly get
interesting. Similar to DFAs, a TM can change its internal state to another
element of& (e.g. ‘remembering’ that we have seen a 1 before), but they can also
replace the current tape symbol with a new symbol taken from the tape alphabet
(e.g. ‘erasing’ a 1 by replacing it with �) and it can move its tape head towards

32 Lecture 3: Turing machines

(0, 0, '), (1, 1, ') (0, 0, !), (1, 1, !)

(0, 0, '), (1, 1, ') (0, 0, !), (1, 1, !)

reject

reject

accept

(0,�
, '
)

(1,�, ')

(�,�, !)

(�,�, !)

(0,�, !)

(1,�, !)

(�
,�
,')

(�
,�
,'
)

(�
,�
,!
)

(1
,�
,!)

(0
,�
,!)

Figure 3.4 State diagram for the palindrome checking Turing machine (even length)
from Section 3.3. We assume that we already start at the location of the very
first bit. If it is 0, we enter into the upstairs trajectory. If it is 1, we enter the
downstairs trajectory instead. Either trajectory can only be escaped via the
central arrows if the last bit happens to be equal to the first one (and we erase
it). Otherwise, we enter one of two reject states. Transitions not explicitly
depicted are not supposed to happen if the input has even length and is properly
formatted.

33 Lecture 3: Turing machines

the left (!) or towards the right ('). A TM transition function must specify
these three outputs for every possible state/input pair. We can summarize all
these things by writing XTM : (& \

{
?accept, ?reject

}
) × Γ→ & × Γ × {!,'}.

This transition function looks much more complicated than its DFA counter-
part (XDFA : & × Σ → &), because, well, it is. However, we can still visually
express the transition function by means of state diagrams. TM state diagramsInternal TM states
can still be represented by circles and special states – like ?0, ?accept and ?reject
– can be highlighted as usual. It is the transition arrows that must become more
expressive. Suppose that our transition function satisfies X (>, 0) = (?, 1,�),
where >, ? ∈ & are states, 0, 1 ∈ Γ are tape alphabet symbols and � ⊂ {!,'}
tells us if we should move location towards the left (� = !) or one location
towards the right (� = '). We can represent this property visually by writing

> ?
(0, 1,�)

Each transition arrow is labeled by a 3-tuple in Γ × Γ × {!,'}. The first entry
tells us which tape symbol 0 must be read to trigger the transition in question.
The second entry singles out the tape symbol 1 we replace 0 with. And the
third entry � ∈ {!,'} tells us whether we move the tape head to the left or
to the right. Figure 3.4 visualizes a transition diagram for our palindrome
checking TM. (To keep things as simple as possible, we have only written down
transition arrows that ought to appear when the TM is working as intended. A
wrongly formatted input, for instance, may ‘break’ this TM.)

3.4.3 Turing machine computations
A TM is fully characterized by the 7-tuple " =

(
&, Σ, Γ, X , ?0, ?accept, ?reject

}
introduced in Definition 3.9. initial configurationThe machine is intended to process input strings
F of arbitrary length <. These input symbols are written somewhere in the
middle of the tape. TM initializationBefore, we also suggested that the tape head is initially
focused on some box in the middle. But this is not very precise. From now on,
we assume that the TM starts with its head immediately left from the first input
symbol and the initial state is ?0 (starting state). A possible initial configuration
has been visualized in Figure 3.3 above. For the sake of completeness, we also
point out that we can handle ‘empty inputs’. An empty string Y would simply
translate to only squares on the tape.

After proper initialization, the TM is ready to start working. And it does
so in computing steps. computing stepsEach step is completely determined by the content of
the tape and the transition function. In other words: the TMs we consider
here are deterministic models of computation. It involves reading a symbol
with the TM head (read), replacing it with another symbol (write), changing
the internal state of the TM and moving one square to the left or right. This
step-wise computation continues as long as the TM does not enter one of the
two designated halting states ?accept, ?reject: TM termination

34 Lecture 3: Turing machines

1 If the TM enters the state ?accept, it halts (i.e. it stops computing) and
accepts the input string F .

2 If the TM enters the state ?reject, it halts (i.e. it stops computing) and
rejects the input string F .

Accepting and rejecting are two mutually exclusive possibilities, but there is a
third one:

3 The TM never reaches a halting state and runs forever on input string F .

3.4.4 Specifications
This extension of DFA state diagrams allows us to represent any TM computation
visually. Figure 3.4, for instance, captures the inner working of our palindrome
checking TM visually. This is actually a state diagram example of a very
simple TM. The TMs we will be most interested in are going to be much more
complicated.

Instead, this is the right time for an additional level of abstraction. The
usual way to describe TMs is in terms of pseudo-code or high-level descriptions,
like the one we actually use to devise our palindrome checking procedure. The
broad summary term for such descriptions is algorithms. description in terms of

algorithms
We don’t describe

TMs by completely specifying transition functions, but by providing an intuitive
guide on how the ‘TM programs’ we envision should be executed.

A useful analogy is as follows: TMs are capable of executing basic instructions
like read a symbol, write a symbol, move left on a register, move right on
a register. connection to machine

language
With state transitions, we can also implement simple ‘if, then’-

conditions. These sets of instructions are not dissimilar from a machine
language. This is a sequence of simple instructions to read from memory into
one of a finite number of registers, write a register’s content to memory, perform
basic arithmetic operations (e.g. adding two registers) and control instructions
that perform conditional actions. All these operations can also be simulated
by a TM. Showing this rigorously does take some work, but intuitively this
should not be too surprising. It does, however, have profound consequences: it
is possible to simulate programs in your favorite programming language using a
Turing machine!

In summary, one can think of the TM as a simplified modern computer.
The tape corresponds to a computer’s memory, while finite state control and
transition function correspond to the computer’s central processing unit (CPU).
However, it is best to think of TMs as a formal way to describe algorithm. We
will see that it can be very useful to express algorithms in terms of TMs, because
it allows us to reason about them mathematically. (This is similar to expressing
an algorithm in an actual programming language in order to execute it on an
actual computer).

35 Lecture 3: Turing machines

3.5 History
The Turing Machine is named after Alan Turing (1912 – 1954), an English
mathematician and computer scientist. Alan TuringHis life is a fascinating, but ultimately
also tragic story. Today, Alan Turing is widely considered to be the father of
both artificial intelligence and theoretical computer science. Among many other
things, he wrote a chess program for computers that didn’t yet exist (1948)
and devised the Turing test, originally known as the imitation game (1950).
During World War II, he worked at Bletchley Park (the codebreaking center of
the United Kingdom) and managed to reliably crack the Enigma – a German
cipher device used to coordinate U-boat attacks in the Atlantic. The success of
this top secret project ultimately tipped the Naval scales in favor of the allies1.
To this date, the highest distinction for any computer scientist is the ACM A. M.
Turing Award, widely regarded as the ‘Nobel Prize of Computer Science’. Turing Award

The hypothetical machines we discussed today were introduced by Turing
in a math paper from 1936. His original motivation was the resolution of an
important mathematical problem at the time, the so-called ‘Entscheidungsprob-
lem’. We will talk more about these aspects and implications in a future lecture.
The language and analogies used to illustrate Turing Machines still convey
an aura from the first half of the 20th century. But, in fact, it was human
computers – a very real and important job, often occupied by females, before
digital computers became commercially available. In Turing’s own words:

“The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer. The human computer is supposed to be following
fixed rules; he has no authority to deviate from them in any detail. We may
suppose that these rules are supplied in a book, which is altered whenever he
is put on to a new job. He has also an unlimited supply of paper on which
he does his calculations.”
Alan Turing, 1950

Still typically female and underappreciated, human computers continued to
make an impact well into the 1970. One of them Katherine Johnson (1918–2020)

Katherine Johnson– even carried out the complicated orbital mechanics calculations that were
essential for guiding American spacecrafts onto the surface of the moon and
back again2. As a NASA scientist, she also helped facilitating the transition to
digital computers for solving complex numerical calculations.

Katherine Johnson (an African-American woman) and Alan Turing (who
was prosecuted for being homosexual) should remind us computer scientists
to be tolerant and open-minded. a call for toleranceSome of our greatest heroes belonged to
minorities, suffered from discrimination and/or prosecution, and still made a
difference.

1The movie The Imitation Game (2014) captures this episode of Turing’s life in motion picture.
2The movie Hidden Figures (2016) showcases how Johnson and two other female African-

American mathematicians worked for NASA during the Space Race in a segregated Virginia.

36 Lecture 3: Turing machines

Problems
Problem 3.10 (state diagram to Turing machine I). We consider Turing machines
over the alphabet Σ = {1,�, ∗,★}, where (i) 1-symbols are used to write inputs
& outputs, � denotes ‘empty’ tape space, ∗ is used to cross out input symbols
that have already been processed and ★ denotes a certain arithmetic operation
– the goal of this exercise, and the next one, is to find out which arithmetic
operation it is.

Throughout this exercise (and the next one), we use unary encoding for
inputs and outputs. That is, numbers < ∈ ℕ are represented by strings of
exactly < ones: 1 ↔ 1, 2 ↔ 11, 3 ↔ 111, 4 ↔ 1111 and, more generally,
< ↔ 1< = 1 · · · 1︸︷︷︸

< times

.

The Turing machine in question is characterized by the following state diagram:

(1,1,R) (1,1,R)

?0 ?1 ?2 ?3

?4

halt

(1,1,R) (★,1,R) (�, �, L)

(1,�
,R)

(�
,
�
,L)

The arrows are labelled by 3-tuples that indicate ‘read’, ‘write’ and ‘move’ (L for
left, R for right and S for stop). E.g. (★,1,R) means ‘read ★’, ‘write 1’ and ‘move
right’. In the following, ‘underline’ denotes the initial and final positions of the
TM head. Which of the following statements is correct?

a) (★ = +) the TM computes the sum of two numbers (in unary encoding)
e.g. input 1 1 1 ★ 1 1 � produces output 1 1 1 1 1 � �.

b) (★ = −) the TM computes the difference of two numbers (in unary
encoding), e.g. input 1 1 1 ★ 1 1 � produces output 1 ∗ ∗ ★ ∗ ∗ �.

c) (★ = ×) the TM computes the product of two numbers (in unary encoding),
e.g. input 1 1 1 ★ 1 1 � produces output 1 1 1 1 1 1 �.

d) (★ = /) the TM computes the division of two numbers (in unary encoding),
e.g. input 1 1 1 1 1 1 ★ 1 1 � produces output 1 1 1 ∗ ∗ ∗ ★ ∗ ∗ �.

37 Lecture 3: Turing machines

Problem 3.11 (state diagram to Turing machine II). We consider Turing machines
over the alphabet Σ = {1,�, ∗,★}, where (i) 1-symbols are used to write inputs
& outputs, � denotes ‘empty’ tape space, ∗ is used to cross out input symbols
that have already been processed and ★ denotes a certain arithmetic operation
– the goal of this exercise, and the previous one, is to find out which arithmetic
operation it is.

Throughout this exercise (and the previous one), we use unary encoding
for inputs and outputs. That is, numbers < ∈ ℕ are represented by strings of
exactly < ones: 1 ↔ 1, 2 ↔ 11, 3 ↔ 111, 4 ↔ 1111 and, more generally,
< ↔ 1< = 1 · · · 1︸︷︷︸

< times

.

The Turing machine in question is characterized by the following state diagram:

(1,1,R), (∗,∗,R) (∗,∗,R) (∗,∗,L)

(∗,∗,L)

?0 ?1 ?2 ?3

?4

halt

(1,∗,R)

(1,1,R) (★,★,R) (1, ∗, L)

(★
,★
,L)

(�
,�
,L)

The arrows are labelled by 3-tuples that indicate ‘read’, ‘write’ and ‘move’ (L for
left, R for right and S for stop). E.g. (★,1,R) means ‘read ★’, ‘write 1’ and ‘move
right’. In the following, ‘underline’ denotes the initial and final positions of the
TM head. Which of the following statements is correct?

a) (★ = +) the TM computes the sum of two numbers (in unary encoding)
e.g. input 1 1 1 ★ 1 1 � produces output 1 1 1 1 1 � �.

b) (★ = −) the TM computes the difference of two numbers (in unary
encoding), e.g. input 1 1 1 ★ 1 1 � produces output 1 ∗ ∗ ★ ∗ ∗ �.

c) (★ = ×) the TM computes the product of two numbers (in unary encoding),
e.g. input 1 1 1 ★ 1 1 � produces output 1 1 1 1 1 1 �.

d) (★ = /) the TM computes the division of two numbers (in unary encoding),
e.g. input 1 1 1 1 1 1 ★ 1 1 � produces output 1 1 1 ∗ ∗ ∗ ★ ∗ ∗ �.

4. Decision problems and languages

Date: 28 Oktober 2021

Agenda:

1 Three points of view
on computational prob-
lems

2 Regular languages
3 (Semi-)decidable lan-

guages
4 Church-Turing thesis

Agenda
In the last two lectures, we have seen two models of computation: finite state
automatas (DFAs) and Turing machines (TMs). With these computational
models at the ready, we can begin a deep dive into the heart of computability
theory. Today, we are interested in the ultimate limits for (any) computation.

We first introduce general decision problems (yes/no questions) and two
ways on how to reformulate them. This will motivate the definition of a
language which simply encompasses a set of strings. Then, we will explore
what types of decision problems (languages) can be computed by a DFA and,
perhaps more interestingly, what kind of problems really cannot be computed
by a DFA. We will then move on to discuss computational problems that can
be solved with Turing machines. Perhaps surprisingly, we will see that there
are also limitations. And shockingly, there might be no conceivable way to
overcome them.

4.1 Three points of view on computational challenges
4.1.1 Decision problems

In science and engineering, we ultimately want to get computing architectures
to answer interesting, challenging, or perhaps simply tedious, questions. One
of the most basic types of questions is a Yes/No question, aka accept/reject.
Problems of this type are also called decision problems, Decision problembecause a single yes/no
decision is all it takes. We have already seen several examples of decision
problems. Here is an example that was already featured prominently in

39 Lecture 4: Decision problems and languages

Lecture 3, but today we formulate it in a slightly different fashion. Define the
reverse operation reverse operation RFR recursively by setting YR = Y (the empty string is its own
reverse) and (0E)R = ER0 for everyE ∈ Σ∗ and 0 ∈ Σ (upon reversing, every
symbol we add on the left must move to the very right).

Example 4.1 (palindrome – decision problem). Given a bitstring F , decide whether
FR = F . �

4.1.2 Computing a Boolean function
Equivalently, we can also encode decision problems into a logical function. This
function, let’s call it 5 , takes a problem instance as input and outputs exactly
one of two truth values:

• 1: which stands for true, accept, yes, etc. or
• 0: which stands for false, reject, no, etc.

Functions 5 (F) with a single bit (truth value) output are called Boolean
functions. And being able to consistently solve a decision problem is equivalent
to consistently being able to compute a Boolean function.

Example 4.2 (palindrome – Boolean function). The decision problem from Exam-
ple 4.1 is equivalent to computing the following Boolean function on bitstrings:

5 (F) =
{
1 if FR = F,

0 else.

�

4.1.3 Languages
There is yet another point of view on decision problems and Boolean function
computations, respectively. Conceptually, this approach is closer aligned with
the basic notational concepts that underpin theoretical computer science. For
the scope of this course, the most elementary building blocks of information
are symbols taken from an alphabet Σ. These symbols can be subsequently
combined to form strings – think of words – which are (finite) sequences of
symbols F = F0 · · · F<−1 with F9 ∈ Σ. If we keep on following this route, it
seems natural to associate a language with a collection of strings (words).

Definition 4.3 (language). languagesA language over alphabet Σ is a collection (set) of
strings over Σ.

Two very simple, yet useful, languages are the empty language ∅ (which
doesn’t contain a single word), as well as the language of all strings, which we
denote by Σ∗. For our favorite alphabet Σ = {0, 1}, this definition simplifies to

{0, 1}∗ = {Y, 0, 1, 00, 01, 10, 11, 000, 001, . . .} . (4.1)

Note that this language is actually infinitely large (but in a countable fashion).
All conceivable binary languages are subsets of this complete set of strings.

40 Lecture 4: Decision problems and languages

Here are two more interesting examples of binary languages:

� = {0000, 0011, 1100, 1111} ⊂ {0, 1}∗ ,
Parity =

{
F ∈ {0, 1}∗ : the last bit of F is a 1

}
⊂ {0, 1}∗ .

Both are strict subsets of the set of all binary strings. the first language is finite,
while the second one is not. We are now ready for presenting the equivalence
between Boolean functions and languages. Let 5 : Σ∗ → {0, 1} be a Boolean
function that encodes some decision problem of interest. We can then define
the language

! 5 = {F ∈ Σ∗ : 5 (F) = 1} ⊆ Σ∗ (4.2)

to be the subset of all strings for which 5 evaluates to 1 (true). Given this
definition, it is easy to see that decision problems, Boolean functions and
languages are three ways to describe the same underlying concept. In fact,
we can use them interchangeably. Different formulations highlight different
aspects of the same computational problem. decision problems and

languages are equivalentExample 4.4 (palindrome – language). Computing the Boolean function from
Example 4.2 is equivalent to deciding membership in the language

Palindrome =
{
F ∈ {0, 1}∗ : FR = F

}
⊂ {0, 1}∗ .

�

For the remainder of this lecture, we will mainly talk about languages. We
will see that certain computing platforms can only decide a small fraction of
all possible languages. This is equivalent to saying that certain computing
platforms can only answer a small fraction of all possible yes/no questions.

4.2 Regular languages
Let us start with discussing languages where membership can be decided with
finite state automata.

4.2.1 Recapitulation: finite state automata
A deterministic finite state automaton (DFA) is a very simple computing device
and we refer to Lecture 2 for a detailed discussion. For now, it is enough to
remember that a DFA is characterized by a finite set of internal states and
symbol-induced transitions between them. Formally, it corresponds to a 5-tuple
" = (&, Σ, X , ?0, �), where & is the finite set of internal states, Σ is the
alphabet it can process and X : & × Σ → & is a transition function. The
remaining two objects are a designated starting state ?0 ∈ & and a set of
accept states � ⊆ & .

DFAs can process input strings F = F0 · · · F<−1 ∈ Σ∗ of arbitrary length
|F | = <. But, they do this in a static – in the sense that a DFA reads input
symbols one at a time – and passive – in the sense that it doesn’t interact with
the input – fashion.

41 Lecture 4: Decision problems and languages

Finally, we emphasize that our restriction to deterministic finite automata
is without loss. This is because it is possible to convert nondeterministic finite
state automata into functionally equivalent DFAs, see Lecture 2.

4.2.2 Regular languages
Recall from Sec. 4.1.3 that entire classes of decision problems (yes/no questions)
can be represented as languages � ⊂ Σ∗. Conversely, DFAs are designed to
either accept or reject such strings. For a given and fixed DFA, we define

! (") = {F ∈ Σ∗ : DFA" accepts input F} ⊆ Σ∗.

In words: this is the set of strings over Σ that is accepted by DFA" . Informally
speaking, languages that can be decided by DFAs alone are among the ‘easiest’
computational problems conceivable. This class of problems deserves a proper
name.

Definition 4.5 (regular language). A language � ⊆ Σ∗ is regular if there exists a
DFA" such that � = ! ("). regular language

Example 4.6 The binary languages

Parity =
{
F ∈ {0, 1}∗ : the last bit of F is a 1

}
and

ParityOfSum =
{
F ∈ {0, 1}∗ : F contains an even number of 1s

}
are both regular languages. After all, we constructed explicit DFAs that check
the defining properties in Lecture 2 and Exercise Sheet I, respectively. �

4.2.3 Regular operations
Regular languages subsume, in a very precise and practical sense, the easiest
types of computational problems. A single pass through the entire input,
together with a finite amount of pre-specified transitions, suffices to decide
membership unambiguously. This is a very desirable feature that is preserved
by certain natural operations on sets (languages). The following rigorous
statement asserts that certain combinations of regular languages again produce
regular languages.

Theorem 4.7 (regular operations). regular operationsFix an alphabet Σ and let �,� ⊆ Σ∗ be
regular languages. Then, the following three set combinations

� ∪ � = {F : F ∈ � or F ∈ �} (union), (4.3)
�� = {FG : F ∈ � and G ∈ �} (concatenation), (4.4)
�∗ = {Y} ∪ � ∪ �� ∪ ��� ∪ · · · (star). (4.5)

are also regular languages.

Proof. Part of Exercise Sheet II. �

42 Lecture 4: Decision problems and languages

Theorem 4.7 can be used to start with ‘simple’ regular languages and
construct bigger, perhaps more interesting ones. Here, we present one such
construction that uses the star operation. To begin with, note that it is easy to
design a DFA that only accepts input bitstrings: 0 and 1. We leave the precise
construction as an exercise. According to Definition 4.5, this implies that the
set {0, 1} is a regular language. In turn, Theorem 4.7 ensures that the star of
this language

{0, 1}∗ = {Y} ∪ {0, 1} ∪ {00, 01, 10, 11} ∪ · · · = {Y, 0, 1, 00, 01, 10, 11, . . .}

is also a regular language. This alternative construction of the set of all bitstrings
{0, 1}∗ highlights where the star-notation in Eq. (4.1) actually comes from.
What is more, the language of all bitstrings is actually a regular language. This,
however, may not be too surprising. After all, it is also very easy to write down
a DFA that accepts every possible input.

Exercise 4.8 Construct a DFA over the binary alphabet Σ = {0, 1} that only
accepts 0 and 1. Also, construct a DFA over the binary alphabet that accepts
every possible input string.

The three operations union (4.3), concatenation (4.4) and star (4.5) from
Theorem 4.7 can be combined to show that other set-theoretic operations also
preserve regular languages. This includes, in particular, set intersection and
complementation.

Exercise 4.9 complementLet �, � ⊂ Σ∗ be two languages. Show that taking the complement

� = {F ∈ Σ∗ : F ∉ �} = Σ∗ \ � ⊆ Σ∗,

as well as set intersection intersection

� ∩ � = {F ∈ Σ∗ : F ∈ � and F ∈ �} ⊆ Σ∗.

are also regular operations.

Example 4.10 The set of all (binary representations) of numbers divisible by 4
forms a regular language in {0, 1}∗.

To see this, note that it is easy to write down a DFA that checks if the last bit
of a bitstring is zero (negate the parity-DFA from Lecture 2). Likewise it is easy
to construct a DFA that checks if the second to last bit is zero. Hence, both � =

Parity = {F : last bit of F is 1} and � = {F : second-to-last bit of F is 0} are
regular languages. The intersection of both regular languages is also regular
and describes the set of all bitstrings where the last two bits are equal to zero.
This is the case if and only if the corresponding number is divisible by 4. �

4.2.4 Fundamental limitations
DFAs and, by extension, regular languages are great, because they are easy and
cheap to control. But, as we’ve already seen in Lecture 3, they do have their
limitations. The following rigorous consequence of DFA computation turns out
to be a versatile tool for identifying such limitations.

43 Lecture 4: Decision problems and languages

Lemma 4.11 (‘Pumping lemma’). pumping lemmaLet Σ be an alphabet and let � ⊆ Σ∗ be a regular
language. There exists a natural number : > 0, called the pumping length, that
possesses the following property: We can decompose every string F ∈ � with
length |F | ≥ : into three substrings F = CDE such that

1 |D | ≥ 1 (the central substring is non-empty),
2 |CD | ≤ : (the length of the first two substrings doesn’t exceed the pumping
length),

3 CD9E ∈ � for all 9 ≥ 0 (we can copy-paste the central substring as often
as we like and still remain within the language).

It is a prime example of a ‘Lemma’ or ‘Hilfssatz’. As a tool, it is remarkably
powerful, because it rigorously allows us to prove that certain decision problems
cannot be answered by a DFA – regardless how intricate and powerful its
construction. But, by itself, it’s not a catchy statement worthy of the title
‘Theorem’. Here, we content ourselves with a proof sketch. For a detailed proof,
we refer to standard material, e.g. [Wat20][Lecture 5] and [Sch20][Section 2.5].

Proof sketch for Lemma 4.11. By assumption, the language � ⊆ Σ is regular.
This means that there must exist a single DFA" = (&, Σ, X , ?0, �) that accepts
a string F if F ∈ � and rejects it otherwise (F ∉ �). This DFA, however, can
only have a finite number of, say |& | = : internal states. And this can create
problems if the string F to be processed is strictly longer than : . In order to
accept a length-< string F , the DFA must transition through < +1 internal states
@0 = ?0, @9+1 = X (@9 , F9) and @<+1 ∈ � . Now, something interesting happens
if < (the length of the string F ∈ �) is at least as large as : (the number of
states): at least one of the internal states ? ∈ & must be visited twice during
the computation that ultimately accepts F . Visualized in Figure 4.1, this loop
allows us to construct larger strings that must also be accepted by the DFA
computation. Namely, we can repeat the central part of the string as often as we
like. This is the content of the third (and most important) point in Lemma 4.11:

• The substring C comprises all symbols of F that are processed before the
loop begins;

• the substring D contains symbols within the loop;
• the substringE comprises all symbols of F that are processed after the

loop has ended.

The first two points are easily established by careful bookkeeping. �

Lemma 4.11 establishes a property that must always be true for regular
languages. Once a string that belongs to the language becomes large enough
(it has to be longer than the pumping length), we can start ‘pumping’ up the
central part further and further without ever leaving the language. Hence, the
name ‘pumping lemma’. For certain languages, we can use pumping to deduce
a contradiction. This mathematical contradiction can then only be resolved by
conceding that the language in question cannot be a regular language to begin
with (and, consequently, the pumping lemma need not apply in the first place).

44 Lecture 4: Decision problems and languages

?0 ?A ?B ?final

=

C D E

Figure 4.1 Illustration of the proof idea behind Lemma 4.11: Suppose that a DFA
with < states processes an input string F = CDE that contains strictly more
than < symbols. Then, at least one internal state must be visited twice during
the computation. Illustrated by the red equality bracket between ?A and ?B ,
this introduces a nontrivial loop in the computation. And, repeating it more
than once must also produce a string that is accepted by the DFA. The magenta
arrows at the bottom indicate that only the central portion D of the input string
is affected by such repetitions.

Example 4.12 (SAME is not a regular language). The binary language

Same =
{
1<0< ∈ {0, 1}∗ : < ∈ ℕ

}
⊂ {0, 1}< (4.6)

is not a regular language.
To see this, let us first assume that Same were a regular language. Then,

Lemma 4.11 must hold for a certain pumping length : . To arrive at a contradic-
tion, we pick F = 1:0: which has length |F | = 2: (twice the pumping length)
and is clearly contained in Same. The pumping lemma tells us that we can
decompose this string into substrings C,D,E ∈ {0, 1}∗ such that (0) F = CDE ,
(1) D ≠ Y and (2) |CD | ≤ : . The last property tells us that CD cannot have any
0s in it. In fact, D = 18 for some 8 ≥ 1, because D ≠ Y. The final property of
Lemma 4.11 (for 9 = 2) then implies that

CD2E = 1:+80: ,

must also be part of the language Same. Since this is obviously not the case
(8 ≥ 1), we have arrived at a contradiction. The only way to resolve it is to
concede that Same cannot be a regular language to begin with. �

This is an example of a mathematical proof by contradiction. proof by contradictionFormally,
they are as sound as constructive proofs (e.g. a row-reduced echelon form
exists for every matrix, because we can write down an algorithm – Gauss-
Jordan elimination – that does it) and counting arguments (e.g. there are 2</2

palindromes among bitstrings of even length <), but conceptually they are
often even more appealing. They sometimes allow us to mathematically prove
that certain things cannot exist at all! Here is another example that brings our
discussions from last lecture to a nice close.

45 Lecture 4: Decision problems and languages

Example 4.13 (PALINDROME is not a regular language). The language

Palindrome =
{
F ∈ Σ∗ : FR = F

}
, (4.7)

where the reverse operation R was introduced in Example 4.1, cannot be a
regular language. The derivation is similar to Example 4.12 and we leave it as
an exercise. �

It is worthwhile to formulate the implications of Exercise 4.13 in a different
fashion: Palindrome cannot be

decided with DFAs
it is impossible to design a DFA that recognizes palindrome structure in

bitstrings of arbitrarily large length. This is the rigorous statement promised,
but not derived, in Lecture 2.

4.3 (Semi-)decidable languages
4.3.1 Recapitulation: Turing machines

Turing machines (TMs) have been the core focus of Lecture 3. In a nutshell, a
TM is a finite state automaton empowered by an additional memory tape and
the ability to read/write, as well as moving the tape in both directions. Formally,
a TM is a 7-tuple" =

(
&, Σ, Γ, X , ?0, ?accept, ?reject

)
, where& denotes the set

of states in the finite state control mechanism, Σ is the input alphabet comprised
of symbols to be processed and Γ is the tape alphabet that encompasses Σ as
well as a designated blank symbol ‘�’ to denote empty tape space. It is the
transition function, where the deviation from ordinary DFAs becomes most
apparent: X : & × Γ→ & × Γ × {!,'} also allows to specify a write command
(X takes a tape symbol from Γ as input and spits out another tape symbol from
Γ), as well as tape movement towards the left (!) or right ('). Finally, we must
also specify an internal starting state (?0), as well as two designated halting
states (?accept, ?reject) that prompt the TM to stop and output either accept or
reject.

TMs can process input strings F ∈ Σ∗ of arbitrary length. And they do this
in a dynamic – in the sense that the tape head can move back and forth on the
working tape – and active – in the sense that a TM has read/write access to a
working tape – fashion. They are also toy models for actual (electronic and
human) computers. We will actually see later on that this model of computation
is believed to be universal in some sense.

4.3.2 Decidable languages
Definition 4.14 (decidable languages). decidable languagesFix an alphabet Σ and a language � ⊆ Σ∗.
We say that � is (Turing)-decidable if there exists a Turing Machine (TM)"with
the following two properties:

1 " accepts every string within the language (F ∈ �) and
2 " rejects every string not contained in the language (F ∈ �̄ = Σ∗ \ �).

Note that both requirements have merit in their own right. In contrast to
DFAs – where rejecting is the same as not accepting – Turing machines may

46 Lecture 4: Decision problems and languages

loop on forever and not produce a definite yes/no answer at all. We will address
this issue partly in the next subsection. For now, we point out that decidable
languages are a strict generalization of regular languages.

Lemma 4.15 Every regular language is also a decidable language.

Proof. Let � ⊆ Σ∗ be a regular language. Then, there must exist a DFA that
accepts every string within the language (F ∈ �) and rejects every string that
isn’t (F ∈ �̄). But, we can perfectly simulate this DFA with a (very stupid)
Turing machine. �

Lemma 4.15 formulates a rather boring relation between regular and
decidable languages. What is more interesting, is the observation that the two
language classes are actually distinct. Moving from DFAs to TMs does come
with additional computing power.

Example 4.16 The language Palindrome is a decidable language. After all, we
have constructed a TM that accepts even-length bitstrings with palindrome
structure and rejects all other even-length bitstrings. This TM construction
can be generalized to handle even- and odd-length palindromes at once which
establishes the claim. �

Together, Example 4.13 and Example 4.16 highlight that Palindrome is a
language that is decidable, but not regular.

Corollary 4.17 The set of all decidable languages is strictly larger than the set of
all regular languages.

Or, in other words: Turing Machines are strictly more powerful than DFAs.

4.3.3 Semidecidable languages
It is now time, to take a serious drawback of Turing machines properly into
account. Namely, that they may not stop at processing certain inputs and
instead loop on forever without ever giving a accept/reject answer. Let "
describe a Turing Machine over input alphabet Σ. We write

! (") = {F ∈ Σ∗ : TM" accepts input F} ⊆ Σ∗, (4.8)

to collect all possible input strings that prompt the TM " to halt (at some
point) and output the verdict ‘accept’.

Definition 4.18 semidecidable languagesFix an alphabet Σ and a language � ⊆ Σ∗. We say that � is
(Turing)-semidecidable if there exists a Turing Machine (TM) " such that
� = ! (").
Lemma 4.19 Every decidable language is also semidecidable.

Proof. This is obvious, because Definition 4.18 follows from Definition 4.14
by dropping the second requirement (reject input strings that are not in the
language). �

47 Lecture 4: Decision problems and languages

What is slightly less obvious is that there are yes/no questions that are
semidecidable, but not decidable. Here is a seemingly self-serving example that
uses the fact that we can encode entire Turing Machines into bitstrings. (We
will discuss this example and its striking consequences in detail in Lecture 5.)

Example 4.20 Define the (appropriately encoded) language

Accept = {〈",E〉 : " describes a TM, and" accepts inputE .} .

By construction, it is obvious that this language is semidecidable (run the TM
" and see if it halts). However, if 〈",E〉 ∉ Accept, then there are two
possibilities. Firstly, the TM may halt, but rejectE . Alternatively, it may also
not stop at all and instead loop on forever without producing an output at all.
There is no way to make sure that another TM exists that detects the infinite
loop and rejects the input. Hence, Accept is semidecidable, but not decidable.
�

Note that the example essentially describes an interpreter; interpreters can be
troublesome

that is a program
which takes as input both a program (") and an input (E) to that program,
and simulates" on inputE . The result is rather discouraging. It looks as if
it may actually be impossible to check for a finite runtime before starting to
actually execute the interpreter. As we shall see next time, this is just the tip of
a scary iceberg. For now, we report the immediate consequences.

Corollary 4.21 The set of all semidecidable languages is strictly larger than the
set of all decidable languages.

4.3.4 Fundamental limitations
Given that TMs seem to encompass a wide array of actual computing devices
and semi-decidability is a rather weak notion of problem solving, it seems
plausible that the set of all semidecidable languages actually encompasses all
possible languages conceivable. Surprisingly and shockingly, this is not true at
all. On the contrary, almost all languages are not even semidecidable. This is
the content of the following mathematically rigorous statement.

Theorem 4.22 There are (very many) languages � ⊆ Σ∗ that are not semide-
cidable (and therefore certainly not decidable, let alone regular).

The proof is based on complete enumeration proof by complete
enumeration

which is, essentially, a more
sophisticated counting argument.

Proof sketch. Fix an input alphabet Σ, as well as a tape alphabet Σ ∪ {�} ⊆ Γ.
Then, every Turing machine that operates on this tape alphabet only has a
finite number of degrees of freedom. We can vary the size of& (the set of finite
states), the starting state, the two halting states and the transition function
X : & × Γ→ & × Γ × {!,'}. But overall, the total number of choices is finite.
By letting the number of internal states |& | grow gradually, we can keep track of
all possible Turing machines by counting them and assigning a unique natural

48 Lecture 4: Decision problems and languages

number < ∈ ℕ to each of them. Granted, the total number of enumerated
Turing machines does approach infinity as we let |& | get larger and larger.
But, importantly, it does so in a controlled fashion. Much like the rational
numbers ℚ (and the natural numbers ℕ which can be used to enumerate all
possible rational numbers), the total number of Turing machines is infinitely
large, but countable. This means that we can assign a unique number to each
TM. And by letting the maximum number approach infinity, we can extend this
enumeration process to all TMs conceivable.

In turn, every TM defines a language – namely the language ! (") defined
in Eq. (4.8). And, according to Definition 4.18, every semidecidable language
� ⊆ Σ∗ must be of this form. But this implies that the total number of
semidecidable languages can be at most as large as the total number of TMs
(note that two or more TMs might give rise to the same language which is why
the correspondence is not one-to-one) which is infinitely large, but countable.
This allows us to conclude that the number of semidecidable languages is (at
most) countably infinite.

But, here’s the problem. The total set of all possible languages over Σ is
much larger. It would correspond to the set of all subsets over Σ∗ – which
already is an infinite collection of strings. This set of all subsets would be
manageable if Σ∗ was finite to begin with. For finite sets (, the set of all subsets
P(() is called the power set. Its size grows exponentially with the number of
elements in (, i.e. |P(() | = 2 |(|. Remarkably, this mismatch in size between (
and P(() extends to countably infinite sets as well. Cantor’s theorem states
that for any set (, the power set P(() has a strictly larger cardinality. For the
case at hand, we have (= Σ∗ – a countably infinite set. Cantor’s theorem
then implies that the cardinality of P(Σ∗) must be strictly larger. This is only
possible if P(Σ∗) – the set of all languages over Σ∗ – contains a number of
elements (languages) that is uncountably infinite.

To complete the proof, we must simply observe that it is impossible to
match elements from an uncountably infinite set (the set of all languages) with
elements from a set that is only countably infinite (semidecidable languages).
This follows from the very definition of uncountable infinity (an uncountable
set is a set that contains too many elements to be countable).

�

You may have already seen a similar size discrepancy in number theory.
The set of all natural (and even rational) numbers is countably infinite, but
the set of all real-valued numbers is uncountably infinite. In fact, it is a very
good exercise in mathematical reasoning and understanding to try to follow
these arguments. The wikipedia page on Cantor’s theorem, for instance, is very
well-written and an ideal starting point. No strong mathematical background
is required.

In the literature, semidecidable languages are sometimes also called com-
pletely enumerable (CE) languages. completely enumarable (CE)The proof sketch above explains why.

49 Lecture 4: Decision problems and languages

alls-decdecreg

Parity
Palindrome

Accept

Figure 4.2 Membership illustration among language classes: regular languages
(reg) are a subset of decidable languages (dec) which are, in turn, a subset of
semidecidable languages (s-dec). Shockingly, semidecidable languages only
encompass a small fraction of all languages (all). To underscore that these
inclusions are strict, we also point out specific languages (decision problem)
that belong to one language set, but not a subset thereof. E.g. Palindrome is
decidable, but not regular.

As a conclusion, we summarize the mutual interrelations between the three
discussed language classes in Figure 5.1

4.4 The Church-Turing thesis
Above we have seen that the class of all decision problems (languages) that can
be solved by Turing machines seems painfully restrictive. They only cover a
vanishingly small fraction of all possible language problems. How should we
deal with this information?

A natural step forward would be to ditch the Turing machine model of
computation and replace it with another computational primitive that is strictly
more powerful. After all, this is precisely how we moved from studying DFAs to
studying Turing machines in the first place. Alas, such an ‘update’ may not be
possible, because it is widely believed that the TM model already is (equivalent
to) the most powerful computing process out there. This is the content of the
following statement named after two scientists that developed different, but
equivalent, universal models of computation in the 1930s.

Computational Primitive (Church-Turing thesis). Any function that can be com-
puted by a mechanical (or physical) process can also be computed by a
Turing machine. Church-Turing thesis

50 Lecture 4: Decision problems and languages

Note that this is not a mathematical statement that can be proved or
disproved. Instead it is part of a belief system that is strong within the
(computer) science community. This also includes quantum computer scientists.
The quantum computer has no effect on such a grand scale of difficulty settings:
every problem that is (semi-)decidable with a quantum computer is also
(semi-)decidable with a TM and vice versa.

However, there is a stronger notion of the Church-Turing thesis – called
the strong Church Turing thesis – that seems to be refuted by the existence of
quantum computers. But, this is a question about computational efficiency, not
computational possibility, and therefore a topic for a later lecture.

5. Universal Turing machines and undecidability

Date: 4 November 2021

Agenda:

1 Encoding Turing Ma-
chines into bitstrings

2 Universal Turing Ma-
chines

3 Undecidable & uncom-
putable problems

4 Interpretations and im-
plications

Agenda
Today, we will complete our analysis of languages and their intrinsic difficulty.
Last week we have seen that regular languages – i.e. decision problems that
can be solved by a (deterministic) finite state automaton – are a strict subset
of decidable languages – i.e. decision problems that can be solved by Turing
machines (TMs). We have also shown that this inclusion is strict by presenting
some languages (Same and Palindrome) that are decidable, but cannot be
regular. Today, we will focus on the class of semidecidable languages – i.e.
decision problems where we can identify yes-instances with a TM, but may
not be able to say anything about no-instances – and the set of all remaining
languages. In analogy to last lecture, we will identify some languages (Accept
and Halt) that are semi-decidable, but cannot be decidable. We will also show
that the complement of these languages (co-Accept and co-Halt) are not even
semi-decidable. See Figure 5.1 for a more complete illustration of different
language classes and their interdependencies.

The realization that some decision problems are uncomputable – in the sense
that they are not even semi-decidable – has profound implications for computer
science, formal logic, mathematics and philosophy.

5.1 Bit encoding of Turing machines
5.1.1 Encoding tuples into bitstrings

Before moving on to Turing machines, let us start with an easier warm-up: how
do we encode an ordered list (F, G) of two numbers F, G ∈ ℕ into a bitstring?

52 Lecture 5: Universal Turing machines and undecidability

s-decdecreg

Parity
Palindrome

Halt
co-Halt

Figure 5.1 Different language classes with exemplars (continuation from Lecture 4):
regular languages (reg) are a subset of decidable languages (dec) which are a
subset of semidecidable languages (s-dec) which, in turn, are a subset of all
languages. The halting problem (Halt) is semi-decidable, but not decidable.
Its complement co-Halt is not even semi-decidable.

In this case, two steps suffice. Firstly, we must find a way to represent
individual constituents as bitstrings. For this example, this is easy. We
can simply use bit encodings of natural numbers: F ↦→ xFy ∈ {0, 1}∗ and
G ↦→ xG y ∈ {0, 1}∗. But a simple concatenated string xFy xG y is not good
enough, because it doesn’t tell us where the first bit encoding ends and where
the second one starts. This issue can be resolved by introducing an additional
roadblock symbol, roadblock symbol #say # and writing down xFy#xG y in the ternary alphabet
{0, 1,#}. Subsequently, we can encode this alphabet into bitstrings. There
are many ways to do so. Here is a particularly simple encoding that increases
bit-length by a factor of two:

0 ↦→ 00, 1 ↦→ 11, # ↦→ 01.

Putting everything together, we obtain a bit encoding

(F, G) ↦→ x(xFy#xG y)y ∈ {0, 1}∗ ,

whose encoding length : = |x(xFy#xG y)y | obeys

: =2 (|xFy | + |xG y | + 1)
=2 (dlog2(F)e + dlog2(G)e + 1)
≤2 log2(FG) + 6

Importantly, this encoding strategy readily extends to ordered lists comprised
of more than two elements: bit encoding of tuples

(B0, . . . , B#−1) ↦→ x(xB0y#xB1y# · · ·#xB#−1y)y ∈ {0, 1}∗ .

53 Lecture 5: Universal Turing machines and undecidability

Even better, the individual tuple elements B7 need not be natural numbers
to begin with. All that matters is that we can specify suitable bit encodings
B7 ↦→ xB7 y ∈ {0, 1}∗ for each of them. Such bit encodings exist for ordered lists
of symbols {0, . . . , − 1} (simply encode the number of elements), real-valued
numbers (encode a floating point representation), vectors (encode a 1D-array),
tables and matrices (encode a 2D-array), etc. It is also possible to check that
such an encoding scheme assigns exactly one bitstring to a given tuple. This is
essential, as it allows us to exactly reconstruct the original tuple from its bit
encoding.

Exercise 5.1 (Bit encoding for TSP). Fix a number of cities < ∈ ℕ. Let) ∈ ℝ<×<

denote a pairwise distance table, i.e. a < × < table filled with nonnegative
numbers B7 8 ∈ ℝ, 1 ≤ 7 , 8 ≤ <. Also, let 3 ∈ ℝ (3 > 0) be a kilometer count.
Show that it is possible to encode the 2-tuple () , 3) into a single bitstring
x(x) y, x3y) ∈ {0, 1}∗. Context: This transformation encodes the TSP-related
decision problem “does the pairwise distance map) permit a TSP route that
requires at most 3 kilometers” into a single bitstring.

5.1.2 Encoding Turing machines into bitstrings
Note that we can use bit encodings for general tuples and apply them to
descriptions of a Turing machine (TM). After all, TMs are formally just 7-tuples

" =
(
&, Σ, Γ, X , ?0, ?accept, ?reject

)
. (5.1)

This is an important conceptual observation, and it makes sense to discuss
possible encodings in slightly more detail.

The first three constituents in Eq. (5.1), &, Σ and Γ, all describe finite
sets of symbols. Each of them can be specified by simply storing their total
number. For instance, if& = {?0, . . . , ?#−1} has |& | elements, we can simply
store x |& |y and use bitstrings of length dlog2(|& |)e to enumerate all possible
internal states. Naturally, we can do the same to also specify input alphabet Σ
and tape alphabet Γ.

Now, the last three tuple elements ?0, ?accept, ?reject can be specified by
remembering which of the |& | states are special. E.g. if ?0 is the first state of
& , then we would write x?0y = 0 · · · 0 to encode that ?0 it is the first element
of& .

The transition function is where things get a bit more interesting. After all,
we need to encode an entire function

X : & \
{
?accept, ?reject

}
× Γ→ & × Γ × {!,'} .

This function, however, is completely specified by a total of (|& | − 2) × |Γ |
equations:

X (>, 0) = (?,1,�) where ?,> ∈ &, 0, 1 ∈ Γ, � ∈ {!,'} . (5.2)

The number (|& | − 2) × |Γ | counts the total number of possible input combi-
nations (>, 0) ∈ & \

{
?accept, ?reject

}
× Γ and we can use tuple encodings to

54 Lecture 5: Universal Turing machines and undecidability

represent each transition equation (5.2) by a bit encoding

x(x>y#x0y#x?y#x1y#x�y)y ∈ {0, 1}∗ .

Subsequently, we can subsume all such bit encodings into an ordered list of
(|& | − 2) × |Γ| bitstrings that fully specifies the transition function. Putting
everything together provides us with a bit encoding of an entire TM:

x" y = x
(
x& y#xΣy#xΓy#xX y#x?0y#x?accepty#x?rejecty

)
y ∈ {0, 1}∗ .

We can use this encoding strategy for all TMs conceivably. Doing so ensures that
every TM is represented by a single bit encoding (injectivity). But, conversely,
not every bitstring will provide a valid encoding of a TM. It will be convenient
if we adjust this stringent encoding a little bit to get a nicer correspondence
between TMs and bitstrings. In particular, there are reasons to want

1 every bitstring {0, 1}∗ represents some TM;
2 every TM is represented by infinitely many strings.

The first property is easy to ensure by associating strings that are not valid TM
encodings with some canonical TM, e.g. the TM that immediately halts and
outputs reject for any input. The second property can be ensured by tampering
with our encoding scheme. In particular, we can allow that our bit representation
can end with an encoded roadblock symbol #, followed by an arbitrary number
of 1s that are ignored (think of comments in programming languages that also
allow for adding superfluous symbols to any given program). Finally, recall
that there is a one-to-one correspondence between natural numbers < ∈ ℕ

and bitstrings x<y ∈ {0, 1}∗. This allows us to identify TMs" with natural
numbers < (by equating the bit encodings of both).

Proposition 5.2 (Turing number). Turing numberThere is a many-to-one correspondence between
natural numbers and Turing machines such that (i) the bit encoding x<y ∈
{0, 1}∗ of each < encodes exactly one TM" and (ii) every TM" is represented
by (bit encodings of) infinitely many natural numbers.
We write x" y = < and call < a Turing number for TM" .

This correspondence between TMs and natural numbers also highlights
that the total number of TMs is countable, because the total number of natural
numbers is countable. We made heavy use of this observation in the proof of
Theorem 4.22 (Lecture 4), when we showed that the total number of languages
(which is uncountably infinite) is much larger than the total number of semi-
decidable languages (which is only countably infinite).

5.2 Universal Turing machines
Turing numbers are not only relevant for carrying out abstract counting
arguments. They also provide a concrete way of specifying TMs in a machine-
readable fashion. And this opens the door for feeding a bit encoding of one TM

55 Lecture 5: Universal Turing machines and undecidability

as (part of an) input into another TM. In fact, it is possible to devise a universal
Turing machine that is capable of simulating the execution of any other TM"

for any possible input F .
This universality is another parallel between TMs, on the one hand, and

actual computers on the other. Computers are also universal in the sense
that they can simulate every other (reasonable) computing device. And it
is this feature that makes them strictly more powerful and interesting than
special-purpose devices, like calculators (or DFAs).

For simplicity and concreteness, we now restrict our attention to TMs"
that work over the binary input alphabet Σ = {0, 1}. In turn, the possible
inputs for" are bitstrings F ∈ {0, 1}∗. This is not a severe restriction, because
we can simulate TMs with different input alphabets by another functionally
equivalent TM that works over 0 and 1 only. Such a reduction is part of Exercise
Sheet II.

Theorem 5.3 (Universal Turing machine). universal Turing machineThere exists a TM * such that for
every x<y,E ∈ {0, 1}∗, * (<,E) = "< (E), where "< denotes the TM
represented by Turing number <. Moreover, if"< halts on inputE within
) steps, then* (<,E) also halts within a number of steps proportional to
) 2.

A more careful argument shows that the runtime can actually be bounded by
�) log()), where � is a constant that only depends on "< ’s alphabet size
and the number of internal states. We refer to [AB09][Sec. 1.A] for a detailed
argument.

To keep things nice and clean, we also assume that the TM" in question
actually has three tapes: one input tape, one working tape and one output tape.
Each tape has its own tape head and can be moved independently. However,
the input tape is only used for reading the input string F and the output tape
is only used for writing down outputs. The following fact shows that this
reformulation is not severe.

Fact 5.4 (simulating multi-tape TMs). Let "̃ be a TM that uses 9 independent
tapes and runs for) steps. Then, we can simulate this computing process by a
single-tape TM" that runs for (at most) 59) 2 steps. �

We leave the proof as an instructive exercise and move on to provide a
high-level proof argument for Theorem 5.3 instead.

Proof sketch for Theorem 5.3. We explicitly construct an intermediate universal
TM *̃ that uses the tape alphabet Γ = {0, 1,�} and three working tapes in
addition to its input and output tape. So, there will be 5 tapes in total. The TM
*̃ will use one of its work tapes to simulate the work tape of TM " . It will
use an additional working tape to store the transition function X of" (in the
form of an encoded transition table) and another work tape to store the current
internal state of" .

To simulate one computational step of " , the TM *̃ scans the encoded

56 Lecture 5: Universal Turing machines and undecidability

transition table and encoded current state of " to find the new state, tape
symbols to be written, as well as head movement. It then executes all of them
on the simulated work tape of " . We see that *̃ requires a total of � steps
for each simulated computing step of" , where � is some number that only
depends on the size of the encoded transition function 〈X 〉.

Finally, we use Fact 5.4 to simulate the 5-tape TM *̃ by another TM* that
uses only one tape. This, however, does introduce a quadratic slowdown:

" ⇒ *̃ ⇒ * ,

) → �) → 25� 2) 2.

�

5.3 Uncomputable & undecidable decision problems
5.3.1 Variants of halting problems

We have seen that Turing machines are a universal model of computation.
That is, we can use a certain TM – the universal TM * from Theorem 5.3 –
to simulate any other TM. And, by construction, TMs are designed to answer
decision problems. A very natural and useful decision problem is: does TM
" (think: algorithm or program or software package) produce a reasonable
output if we run it on inputE? If we recast this yes/no question as a language
over Σ = {0, 1}, we obtain

Accept = {x(",E)y : " is a TM and acceptsE } ⊂ {0, 1}∗ . (5.3)

Recall from Lecture 4 that a language � is called semi-decidable if there exists a
TM that accepts strings belonging to �. (But, it does not need to reject strings
that don’t belong to �).

Lemma 5.5 The language Accept introduced in Eq. (5.3) is semi-decidable.

Proof. Use the universal TM * from Theorem 5.3. Accept a given input
x(",E)y if* (x(",E)y) = " (E) = accept. �

Note that it has been extremely convenient, that the concept of semidecidable
is only concerned with yes/accept instances. This has allowed us to ignore cases
where the encoded TM" may not halt at all on inputE . This desirable feature
seems to get lost if we ask the complementary question: does TM" (think:
algorithm or program or software package) not produce a reasonable output if
we run it on inputE? Formally speaking, the complement of a language � ⊆ Σ∗

is comprised of all strings that do not belong to the language:

co-� = � = Σ∗ \ � = {F ∈ Σ∗ : F ∉ �} ⊆ Σ∗.

In theoretical computer science, we often use the prefix ‘co-’ to denote the
complement of something. complement co-� of a

language �
The complement of the language Accept is.

co-Accept = {0, 1}∗ \ Accept
= {x(",E)y : " is a TM that doesn’t acceptE } , (5.4)

57 Lecture 5: Universal Turing machines and undecidability

which looks scarier than Accept. Here, we have used the fact that our Turing
number construction assigns a TM to every possible bitstring. This prevents us
from having to worry about bitstrings that do not describe valid TM encodings
in the first place.

In particular, co-Accept only accepts inputs that encode a TM " that
doesn’t halt on input E . And it is not clear if we can use simulation at all to
answer this question. Suppose, for example, that we have already simulated
" (E) for a very long time – say, 2.4 × 1067 computational steps – and it hasn’t
halted yet. Then, we are still non the wiser. After all, we still can’t exclude the
possibility that" (E) will eventually halt and accept. The only possibility to
really disprove this possibility is to let the simulation continue forever.

Another related yes/no question is the so-called halting problem. halting problemThere, we
drop the distinction between accepting or rejecting an input and simply ask if a
TM" halts on inputE at all. Reformulated as a language over bitstrings, the
halting problem becomes

Halt = {x(",E)y : " is a TM that halts on inputE } ⊂ {0, 1}∗ . (5.5)

Note that Accept ⊆ Halt, because every accepting computation must also halt
at some point. This suggests that checking yes-instances of Haltmay be harder
than checking yes-instances of Accept only. Below, we will see (and exploit)
that this intuition is true. The halting problem is, however, also semidecidable.

Lemma 5.6 The language Halt introduced in Eq. (13.1) is semi-decidable.

The proof is almost identical to the proof of Lemma 5.5, so let us move on
to the complementary language

co-Halt = {0, 1}∗ \ Halt
= {x(",E)y : " is a TM that doesn’t halt on inputE } . (5.6)

This language looks even nastier than co-Accept above. In fact, just looking at
the definition should give us the chills. It is not obvious at all how we should
(semi-)decide this language at all.

In the remainder of this lecture, we use mathematical reasoning to rigorously
prove that the two languages co-Accept and co-Halt are among the most
difficult decision problems conceivable. Wewill show that they are uncomputable
in the sense that they are not even semidecidable.

Warning 5.7 The fact that a language, like co-Halt, is uncomputable, does
not mean that every problem instance is difficult. On the contrary, there are
(infinitely) many Turing numbers that describe very simple TMs " with
exceedingly benign behavior. E.g. our palindrome TM from Lecture 3 is
certainly one of them. The main results of this lecture merely highlight that
there must be (at least) some nasty inputs, where we cannot hope to get a
reasonable answer. �

58 Lecture 5: Universal Turing machines and undecidability

5.3.2 Two undecidable languages
We say that a language is undecidable if it is not decidable. undecidable = not decidable

Theorem 5.8 The language Accept introduced in Eq. (13.1) is undecidable.

This is a statement about the non-existence of something and we prove it
by establishing a contradiction.

Proof. Assume (for the sake of deducing a contradiction) that Halt is decidable.
Then, there must exist a TM � such that

� (x(",E)y) =
{
accept if" acceptsE,
reject else if" does not acceptE,

for every possible input tuple (",E). Now, we embed � as a subroutine into
another TM. This TM, let’s call it � , queries � to explore how a TM" would
behave if we let it run on its own Turing number x" y (encoded as a bitstring).
Once � has determined what would happen, it does exactly the opposite:

� (x" y) = ¬� (x(", x" y)y) =
{
accept if" does not accept x" y,
reject else if" accepts x" y.

Access to the TM � as subroutine allows TM � to process arbitrary Turing
numbers. This, however, becomes problematic if we run � on the Turing
number of itself:

� (x�y) =
{
accept if � does not accept x�y,
reject else if � accepts x�y.

Nomatter what� does, it is forced to do the opposite. And this is a contradiction.
The only possible resolution is that neither the TM � , nor the TM � can exist
in the first place. �

Theorem 5.9 The language Halt defined in Eq. (13.1) is also undecidable.

Given that Accept is undecidable, this claim seems hardly surprising. After
all, Halt seems to be a more difficult language than Accept. The proof of
Theorem 5.12 is, in fact, based on this intuition and called a reduction. proof by reductionWe show
that a hypothetical TM (algorithm) that decides Halt could also be used to
decide Accept. This, however, leads to a contradiction, because we already
know that Accept is undecidable.

Proof. Suppose that a TM � existed that decides Halt. Then, we can use"
to construct a TM � that decides Accept as well. This TM processes inputs of
the form x(",E)y by executing (at most) two steps:

1) run TM � on input x(",E)y to decide whether" halts on inputE or
not.

59 Lecture 5: Universal Turing machines and undecidability

2.a) if it doesn’t halt, output reject (if" (E) does never halt, it will also never
accept);

2.b) else if " (E) does halt at some point, we can use a universal TM to
simulate TM " on input E . We output accept if * (x(",E)y) =

" (E) = accept and reject if* (x(",E)y) = " (E) = reject.

By construction, this combination of TM � and a universal TM * correctly
decides the language Accept. This, however, is impossible. And, because we
know that the universal TM* has to work, the problem must be the TM � .
The only solution is that it is impossible to decide the halting problem. �

5.3.3 Two uncomputable languages
We say that a language is uncomputable uncomputable = not

semi-decidable
if it is not even semi-decidable.

This is the hardest class of languages (decision problems) conceivable. The
complements of the two undecidable languages we have considered – Accept
and Halt – are exemplary for this ‘nastiest’ class of decision problems.

Theorem 5.10 The language co-Accept introduced in Eq. (5.4) is uncom-
putable.

Although this theorem looks even stronger than the mathematical results
from the last section, it turns out to be almost an immediate consequence of
them. The only missing ingredient is the following logical implication

Lemma 5.11 Suppose that a language � ⊆ Σ∗ and its complement co-� = �̄ are
both semi-decidable. Then, � must in fact be decidable.

We leave the proof as a simple exercise.

Proof of Theorem 5.10. By contradiction. Recall that we have already shown
that Accept is semi-decidable (Lemma 5.5). Suppose now, that co-Accept
were semi-decidable as well. Then, Lemma 5.11 would imply that Accept must
actually be decidable. This, however, is in direct contradiction to Theorem 5.8.
Hence, co-Accept cannot be semi-decidable to begin with. �

Finally, let us turn our attention to the complement of the halting problem.
By now, it should not come as a surprise that this language is uncomputable as
well.

Theorem 5.12 The language co-Halt introduced in Eq. (5.4) is uncomputable.

The proof is almost identical to the proof of Theorem 5.10 and we leave it
as a (very easy) exercise. Theorem 5.12 was originally proved by Turing, but
we have presented a slightly more modern derivation.

5.4 Interpretations and implications
It is worthwhile to take some time to reflect about the mathematical proof
behind Theorem 5.8. The proof is based on contradiction, or, more precisely a

60 Lecture 5: Universal Turing machines and undecidability

paradox. Here is a famous and instructive example: liar’s paradox

I am not telling the truth (liar’s paradox).

The liar’s paradox is based on self-reference and negation. A sufficiently powerful
entity – in this case, a person – makes a yes/no statement about themselves and
subsequently negates it. This necessarily leads to a contradiction that cannot
be resolved.

Theorem 5.8 followed from a similar type of argument. We forced a powerful
entity – now a TM – to make a yes/no statement about (a binary encoding of)
itself and negate it. As in the liar’s paradox, this leads to a contradiction that
cannot be resolved. And, in turn, the language Accept can not be decided
in general. With one statement of this type, we had a foot in the door. It
allowed us to establish a variety of similar and even stronger statements by
cleverly combining a single paradox with logically sound arguments (‘if this
were possible, then that has to be possible as well’).

It is worthwhile to emphasize that these results state that there is no general
method (or algorithm or TM) that can determine whether algorithms (TMs)
halt. But the plural is essential here. Fortunately, it is often still possible to
unambiguously decide the halting behavior of a single algorithm (or TM").
This is what formal proofs of correctness are all about.

Conceptually similar results have been discovered by Kurt Gödel in the 1930s.
Roughly speaking, Gödel’s first incompleteness theorem states that no consistent
system of axioms combinable by an effective procedure (i.e. an algorithm) is
capable of rigorously proving all truths about the arithmetic of natural numbers.

Gödel’s incompleteness
theorem

This statement actually predates the discovery of Theorem 5.12, which is due
to Turing, but looks closely related. In fact, it is possible to deduce Gödel’s
incompleteness theorem from Theorem 5.12 by using the fact that Turing
numbers allow to convert statements about TMs into statements about natural
numbers and algorithms.

It is no coincidence that both Gödel and Turing (as well as other scientists,
like Alonzo Church) thought very hard about ultimate limits of formal logic.
In 1928, David Hilbert – one of the most influential mathematicians of all
times – and Wilhelm Ackermann posed the so-called Entscheidungsproblem:

Entscheidungsproblemfind an algorithm to determine whether a given sentence of predicate logic is
valid, i.e. whether it is true regardless of the specific objects and relationships
being reasoned about. Gödel’s incompleteness theorem indicates that a general
solution to the Entscheidungsproblem may be impossible, Turing’s result about
the language Halt (and an independent result by Alonzo Church) actually
proves it. In fact, it was the Entscheidungsproblem that motivated Turing to
develop TMs in the first place – as a formal description of general algorithms,
which hadn’t been properly defined back then.

And these negative results had profound implications on the philosophy of
mathematics. Before Gödel, Church and Turing published their results, there

61 Lecture 5: Universal Turing machines and undecidability

had been widespread consensus that mathematical statements are either true
or false. And diligence, creativity and mathematical rigor are enough to find
out which one it is. But the halting problem and its variants show that this
dualistic view is false: some mathematical statements are impossible to prove
right or wrong in the first place.

6. Time-bounded computations

Date: 11 November 2021

Agenda:

1 Motivation: multiplica-
tion vs. factorization

2 Big-O notation
3 Time complexity
4 P and EXP
5 Examples

Agenda
In the first part of this lecture, we have been mainly concerned with computabil-
ity: can a certain decision problem (language) be computed at all? Today,
we begin our discussion of computational complexity. We focus on decision
problems that are computable (decidable) and ask: how expensive is the actual
computation going to be?

As amotivation, we consider two related arithmetic problems –multiplication
and factorization – where the algorithmic cost deviates substantially. One of
these problems appears to be computationally much cheaper than the other.
This discrepancy becomes particularly pronounced if we consider (very) large
inputs. In fact, actual running times of algorithms (Turing machines) can be
very complex expressions. But a rough simplification – the so-called big-O
notation – will allow us to isolate the most important contributions.

Having identified running time as an important algorithmic resource, we
move on to define time complexity classes – families of languages (decision
problems) that can be decided in comparable running time. The problem class
P contains all decision problems that can be solved in polynomial runtime in
the size of the input. It contains all computational problems that are ‘easy’ for
computers. Concrete examples are basic arithmetic operations, like addition,
subtraction, multiplication and division, as well as basic logic operations. But
other, seemingly more involved problems also belong to this class.

63 Lecture 6: Time-bounded computations

6.1 Motivation: multiplication vs. factorization
6.1.1 Multiplication

Let # ," ∈ ℕ be two (large) natural numbers comprised of < = dlog10(#)e
and; = dlog10(")e digits, respectively. multiplicationMoreover, let us assume that # ≥ "
(which also implies < ≥ ;). What is the computational cost of computing the
product

% = # ×" ?

Note that this question is rather vague. After all, there are different ways of
computing such products. One of the simplest ways is repeated addition:

% = # ×" = # + · · · +#︸ ︷︷ ︸
" times

.

This decomposes our multiplication into a sequence of" additions. But, even
if individual additions are cheap (which they are), this approach becomes really
expensive once" becomes really big.

All of us know another way to compute products that scales much more
favorably. It’s the gradeschool algorithm gradeschool multiplicationwe all learned in middle school, see
Figure 6.1 for an illustration. The trick is to decompose the big multiplication
into a sequence of single-digit multiplications which are easy to look up (or
memorize). We need roughly < = dlog10(#)e elementary multiplications
(with carry-over) to compute the product in each row. And, there are exactly
; = dlog2(")e rows to compute and subsequently add up. The total cost is
therefore dominated by

Bmultiplication ≈ 2<;, (6.1)

where we have ignored constant pre-factors and subleading terms.
Note that the same approach would also work for binary representations

of # and " . The total cost would be slightly higher – we need about
log2(10) ≈ 3.3-times more bits than digits to represent a number – but the
resulting algorithm would be easy to implement on a computer and/or Turing
machine (TM). Also, the main take-home message is not affected by such a
transformation: the number of arithmetic operations only depends on (some)
logarithms < = log(#), ; = log(") ≤ < of the numbers involved. And, by
definition, both < and; are exponentially smaller than # ," (exp (log(F)) =
log (exp(F)) = F for all F ≥ 0). This underlines that computers (and TMs) are
very good at computing products.

Example 6.1 Fix # = " = 2.4 × 1067 (the number of atoms in the milky way
galaxy). Then, we can use the gradeschool algorithm to compute the square
2 = # × # = 5.76 × 10134 by computing approximately (log2(#))2 ≤
2242 = 50 176 elementary steps. This is completely feasible, modern hardware
computes it in less than a second. �

It is worthwhile to point out that the gradeschool algorithm is not the
fastest multiplication algorithm we know. An asymptotic runtime proportional

64 Lecture 6: Time-bounded computations

7919
227

55433 = 7919 × 7
15838 = 7919 × 2
15838 = 7919 × 2

1797613

≈ <

;

Figure 6.1 Illustration of the gradeschool algorithm for multiplication: # = 7919
is represented by dlog10(#)e = < = 4 digits, while" = 227 is represented by
dlog10(")e = ; = 3 digits. The total number of elementary operations (single-
digit multiplication and addition with carry-on) is approximately 2<; = 24.

to < log(<) is possible by repeatedly applying the Fast Fourier transform. This
also highlights that running time very much depends on the algorithm that is
used to solve a certain problem.

6.1.2 Integer factorization
Integer factorization is the decomposition of a composite number # into
a product of smaller integers. In a sense, this is the reverse operation to
multiplication, e.g. factorization

1797613 = 7919 × 227, (6.2)

because 7919 and 227 are both prime numbers and cannot be factorized further.
One of the most straightforward approaches, which is also taught in middle
school, for integer factorization is trial division trial divisionand was first described by
Fibonacci (1202 AD): systematically test whether # is divisible by any smaller
number. Start with 2 and see if # /2 is a natural number (no remainder). If
this is the case, we have found our first factor: # = 2 × (# /2). Subsequently,
we can focus our attention on further factoring # /2. If instead # /2 is not a
natural number, 2 cannot divide# , and we move on to try division by 3 instead.
We keep on repeating this procedure until we run out of possible candidate
numbers.

Trial devision can be a very laborious algorithm. The worst case occurs if
is the product of two primes of comparable size. Let us take Eq. (6.2) as a
concrete example. In order to finally identify the smaller factor – 227 – we
need to do a lot of trial divisions: 226 if we naively tried every possible number
and 48 if we restricted our attention to prime numbers. The worst case actually
occurs when # is the square of a prime % =

√
. The naive method then

requires a total of
√
trial divisions – each with a computational cost that

scales roughly with log10(#)2 (long division). Let < = dlog10(#)e denote the
number of digits of # . Then, the worst-case cost of naive trial division is

B̃trial−division ≈ log10(#)2
√
≈ <210</2, (6.3)

65 Lecture 6: Time-bounded computations

where < is the number of digits. Restricting our attention to prime numbers
only improves this scaling to

Btrial−division ≈ log10(#)2
√
#

ln(
√
)
≈ <10</2,

because the total count of prime numbers in the interval [1,
√
] is proportional

to
√
/ln(

√
) = 2

√
/ln(#). This worst-case runtime scales exponentially

in the number of digits. If we were to redo the same procedure in binary, we
would also obtain an exponential scaling in the length of the input bitstring
|x# y |.

A comparison between Eq. (6.2) and Eq. (6.1) seems to suggest that factor-
ization can be exponentially more costly than multiplication. This, however,
could simply be an indicator that trial division is a bad algorithm. But, here
is the thing. Even the best factorization algorithms we know today ultimately
still scale exponentially in the size of the input. Generations of algorithm
designers have failed to come up with a solution whose (worst-case) runtime
scales polynomially in input size.

And this may actually be a good thing. Multiplication and factorization
are a pair of closely related problems that are certainly decidable. But the
actual cost of deciding them is highly unbalanced. As the number < of digits
(or bits) becomes largish, one of them remains cheap, while the other one
can be prohibitively expensive, even for the best-known algorithms running
on the largest supercomputers of today. This discrepancy is actually used in
cryptographic primitives factorization as cryptographic

primitive
, such as RSA (Rivest-Shamir-Adleman) encryption.

There, the key idea is that users create a public key based on two large prime
numbers (and an auxiliary value) that they publish. The actual prime numbers
are kept secret, though. This ensures that anybody can encrypt messages, but
they can only be decoded by someone who knows the prime numbers. The
latter part is provided by the practical difficulty of factoring the product of two
large prime numbers.

Although somewhat slow, RSA encryption is still widely used today. But, it
may only be (computationally) secure against eavesdroppers that are restricted
to conventional hardware. In 1991, Peter Shor developed an algorithm that can
solve the decision-version of the factoring problem

Factoring = {x(# ,9)y : # ,9 ∈ ℕ and # has a nontrivial factor less than 9 .} .
(6.4)

in a runtime that is (roughly) cubic in input size: BShor ≈ <3, where < =

dlog2(#)e is the bitlength required to store # . This is exponentially faster
than the best known conventional runtime. But, there is also a catch: Shor’s
algorithm can only be executed on a quantum computer. And the quantum
computers we have built to date are far too small and far too noisy to actually
challenge RSA encryption.

Exercise 6.2 Solve the factoring problem – for the special case where there are
only two prime factors – by using a TM that decides the language Factoring

66 Lecture 6: Time-bounded computations

introduced in Eq. (6.4) as a subroutine. Show that the overall runtime is
dominated by the cost of deciding membership in Factoring.
Hint: use binary search.

6.2 Big-O notation
By now, we have seen many examples of mathematical expressions that can
become rather complicated. Concrete examples include (i) the number of
distinct pairwise distances in a traveling salesperson (TSP) instance (Lecture 1),
(ii) the actual length of the bit encoding of a tuple (Lecture 5) and, (iii) the
actual number of operations required to do trial division (Section 6.1.2 above).

Also, substantial deviations in running time – e.g. quadratic vs. exponential
scaling – only really manifest themselves if we consider sufficiently large input
sizes <. And for < � 1, these expressions are typically dominated by a
single contribution that is most important. The asymptotic notation or big-O
notation big-O notationcaptures only this asymptotically leading term while also disregarding
numerical scaling coefficients. This is best illustrated by a concrete example.
Recall from Exercise Sheet I (and Lecture 1) that a TSP instance involving <
cities is fully specified by) = < (< − 1)/2 pairwise distances. Asymptotically,
this count becomes

) =
< (< − 1)

2
=

1
2
<2 − 1

2
< =$

(
<2) , (6.5)

because <2 grows larger than < and we also disregard the scaling factor 1/2.
The right hand side (r.h.s.) of Eq. (6.5) succinctly tells us that a full description
of TSP scales quadratically in the number of cities <. Another instructive
example is the length <Σ of bit encodings of an alphabet Σ comprised of
|Σ | = # symbols:

<Σ =

{
1 if # = 1,
dlog2(#)e else if # ≥ 2.

This expression only starts to look nice if we choose# large enough. Demanding
≥ 2 excludes the special case (<Σ = 1 for # = 1) and also ensures
log2(#) ≥ log2(2) = 1. This, in turn, ensures

<Σ = dlog2(#)e ≤ log2(#) + 1 ≤ 2 log2(#) =$ (log2(#)) ,

which is much easier to parse. Here is a formal definition of the big-O notation
that takes into account that we ignore scaling factors and only consider inputs
that are sufficiently large.

Definition 6.3 (big-O notation). Let 5 , 6 : ℕ → ℝ+ be two functions we wish
to compare. We say that 5 (<) = $ (6 (<)) if there is a constant 2 > 0 and a
natural number <0 ∈ ℕ such that, for all < ≥ <0, 2 × 6 (<) is at least as large
as 5 (<):

5 (<) =$ (6 (<)) if 5 (<) ≤ 2 × 6 (<) for all < ≥ <0.

67 Lecture 6: Time-bounded computations

5

30

1 2 3 4 5 6 7 8

ℎ (<) = 12<2

5 (<) = 9<2 + 12< + 4
6 (<) = 9<2

Figure 6.2 Big-O analysis of a polynomial: the function 5 (<) = 9<2 + 12< + 4
(blue) is always larger than the simpler function 6 (<) = <2 (red). But, once
< > 4, 5 (<) is actually smaller thanℎ (<) = 12<2 (magenta). This implies both
5 (<) = Ω(6 (<)) = Ω(<2) and 5 (<) = $ (ℎ (<)) = $ (<2) and we conclude
5 (<) = Θ(<2). In fact, we can visually see that the growth behavior of all
three functions is already quite similar for < ≥ 7.

This definition captures the notion that 6 (<) grows faster than 5 (<),
provided that we compare both functions for large enough values <.

Example 6.4 5 (<) = (3< + 2)2 = 9<2 + 12< + 4 and 6 (<) = <2. It is easy
to check that 6 (<) ≤ 5 (<) for all < ∈ ℕ. A bit more work, moreover, yields
5 (<) ≤ 216 (<) whenever < ≥ 2. In other words,

9<2 + 12< + 4 = 5 (<) =$ (6 (<)) =$
(
<2) .

This showcases the value of the big-O notation. It allows us to extract the
essential growth behavior of complicated and/or annoying functions. �

Finally, it is worthwhile to point out that the big-O notation plays nicely
with logarithms. In principle, the logarithm function only makes sense if we
also specify a base. In particular, log2(·) ≠ loge(·) = ln(·) ≠ log10(·). But,
changing the value of the base only changes the logarithm by a constant factor:
for 1, 2 > 0 big-O scaling of logarithms

log1 (<) =
log2 (<)
log2 (1)

for all < > 0.

And 1/log2 (1) is constant for all reasonable changes of base, i.e. where both 1
and 2 are small constants. This, in turn, ensures

log1 (<) =
1

log2 (1)
log2 (<) =$ (log2 (<)) (6.6)

68 Lecture 6: Time-bounded computations

and the converse relation is true as well:

log2 (<) = log2 (1) log1 (<) =$ (log1 (<)) .

So, whenever we perform an asymptotic analysis, specifying bases of logarithm
is no longer necessary. This insight also justifies our lax treatment of logarithm
bases in Section 11.1. A similar invariance property is also true for exponential
functions. For instance, big-O scaling of exponentials

10< =

(
2log2 (10)

)<
= 2log2 (10)< ≈ 23.3×< = 2$ (<) ,

and this relation readily extends to numbers other than 10 or 2. This should
not come as a surprise. Exponentiation and taking logarithms are closely
related after all. (In fact, you can use this relation to prove the change of base
formula (6.6) in the first place.)

6.3 Time complexity
We have now assembled all necessary pieces to reason about computational
complexity, i.e. the actual cost of solving computational problems. Unless
otherwise specified, we will focus on languages that are decidable. That is, we
focus on problems where we know that a Turing machine (or a computer) is
capable of producing a solution. There are different ways of quantifying the
cost of a computation. running timeArguably the most intuitive one is running time: how
long does it take a TM (or computer) to solve certain tasks.

The concept of a Turing machine as computational model is very helpful
here. It allows us to equate running time with the number of steps a TM
needs to either accept or reject a given input. This running time can be
very complicated and typically depends on several parameters. In particular,
longer inputs typically require more computational steps. For simplicity and
clearness, we compute running times only in terms of input size. This is a crude
simplification, because we ignore problem-specific structure, but it often allows
us to get an intuitive high-level view on how these problems behave. Moreover,
we also adopt a pessimistic viewpoint and focus on worst case inputs.

Definition 6.5 (running time or time complexity). Let" be a Turing machine that
halts on all inputs. The running time or time complexity of" is the function
5 : ℕ → ℝ+ that counts the maximum number of steps that " uses on any
input length <.

Definition 6.6 (time complexity classes). Let 5 : ℕ → ℝ+ be a function. A
language � is contained in the time complexity class DTIME(5) if there exists
a Turing machine " that decides � in a running time that satisfies B (<) =
$ (5 (<)) for all input sizes < ∈ ℕ.

Throughout the course of this lecture, we have already seen a fair share of
languages. It is instructive to point out the time complexity class they actually
belong to.

69 Lecture 6: Time-bounded computations

Example 6.7 (palindrome). Language Palindrome =
{
F ∈ {0, 1}∗ : FR = F

}
⊂

{0, 1}∗ is contained in the complexity class DTIME(<2). This tells us that the
runtime of checking whether a bit string equals its own reverse can at most scale
quadratically in the size of the input. This follows from analyzing the runtime
for the specific TM we constructed in Lecture 3. We denote this observation by
writing Palindrome ∈ DTIME(<2). �

Example 6.8 (regular languages). Every regular language � ⊆ {0, 1}∗ obeys
� ∈ DTIME(<). This follows from the fact that we can simulate finite state
automata with a TM that executes exactly < steps on inputs of length < (ignore
the tape and process input bits one by one). This is, in particular, true for
computing parities: Parity =

{
F ∈ {0, 1}∗ : the last bit is a 1

}
∈ DTIME(<).

�

Exercise 6.9 (SAME; challenging). It is easy to come up with a TM (‘algorithm’)
that also decides the language SAME =

{
1909 : 9 ∈ ℕ

}
⊂ {0, 1}∗ in quadratic

time (Same ∈ DTIME
(
<2)). Devise a better TM (‘algorithm’) that actually

achieves the same task in only$ (< log(<)) steps, where < is the length of the
input bitstring. This improvement implies Same ∈ DTIME(< log(<)).
Example 6.10 (quantum algorithms). Quantum computers are a completely dif-
ferent type of hardware that allows us to execute algorithms which conventional
hardware do not support at all. Concepts like running time do carry over to
quantum algorithms. In particular, it makes sense (with some caveats that we
sweep under the rug for now) to say that a quantum computer requires 5 (<)
computational steps to decide a given input string of length <. E.g. Shor’s
algorithm solves the factorization problem in 5 (<) =$ (<3) steps.

However, quantum computers can in principle be simulated by conven-
tional software (or TMs), but there is an exponential overhead in input
size. Simulating Shor’s algorithm on a conventional TM therefore ensures
Factoring ∈ DTIME

(
2$ (<

3)
)
. This conclusion is interesting, but weaker than

analyzing direct solution algorithms. Trial search, for instance, already implies
Factoring ∈ DTIME

(
2$ (<)

)
.

�

6.4 P and EXP
We are now ready to introduce our first, and probably most important, compu-
tational complexity class: the complexity class P

P =
⋃
9 ≥1

DTIME
(
<9

)
= DTIME (<) ∪ DTIME

(
<2) ∪ · · ·

Informally speaking, P contains all (decidable) problems that can be solved
efficiently. Looking at this definition, it seems questionable whether such a
crude union of all polynomial-time classes makes sense at all. For instance,
should we call a TM (‘algorithm’) whose runtime scales with $

(
<100) an

70 Lecture 6: Time-bounded computations

efficient algorithm? This high-level classification only really starts to make
sense if we compare P to its much larger relative: the complexity class EXP

EXP =
⋃
9 ≥1

DTIME
(
2<

9
)
= DTIME (2<) ∪ DTIME

(
2<

2
)
∪ · · ·

Informally speaking, EXP contains all (decidable) problems that can be solved
in exponential runtime. A runtime of$

(
<100) is certainly terrible, but it pales

in comparison to exponential runtimes, like 2<
100
. It is easy to check that

P ⊆ EXP,

because the runtime of every polynomial-time TM is always upper-bounded
by some exponential function. It also seems reasonable to assume that P is
strictly smaller than EXP, i.e. there are problems that require exponentially
long runtimes in the worst case. The factoring problem from above and the
TSP problem come to mind in this context.

Warning 6.11 We do not know whether P ≠ EXP is actually true. This is a
striking deviation between computational complexity theory (the second
part of this lecture) and computability theory (the first part of this lecture).
Despite decades of dedicated research, there are still a lot of things we
simply do not know for certain (in the mathematically rigorous sense). This
makes computational complexity theory more difficult to navigate than
computability theory, but, arguably, also more interesting. In the next couple
of lectures we will see how rigorous statements and connections are still
possible, but one has to be more careful. �

Finally, we emphasize another conceptual advantage of P. Changes in
the actual computational model only lead to runtime overheads that are (at
most) polynomial in the input size. the computational model

doesn’t matter
(There is one possible exception that we

discuss in Sub. 6.5.4 below). E.g. converting a multi-tape Turing machine into
a single-tape Turing machine will in general produce a quadratic overhead.
And the complexity class P is closed under such transformations. Even better,
this even remains valid if we switch from actual algorithm descriptions (in
pseudo-code) to TMs.

Fact 6.12 When talking about large problem classes, like P and EXP, we can
typically ignore implementation-specific details of the actual algorithm. �

Needless to say, it is good scientific practice to carefully double-check such
invariance properties in every concrete complexity problem you wish to tackle.

6.5 Example problems
6.5.1 Elementary algebraic operations

The decision problem versions of elementary algebraic computations are con-
tained in P. For multiplication, one possible formulation is

Multiply = {x(0, 1, 2)y : 0, 1, 2 ∈ ℕ and 2 = 0 × 1} ⊂ {0, 1}∗ .

71 Lecture 6: Time-bounded computations

The runtime for deciding membership scales (at most) quadratically in the
length of the encoded tuple. This, in turn, asserts

Multiply ∈ DTIME
(
<2) ⊂ P.

We can draw similar conclusions for language versions of the other elementary
arithmetic operations:

Add = {x(0, 1, 2)y : 0, 1, 2 ∈ ℕ and 2 = 0 + 1} ⊂ {0, 1}∗ ,
Subtract = {x(0, 1, 2)y : 0, 1, 2 ∈ ℕ and 2 = 0 − 1} ⊂ {0, 1}∗ ,

Divide = {x(0, 1, 2)y : 0, 1, 2 ∈ ℕ and 2 = 0/1} ⊂ {0, 1}∗

are all also contained in P. We can use bit-wise addition/subtraction (with
carry-over) to solve Add and Subtract in linear runtime$ (<). Long division,
like we learned it in middle school, can be converted into an$ (<2)-algorithm.
And the overhead for implementing all these algorithms on a TM is at most
polynomial.

6.5.2 Elementary logical operations
In formal logic, we typically work with binary variables F0, . . . , F<−1 ∈ {0, 1}
that indicate whether something is true (F7 = 1) or false (F7 = 0). A Boolean
formula combines variables with logical operations like ∧ (‘and’), ∨ (‘or’) and
¬ (‘negation’), as well as parentheses that tell us in which order we execute
these operations.

Example 6.13 (logical equality). The following Boolean formula involves only two
variables F0, F1:

i (F0, F1) = (¬F0 ∨ F1) ∧ (F0 ∨ ¬F1) ∈ {0, 1} . (6.7)

It evaluates to 1 (‘true’) if and only if F0 = F1. �

As a rule of thumb, ∧ behaves similarly to multiplication, while ∨ is
reminiscent of addition. So, to process Boolean formulas as efficiently as
possible, it is often useful to bring it into conjunctive normal form (CNF), conjunctive normal forman
AND of ORs with possible negations (think: a product of sums). The formula
i (F0, F1) defined in Eq. (8.3), for instance, is in CNF. It is worthwhile to
recall that every possible Boolean function can be converted into an equivalent
formula that is in CNF. For instance, suppose that < is a multiple of 3. Then,

i (F0, . . . , F<−1) = (F0 ∨ F1 ∨ F2) ∧ · · · ∧ (F<−3 ∨ F<−2 ∨ F<−1)

is a Boolean formula in < variables in CNF. The bracketed expressions are
called clauses clauses. Each of the clauses contains exactly : = 3 variables and there
are; = </3 of them. Computing i (F0, . . . , F<−1) for a fixed input bitstring
is not difficult. The truth value of each clause can certainly be evaluated in
runtime$ (3<) =$ (<), because there are exactly : = 3 variables and it may

72 Lecture 6: Time-bounded computations

take$ (<) TM-steps to look up the relevant truth values. We need to do this
subroutine; times – once for each clause – and form the logical AND of all
resulting truth values. The total cost is roughly; times the cost of computing
an individual clause.

This procedure generalizes to arbitrary Boolean formulas in CNF. It ensures
that the runtime of evaluating a Boolean function is (at most)

BBoolean−function =$ (;<:) =$
(
(;: + <)2

)
, (6.8)

where < is the number of variables, ; is the number of clauses and : is the
maximum number of variables within one clause. The last step in Eq. (6.8)
is a very rough upper bound. But ;: log(<) + < is roughly the number of
bits that are required to specify both the Boolean formula i (·) and an input
(F0, . . . , F<−1):

(;: + <) =$ (;: log2(<) + <) =$ (|xiy | + |xFy |) =$ (|x(i, F)y |) .
(6.9)

Comparing Eq. (6.8) and Eq. (6.9) asserts that the cost of computing a given
Boolean formula in CNF form scales at most quadratically in the actual size of
the input. In other words,

BooleanEvaluation =
{
x(i, F)y ∈ {0, 1}∗ : i is CNF and i (F) = 1

}
obeys

BooleanEvaluation ∈ P.

6.5.3 Computing the determinant of a matrix
Finally, let us consider a computational problem from linear algebra, where it
is somewhat surprising that efficient algorithms actually exist. The determinant
of a symmetric < × < matrix - (a 2D array with < columns and < rows where
each entry is a real valued number) is defined by the Leibnitz rule:

det(-) =
∑

f ∈S<
sgn(f)

∏<

7=1
F7 ,f (7) , (6.10)

where F7 8 ∈ ℂ denotes the entry of - in the 7 -th row and 8 -th column
and the sum ranges over all possible permutations f of < elements. Finally,
sgn(f) ∈ {±1} is a permutation-specific signature that can be either +1 or
−1. Eq. (6.10) looks scary, the sum alone ranges over <! = Ω (2<) different
permutations.

Nonetheless it is possible to actually compute det(-) in cubic time, i.e. the
decision-variant of determinant obeys det(�) ∈ DTIME(<3) ⊂ P. The trick
is to exploit a very nice property of the determinant. It is invariant under
orthogonal transformations, aka basis changes: det(�) = det($�$)) for any
$ that obeys $$) = $)$ = I (orthogonality). This allows us to first bring
our matrix - into diagonal form - = $�$) and compute the determinant
afterwards. This diagonalization only requires$ (<3) operations and makes a

73 Lecture 6: Time-bounded computations

huge difference. Computing Eq. (6.10) for diagonal matrices � is super-simple,
because most matrix entries are zero: det(�) = ∏<

7=1 F7 7 . This extra step
only requires$ (<) operations and pales in comparison to the$ (<3)-cost of
diagonalizing the matrix in the first place.

6.5.4 Criticisms and extensions
It is worthwhile to spell out and discuss some possible criticisms of the definition
of P. The following list of arguments is taken from [AB09].

1 Worst-case running time is too strict: in our definition of running time,
we only consider algorithms that decide a language (compute a Boolean
function) exactly on every possible input. However, it is extremely rare
that all possible input strings do actually arise in practice. Theoretical
computer scientists are very aware of this drawback and have also studied
average-case complexity analogues of running time and P. This, however,
would go beyond the scope of this introductory lecture.

2 Decision problems are too limited: Some computational problems cannot be
straightforwardly expressed as decision problems. The original traveling
salesperson problem – find the shortest route that visits a total of <
cities exactly once – is one such example. Fortunately, the framework of
decision problems turns out to be surprisingly expressive. In particular,
it is possible to solve this problem by repeatedly answering the decision
version of TSP – does a route exist that is shorter than 9 kilometers? –
for different values of 9 . This incurs only a logarithmic overhead and is
part of Exercise Sheet III.

3 Other physically realizable models of computation: our concept of running
time ultimately depends on the computational model of a Turing machine.
But, the vision of quantum computers and quantum algorithms has chal-
lenged this foundation. By now, theoretical quantum computer scientists
have extended most complexity-theoretic concepts from TMs to quantum
computers. This led to a rich and interesting theory about quantum
complexity classes. In particular, there are well-defined generalizations
of P – the complexity class BQP – and NP – the complexity class QMA.
The class BQP, however, may be strictly larger than its conventional
counterpart. Shor’s algorithm, in particular, implies Factoring ∈ BQP,
but we don’t know whether Factoring ∈ P (because we don’t know an
efficient conventional algorithm). The larger expressivity of BQP is one
of the main reasons why we try so hard to actually build a fully-functional
quantum computer. Alas, this fascinating topic is also beyond the scope
of this introductory course.

7. The problem class NP

Date: 18 November 2021

Agenda:

1 Motivation: TSP
2 The problem class NP
3 Examples
4 Origin story
5 Philosophical implica-

tions

Agenda
Last time we have introduced two computational complexity classes. EXP
is the class of decision problems that can be solved in a runtime that scales
exponentially in input size (on a Turing machine). P, in contrast, contains
those that can be solved in polynomial runtime. Today, we will introduce
another complexity class that lies somewhere between these two extremes.
The class NP contains all problems that may be difficult to solve, but where it is
at least possible to efficiently check whether a proposed solution checks out.
This sets the stage for the famous P vs. NP conjecture: is checking correctness
of a solution easier than coming up with the solution in the first place? Or, is
the difficulty of both tasks actually comparable? Despite decades of intensive
research, the answer to this question remains unknown. P vs NP is one of the 7
Millenium Prize Problems.

7.1 Motivation: Factoring
Recall that Factoring is the task of decomposing a large number # ∈ ℕ into
a product of prime factors. If # is the product of two large prime numbers
(# = "1 × "2), the best known algorithm requires a runtime that scales
exponentially in the number of digits involved. This leads us to believe that
factoring is a difficult problem. In fact, we actually build encryption protocols
based on that belief. The most widespread language variant of factoring is

Factoring = {x(# ,9)y : ",9 ∈ ℕ and # contains a factor that is at most 9 .} .
(7.1)

75 Lecture 7: The problem class NP

P

NP

EXP

Figure 7.1 Landscape of complexity classes (to be continued): The class EXP is
a large complexity class that encompasses all decision problems (languages)
that can be decided in exponential runtime (in input size). Much smaller
by comparison, P only contains those that require polynomial runtime. The
problem class NP is in-between. It contains decision problems that may be
hard to solve, but proposed solutions can be efficiently checked for correctness.

It does not solve factoring directly. But, when combined with binary search, it
can be empowered to do just that. This will be the content of Problem 7.12 below.
Clearly, Factoring ∈ EXP, but it does have one redeeming quality: If you
manage to obtain a solution, you can readily convince others that your solution
is indeed correct. Suppose you have discovered x(# ,9)y ∈ Factoring for
some # and some 9 and let us assume for simplicity that # is the product of
only two primes"1 and"2. Then you can prove the correctness of your claim
by revealing the actual factor you found, say"1. Access to (a bit representation
of) this number allows your peers to check

(i) # /"1 is integer i.e."1 is indeed a factor;
(ii) "1 ≤ 9 , i.e. one of the factors is indeed at most 9 .

Crucially, sharing "1 only requires distributing a total of < = $ (log(")) =
$ (log(#)) bits and both validity checks are efficient in terms of runtime.
Division is an arithmetic operation whose runtime is $

(
log(#)2

)
and com-

paring"1 with 9 only requires$ (log(")) operations. What is more, these
consistency checks cannot be fooled. If # does not have a factor "1 ≤ 9 ,
then it is impossible to come up with a ‘fake factor’ that tricks your peers into
believing (# ,9) ∈ Factoring.

7.2 The problem class NP
Although factoring may be exponentially hard to solve in general, it is at least
easy to check the correctness of a proposed solution. Being able to convince

76 Lecture 7: The problem class NP

others of the correctness of an argument is an important driving force for
scientific and technological advancement. The problem class NP captures these
types of problems. NP = efficiently verifiable

Definition 7.1 (NP, informal). The problem class NP contains all languages (deci-
sion problems) where membership can be efficiently verified.

This is a crisp and intuitive definition. But behind it, there is actually quite
a lot to unpack. Let � ⊆ {0, 1}∗ be a language. Then, Definition 7.1 actually
demands two things: completeness and soundness

• completeness: if F ∈ �, then there is a (pre-specified) verification
procedure and a short certificate G that allows others to verify F ∈ �
in reasonable time (‘all yes-instances are covered by the same type of
argument’);

• soundness: else if F ∉ � there cannot be a certificate G that fools others
to wrongfully believe F ∈ � (‘no false positives’).

Example 7.2 (FACTORING is complete and sound). The language Factoring intro-
duced in Eq. (11.1) is both complete and sound. It is complete, because for each
x(# ,9)y ∈ Factoring, there exists a short verifier – the factor" that obeys
/" ∈ ℕ and # ≤ 9 . It is also sound, because it is impossible to ‘fake’ a
number" with these properties if x(# ,9)y ∉ Factoring. �

So far, we have introduced quite a bit of jargon, like ‘short’, ‘verification
procedure’ and ‘efficient’. The computational models introduced earlier in
this course allow us to be more specific. Input F and certificate G can always
be represented by bitstrings. The certificate G is short if its length scales (at
most) polynomially in the length of the actual input. I.e. |G | = poly(|F |) (here,
poly(<) denotes an arbitrary polynomial in <, e.g. <, <2, <3, etc.). This takes
into account that larger inputs may require longer certificates. A (pre-specified)
verification procedure is a fixed TM" (think algorithm) that can process inputs
x(F, G)y of arbitrary length and either accepts or rejects them. We call such a
verification efficient, if its runtime scales (at most) polynomially in input size
|x(F, G)y | = 2 (|F | + |G | + 1) = poly(|F |), because |G | = poly(|F |).
Definition 7.3 (NP, formal definition). NP, formal definitionA language � ∈ {0, 1}∗ is in NP if there
exist polynomials >, ? : ℕ→ ℕ and a TM" with the following two properites:

• Completeness: if F ∈ �, then there exists a short certificate G ∈ {0, 1}∗
with |G | = > (|F |) such that " (F, G) = accept after (at most) ? (|F |)
steps.

• Soundness: else if F ∉ �, then " (F, G) = reject for all possible certifi-
cates G ∈ {0, 1}∗.

This definition spells out all mathematical details that are required to
make rigorous statements about the intuition provided in Definition 7.1. The
following inclusion properties, for instance, are now easy to verify and justify
the illustration in Figure 7.1.

77 Lecture 7: The problem class NP

Proposition 7.4 (inclusion properties).

1 P ⊆ NP, i.e. every problem that is easy to solve is also easy to verify.
2 NP ⊆ EXP, i.e. problems in NP may be hard, but they are always solvable.

We leave the proofs as an exercise and conclude this section with emphasiz-
ing one of the most important open problems in computer science.

Computational Primitive (P vs. NP conjecture). P vs. NP conjectureP ≠ NP, i.e. checking the
correctness of a solution is (sometimes) easier than comping up with the
solution yourself.

It is widely believed that P ≠ NP, but a rigorous proof still eludes us. The P
vs. NP conjecture is actually one of only 7 Millenium Prize problems1. That
means, solving it would award USD 1 000 000, as well as eternal fame.

7.3 Examples
Example 7.5 (Factoring). Given two numbers # ,9 , decide whether # has a
factor smaller than 9 . The certificate is the factor" . The verifying TM checks
(i) whether" divides # and (ii)" ≤ 9 . �

Example 7.6 (Travelling salesperson). Given a table � of pairwise distances be-
tween < cities, decide whether there is a route that visits all cities exactly
once and has total length at most 9 . The certificate is the route @ , the verifier
computes km(@) and checks km(@) ≤ 9 . �

Example 7.7 (Boolean satisfiability). Given a polynomial-sized Boolean formula
i : {0, 1}< → {0, 1} in conjunctive normal form (CNF), decide whether there
exists an input F0, . . . , F<−1 ∈ {0, 1} such that i (F0, . . . , F<−1) = 1. The certifi-
cate is one such bitstring (G0, . . . , G<−1), the verifier computes i (G0, . . . , G<−1)
and checks whether it is equal to 1. �

Example 7.8 (Graph isomorphism). A graph (+ , �) is a mathematical object that
combines a set of vertices (nodes)+ with edges 4 ∈ � , i.e. connections between
two vertices. Two graphs (+1, �1) and (+2, �2) are isomorphic if it is possible
to convert one into the other by rearranging the vertices. Checking graph
isomorphism is in NP. The certificate is a permutation of vertices that does the
job. The verifier checks whether the newly permuted graph is equal to the
other one. �

7.4 Origin story: non-deterministic Turing machines
In this lecture we have mainly focused on computing devices that are determin-
istic. The prime example is a deterministic finite automaton (DFA). We have
also modelled the tape head of our TMs by a DFA which results in a TM that
is also deterministic. But this is not the only choice. One can also define a

1See https://www.claymath.org/millennium-problems

https://www.claymath.org/millennium-problems

78 Lecture 7: The problem class NP

variant of TMs, where the tape head is described by a nondeterministic finite
state automaton (NFA). This results in a slightly different concept, called a
nondeterministic Turing machine.

Before jumping into details, it is worthwhile to change our perspective about
NFAs a bit. A DFA is a 5-tuple" =

(
&, Σ, X , ?0, ?accept

)
, where X : & × Γ→ &

is a deterministic transition function. That is, for each state ? ∈ & and each
symbol F ∈ Σ, there is exactly one valid state transition X (?, F) = > . For
NFAs, this is not the case anymore. There can be more than one possible
transition. This gives rise to nondeterministic choices on how to proceed. But,
we can model them by assigning multiple deterministic transition functions
X0, . . . , X2−1 (2 ≤ |Σ |) to the finite state automaton. Nondeterminism manifests
itself in the ability to select one of these transition functions at every step of the
computation. And we accept a length-< input string if and only if at least one
subselection of < transition functions X70 , . . . , X7<−1 terminates in the accepting
state ?0224>B .

This concept readily extends to Turingmachines. Nondeterministic Turing
Machines (NTM)

A non-deterministic Turing
machine (NTM) is a TM" =

(
&, Σ, Γ, {X0, . . . , X2−1} , ?0, ?accept, ?reject

)
with

multiple deterministic transition functions X7 : & × Γ → & × Γ × {!,'}. At
each step of the computation, we now have the freedom to choose one of these
transition functions at will. And, we say that a NTM accepts input F if there is
(at least) one sequence of these choices that would let" reach ?accept on input
F .

Definition 7.9 (nondeterministic polynomial time). NP abbreviates
Nondeterministic Polynomial
time

The problem class NP contains
all languages (decision problems) that can be decided by a nondeterministic
Turing machine in polynomial runtime. In fact, NP is an abbreviation for
Nondeterministic Polynomial time.

Theorem 7.10 Definition 7.9 and Definition 7.3 are equivalent.

Proof sketch. We need to show two directions.

⇒ Suppose that a language � is decided by a NTM "̃ that executes at
most) = poly(<) steps. According to Definition 7.9, this implies that
for every F ∈ �, there is a sequence of nondeterministic transition
function choices that reach ?accept on input F . We can interpret this
sequence of choices as a certificate for F . The string G = x(G0, . . . , G)−1)y
with G9 ∈ {0, . . . , 2 − 1} encodes which of the 2 transition functions we
applied at each step to determine F ∈ �. This certificate has polynomial
length $ (log(2))) = $ (> (<)). What is more, we can construct a
deterministic TM that checks whether "̃ really enters the accepting state
?accept after executing this sequence of transitions on input F . Hence,
� ∈ NP according to Definition 7.3.

⇐ Conversely, assume that � is a NP-language according to Definition 7.3.
Then, we can construct a polynomial-time NTM that also decides �. The
key idea is to use non-deterministic 0/1 choices to write down a string G of

79 Lecture 7: The problem class NP

length |G | = poly(F). (Concretely, this is possible by using two transition
functions: X0 writes down 0 and moves to the right, while X1 writes down
1 and moves to the right). Importantly, all possible strings with (the
correct) polynomial length are possible. Then, we run the original DTM
" on the enlarged input string FG . It accepts if and only if a verifier
G exists. Moreover, the entire procedure runs in nondeterministic time
|G | + runtime(") = poly(|F |).

�

7.5 Philosophical implications of P vs. NP
On an abstract level P vs. NP is a question about the power of nondeterminism
in Turing machines. Recall that for finite state automata this question is
fully understood. We mentioned in Lecture 2 that a nondeterministic finite
state automaton (NFA) can always be converted into a functionally equivalent
deterministic finite state automaton (DFA). And, while the required number
of states may grow exponentially, the actual runtime remains the same. Both
DFAs and NFAs have linear runtime by construction. P vs. NP asks whether a
similar equivalence is true for Turing machines as well.

But, there are more practical implications as well. Often, NP problems
seem difficult, because they involve some sort of exhaustive search. Concrete
examples are TSP (search over all routes to find the shortest one), factoring
(search over all possible prime numbers to find a factor), Boolean satisfiability
(search over all possible truth assignments to find one that is satisfiable). And
for each of these problems, the ‘fitness’ (cost function) of each trial is easy to
evaluate. P vs. NP asks whether exhaustive search can be avoided in general.

Finally, we emphasize that the modern definition of NP (Definition 7.3)
is phrased in a way that captures a widespread philosophical phenomenon:
appreciating the correctness of a statement is often easier than coming up
with the statement in the first place. There are many examples. For instance,
grading an exam seems easier than coming up with the solutions in the first
place. Likewise, appreciating a great piece of music is easier than composing it
yourself. The P vs. NP conjecture asks whether this is actually the case.

Problems
Problem 7.11 (Proof of Proposition 7.4). Prove both P ⊆ NP (i.e. every problem in
P is also in NP) and NP ⊆ EXP (i.e. every problem in P is also in EXP).

Problem 7.12 (Factoring: efficient decision implies efficient search). Consider the
language Factoring introduced in Eq. (11.1) Suppose you had access to a black
box – e.g. a quantum computer that runs Shor’s algorithm – that could decide
Factoring in runtime $

(
<3) , where < = dlog2(#)e is the bit length of # .

Show that this would then also allow you to factorize worst-case instances

80 Lecture 7: The problem class NP

= "1 ×"2 with "1,"2 ∈ ℕ prime in time $ (<3 log(<)). Hint: binary
search.

8. The Cook-Levin Theorem

Date: 25 November 2021

Agenda:

1 9 -SAT
2 Cook-Levin theorem
3 Proof sketch
4 Implications

Agenda
Informally speaking, NP contains all problems that may be difficult to solve,
but are easy to check. Many important problems fall into this category, e.g.
Factoring, Traveling Salesperson (TSP) and the problem of finding the lowest
energy configuration in a disordered spin chain (see special topic lecture III).

These problems don’t seem to have much in common. But today, we
will introduce a single NP problem that ‘rules them all’, see Figure 8.1 for
a caricature. one NP-problem to rule them

all
This problem is 3-SAT – the Boolean satisfiability problem for

conjunctive normal formulas (CNFs) with clauses of size (at most) 3. And a

NP

3-SAT

Figure 8.1 One NP problem to rule them all: 3-SAT, a special case of the Boolean
satisfiability, is at the center of the problem class NP. It is itself contained in NP
and every other problem in NP can be reduced to an instance of 3-SAT (at a
polynomial overhead). This is the content of the Cook-Levin theorem.

82 Lecture 8: The Cook-Levin Theorem

seminal result by Cook and Levin shows that every problem instance in NP can
be represented by an instance of 3-SAT. So, 3-SAT is, in a precise sense, at least
as hard as every other problem in NP. The content of this lecture is largely
taken from [AB09, Sec. 2.3]

8.1 9-SAT, aka Boolean satisfiability
Recall that a <-variable Boolean formula i (H) = i (H1, . . . , H<) is comprised of
logical operators AND (∧), NOT (¬) and OR (∨). We associate true with 1 and
false with 0 and say that a formula i is satisfiable satisfiabilityif there exists (at least) one
bitstring H♯ ∈ {0, 1}< such that i (H♯) = 1.

A Boolean formula is in conjunctive normal form (CNF) if it is an AND of
OR’s of potentially negated variables. conjunctive normal form

(CNF)
For instance,

i (H1, H2, H3) = (H̄1 ∨ H2 ∨ H3)︸ ︷︷ ︸
clause 1

∧ (H1 ∨ H̄2 ∨ H3)︸ ︷︷ ︸
clause 2

∧ (H1 ∨ H2 ∨ H̄3)︸ ︷︷ ︸
clause 3

(8.1)

is in CNF. Here, H̄7 = ¬H7 denotes the negation of variable H7 . The OR-
expressions in brackets are called clauses (see gray brackets). More generally,
a CNF formula looks like

i (H) = i (H1, . . . , H<) =
∧;−1

7=0

(∨9−1
8=0

H̃7 8

)
︸ ︷︷ ︸

clauses of size ≤ 9

, (8.2)

where 7 8 ∈ {0, . . . , < − 1} is an index and each H̃7 8 is a placeholder for either
H7 8 (variable) or H̄7 8 (negated variable). The parameter; ∈ ℕ counts the total
number of clauses, while the other parameter 9 ∈ ℕ counts the maximum size
of an individual clause. 9 -CNF = CNF with maximum

clause size 9
We say that a CNF formula is a 9 -CNF if the maximum

clause size is 9 . For instance, Eq. (8.1) presents a 3-CNF (9 = 3) that contains
; = 3 clauses in < = 3 variables.

Example 8.1 (logical equality between bitstrings). The Boolean formula

i1bit(0, 1) =
(
0 ∨ 1̄

)
∧ (0̄ ∨ 1)

is a 2-CNF with < = 2 variables and; = 2 clauses. It evaluates to one if and
only if 0 = 1 (logical equality). We can readily extend this construction to 2<
bits. For F, G ∈ {0, 1}< , we obtain

i<bit(F, G) = i1bit(F0, G0) ∧ i1bit(F1, G1) . . . i1bit(F<−1, G<−1) (8.3)

which evaluates to one if and only if the two bitstrings coincide. Eq. (8.3)
describes a 2-CNF (every clause has size 2) with 2< variables and 2; clauses.
�

The Boolean satisfiability problem asks whether a given 9 -CNF is satisfiable.
Since we can encode general 9 -CNF formulas (8.2) i into bitstrings xiy ∈
{0, 1}∗, we may reinterpret this decision problem as a language over bitstrings.

83 Lecture 8: The Cook-Levin Theorem

Definition 8.2 (9-SAT). 9 -SAT = satisfiability of
9 -CNFs

The language 9 -SAT contains all bit encodings of 9 -CNFs
that are satisfiable:

9 -SAT = {xiy : i is a 9 -CNF that is satisfiable} ⊂ {0, 1}∗ . (8.4)

It is widely believed that 9 -SAT ∉ P, i.e. there is no polynomial-runtime
algorithm that can determine whether a 9 -CNF i is satisfiable for 9 > 2. In
fact, we will ourselves provide strong evidence in Corollary 8.7 below. Instead,
9 -SAT is a prime example of a problem in NP. Finding a solution might be
difficult, but checking the correctness of a solution is easy. More precisely, recall
the following definition from Lecture 7.

Definition 8.3 (NP, Restatement of Definition 7.3 in Lecture 7). A language � ∈
{0, 1}∗ is in NP if there exist polynomials >, ? : ℕ→ ℕ and a Turing machine
" (the verifier) with the following two properties:

• Completeness: if F ∈ �, then there exists a short certificate G ∈ {0, 1}∗
with |G | = > (|F |) such that " (F, G) = accept after (at most) ? (|F |)
steps.

• Soundness: else if F ∉ �, then " (F, G) = reject for all possible certifi-
cates G ∈ {0, 1}∗.

Proposition 8.4 9 -SAT ∈ NP.1 9 -SAT ∈ NP

Proof. Suppose that xiy ∈ 9 -SAT. Then, there must exist at least one bitstring
G = G0 · · · G<−1 such that i (G) = 1. Conversely, if xiy ∉ 9 -SAT, then
i (G) = 0 for all inputs G ∈ {0, 1}< . This tells us that we can interpret
satisfiable assignments G ∈ {0, 1}< as certificates. For verification, we simply
evaluate the Boolean formula on such an assignment and check whether

" (xiy, G) = i (G) =
{
1 (accept),
0 (reject).

Note that this TM" behaves the same for all possible inputs and certificates.
It always reads in a bit encoding xiy of a Boolean 9 -CNF and evaluates it on
a bitstring G . It is also easy to check that this verification procedure is both
complete and sound.

Finally, it is also important to check that the certificate length |G | and the
running time of the verification procedure both scale polynomially in the input
size |xiy. We leave this as an exercise. �

Finally, it is worhwhile to point out that maximum clause size 9 > 3 in a
CNF can be reduced to 3 at the cost of extra variables and extra clauses.

Lemma 8.5 9 -SAT reduces to 3-SATEvery 9 -CNF i can be transformed into a 3-CNF k such that i is
satisfiable if and only if k is satisfiable.

1Note that this does not contradict the above claim that 1-SAT and 2-SAT are actually
contained in P. After all, P ⊆ NP.

84 Lecture 8: The Cook-Levin Theorem

Proof sketch. Let us first show how a 4-clause can be mapped to two 3-clauses
that are satisfiable if and only if the original 4-clause is. Suppose, for con-
creteness, � = H0 ∨ H̄1 ∨ H̄2 ∨ H3. We add a new variable E and divide �
(along the middle) into two 3-clauses that also feature E : �0 = H0 ∨ H̄1 ∨E
and �1 = Ē ∨ H̄2 ∨ H3. It is now easy to check that � ∈ 4-SAT if and only if
�1 ∧�2 ∈ 3-SAT. The same idea applies to any clause of size 9 = 4.

We can also extend it to decompose a general 9 -clause into two (9 − 1)-
clauses that feature one additional variable. Iterating this procedure allows us
to replace 9 -clauses by an AND of 2(9 − 3) 3-clauses that feature (9 − 3) extra
variables. �

Before moving on, we emphasize that 9 = 3 is the smallest clause size that
is achievable in this way.

8.2 The Cook-Levin Theorem
The difficulty of 9 -SAT seems to change drastically with maximum clause size 9 .
It is known that 1-SAT and 2-SAT can always be solved in polynomial runtime,
i.e. 1-SAT, 2-SAT ∈ P. In stark contrast, 3-SAT is the paradigmatic NP-problem.
If we can solve 3-SAT, we can also solve every other problem in NP with only
polynomial overhead. This is the content of the following deep result that was
established independently by Cook (1971) and Levin (1973).

Theorem 8.6 (Cook-Levin theorem). Cook-Levin theoremLet � ⊆ {0, 1}∗ be any language in NP.
Then, we can reformulate the question F ∈ � into an instance of 3-SAT
that only depends on the input F ∈ {0, 1}∗ and the verifying TM" . More
precisely:

if F ∈ �, then the 3-SAT formula iF," is satisfiable;
else if F ∉ �, then the 3-SAT formula iF," is not satisfiable.

Crucially, the size of iF," – both in terms of variables and clauses – only
depends polynomially on the input size < = |F |.

It is this central position of 3-SAT within NP that has been illustrated in
Figure 8.1 above. The following result is an immediate consequence of this
distinguished role.

Corollary 8.7 Suppose that 3-SAT ∈ P (i.e. there exists a polynomial-runtime
algorithm that always decides whether a 3-SAT formula is satisfiable). Then,
P = NP.

8.3 Proof sketch for Theorem 8.6
Rather than presenting a traditional polished proof, we will try to focus on
the underlying challenges and solution strategies. In fact, our first two proof
attempts will fail. But understanding how they fail will bring us closer to a
working proof argument.

85 Lecture 8: The Cook-Levin Theorem

Recall that we can associate a language � ⊆ {0, 1}∗ with the abstract
Boolean function

5� (F) =
{
1 if F ∈ �,
0 else if F ∉ �.

(8.5)

And it seems plausible that we can further decompose such Boolean functions
into sequences of elementary logical operations (∧,∨,¬). In fact, we can even
ensure that the resulting logical formula is in CNF.

Theorem 8.8 (universality of elementary logical operations). universality of ∧,∨ and ¬Let 5 : {0, 1}: →
{0, 1} be a Boolean function on : bits. Then, we can construct a : -CNF i
with (at most) 2: clauses such that i (H) = 5 (H) for all H ∈ {0, 1}: .

Proof sketch. For every D ∈ {0, 1}: , we can easily construct a : -CNF �D that
behaves like ¬D , i.e. �D (D) = 0 and�D (H) = 1 for all H ≠ D . E.g., for : = 4 and
D = 1101, we would set �D (H) = H̄1 ∨ H̄2 ∨ H3 ∨ H̄4. We can use such clauses
and the Boolean function itself to come up with a : -CNF reformulation of 5 (H):

i (H) =
∧

D ∈ {0, 1}: :
5 (D) = 0

�D (H) =
{
1 if 5 (H) = 1,
0 else if 5 (H) = 0.

The problem is that the large AND goes over all bitstrings that evaluate to zero.
And, there may be 2: many of them (‘exponential overhead’). �

However, directly applying Theorem 8.8 only shifts the problem to a different
place. If we don’t know how to compute 5 , we don’t know how to construct i .
In order to make actual progress, we need to exploit characteristic properties
of the problem class NP.

For instance, Definition 8.3 asserts that the verification procedure " is
fixed and has polynomially bounded runtime. Perhaps, the following Boolean
function is an easier target:

5" (F, G) =
{
1 if" (F, G) = accept,
0 else if" (F, G) = reject.

(8.6)

Here, there is at least hope that we can convert 5" (F, G) into a 9 -CNF ĩ" (F, G).
And such a conversion is also promising for a different reason. Note that NP
languages � are difficult, because we are only given the input F and not the
associated certificate G . Input F ∈ � if and only if a certificate G exists that
leads to" accepting the joint input (F, G). But this actually plays nicely with
Boolean satisfiability. For fixed input F and fixed verification procedure" , we
simply define

ĩ",F (G) = ĩ" (F, G),

86 Lecture 8: The Cook-Levin Theorem

� 1 0 1 0 1 0 0 1 1 1 0

?0

B = 0

� 0 0 1 0 1 0 0 1 1 1 0

>1

B = 1

local changes

X

� 0 1 1 0 1 0 0 1 1 1 0

>2

B = 2

local changes

X

Figure 8.2 Visualization of TM computation steps: A TM operates in steps, where
each step only involves a very restricted set of operations (read a symbol,
change internal state, write a symbol and move left/right). Every such step can
only affect the internal state register, as well as a very small portion of the tape.
I.e. TM computations are highly local.

where ĩ" (F, G) is a (|F | + |G |)-CNF that represents 5" (F, G) from Eq. (8.6).
Subsequently, we can decompose clauses to obtain a 3-CNF i",F (G) with the
same functionality, see Lemma 8.5.

This is where things get interesting. The 3-CNF i",F is satisfiable if and
only if there exists an input G (the certificate) such that " (F, G) = accept.
More formally,

i",F (G) ∈ 3-SAT ⇔ F ∈ � (whenever � ∈ NP).

This is tantalizingly close to the statement in Theorem 8.6. But, we are not quite
there yet, because a huge problem remains. Even when F is fixed, the Boolean
formula (8.6) is still a function on length-; bitstrings, where ; = |G |. And
using Theorem 8.8 to convert it into a;-CNF ĩ",F may produce as many as
2; = 2; different clauses of length;. This number scales exponentially in the
number of certificate bits;. And this is a deal breaker. Already writing down
all clauses required would take more time (and space) than simply computing
" (F, G) for all 2; posssible certificates G ∈ {0, 1}; .

This conundrum can be resolved with an ingenious change of perspective.
Instead of representing the logical functionality of a verification procedure
as a single huge CNF, we should try to represent the actual TM computation
by a sequence of small Boolean formulas – one for each computational step.
This allows us to exploit the particular structure of TM computations for NP
verification:

(i) Polynomial runtime: Evaluating " (F, G) requires at most poly(<)-
many steps, where < = |F |. This ensures that the total number of small

87 Lecture 8: The Cook-Levin Theorem

Boolean functions – one for each computational step – can only grow
polynomially with input size.

(ii) TM computations are local: individual TM steps are highly localized.
They only affect a single tape square (whose value might change), the
underlying state register and a simple movement by the tape head.
Illustrated in Figure 8.2, this can be used to ensure that the individual
Boolean functions are small in the sense that they only affect few bits at
a time.

These two features allow for transforming entire TM computations – on
different inputs – into a single CNF formula. In order to achieve this, we must
ensure three qualitatively different things:

1 Initialization: The initial tape content must be of the form FG ∈
{0, 1}<+; , where F denotes the actual input. The other part – which
corresponds to the certificate G – remains unconstrained.

2 Termination: After) = poly(<) steps, the TM must transition into the
accept state ?accept. At this point, the final tape content must be a single
1 (for accept).

3 Consistent computation: the computational trajectory between initial-
ization and termination must reflect a valid TM computation. That is, the
local changes that occur between step B and B + 1 must be consistent with
the transition function X : & × Γ→ & × Γ × (!,') that specifies" .

Remarkably, we can convert all these conditions into a polynomial number of
3-CNFs. Our final 3-CNF will be an AND of three structurally different CNFs:

i",F (H) = iinput(H) ∧ iconsistency(H) ∧ itermination(H), (8.7)

where H denotes a bitstring of length poly(< +;). Different aspects of the
computation are encoded into different portions of this bitstring, see Figure 8.3
for an illustration.

The first function iinput(H) only affects the first |< | + |; | bits of H (original
input) and requires that the first < bits are equal to the NP input F . The second
batch of; bits remains unconstrained (for now). Enforcing a logical equality
between < bits requires 2< clauses of size 2, see Example 8.1.

The second function iconsistency(H) is really an AND of) smaller Boolean
functions icons,B (H), one for each computational step. The individual icons,B (H)’s
check that each computational step is carried out correctly. The central portions
of bitstring H are used to encode internal states >0 = ?0, >1, . . . , >)−1 = ?accept,
as well as tape content changes at current head positions. A constant number
of 2 bits is required for each B = 0, . . . ,) − 1 and the corresponding Boolean
function icons,B also only involves these 2 bits. This is important, because it
allows us to use Theorem 8.8 to represent each of them as a 2 -CNF with (at
most) 22 = $ (1) clauses. The overhead of transforming this into a 3-CNF is
also constant. Putting everything together reveals that

iconsistency(H) = icons,0(H) ∧ icons,1(H) ∧ · · · ∧ icons,)−1(H)

88 Lecture 8: The Cook-Levin Theorem

H :
input F

iinput

input G internal states & tape changes accept

icons,0 icons,)−1 itermination

Figure 8.3 Visualization of a Cook-Levin bitstring encoding: We encode an entire
TM verification procedure into Boolean formulas on a (long) bitstring H . The
first portion (blue) is reserved for the actual input F . The second part (green)
is unconstrained and provides space for the certificate G , while the final part
(red) encodes output and final state. Inbetween are) auxiliary bitstrings
(magenta) that allow us to keep track of the) actual TM computation steps.
Different Boolean functions enforce different consistency conditions, e.g. using
the correct input, performing computational steps correctly and terminating in
an accept state. Remarkably, both the length of the bitstring and the number of
clauses remains polynomial in < = |F |,; = |G | and) = poly(<).

is a 3-CNF with (at most) 222) = poly(<) clauses (recall that the running time
) of" scales polynomially in the original input size < = |F |).

The third function is easy by comparison. We simply need to check that the
internal state – encoded into the final portion of the bitstring H – has moved to
the accepting state. And, we also must make sure that the last symbol that has
been written down is a 1. Both can be achieved by a single Boolean condition
that again involves a constant number of bits.

Putting everything together provides us with a 3-CNF

i",F (H) = iinput(H) ∧ icons,0(H) ∧ · · · ∧ icons,)−1(H) ∧ ioutput(H)

that affects |H | = < +; +) 2 +2 ′ = poly(<) bits and contains 2< +) 222 +22 =
poly(<) clauses. But, most importantly,

i",F (H) ∈ 3-SAT ⇔ there exists G ∈ {0, 1}; s.t." (F, G) = accept.

This is precisely the content of Theorem 8.6

Warning 8.9 Our arguments are really only a sketch of the main proof idea.
We have left many important questions unanswered. E.g. how do we know
how large certificate size ; = |G | and runtime) (<) actually are? Also,
how do we actually follow the movement of the tape head throughout
the computation? And, finally and perhaps most importantly, how do we
actually represent checks for computational consistency into actual Boolean
formulas that only involve a few variables at a time? All these things can
be sorted out, but it requires diligence and effort. We refer to standard
textbooks, e.g. [AB09], for a more thorough treatment. �

89 Lecture 8: The Cook-Levin Theorem

8.4 Context and implications
The Cook-Levin theorem is remarkable, because it relates problem types that
don’t seem to have very much in common. Membership in NP is all it takes. 3-SAT is at the center of NPIn
particular, such diverse problems like Factoring, Traveling Salesperson (TSP),
the ground state problem in physics, or graph isomorphism can all be mapped
to particular instances of 3-SAT – a fundamental problem class in propositional
logic that dates back to ancient Greece. What is more, this transformation only
incurs a polynomial overhead (in runtime and input size) and can often be
made explicit. This underscores that it can be very valuable to have friends or
colleagues who are very good at solving 3-SAT. They may well be able to help
you with any type of NP-problem!

The Cook-Levin theorem is also a good example for the power of abstraction.
power of abstractionThe statement itself holds regardless of the underlying computational model.

This is because the TM model is, up to polynomial overhead, equivalent to all
classical models of computations. But the proof would have been much more
difficult to discover in the context of more modern and convenient models,
like the python programming language. It is really the mechanical and highly
constrained inner working of TMs that has made the difference.

9. Karp reductions and NP-completeness

Date: 02 December 2021 Lecturer: Sibylle Möhle

Agenda:

1 Karp reductions
2 NP-hardness
3 NP-completeness
4 Prove NP-completeness
5 Implications

Agenda
In the last lecture, we learned that every problem in NP can be expressed as
(or reduced to) an instance of 3-SAT. However, 3-SAT is not the only problem
having this property, but there are many others. We look at a generalization of
the notion of this reducibility, namely Karp reducibility.

The content of this lecture is to a certain extent taken from [AB09, Sec. 2.2]
and [Kar72], [KS17, Sec. 6], and [Way01, Slides 28–31].

9.1 Karp reductions
In the last lecture, we have seen how 9 -SAT can be reduced to 3-SAT. We would
expect that such reductions exist between other languages as well, and we also
do not want to restrict ourselves to the problem class NP. In other words, we
want a more general notion of reducibility. Richard M. Karp introduced the
concept of polynomial-time reducibility back in 1972. In his paper [Kar72], he
also provides a list of 21 problems in NP, which he calls “complete”, since all
other problems in NP can be reduced to these with mostly polynomial overhead.

Definition 9.1 (Karp-reducibility). A language ! ⊆ {0, 1}★ is polynomial-time Karp reduction
Karp reducible to a language ! ′ ⊆ {0, 1}★, denoted ! ≤> ! ′, if there exists a
polynomial-time function 5 : {0, 1}★ → {0, 1}★ such that for every F ∈ {0, 1}★,
we have that F ∈ ! if and only if 5 (F) ∈ ! ′.

Basically, a Karp reduction from ! to ! ′ maps F ∈ ! to 5 (F) ∈ ! ′ and
F ∈ ! = {0, 1}★ \ ! to 5 (F) ∈ ! ′ in polynomial time. It can be used to

91 Lecture 9: Karp reductions and NP-completeness

!

!

! ′

5 (!)

! ′

5 (!)

5

F
5

5 (F)
Algorithm for ! ′

G
Algorithm for ! ′

Algorithm for !

G = 1 iff 5 (F) ∈ ! ′ iff F ∈ !

Figure 9.1 Reduction from ! to ! ′. The polynomial-time function 5 maps
elements from ! to elements of ! ′ and elements from ! = {0, 1}★ \ ! to
elements from ! ′ = {0, 1}★ \ ! ′. In order to reduce ! to ! ′, we construct an
algorithm taking as input 5 (F), which returns 1 iff 5 (F) ∈ ! ′ which is the case
iff F ∈ ! .

transform a polynomial-time TM" ′ deciding ! ′ into a polynomial-time TM"

deciding ! by setting" (F) = " ′(5 (F))," (F) = 1 (accept), iff 5 (F) ∈ ! ′.
It is important to notice that we start from an algorithm (the TM" ′) for ! ′

and construct it such that it behaves like an algorithm (the TM") for !, i.e.,
it returns 1 iff F ∈ !. This is exactly the case if 5 (F) ∈ ! ′ as is visualized in
Fig. 9.1.

Why not the other way round? Intuitively, we can model an easy problem
as a hard one. But that does not mean that the easy problem is hard per se.

Consider as an example 2-SAT. To make the argument more concrete, let our
formula be � = (0∨1)∧(2∨1) defined over the set of variables+ = {0, 1, 2 }.}.
In Sec. 8.2 we learned that 2-SAT ∈ P. We can easily build a 3-CNF � ′ which is
satisfiable if and only if � is satisfiable. To this end we introduce new variables F
and G and define � ′ = (0 ∨ 1 ∨ F) ∧ (0 ∨ 1 ∨ F) ∧ (2 ∨ 1 ∨ G) ∧ (2 ∨ 1 ∨ G).
Now, we have an instance of 3-SAT. Obviously, � and � ′ are equisatisfiable,
i.e., � ′ is satisfiable if and only if � is satisfiable. However, � ′ ∈ NP.

The main objective behind reductions is to express a given language by
means of another language which is at least as hard as the original language.
Clearly, this objective is missed by transforming an instance of 2-SAT into an
instance of 3-SAT. We will make clear what we mean by at least as hard in a
moment, when presenting properties of Karp (or polynomial-time) reductions.
But let us walk through an example first.

Definition 9.2 (CLIQUE). Given an undirected graph� and a positive integer � ,
does� contain a subset of size � consisting of mutually adjacent nodes?

Example 9.3 (clique). Figure 9.2 shows the concept of clique, which is defined as
a subset of the vertices contained in a graph in which all vertices are pairwise
adjacent. �

Proposition 9.4 (SAT ≤> CLIQUE). SAT ≤> CLIQUE

92 Lecture 9: Karp reductions and NP-completeness

0 1 2

3

4

56

Figure 9.2 Clique. We are given people 0 , 1 , 2 , 3 , 4 , 5 , 6 and their relationships
(0, 3), (0, 4), (0, 6), (1, 4), (1, 5), (2 , 3), (2 , 5), (2 , 6), (3, 5), (3, 6), (4 , 5),
(4 , 6). These relationships are visualized above as a graph � . Two persons
knowing each other are connected by an edge. A clique is a subset of the
vertices in an undirected graph consisting of pairwise adjacent vertices. As an
example, the graph depicted above contains a clique of size � = 3 given by
{2 , 3, 5 }. These vertices are connected by the edges highlighted in red.

Proof. In our proof we follow [Way01] but with a smaller example. The basic
idea is that, given an instance � of SAT, i.e., a Boolean formula � , we want
to find a function converting � into a graph � such that each clique of � of
size � can be mapped onto a model of � .

Without loss of generality, we define � = 3, which also gives us the number
of clauses contained in � . Let our formula be

� = (F ∨ G ∨ H)︸ ︷︷ ︸
�1

∧ (G ∨ H)︸ ︷︷ ︸
�2

∧ (G ∨ F)︸ ︷︷ ︸
�3

.

We create a person for every literal as visualized in Fig. 9.3 a); the persons
contained in one clause are grouped together. Now we are going to create
relationships between these persons. We say that all persons know each other
except if the literals representing them are either contained in the same clause
or are negations of each other. We connect people knowing each other by an
edge according to Fig. 9.3 b) obtaining a graph representation of � . This graph
contains, for instance, the clique 21 highlighted in red in Fig. 9.3 c), from which
we can construct a model;1 of � (or the other way round). It suffices to set the
literals representing the people in 21 to 1 (or to add the persons represented by
the literals in the model to 21). In fact, the assignment;1 = F G H satisfies � .

Notice that according to Def. 9.1 every clique in � must be mapped onto
a model of � (and vice versa). In our example, we additionally observe that
two different cliques of � can be mapped to the same model of � . Consider
the clique 22 consisting of the vertices representing the literals H , G , and G
contained in �1, �2, and �3, respectively. It contains no vertex representing
one of F and F , i.e., the value of F is irrelevant for the model to which 22 is
mapped. By setting F to 1, we obtain again;1. If instead we set F to 0, we
obtain the model;2 = F G H . This model is also mapped onto by two cliques,

93 Lecture 9: Karp reductions and NP-completeness

�1

F G H

�2

G

H

�3

FG

a)

F G H

G

H

FG

b)

F G H

G

H

FG

c)

Model of � : ;1 = F G H

Figure 9.3 Reducing SAT to CLIQUE. Suppose we have � = �1 ∧ �2 ∧ �3 and
clique size � = 3. a) We create a person for each literal in the formula (left
hand side). b) Two persons know each other if either they are not represented
by literals contained in the same clause or they are not represented by literals
which are the negation of each other. Persons knowing each other are connected
by an edge. c) The resulting graph contains a clique of size 3 represented by
the literals highlighted in red and connected by red edges. Setting those literals
to 1 gives us a satisfying assignment for � . Notice that clique size and number
of clauses coincide.

namely 22 and the clique 23 consisting of the vertices represented by F , G , and
G contained in �1, �2, and �3, respectively. �

Exercise 9.5 Determine all cliques of� and the models of � they are mapped
onto for the formula in the proof of Prop. 9.4.

9.2 Properties of Karp reductions
In this section, we are going to present some useful properties of Karp or
polynomial-time reductions. In Sect. 9.3, we will show properties, which are
useful in the context of NP-completeness.

Lemma 9.6 (Determining P-membership). reduction to PLet !, ! ′ ∈ {0, 1}∗ be two languages.
If ! ≤> ! ′ and ! ′ ∈ P, then ! ∈ P.

Proof. We can check whether F ∈ ! in polynomial time: Given a polynomial-
time function 5 , we first compute 5 (F), and then check in polynomial time
whether 5 (F) ∈ ! ′. �

Lemma 9.6 clarifies, why we say that ! ′ is at least as hard as ! . It provides
a means to determine whether, in this special case, a language is in P.

94 Lecture 9: Karp reductions and NP-completeness

Theorem 9.7 (Transitivity of Karp reductions). transitivityIf ! ≤> ! ′ and ! ′ ≤> ! ′′, then
! ≤> ! ′′.

Proof. We make use of the following observation: If > and ? are two functions
growing at most as <2 and <3 , respectively, their composition > (? (<)) grows
at most <23 , which is also polynomial.

Suppose 51 is a polynomial-time reduction from ! to ! ′ and 52 is a
polynomial-time reduction from ! ′ to ! ′′. Then the mapping F → 52(51(F)) is
a polynomial-time reduction from ! to ! ′′, since 52(51(F)) takes polynomial
time. Finally, 52(51(F)) ∈ ! ′′ iff 51(F) ∈ ! ′, which holds iff F ∈ ! . �

9.3 NP-completeness
Recall that a language ! is in NP, if there exists an efficient method to verify
membership. In other words, if we are given some F and told that F ∈ !, we
can verify this claim with a polynomial overhead. There might or might not
exist an efficient method to find some F ∈ ! . The first case captures the class of
problems in P introduced in Sect. 6.4. In this lecture, we are interested in the
second type of problems, i.e., the problems which are (probably) exponentially
hard to solve but the correctness of whose solutions can be checked efficiently.
In the last lecture we saw that 3-SAT ‘rules all problems in NP’. In this section
we are going to precise what that exactly means and show that there are other
problems in NP having this property as well.

Definition 9.8 (NP-hardness and NP-completeness). NP-hardWe say that ! ′ is NP-hard if
! ≤> ! ′ for every ! ∈ NP. NP-completeWe say that ! ′ is NP-complete if ! ′ ∈ NP and ! ′ is
NP-hard.

Proposition 9.9 (NP-completeness of 3-SAT). 3-SAT is NP-complete. 3-SAT is NP-complete

Proof. We show that (a) 3-SAT ∈ NP and (b) 3-SAT is NP-hard, i.e., that every
! ∈ NP can be mapped by an instance of 3-SAT, or ! ≤> 3-SAT. As for (a), this
is exactly Prop. 8.4, which we already proved, while (b) is Theorem 8.6. By
Def. 9.8, 3-SAT is NP-complete. �

The following lemma is a consequence of Theorem 8.6 and Prop. 9.9.

Lemma 9.10 If ! ∈ NP, then ! ≤> 3-SAT.

Proposition 9.11 CLIQUE is NP-completeCLIQUE is NP-complete.

Proof. We first need to show that (a) CLIQUE ∈ NP and then (b) choose an
NP-hard (or NP-complete) problem % and provide a polynomial-time reduction
from it to CLIQUE. (a) We can check whether a certificate consisting of� nodes
of � is a clique in polynomial time. This establishes that CLIQUE ∈ NP. (b)
We choose to reduce from 3-SAT to CLIQUE, i.e., to show 3-SAT ≤> CLIQUE.
The proof is similar to the one in the proof of Prop. 9.4, but restricted to 3-SAT.
Since ! ≤> 3-SAT for all ! ∈ NP and 3-SAT ≤> CLIQUE, due to Theorem 9.7

95 Lecture 9: Karp reductions and NP-completeness

also ! ≤> CLIQUE for all ! ∈ NP, i.e., CLIQUE is NP-hard. Together with (a)
and Def. 9.8, we obtain that CLIQUE is NP-complete. �

So, 3-SAT is not the only NP-complete problem. This means that in order to
show that ! is NP-complete, we could as well reduce CLIQUE to !. And Cook
and Levin established NP-completeness for many more hard problems.

9.4 A method for proving NP-completeness
We have proved that 3-SAT and CLIQUE are NP-complete. These proofs give us
a general method to show NP-completeness for any problem in NP:

Proving NP-completenessSuppose we want to prove that a language& is NP-complete.

1 Show that& ∈ NP.
2 Choose some problem % known to be NP-hard. Provide a function 5

transforming any instance of % into an instance of& such that F ∈ % iff
5 (F) ∈ & .

The direction, in which the reduction is applied, is essential, as explained
in detail in Kingsford and Slater [KS17], Section 6.

9.5 Implications
We state some important implications which guide us towards one of the most
important questions in computer science: NP = P?.

Theorem 9.12 If language ! is NP-hard and ! ∈ P, then NP = P. If language
! is NP-complete, then ! ∈ P if and only if P = NP.

Corollary 9.13 P = NP iff 3-SAT ∈ P.

Proof. Suppose 3-SAT ∈ P. Then, due to Prop. 9.10, each ! ∈ NP is in P, hence
NP = % . If 3-SAT ∉ P, then clearly 3-SAT ∈ NP and P ≠ NP. �

If we could find a polytime algorithm for solving 3-SAT, we could conclude
that P = NP. The general belief is that such an algorithm does not exist.
However, a proof is still missing.

10. Space complexity

Date: 09 December 2021

Agenda:

1 Space-bounded compu-
tations

2 Relations to other com-
plexity classes

3 PSPACE-completeness
4 Optimal strategies for 2-

player games

Agenda
In the previous lectures, we have focused on analyzing the runtime required
to solve different types of problems. Today, we switch focus and talk about
space-bounded computations. We will see that polynomial space/memory
requirements seem to be less stringent than polynomial runtime. The resulting
problem class, called PSPACE, encompasses both P and NP, see Figure 11.1.
The essence of this large complexity class is captured by quantified Boolean
formulas and has an appealing interpretation as the quest for finding optimal
strategies in 2-player games.

10.1 Space-bounded computations
In this chapter, we consider the complexity of computational problems in terms
of the amount of space, or memory, they require. Time and space are two of
the most important cost factors when it comes to computational tasks.

Formally, we shall stick to the Turing Machine (TM) model of computa-
tion. Similar to runtime – which we defined to be the maximum number of
computational steps – TMs also provide us with a simple notion of space. It
is the maximum number of tape cells occupied throughout the course of a
computation.

Definition 10.1 (space-bounded computation). Fix a function 5 : ℕ→ ℕ. We say
that a language ! ⊆ {0, 1}∗ is contained in SPACE (5 (<)) if there is a TM"

that decides F ∈ ! vs. F ∉ ! based on a maximum number of const × 5 (|F |)
non-blank tape symbols.

97 Lecture 10: Space complexity

P

NP

EXP

PSPACE

Figure 10.1 Landscape of complexity classes (to be continued): The class PSPACE
is a large complexity class that encompasses all decision problems (languages)
that can be decided in polynomial space. PSPACE contains both P and NP
and is itself contained in EXP – the class of problems that can be decided in
exponential time.

This definition is analogous to our definition of time-bounded computations
in Lecture 6. Recall that we say that a language � ⊆ {0, 1}∗ is contained in
DTIME(5 (<)) if there exists a TM" that decides F ∈ � in worst-case running
time$ (5 (|F |)). It is easy to see that space-bounded computations are at least
as powerful as time-bounded ones.

Lemma 10.2 (DTIME(5 (<)) ⊆ SPACE($ (5 (<)))). Let 5 : ℕ → ℕ be a super-
linear function, i.e. < = $ (5 (<)), and � ⊆ {0, 1}∗ be a language. Then,
� ∈ DTIME(5 (<)) implies � ∈ SPACE(5 (<)).

We show this inclusion only for functions 5 (<) that scale at least linearly in
input size, i.e. < =$ (5 (<)). This is because sub-linear runtimes don’t make
sense in our computational model. In stark contrast, sub-linear space is not a
deal breaker (e.g. if we consider a TM with a read-only input tape and a much
shorter work tape). Instead, sub-linear space restrictions accurately capture
situations where the working memory is much smaller than overall data size.
Think of web crawlers, streaming algorithms, or external hard drives. Alas, we
won’t have time to cover this interesting topic and have to refer the interested
reader to standard textbooks like [AB09, Sec. 4.4] and [Sip97, Sec. 8.4].

Proof of Lemma 10.2. Fix an input F ∈ {0, 1}∗ with length < = |F |. Then, the
assumption � ∈ DTIME(5 (<)) ensures that we can decide F ∈ � by running a
TM for (at most)$ (5 (<)) steps. At each step, the TM can change the content
of at most one tape cell. And, since we start with < cells already occupied,
the maximum number of occupied cells can only grow to < + $ (5 (<)) =

98 Lecture 10: Space complexity

$ (5 (<)) (the last equality requires < = $ (5 (<))). This establishes � ∈
SPACE ($ (5 (<))). �

Lemma 10.2 tells us that we can solve every polynomial runtime problem
in polynomial space. The following example indicates that polynomial space
also covers some problems for which we don’t know any polynomial runtime
algorithms.

Example 10.3 (3-SAT ∈ SPACE
(
<2)). Let i be a 3-CNF with < variables and;

clauses of size 3 each. The 3-SAT problem asks whether there exists a satisfiable
assignment F = F0 · · · F<−1 such that i (F) = 1. Computing i (F ′) for any
given input F ′ ∈ {0, 1}< is easy and can be achieved in runtime (at most)
$ (<;) =$ (|xiy |2). What makes the satisfiability problem hard is that there
are up to 2< different inputs that want to be checked.

But, this is a problem for runtime, not space. Indeed, we can re-use tape
space to sequentially compute i (F ′) for all possible inputs F ′ ∈ {0, 1}< . All we
need is an extra ‘counting register’ that allows us to keep track of the bitstrings
we have already checked. A total of < = $ (|xiy |) extra bits suffice for this
task. �

10.2 The problem class PSPACE
We have seen that space-bounded computations are at least as expressive as
time-bounded computations (Lemma 10.2) and can sometimes be much more
powerful (Example 10.3). This intuition extends to the union of all decision
problems (languages) that can be decided in polynomial space.

Definition 10.4 (PSPACE). PSPACE definitionThe problem class PSPACE contains all languages
that can be decided using polynomial space (in input size). More formally,

PSPACE =
⋃
9 ≥1

SPACE
(
<9

)
, (10.1)

where SPACE
(
<9

)
has been introduced in Definition 10.1.

PSPACE is the space-centered counterpart of the problem class P which
encompasses all problems that can be solved in polynomial runtime. The
following inclusion is an immediate consequence of Lemma 10.2 and Eq. (10.1).

Corollary 10.5 (P ⊆ PSPACE). Every language � ⊆ {0, 1}∗ that can be decided
in polynomial time (in input size) can also be decided in polynomial space (in
input size). In formulas: � ∈ P implies � ∈ PSPACE.

In fact, we can even show something stronger. Recall that the problem
class NP encompasses all languages � ⊆ {0, 1}∗ where membership can be
efficiently verified. More formally, there exists a polynomial-runtime TM "

(‘the verifier’) such that

(i) if F ∈ �, then there exists G ∈ {0, 1}∗ with |G | = poly(|F |) (a ‘short
certificate’) such that" (F, G) = 1;

99 Lecture 10: Space complexity

(ii) else if F ∉ �, then " (F, G) = 0 for all G ∈ {0, 1}∗ with |G | = poly(|F |)
(‘no false positives’).

Importantly, each run of the verification procedure is efficient. Andwe can re-use
tape space to sequentially loop over all possible certificates G ∈ {0, 1}poly(|F |)
and see if one of them prompts the verifier to output " (F, G) = 1. This
exhaustive search is similar to Example 10.3 and implies the following inclusion.

Proposition 10.6 (NP ⊆ PSPACE). NP ⊆ PSPACEEvery language � ⊆ {0, 1}∗, where member-
ship can be efficiently verified, can also be decided in polynomial space. In
formulas: � ∈ NP implies � ∈ PSPACE.

We start to see a pattern emerging. Polynomial space may seem like
a serious restriction. But re-using tape space still allows us to sequentially
compute ‘simple’ functions for exponentially many inputs. And this is enough
to handle difficult problems, like 3-SAT (or all of NP), where the best-known
runtime scales exponentially in input size. The following statement establishes
a converse relation.

Proposition 10.7 (PSPACE ⊆ EXP). PSPACE ⊆ EXPEvery language � ⊆ {0, 1}∗ that can be
decided in polynomial space, can also be decided in exponential time. In
formulas: � ∈ PSPACE implies � ∈ EXP.

Proof. We assume without loss of generalization that the TM" that decides �
has a binary input alphabet (Σ = {0, 1}) and works with a total of ? = |& | =
$ (1) states. Also, implicit in the definition of PSPACE is the requirement that
" halts on all inputs F and outputs either" (F) = 1 (if F ∈ �) or" (F) = 0
(if F ∉ �).

Now, the assumption � ∈ PSPACE ensures that there is a polynomial
> : ℕ→ ℕ such that" (F) uses at most> (|F |) non-blank tape cells throughout
the entire computation. Since Γ = {0, 1,�}, this amounts to at most 3> (<)

distinct tape configurations that could appear in principle. Also, the tape head
could be in one of > (<) places while the internal state control may assume one
out of ? = |& | =$ (1) states. Putting everything together, there can be at most
) (<) = ?> (<)3> (<) = 2$ (> (<) different TM configurations.

We are now in a situation similar to the pumping Lemma from Lecture 4. If
we run the TM" for more than) (<) + 1 steps, then at least one configuration
must be visited twice. And this will introduce a loop that cannot be escaped,
because" is deterministic. In other words: if" were to run for more than
) (<) + 1 steps, then it must enter a loop and cannot halt. This, however,
contradicts one of the defining properties of PSPACE. The only resolution is
that the runtime can never exceed) (<) + 1 = 2$ (> (<)) in the first place. And
this, in turn, asserts � ∈ DTIME

(
2$ (> (<)

)
⊆ EXP.

�

100 Lecture 10: Space complexity

10.3 The problem class NPSPACE
It is instructive to view PSPACE as the space-complexity analogue of P, the
class of problems that deterministic TMs can solve in polynomial runtime. Also,
recall that one can define the problem class NP via nondeterminism. It is the
class of problems that nondeterministic TMs can solve in polynomial runtime.

This analogy suggests to introduce a space-complexity analogue to NP:
the class of problems that a nondeterministic TM can solve in polynomial
space (with the extra condition that all computational trajectories halt). More
formally, we say that � ∈ NSPACE (5 (<)), if there is a nondeterministic TM
that decides F ∈ � based on trajectories that all use at most const × 5 (|F |)
non-blank tape symbols. In full analogy to Definition 10.4, we define NPSPACE

NPSPACE =
⋃
9 ≥1

NSPACE
(
<9

)
.

The space-complexity analogue of the famous P ≠ NP conjecture is

PSPACE
?
≠ NPSPACE.

Remarkably, this question has already been resolved in 1970.

Theorem 10.8 (Savitch’s theorem). NPSPACE = PSPACEFix > : ℕ→ ℕ such that > (<) ≥ log(<).
Then, ! ∈ NSPACE (> (<)) implies ! ∈ SPACE

(
> (<)2

)
.

In particular, NPSPACE = PSPACE.

In words, the overhead of replacing a nondeterministic space-bounded
computation by another deterministic computation is at most quadratic in
space. Unfortunately, we won’t have time to cover the illuminating proof and
must defer the interested reader to [AB09, Sec. 4.3].

10.4 PSPACE completeness and a PSPACE complete problem
We strongly believe that PSPACE is strictly larger than P. In particular, P =

PSPACE would imply P = NP, courtesy of Proposition 10.6. But, currently
we don’t have a formal proof. So the next best thing is to isolate certain
problems that capture the essence of PSPACE. This can be achieved by means
of reductions. Recall the concept of a polynomial runtime (Karp) reduction
from Lecture 9: We write � ≤> � if there is a polynomial-runtime function
5 : {0, 1}∗ → {0, 1}∗ such that F ∈ � if and only if 5 (F) ∈ � .
Definition 10.9 (PSPACE-hardness and PSPACE-completeness). We say that a lan-
guage � is PSPACE-hard if � ′ ≤> � for every � ′ ∈ PSPACE. We say that � is
NP-complete if � ∈ PSPACE and � is PSPACE-hard.

PSPACE-complete problems are the space-constrained counterpart of NP-
complete problems, like 3-SAT. (This comparisonmakes sense, becauseNPSPACE =

PSPACE according to Theorem 10.8.

101 Lecture 10: Space complexity

The most interesting PSPACE-complete problems again involve Boolean
formulas. But, now the Boolean formulas are quantified using ∃ (‘there exists’)
and ∀ (‘for all’). quantified Boolean formula

(QBF)
A quantified Boolean formula over truth variables (bits)

F0, . . . , F<−1 ∈ {0, 1} has the form

&0F0&1F1 · · ·&<−1F<−1i (F0, . . . , F<−1), (10.2)

where each&7 is either ∃ or ∀ and i : {0, 1}< → {0, 1} is a Boolean formula.
We read quantifiers from the left towards the right. That is,&0F0 binds before
&1F1, etc. If all variables are quantified, as is the case in Eq. (10.2), then there
are no free variables left and the entire expression is either true (1) or false (0).

Example 10.10 (quantified logical equalities). Recall that we can express logical
equality between two bits F and G as a 2-CNF

i1bit(F, G) = (F ∨ Ḡ) ∧ (F̄ ∨ G) =
{
1 if F = G ,

0 else if F ≠ G .

There are four inequivalent ways to quantify this Boolean formula. One of
them is

∀F∃G i1bit(F, G) = ∃F∀G (F ∨ Ḡ) ∧ (F̄ ∨ G) .
This QBF claims that for every F ∈ {0, 1} there exists a G ∈ {0, 1} such that
F = G (i1bit(F, G) = 1). This is, of course, true and we write

∃F∀G (F ∨ Ḡ) ∧ (F̄ ∨ G) = 1.

Another way to quantify logical equality is

∃F∀G i1bit(F, G) = ∃F∀G (F ∨ Ḡ) ∧ (F̄ ∨ G) . (10.3)

This formula claims that there exists a bit F ∈ {0, 1} such that F = G

(i1bit(F, G) = 1) for all G ∈ {0, 1}. This is, of course, false and we write

∃F∀G (F ∨ Ḡ) ∧ (F̄ ∨ G) = 0. (10.4)

Comparing Eq. (10.3) with Eq. (10.4) underscores that the ordering of quantifiers
can make a huge difference. The remaining two quantified logical bit equalities
amount to

∃F∃G i1bit(F, G) = ∃F∃G (F ∨ Ḡ) ∧ (F̄ ∨ G) = 1 (‘true’),
∀F∀G i1bit(F, G) = ∃F∃G (F ∨ Ḡ) ∧ (F̄ ∨ G) = 0 (‘false’).

This reflects the basic observation that ∀-quantifiers are harder to satisfy than
∃-quantifiers. �

QBFs also capture and generalize the satisfiability problem.

102 Lecture 10: Space complexity

Fact 10.11 (SAT as QBF). Consider a Boolean formula i : {0, 1}< → {0, 1} (not
necessarily in CNF). Then, this formula is satisfiable (i ∈ SAT) if and only if a
related QBF evaluates to true:

∃F0∃F1 · · · ∃F<−1i (F0, . . . , F<−1) = 1.

�

This observation highlights that deciding whether a general QBF is true is
at least as hard as solving the satisfiability problem. This problem deserves a
proper definition.

Definition 10.12 (TQBF). True Quantified Boolean
Formula problem (TQBF)

The True Quantified Boolean Formula problem (TQBF)
asks whether a fully quantified Boolean formula&0F0 · · ·&<−1F<−1i (F0, . . . , F<−1)
evaluates to 1 (‘true’). The associated language TQBF ∈ {0, 1}∗ contains all bit
encodings of quantified Boolean formulas that evaluate to true.

Note that Fact 10.11 immediately implies that TQBF is NP-hard (because
we can reduce 3-SAT to it), but it may not be contained in NP. It is, however,
contained in PSPACE.

Proposition 10.13 The language TQBF from Definition 10.12 is contained in
PSPACE.

Proof sketch. We need to provide a polynomial-space algorithm that decides a
QBF (10.2) with < variables and ; clauses of constant size each. First, note
that if each of the < variables were fully specified, then we could compute the
value of i (F0, . . . , F<−1) in space (and time) $ (<;). The actual algorithm
works recursively and iteratively specifies assignments to arrive at this case.
For starters, note that there are two choices for the first bit: F0 = 0 and F0 = 1.
Each such choice produces a formula iF0=1 (F1, . . . , F<−1) with 1 = 0, 1 that
only involves (< − 1) variables. And if we had an algorithm � that could decide
TQBF for (< − 1) variables, then running it once on iF0=0(F1, . . . , F<−1) and
once on iF1=1(F1, . . . , F<−1) would allow us to handle both an ∃-quantifier
(output 1 if either � (iF0=0) = 1 or � (iF0=1) = 1) and a ∀-quantifier (output
1 if both � (iF0) = 1 and � (iF1) = 1). Importantly, we can carry out both
algorithm invocations sequentially on the same tape space. After computing
� (iF0), we only need to store one bit and can use the remaining space to
compute � (iF1).

And this is a promising start for a recursive algorithm. We can keep on
specifying variables one-by-one to obtain QBFs with fewer and fewer quantified
variables, up to the point where all variables are fully assigned. Let A<,; denote
the space algorithm � uses on formulas with < variables and; clauses. Then,
a recursive construction that re-uses space ensures A<,; = A<−1,; +$ (<;),
where $ (;) bounds the cost of specifying iF1=1 for 1 = 0, 1. Repeatedly
executing this recursion for all < variables produces a total space complexity of
$ (<2;) which is (at most) quadratic in input size. �

103 Lecture 10: Space complexity

Theorem 10.14 Every language ! ∈ PSPACE can be polynomial-time reduced
to an instance of the TQBF problem.

Because NPSPACE = PSPACE, we may view this result as the space-
complexity analogue of the Cook-Levin theorem from Lecture 8. Recall that
Cook and Levin showed that every problem in NP can be polynomial-time
reduced to an instance of the satisfiability problem (or even 3-SAT). Similar
in spirit, Theorem 10.14 instead identifies the TQBF problem – a strict gener-
alization of SAT – as the ‘PSPACE problem to rule them all’. Unfortunately,
we won’t have time to provide a proof sketch for Theorem 10.14. We leave it
as a challenging, but illuminating, problem for self-study (e.g. by following
the arguments provided in [AB09, Proof of Theorem 4.1.1]). Instead, we
conclude this section by combining the implications of Proposition 10.13 and
Theorem 10.14.

Corollary 10.15 TQBF is PSPACE-completeThe TQBF problem is PSPACE-complete.

10.5 The essence of PSPACE: optimal strategies for 2-player games

At first sight, the TQBF problem &0F0 · · ·&<−1F<−1i (F0, . . . , F<−1)
?
= 1 may

seem rather abstract and devoid of a captivating intuitive explanation. But, we
can change that by slightly massaging the expressions involved. By including
new dummy variables in the original formula (such that every choice evaluates
to true), we can replace a general QBF by another one where ∃ and∀-quantifiers
always act one after the other. If the total number of (new) variables <̃ is even,
we obtain a QBF of the form

∃G0∀G1∃G2∀G3 · · · ∃G<̃−2∀G<̃−1 ĩ (G0, . . . , G<̃−1). (10.5)

(The odd case is similar, but would require slightly different notation). This
sorted formula contains at most twice as many variables (< ≤ <̃ ≤ 2<) and is
logically equivalent to our original QBF. It also admits a beautiful interpretation
as an optimal strategy in a 2-player game (with perfect knowledge). TQBF = optimal winning

strategy in 2-player gameThe game involves two players, say yours truly (Richard Kueng) and
Sibylle Moehle (the other lecturer of this class). Sibylle controls odd variables,
namely G0, G2, . . . , G<̃−2 ∈ {0, 1}, while Richard controls even variables, i.e.
G1, G3, . . . , G<̃−1 ∈ {0, 1}. Both players assign truth variables in an alternating
fashion for a total of <̃/2 rounds. Sibylle wins if the final (fully quantified)
Boolean formula evaluates to true. Richard will try everything to thwart that.
He wins, if the final formula evaluates to false.

We can now interpret the question whether the QBF (10.5) is true as the
question whether Sibylle can come up with an optimal strategy that lets her
win the game regardless of what Richard is doing. To see this, it is instructive
to look at the quantifiers one at a time. The first quantifier is ∃ and addresses
the first of Sibylle’s variables. It asks whether there exists a first move Sibylle
can make such that the remaining (partially quantified) formula still has the

104 Lecture 10: Space complexity

chance to evaluate to 1 (Sibylle’s win condition). The second quantifier is ∀
and captures all of Richard’s possible first moves simultaneously. If the resulting
partially quantified Boolean formula can still evaluate to one, then this means
that there is nothing that Richard can do (for now) to stop Sibylle from winning.
These alternating steps between Sibylle and Richard repeat until all variables
are assigned. At this point, the game is over and Sibylle wins if the final formula
evaluates to 1 (‘true’). And Sibylle has a winning strategy (with 100% success
rate) if and only if

∃G0∀G1∃G2∀G3 · · · ∃G<̃−2∀G<̃−1 ĩ (G0, . . . , G<̃−1) = 1.

There exists (‘∃’) a sequence of Sibylle’s game move such that the final formula
evaluates to true for all (‘∀’) possible moves of Richard.

In this analogy, the ‘board’ on which Sibylle and Richard play is a Boolean
formula ĩ whose free variables are alternately assigned by the two competing
players. The number of turns is also fixed and depends on the size of the
formula. And we just saw that deciding whether one of the players has an
optimal winning strategy is at least as hard as solving the TQBF problem. But,
we can also always answer this question in polynomial space by repeatedly using
tape space to play through all possible game constellations. This observation
provides an appealing alternative formulation of Corollary 10.15

Fact 10.16 Determining whether the 2-player QBF game introduced above has
an optimal winning strategy is PSPACE complete. �

The QBF game seems to draw a connection between PSPACE on the one
hand, and winning strategies of 2-player games on the other. But, keep in
mind that complexity-theoretic obstacles – we believe that PSPACE-complete
problems are very difficult – and the entire formalism behind only start to
make sense if we increase input size, aka the ‘size of the board’, to very large
numbers. A 8 × 8 chess board, or a a 19 × 19 Go grid are far too small to enter
this regime. But, it is possible to study generalizations of these games to < × <
boards, where < can become arbitrarily large.

As a concluding remark, we point out that unless PSPACE = NP (which is
widely believed to be false), then there cannot be short certificates for optimal
winning strategies. This is in stark contrast to most of the difficult (NP-hard)
problems we have seen so far.

11. co-NP and the polynomial hierarchy

Date: 16 December 2021

Agenda:

1 Motivation: Factoring
2 The problem class co-

NP
3 The polynomial hierar-

chy (PH)

Agenda
Today, we will introduce the problem class co-NP. Conceptually, this class is
related toNP, but subtly different. In fact, it is widely believed that co-NP ≠ NP,
although we don’t have a formal proof. Viewed as complementary problems,
NP and co-NP form the basis of an entire hierarchy of complexity classes that
become ever more complicated. This is the so-called polynomial hierarchy.

A reasonable assumption about this hierarchy is that it does not collapse.
Many interesting complexity-theoretic arguments follow from it. One of them
is the observation that the factoring problem is (probably) not quite as hard as
other problems in NP, e.g. 3-SAT or TSP.

11.1 Motivation: Factoring is special
To motivate the somewhat advanced topics of today’s lecture, we take another
look at the decision problem version of (prime) factoring:

Factoring = {x(# ,9)y : # ∈ ℕ has a prime factor ≤ 9 } ⊆ {0, 1}∗ .
(11.1)

(Here, we do in addition require that the factors be prime numbers). We
do believe that deciding F ∈ Factoring is difficult in the worst case. We
currently don’t know any (conventional) algorithms that can factor all integers
in polynomial time. Despite its intrinsic difficulty, factoring also has a very
desirable property. Once we have found a valid factorization, it is easy to
convince others that this decomposition is correct. A prime factorization of

106 Lecture 11: co-NP and the polynomial hierarchy

∈ ℕ looks like prime factorization

= �0 × �1 × · · · × �;−1 with �0, . . . , �;−1 ∈ ℕ prime. (11.2)

Moreover, the maximum number of factors; must obey; ≤ log2(#) (why?).
We can use multiplication to efficiently check whether the equality in

Eq, (11.2) actually checks out. More remarkably, it is also possible to efficiently
check that each proposed factor �7 is actually a prime number. This is courtesy
of an algorithm discovered only in 2004 by the Indian computer scientists
Agrawal, Kayal and Saxena [AKS04].

Theorem 11.1 (AKS primality test). There is a polynomial-time algorithm (TM)
that decides the language Primes = {x� y : � is a prime number} ⊂
{0, 1}∗ .

Discussion and proof of this algorithm would go beyond the scope of
this introductory lecture. For us, it is enough to know that it exists and
works. Access to a (proposed) factorization (11.2) allows us to efficiently verify
x(# ,9)y ∈ Factoring: simply check whether the proposed factorization is
correct and (at least) one factor obeys �7 ≤ 9 . The second step is also efficient,
because there are at most; ≤ log2(#) factors that want to be checked. More
formally,

Proposition 11.2 (FACTORING ∈ NP). A factorization (11.2) serves as a short cer-
tificate for x(# ,9)y ∈ Factoring. The verifier " checks whether (i) the
factorization is correct and (ii) (at least) one factor obeys �7 ≤ 9 .

Such an efficient verification procedure is characteristic of problems in NP.
Other problems, like 3-SAT, TSP (traveling salesperson) and Clique share
this feature. But access to a factorization (11.2) allows us to do more than
efficiently certify ‘yes’-instances (x(# ,9)y ∈ Factoring). We can efficiently
certify ‘no’-instances (x(# ,9)y ∉ Factoring) as well.

Proposition 11.3 (FACTORING is special). A factorization (11.2) serves as a short
certificate for x(# ,9)y ∉ Factoring. The verifier " checks whether (i) the
factorization is correct and (ii) none of the factors obeys"7 ≤ 9 .

The first verification routine is identical to before. The second one is slightly
different but also efficient, because we need to check at most ; = log(#)
different factors. This contrasts other NP problems. The traveling salesperson
problem

TSP = {x(�,9)y : there is a TSP route for � with ≤ 9 km}

is in NP, because we can efficiently certify ‘yes’ instances by providing a short
route that gets by with at most 9 km. But, how would we certify ‘no’-instances?
Assuming proper encoding, x(�,9)y ∉ TSP if and only if there is not a
single route that achieves ≤ 9 kilometers. And checking the km-count of all
<!/2 = 2$ (<

2) possible routes is certainly not efficient.

107 Lecture 11: co-NP and the polynomial hierarchy

P

co-NP NP

EXP

PSPACE

Figure 11.1 Landscape of complexity classes (final incarnation): The class co-
NP denotes the complement of the problem class NP. co-NP and NP have a
nontrivial intersection that includes the class P, but also other, (probably) more
difficult problems like Factoring. Viewed as a pair of related problem classes,
NP and co-NP form the basis of an entire hierarchy of problem classes that
always come in pairs and expand outwards into PSPACE. This is called the
polynomial hierarchy and is indicated by dots (to maintain readability).

A similar situation occurs for the posterchild of the problem class NP. For

3-SAT = {xiy : i is a 3-CNF that is satisfiable} ,

we can efficiently certify ‘yes’-instances (xiy ∈ 3-SAT) by providing a satisfiable
assignment F such that i (F) = 1. But, (again assuming proper encoding)
‘no’-instances look like an entirely different beast:

xiy ∉ 3-SAT ⇔ i (F) = 0 for all F ∈ {0, 1}< .

How could we hope to efficiently convince others that the right hand side of
this display is actually true?

11.2 The problem class co-NP
We can capture the special nature of Factoring by introducing a new complexity
class. Recall that the complement of a language � ⊆ {0, 1}∗ contains all strings
not in the language, i.e.

� = {F : F ∉ �} ⊆ {0, 1}∗ .

We can use complements to formally define the class of all decision problems
where ‘no’-instances can be certified efficiently.

108 Lecture 11: co-NP and the polynomial hierarchy

Definition 11.4 (co-NP). the problem class co-NPWe say that a language � ∈ {0, 1}∗ is in co-NP if its
complement � is contained in NP. More formally:

co-NP =

{
� : � ∈ NP

}
.

Note that co-NP is not the complement of the problem class NP. In fact,
both classes have a nontrivial intersection.

Lemma 11.5 The problem class P is in the intersection NP ∩ co-NP.

Proof. Suppose � ∈ P, i.e. there exists a polynomial runtime TM" such that
" (F) = 1 if and only if F ∈ �. Then, we can efficiently certify F ∈ � by
checking" (F) ?

= 1. Hence, � ∈ NP. But, we can also efficiently certify F ∉ �

by checking" (F) ?
= 0. Hence, � ∈ co-NP as well. �

The intersection NP ∩ co-NP also contains some languages for which we
don’t know any efficient algorithm.

Proposition 11.6 Factoring ∈ NP ∩ co-NPThe language Factoring introduced in Eq. (11.1) is contained
in both NP and co-NP.

This is an immediate consequence of our analysis in Section 11.1. But the
problem class co-NP is much larger and also contains interesting problems that
behave very different from NP problems. The tautology problem in formal logic

tautologyillustrates this discrepancy:

Tautology = {xiy : i (F) = 1 for all inputs F} .

In words, tautology asks whether a given Boolean formula is completely trivial.
A moment of reflection reveals that Tautology behaves very differently from
SAT. In particular, it is not enough to ‘get lucky’ and guess a single satisfying
assignment. Instead, we must show that satisfying assignments are impossible.

Tautology is the co-NP analogue of SAT. And this analogy extends to
polynomial-time (Karp) reductions.

Theorem 11.7 (TAUTOLOGY is co-NP complete). Let � ∈ co-NP be a language.
Then, there is a polynomial-time reduction of � to an instance of Tautology.
In formulas: � ≤> Tautology and also Tautoloy ∈ co-NP.

We won’t do the proof here. It follows from adjusting the Cook-Levin
reduction (see Lecture 8) from � (which is in NP) to SAT.

Most researchers believe that NP ≠ co-NP, although we do not know a
formal proof. In fact, attempting to prove this conjecture is an ambitious goal.
It is intimately related to the P vs. NP-conjecture, see Problem 11.17 below.
Interestingly, we can also use our belief that NP ≠ co-NP to obtain a statement
about the intrinsic hardness of Factoring.

109 Lecture 11: co-NP and the polynomial hierarchy

Theorem 11.8 Factoring is (probably) not
‘that hard’

Unless NP = co-NP, Factoring cannot be NP-complete.

Proof. We will prove the contrapositive: If Factoring is NP-complete, then
NP ⊆ co-NP and co-NP ⊆ NP:
(i) NP ⊆ co-NP: By assumption, Factoring is NP-complete. So, we can
polynomial-time reduce every NP-language � to an instance of Factoring
(� ≤> Factoring). But, we also know that this Factoring-instance is in
co-NP. In formulas: � ∈ NP implies � ≤> Factoring ∈ co-NP.
(ii) co-NP ⊆ NP: Fix a language � ∈ co-NP. Then, by Definition 11.4,
� ∈ NP and, by assumption, � ≤> Factoring. Now, use the fact that
polynomial-time (Karp) reductions are invariant under taking complements
(F ∈ � ⇔ 5 (F) ∈ Factoring is logically equivalent to F ∈ � ⇔ 5 (F) ∈
Factoring). Hence, � ≤> Factoring. Finally, Factoring ∈ co-NP implies
Factoring ∈ NP (according to Definition 11.4). In formulas: � ∈ co-NP
implies � ≤> Factoring ∈ NP. �

Theorem 11.8 hints at important differences between Factoring and NP-
complete problems like 3-SAT, TSP or Clique. While we can polynomial-time
reduce Factoring to an instance of 3-SAT, the converse is unlikely to be
possible. This indicates that factoring numbers is probably not quite as difficult
as solving the satisfiability problem.

The belief that factoring is not quite as hard as other NP-problems is in
line with the existence of Shor’s algorithm. existence of an efficient

quantum algorithm for
Factoring

This is a quantum algorithm
that promises to solve Factoring in a runtime that is (roughly) quadratic in
input size. This efficient factoring algorithm, however, requires a quantum
computer and cannot be carried out (efficiently) on conventional hardware.
So, while Shor’s algorithm doesn’t quite prove Factoring ∈ P (because a
quantum computer is fundamentally different from a TM) it may indicate that
the factoring problem may not be very hard after all.

11.3 The Polynomial hierarchy
We can slightly rewrite the definitions of NP and co-NP to make them appear
more symmetric.

Definition 11.9 (NP, alternative definition). A language � ∈ {0, 1}∗ is in NP if and
only if there a polynomial runtime TM" and exists a polynomial ? and such
that

F ∈ � ⇔ ∃G ∈ {0, 1}? (|F |) such that " (F, G) = 1.

Definition 11.10 (co-NP, alternative definition). A language � ∈ {0, 1}∗ is in co-NP
if and only if there exist a polynomial runtime TM" and a polynomial ? such
that

F ∈ � ⇔ ∀H ∈ {0, 1}? (|F |) such that " (F, H) = 1.

Membership in NP is characterized by a single ∃-quantifier over polynomial-
length bitstrings G . Similarly, membership in co-NP is characterized by a single

110 Lecture 11: co-NP and the polynomial hierarchy

∀-quantifier over polynomial-length bitstrings H . This makes sense, because we
moved from NP to co-NP by negating (taking complements). And the negation
of ∃ is ∀.

Note that this is beginning to look reminiscent of the 2-player Boolean
formula games from Lecture 10. Those are fully quantified Boolean formulas
where many ∃ and ∀-quantifiers alternate, e.g.

∃F0∀F1∃F2 · · · i (F0, . . . , F<−1)
?
= 1, or (11.3)

∀F0∃F1∀F2 · · · i (F0, . . . , F<−1)
?
= 1. (11.4)

In order to interpolate between NP and co-NP problems on the one hand and
fully quantified Boolean formulas on the other, we can introduce additional
complexity classes where several ∃ and ∀ quantifiers alternate.
Definition 11.11 (the problem classes �>

7
for 7 ≥ 1). For 7 ≥ 1, we define the

problem class �>

7
to contain all languages � for which there exists a polynomial

time TM" and a polynomial ? such that

F ∈ � ⇔ ∃G0 ∈ {0, 1}? (|F |) ∀G1 ∈ {0, 1}? (|F |) · · ·&7−1G7−1 ∈ {0, 1}? (|F |)
" (F, G0, G1, . . . , G7−1) = 1,

where&7−1 is either ∀ or ∃ depending on the parity of 7 .

The essential requirement in the equation display starts with an ∃ quantifier.
We can define related problem classes by starting with a ∀-quantifier instead.
Definition 11.12 (the problem classes �>

7
for 7 ≥ 1). For 7 ≥ 1, we define the

problem class �>

7
to contain all languages � for which there exists a polynomial

time TM" and a polynomial ? such that

F ∈ � ⇔ ∀H0 ∈ {0, 1}? (|F |) ∃H1 ∈ {0, 1}? (|F |) · · ·&7−1H7−1 ∈ {0, 1}? (|F |)
" (F, H0, H1, . . . , H7−1) = 1,

where&7−1 is either ∀ or ∃ depending on the parity of 7 .

These problem classes generalize NP (as re-introduced in Definition 11.9)
and co-NP (as re-introduced in Definition 11.10). In particular,

�>
1 = NP and �>

1 = co-NP. (11.5)

Also, it makes sense to extend both definitions to 7 = 0 (‘no quantifiers’) by
assigning

�>
0 = �>

0 = P.

The following inclusions are also immediate consequences of recursive def-
initions in terms of 7 quantified certificates that alternate between ∃ and
∀.

111 Lecture 11: co-NP and the polynomial hierarchy

P

�>
1 = NP�>

1 = co-NP

�>
2�>

2

PSPACE

Figure 11.2 Illustration of the polynomial hierarchy (PH).

Lemma 11.13 The following inclusions are true for any 7 ≥ 0:

�>

7
⊆ �>

7+1 and �>

7
⊆ �>

7+1, as well as,

�>

7
⊆ �>

7+1 and �>

7
⊆ �>

7+1.

It looks as if these inclusions could go on forever. But there is a ‘glass
ceiling’. Membership in all of these problem classes can still be decided in
polynomial space, see Lecture 10.

Proposition 11.14 For each 7 ≥ 1, �>

7
,�>

7
⊆ PSPACE.

Proof sketch. Re-use space to recursively check through all possible certificate
choices G0, . . . , G7−1 ∈ {0, 1}? (|F |) (H0, . . . , H7−1) and 7 additional bits to keep
track of the truth of ∃- and ∀-quantifiers. �

As 7 increases, the problem classes �>

7
and �>

7
seem to get bigger and

encompass more difficult decision problems. We subsume all these classes in
the polynomial hierarchy (PH): polynomial hierarchy (PH)

PH =
⋃
7 ≥0

�>

7
=

⋃
7 ≥0

�>

7
.

Proposition 11.14 implies that the entire polynomial hierarchy is contained in
PSPACE. The interdependencies between constituents of PH are illustrated in

112 Lecture 11: co-NP and the polynomial hierarchy

Figure 11.2. We believe that P ≠ NP andNP ≠ co-NP. Appealing generalizations
of these conjectures are collapse of the PH

(i) for each 7 ≥ 1, �>

7
is strictly contained in �>

7+1 (�
>

7
⊂ �>

7+1); and
(ii) for each 7 ≥ 1, �>

7
and �>

7
are distinct (�>

7
≠ �>

7
).

These assumptions are often summarized by a single conjecture: the polynomial
hierarchy does not collapse.

Theorem 11.15 If�>

7
= �>

7
for some 7 ≥ 1, then PH = �>

7
. I.e. the polynomial

hierarchy collapses to the 7 -th level.

We leave the proof as an exercise (see problem-section below). It is widely
believed that the polynomial hierarchy does not collapse to any level 7 . Many
interesting complexity-theoretic arguments follow from such assumptions. The
following one is an immediate consequence of Theorem 11.8 and Eq. (11.5).

Corollary 11.16 If Factoring is NP-complete, then the polynomial hierarchy
collapses to the first level (7 = 1). In formulas: PH = �>

1 = NP.

We will discuss other interesting consequences in future lectures about
circuits. In fact, low-order constituents of the PH encompass many important
problems in circuit and Boolean function design. One of them is circuit
minimization: find the shortest logical circuit that implements a given Boolean
function. But more on that later.

Problems
Problem 11.17 (co-NP ≠ NP vs. P = NP).

1 Prove the following statement: if NP = P, then co-NP = NP.
2 Which of the following statements is a consequence of this claim?

1 co-NP = NP implies NP = P;
2 co-NP ≠ NP implies NP ≠ P;
3 NP ≠ P implies co-NP ≠ NP;
4 all of the above are true.

Problem 11.18 (Proof of Theorem 11.15). Show that �>

7
= �>

7
for some 7 ≥ 1

implies PH = �>

7
.

Hint: It is enough to prove that �>

7
= �>

7
implies �>

8
= �>

8−1 for every 8 > 1.

12. Circuits

Date: 13 January 2022

Agenda:

1 (Logical) circuits
2 Circuit size and depth
3 Representing logical

functions as circuits
4 Representing TM com-

putations via circuits
5 Circuits for universal
TMs

Agenda
Up to now, the central object of our study has been the Turing machine (TM).
TMs are an abstract model for algorithms and we used this model to make
statements about computing problems. The cost parameters we used to quantify
such claims have been runtime and (memory) space. We used these to group
decision problems (languages) into different complexity classes.

Today we introduce another model of computation: (logical) circuits. They
are a simplified model of the silicon chip – the basic hardware device that makes
up modern computers. Circuits can be used to compute any logical function
and come with their own natural cost parameters: size and also depth.

The circuit model of computation provides an alternative perspective on
computational complexity. And it is interesting to compare the circuit model
of computation to the TM model of computation. This will be the content of
the final three lectures. Today, we introduce circuits from a theoretical point of
view. We will show that it is possible to construct circuits that compute arbitrary
logical functions. In fact, we will prove that they can even simulate entire TM
computations with only a logarithmic overhead in computation complexity.
This provides a high-level argument for the existence of efficient special-purpose
hardware, such as calculators, as well as efficient general-purpose hardware
such as processing units.

114 Lecture 12: Circuits

12.1 (Logical) circuits
The elementary building blocks of a logical circuit are ¬ (NOT), ∨ (OR) and ∧
(AND). Pictorially, we represent each of these logical operations by a square
box1: elementary logical gates

¬F0 G ∨F0
F1

G ∧F0
F1

G

G = ¬F0 G = F0 ∨ F1 G = F0 ∧ F1

Each square box is called a (logical) gate. The lines entering on the left denote
input bits (also called fan-in), while the lines exiting on the right denote output
bits (also called fan-out). All three elementary logical gates have a single
output bit. The ‘NOT’-gate also has a single input bit, while the ‘OR’-gate and
‘AND’-gate have two each.

We can now use these gates as elementary building blocks to build more
complicated objects that map < input bits (on the very left) to; output bits
(on the very right). These more complicated configurations are called (logical)
circuits Here is a simple example circuit � involving two ∧-gates and one
¬-gate:

∧
∧ ¬

F0
F1
F2

G

�

(12.1)

This circuit has < = 3 input bits (F0, F1, F2) and ; = 1 output bit (G). The
wires (arrows) tell us how to propagate the three input bits through the circuit.
Whenever one or two of them enter a gate, we apply the associated logical
functionality. This produces a new (intermediate) bit that we treat as a new
input for gates that are located deeper within the circuit. At the very right, only
one arrow exits this particular circuit. It indicates the single output bit (G).
The total circuit � (highlighted by a dashed blue box) computes the following
logical function:

G = � (F0, F1, F2) = ¬ ((F0 ∧ F1) ∧ F2) =
{
0 if F0 = F1 = F2 = 1,
1 else.

We see that circuits provide a graphical set of instructions on how to execute
and combine elementary logical operations.

Definition 12.1 (Circuit, informal). circuits are instructions for
logical operations

A (logical) circuit connects < input bits with;
output bits via a network of directed wires that connect different elementary
logical operations (∧, ∨, ¬). The result is a logical function � : {0, 1}< →
{0, 1}; .

1This notation convention differs from the symbols used in electrical engineering and hardware
design.

115 Lecture 12: Circuits

∧

∨

¬

∧

A

B

Q

Figure 12.1Representation of XOR as logical circuit: (left) standard circuit diagram
involving NAND, OR and AND, taken from Wikipedia. (right) Reformulation as
a logical circuit. It looks like a directed graph. Two nodes – A and B – have no
incoming edges. These are the input nodes. One node – Q – has no outgoing
edge. This is the output node. Nodes in-between always have one outgoing
edge and either one (¬) or two (∨,∧) incoming edges, respectively.

From a high-level perspective, circuits describe a directed flow of information
processing. Formally, each such network can be described by a graph, i.e. a
set of nodes (or vertices) that are connected by edges. Each elementary
gate corresponds to a node and the edges tell us which elementary gates are
connected. Importantly, information flow within a circuit only goes in one
direction (the one indicated by arrow-heads). So, the graph is actually a directed
graph, because edges always have a pre-specified orientation. Input and output
bits also correspond to nodes in the directed graph. Input bits are described by
graph nodes with no incoming edges, while output bits are graph nodes with
no outgoing edges. We always try to plot/draw circuit graphs such that the
input nodes appear on the very left, while the output nodes appear on the very
right. See Figure 12.1 for a visual illustration. With this convention, information
always propagates from left to right. Such a directed flow of information is an
important characteristic of circuits. But it only makes sense if the underlying
graph does not back-propagate information. In other words: the underlying
graph should not have loops or cycles. Graphs without cycles are called acyclic.
(Note that the absence of cycles is necessary to clearly identify inputs and
outputs within the circuit.) We are now ready to provide a mathematically
rigorous definition for (logical) circuits.

Definition 12.2 (Circuit, formal). circuits are directed, acyclic
graphs

A (logical) circuit� with < inputs and; outputs
is a directed acyclic graph. There are < input nodes with no incoming edges and
; output nodes with no outgoing edges. Nodes in-between are called gates
and correspond to either ∨ (OR), ∧ (AND) or ¬ (NOT). Viewing the graph as a
set of logical instructions produces a logical function � : {0, 1}< → {0, 1}; .

12.2 Circuit size and circuit depth
Definition 12.2 provides a rigorous connection between circuits and graphs. This
connection can be used to identify a variety of meaningful summary parameters.
For instance, the number of input nodes < simply corresponds to the input
length. Likewise, the number of output nodes ; is the output length. input and output lengthThe

116 Lecture 12: Circuits

following two summary parameters tell us something about how complicated a
circuit actually is.

Definition 12.3 (circuit size and circuit depth). circuit size and circuit depthThe size A (�) ∈ ℕ of a circuit � is
the total number of gates (i.e. the number of nodes that do not correspond to
either input or output nodes). The depth 3 (�) ∈ ℕ of a circuit is the length of
the longest directed path from an input node to an output node (not counting
edges adjacent to input and output nodes).

Note that the concept of depth only makes sense if the underlying graph
(network) does not contain any cycles. This is one of the reasons why we
require acyclic graphs in Definition 12.2. For small and/or highly structured
circuits, it is typically easy to determine size and depth by just looking at the
circuit. Take Eq. (12.1) as a first example. This circuit has size A (�) = 3 and
depth 3 (�) = 3. The circuit in Figure 12.1 has size A (XOR) = 4 and depth
3 (XOR) = 3.

The size of a circuit counts the total number of elementary logical operations
we need to carry out. circuit size ≈ TM runtimeThis is reminiscent of TM runtime that counts the total
number of elementary steps a TM must execute to arrive at a desired solution.

Circuit depth is a bit more complicated by comparison, because it depends
on the information flow within the circuit. The following example shows that
size and depth can deviate by an exponential factor.

Example 12.4 (Size and depth of a circuit that computes parity of sums). Consider a
circuit �ParityOfSum : {0, 1}< → {0, 1} that corresponds to a binary tree graph
with < leaves (input nodes) and; = 1 root (output node):

XOR

XOR

XOR

<
in
pu

tb
its

depth dlog2(<)e

(12.2)

Each gate corresponds to a XOR-operation. There are < − 1 such gates in total,
but the depth of the tree graph is only dlog2(<)e. If we use the decomposition
from Figure 12.1 to further subdivide each XOR gate into elementary gates (∨,∧
and ¬), we obtain

A (�ParityOfSum) = A (XOR) (< − 1) = 4(< − 1),
A (�ParityOfSum) = 3 (XOR) dlog2(<)e = 3 log2(<).

We see that the depth of this circuit is exponentially smaller than its size! What
is more, the underlying circuit actually computes an old friend of ours. Recall
that XOR computes the sum of two bits modulo 2: XOR(0, 1) = 0 ⊕ 1 = 0 + 1

117 Lecture 12: Circuits

mod 2. Hence,

�ParityOfSum (F0, . . . , F<−1) = F0 ⊕ F1 ⊕ · · · ⊕ F<−1
= parity (F0 + · · · + F<−1)

and we see that this circuit actually allows us to decide whether the number of
1s in a given length-< bitstring F = F0 · · · F<−1 is even (�ParityOfSum(F) = 0)
or odd (�ParityOfSum(F) = 1). �

The above example highlights that circuit size and circuit depth can differ
vastly from each other. circuit depth ≈ parallelized

runtime
Circuit size can be thought as the time taken by a

sequential machine to compute a given function. Circuit depth, in contrast,
measures the ‘parallelized’ time required to finish the same job. Indeed, the
underlying graph structure ensures that elementary gates within the same
(vertical) layer can be executed concurrently. And the circuit depth counts the
total number of such layers from beginning to end.

The potential for parallelization is the first of several concepts that are
naturally captured by circuits (via the circuit depth), but actually take quite a
lot of care to appropriately capture in the TM model of computation.

12.3 Representing logical functions as circuits
Example 12.4 is instructive in more ways than one. The circuit presented in
Eq. (12.2) provides a very efficient way to compute a simple Boolean function
(recall that Boolean functions have < input bits and a single output bit):

5ParityOfSum (F0, . . . , F<−1) =
{
0 if F0 + · · · + F<−1 is even,
1 if F0 + · · · + F<−1 is odd.

We can associate this Boolean function with the language (decision problem)

ParityOfSum =
{
F ∈ {0, 1}∗ : parity(F0 + · · · + F<−1)

}
⊂ {0, 1}∗ .

In fact, we have already analyzed this particular language in the first part
of the course. ParityOfSum is a regular language, meaning that we can
always decide membership with a deterministic finite state automaton (DFA).
Regular languages capture some of the easiest decision problems conceivable,
because the runtime of a DFA is always equal to input length <. The circuit
depicted in Eq. (12.2) also captures this feature, because it contains exactly
(< − 1) XOR-gates. But it tells us something else. Executing these simple
two-bit operations in parallel would allow us to compress runtime down to
only dlog2(<)e computational steps – an exponential improvement over the
(sequential) working of the DFA.

We see that (logical) circuits and (logical) functions are intimately con-
nected. In fact, every circuit � computes a logical function 5� : {0, 1}< →
{0, 1}; . circuits compute logical

functions
The other direction is also true, and more interesting. We can

represent any logical function by circuits.

118 Lecture 12: Circuits

Theorem 12.5 (universality of circuits). logical functions can always
be represented as circuits

Let 5 : {0, 1}< → {0, 1}; be a logical
function with < input bits and ; output bits. Then, we can construct a
logical circuit � 5 that implements this function. This circuit is comprised of
only ¬-, ∨- and ∧-gates, size and depth obey

A
(
� 5

)
≤ ;<2<+1 − 1 =$ (;<2<) (circuit size),

3
(
� 5

)
≤ < + dlog2(<)e + 1 =$ (<) (circuit depth).

This general statement highlights that circuits implementing logical func-
tions may require exponentially many gates (in input length <) to implement.
But their depth is at most linear in input length.

We can prove this claim by remembering a powerful statement about the
universality of elementary logical operations (¬,∧,∨). Recall that a function
i : {0, 1}< → {0, 1} is in 9 -CNF if it can be written as an AND of Or’s of
potentially negated variables. The OR-expressions are called clauses and can
contain (at most) 9 variables (or their negations). The following result from
Lecture 8 reminds us that we can convert any logical function into CNF.

Theorem 12.6 (Theorem 8.8 from Lecture 8). Let 5 : {0, 1}< → {0, 1} be a
Boolean function on < bits. Then, we can construct a 9 -CNF i with 9 ≤ <
that contains (at most) 2< clauses such that i (H) = 5 (H) for all H ∈ {0, 1}< .

Such a conversion into 9 -CNF is extremely useful when one attempts to
design circuits with short circuit depth. Much like the circuit from Example 12.4,
CNFs have a lot of potential for parallelization.

Lemma 12.7 Suppose that i : {0, 1}< → {0, 1} is a Boolean function in 9 -CNF
that contains (at most) : clauses. Then, we can represent i by a circuit�i with
size (at most) 2:9 −1 =$ (:9) and depth (at most) dlog2(9)e + dlog2(:)e +1 =

$ (log(:9)).
We leave the proof as an exercise. Together, Theorem 12.6 and allow us to

readily prove the universality claim about circuits.

Proof of Theorem 12.5. We can decompose the logical function 5 : {0, 1}< →
{0, 1}; into; disjoint Boolean functions 57 : {0, 1}< → {0, 1} – one for each
output variable. Theorem 12.6 asserts us that we can convert each of these
Boolean functions into CNF with clause size 97 ≤ < and a total number of (at
most) :7 ≤ 2< . Subsequently, we can use Lemma 12.7 to convert each CNF into
a circuit with < input bits, one output bit, size A7 ≤ 2:797 − 1 = <2<+1 − 1 =

$ (<2<) and depth 37 ≤ dlog2(:7)e+ dlog2(97)e+1 ≤ <+dlog2(<)e+1 =$ (<).
Now, it’s time to recall that we are actually dealing with; circuits – one

for each output bit – but they can all be computed in parallel. This produces a
total circuit size A (� 5) ≤

∑;
7=1 A7 ≤ ;<2<+1 − 1 =$ (;<2<) and total circuit

depth 3 (� 5) = max7 37 ≤ < + dlog2(<)e + 1 =$ (<).
�

119 Lecture 12: Circuits

X& 3? >∈ &

Γ 30 1∈ Γ

�∈ {!,'} x�y∈ {0, 1}

{0, 1}2 3x0y x1y∈ {0, 1}2

{0, 1}b 3x?y x>y∈ {0, 1}b

�X

b = dlog2(|& |)e

Figure 12.2 TM transition function as circuit: (left) a TM transition function X
takes two inputs – a state ? and a tape symbol 0 – and produces three outputs
– another state > , another tape symbol 1 , as well as a direction � for the next
tape move. If we encode all the symbols involved into bitstrings, the transition
function becomes a logical function that maps bitstrings onto bitstrings. (right)
We can represent the (encoded) transition function X by an equivalent circuit
�X . The size of this circuit is guaranteed to be constant ($ (1)).

12.4 Representing TM computations via circuits
Theorem 12.5 states that we can represent any logical function as a circuit. This
provides an interesting connection between formal logic (Boolean functions)
and hardware design (circuits). We can always construct a silicon chip that
implements a desired logical functionality. But can we go one step further and
establish a similar connection between algorithms (represented as TMs) and
hardware design (represented by circuits as well)?

Recall that a TM is formally described by a 7-tuple

" =
(
&, Σ, Γ, X , ?0, ?accept, ?reject

)
.

Without loss, we can furthermore assume that the state alphabet is binary
(Σ = {0, 1}) and the tape alphabet only contains four symbols: Γ = {0, 1,�,#}.
As usual, ‘�’ denotes empty tape space and # is an additional roadblock symbol
that will become useful later on. What matters now already is that we can
encode all four tape symbols into two bits (e.g. by specifying 0↔ 00, �↔
01, #↔ 10, 1↔ 11). Likewise, we can represent all possible internal states
? ∈ & by bitstrings x?y of length b = dlog2(|& |)e (it helps to choose a sensible
labeling convention where ?0 = 0 · · · 0 and ?accept = 1 · · · 1). And, finally, we
can use an additional bit to indicate tape movements (e.g. 0↔ ! and 1↔ ').
In summary, we have replaced all static constituents of a TM by bitstrings of
appropriate size. Such a bit encoding also has profound implications on the
dynamical aspects of the TM. We can replace the transition function

X : & × Γ→& × Γ × {!,'} ,
(?, 0) ↦→(>,1,�)

by a logical function that maps bitstrings onto bitstrings:

5X : {0, 1}b × {0, 1}2 →{0, 1}b × {0, 1}2 × {0, 1} ,
(x?y, x0y) ↦→(x>y, x1y, x�y).

120 Lecture 12: Circuits
(
(<
)t

ap
e
sq
ua

re
s

) (<) computational steps

initial state halting state

Figure 12.3 Computational trajectory of zig-zag TM: a section of admissible tape
space is specified (green arrow on the left), the TMs tape is initially positioned
on top of the very first tape square. It then sweeps downwards, and modifies
tape squares one step at a time. Once it hits the last admissible tape space,
the tape head movement reverts and goes back up. This zig-zag movement
continues for a total of) (<) steps (blue arrow on the bottom). All the while,
the internal states may change, but the TM is guaranteed to end up in a halting
state (?accept or ?reject) after the final sweep is concluded.

There are < ′ = b + 2 = $ (1) input bits and ; ′ = b + 3 = $ (1) output bits
in total (recall that b = dlog2(|& |)e). So, according to Theorem 12.5, we can
represent this logical function by a logical circuit �X . The size of this circuit
only depends on the (constant) number of TM states |& |:

A (�X) ≤ ; ′< ′2<
′+1 =$

(
|& | log2(|& |)

)
=$ (1). (12.3)

This transformation from transition function to circuit with constant size is
visualized in Figure 12.2. It is an important first step to efficiently represent
entire TM computations by a single logical circuit.

In fact, we already have all the pieces in place to construct circuits that
represent TMs with simple and predictable head-movements. zig-zag TMA zig-zag TM "

processes length-< inputs F by repeatedly zig-zagging across a fixed section of
((<) tape squares. Initially, the tape content looks like

#� �� �F ∈ {0, 1}<
< tape symbols

((<) tape squares

.

We use the additional alphabet symbol # (think roadblock) to mark the
boundaries of the relevant tape segment. The actual input F ∈ {0, 1}< (red)
is written into the center of this segment followed by empty tape space (�)
towards the left and right. A zig-zag TM starts with its tape head on the
#-symbol towards the very left. It then moves leftwards across all ((<) relevant

121 Lecture 12: Circuits
2(
(<
)t

ap
e
bi
ts

b = dlog2(|& |)e state bits x?halty

) (<) constant-size circuits

Figure 12.4 Circuit that represents the entire computation of a zig-zag TM: as
visualized in Figure 12.3, zig-zag TMs have very predictable head movements.
This allows us to replace the entire TM computation by a single circuit. The first
b = dlog2(|& |)e bits are used to keep track of the internal TM state throughout
the computation. The remaining 2((<) bits are used to encode tape symbols.
Subsequently, each TM step can be represented by applying the transition
function circuit �X to the relevant subcollection of bits. The resulting circuit
reflects the zig-zag motion of the original TM computation and comes with
only a constant overhead in circuit size.

tape squares and uses its transition function to (potentially) change tape
content along the way. Once it hits the #-symbol on the very right, it reverses
its direction and moves back again. This zig-zagging motion of the tape head is
visualized in Figure 12.3 and continues for a total of) (<) computational steps.
Once the last zig-zag is concluded, the zig-zag TM enters a halting state ?halt
that either accepts or rejects the input string F :

" (F) =
{
0 if ?halt = ?reject,
1 if ?halt = ?accept.

We have already encountered zig-zag TMs throughout the course of this
lecture. The TM that checks for palindrome structure (i.e. whether a bitstring
F equals its own reverse FR) in Lecture 3 is one example. The oblivious TM
from Exercise Sheet II is another one – but more on that later. For now it
suffices to notice that the tape movements of zig-zag TMs are extremely regular
and independent from the content of the actual input string F . This allows
us to represent the entire computational trajectory by a circuit. circuit for zig-zag TMsTo achieve
this, we simply use the circuit representation �X of the transition function X
from Figure 12.2. This necessitates an additional number of b = dlog2(|& |)e
wires to keep track of the internal TM states. We also represent each of the
((<) relevant tape squares by two bits. Now, we use the fact that the tape
head movements of a zig-zag TM is so simple and predictable. We can simulate
them by simply concatenating �X s that act on the relevant bit pairs. Visualized
in Figure 12.4 the resulting circuit �",< closely resembles the computational
trajectory of the zig-zag TM" in question.

122 Lecture 12: Circuits

The entire circuit has 2((<) + b input bits, but most of them are set to 0
(recall that � is encoded by 00 and ?0 is encoded by 0 · · · 0). Only the 2< input
bits at the center really matter, because they encode the actual input F . The
circuit itself is composed of) (<) variants of �X affecting different wires. This
produces a total size of

A
(
�",<

)
= A (�X) ×) (<) = const ×) (<),

where the constant stems from Eq. (12.3) and only depends on |& |. A quick
look at the circuit geometry displayed in Figure 12.4 reveals that the circuit
depth must be roughly comparable to the circuit size – there simply isn’t much
room for parallelization. Now, the only remaining thing is how to extract
a single output bit. The circuit should produce 0 if the TM " rejects the
input (?halt = ?reject) and 1 if the TM " accepts the input (?halt = ?accept).
But, this is easy. Suppose that have labeled our internal TM states such that
x?accepty = 1 · · · 1 (x?rejecty can be any other bitstring). Then, we can simply
compute the AND of all b = dlog2(|& |)e final state bits:

∧

∧

∧

x?
ha

lt
y

This final circuit has size b = dlog2(|& |)e =$ (1) and produces a single output
bit with the desired functionality. The bits contained in all other remaining
wires don’t matter and can be forgotten. Putting everything together, we obtain
the following result that deserves a proposition-environment.

Proposition 12.8 (circuit representation of zig-zag TMs). circuit for zig-zag TMLet" be a zig-zag TM (i.e.
a TM whose tape head sweeps back and forth across a fixed segment of tape
space) that accepts/rejects length-< inputs in runtime) (<) and space ((<).
Then, for each input length <, we can represent the entire TM computation
by a (Boolean) circuit �",< with < ′ = (2((<) + �1) = $ (((<)) input bits,
; ′ = 1 output bit, and size A

(
�",<

)
= �2) (<) + �3 = $ () (<)) such that

�",< (F) = " (F) for all F ∈ {0, 1}< . The constants �1,�2,�3 only depend on
the number of internal TM states.

Note that the overhead in terms of input length and circuit size is only
constant! It is also worthwhile to emphasize that we proved this statement by
writing down a circuit with the desired properties. The proof is constructive, in
the sense that we could actually build the circuit for any given zig-zag TM of
interest. But an overarching question remains: are zig-zag TMs useful to begin
with? The following statements answers this question.

Proposition 12.9 (universality of zig-zag TMs). zig-zag TMs can efficiently
simulate every other TM

Let " be an arbitrary TM with
runtime) (<) ≥ <. Then, we can simulate" by a zig-zag TM "̃ with runtime
)̃ (<) =$

(
) (<)2

)
and space (̃ (<) =$ () (<)).

123 Lecture 12: Circuits

We leave the proof as an instructive exercise in TM simulation. A more
careful analysis based on oblivious TMs actually improves the runtime overhead
from $ () (<)2) (quadratic) to only $ () (<) log() (<))) (logarithmic), see
[AB09, Proof sketch of Theorem 6.7]. A combination of Proposition 12.8 and
Proposition 12.9 then yields the main result of this lecture:

Theorem 12.10 (representing TMs as circuits). circuit for arbitrary TMsLet" be an arbitrary TM with
runtime) (<) ≥ <. Then, for each input length <, we can represent
" by circuit �",< with < ′ = $ () (<)) input bits (most of them set
to zero), ; ′ = 1 output bit and size A

(
�",<

)
= $

(
) (<)2

)
such that

�",< (F) = " (F) for all F ∈ {0, 1}< .

As pointed out above, the quadratic overhead in circuit size can actually be
improved to only a logarithmic overhead:

A
(
�",<

)
=$ () (<) log() (<))) .

This showcases that the transition from TMs – which are a simplified model of
algorithms or programs – to circuits – which are a simplified model of silicon
chips – can always be executed rather efficiently. Viewed from this angle,
Theorem 12.10 provides a high-level argument for the existence of hardware
that executes special-purpose computations (aka a single TM) very efficiently.
A calculator comes to mind in this context.

Warning 12.11 circuits require fixed input
length

Circuits can only process inputs of fixed length < (nonuniform
computation). This is in stark contrast to TMs which can process inputs of
arbitrary length (uniform computation). Hence, one TM" gives rise to an
entire family of circuits

{
�",<

}
<∈ℕ – one circuit for each input length <. �

12.5 Circuits for universal TMs
But, we can do even better. Recall the concept of a universal Turing machine*
from Lecture 5. Such a TM takes two inputs: (i) a bit encoding x" y of another
TM" and (ii) a length-< input F of interest. It subsequently simulates the TM
" on input F :

* (x" y, F) = " (F).
What is more, one can show that the runtime overhead is at most logarith-
mic. I.e. if " has runtime) (<), then * has runtime $ () (<) log() (<))).
In turn, we can use the construction from Proposition 12.8 (refined to in-
cur only a logarithmic overhead) to convert * into a circuit �* ,<tot of size
A (�*) = $

(
) (<) log2() (<))

)
. Doing so produces a circuit that depends on

the (maximum) total input size <tot = | (x" y, F) |. It takes two inputs – a
‘program description’ x" y and an actual input F – and computes the result

124 Lecture 12: Circuits

" (F). This can be visualized as

x" y

F

" (F)�* ,<tot
,

and actually describes a hardware device that is programmable. circuits that are
programmable

This can be
viewed as an abstract model for an actual processor. Again, the overhead
required to simulate many different programs (TMs) is only poly-logarithmic: a
universal circuit comprised of$

(
)max log2()max)

)
elementary gates can execute

any TM computation whose runtime is bounded by a threshold value)max that
depends on <tot.

Problems
Problem 12.12 (Proof of Lemma 12.7). Prove the following claim: Suppose that
i : {0, 1}< → {0, 1} is a Boolean function in 9 -CNF that contains (at most)
: clauses. Then, we can represent i by a circuit �i with size (at most)
2:9 − 1 =$ (:9) and depth (at most) dlog2(9)e + dlog2(:)e + 1 =$ (log(:9)).
Problem 12.13 (Proof of Proposition 12.9). Prove the following claim: any runtime-
) (<) TM by a zig-zag TM with runtime)̃ (<) =$

(
) (<)2

)
and space (̃ (<) =

$ () (<)).

13. Circuit size-bounded computations

Date: 20 January 2022

Agenda

Agenda:

1 (Circuit) size-bounded
computations

2 TMs that take advice
3 Karp-Lipton Theorem

Last time, we introduced circuits as an alternative model of computation.
Today, we continue our study of computational complexity from a circuit
perspective. We define the complexity class PSIZE which encompasses all
decision problems that can be solved by circuit families of polynomial size.
This new problem class includes P, the class of problems that can be solved by
polynomial runtime Turing machines (TMs). Remarkably, the converse relation
is not true (PSIZE * P): PSIZE contains problems that are uncomputable in the
TM model! There is an interesting story behind this discrepancy: short circuits
correspond to polynomial-time TMs that are empowered by access to external
advice. Not subject to any computational restrictions, such advice strings
can be powerful game changers. TMs with advice allow us, in particular, to
model nontraditional problem solving strategies, like various machine learning
models. However, will see that there are also limitations: the Karp-Lipton
Theorem shows that, unless the polynomial hierarchy collapses, polynomial
runtime TMs empowered by advice are not able to solve NP-complete problems
(NP * PSIZE). This thwarts hopes for devising efficient circuit-based solutions
for important, but hard problems, like 3-SAT.

13.1 (Circuit) size-bounded computations
In this course, we model computational problems by decision problems (yes/no-
questions) or, equivalently, languages:

� ⊆ {0, 1}∗ .

126 Lecture 13: Circuit size-bounded computations

TMs are a uniform model of
computation

To decide membership, we usually feed candidate bitstrings F into a Turing
machine (TM). A TM " decides/recognizes the language � if F ∈ � ⇔
" (F) = 1 and F ∉ � ⇔ " (F) = 0 for all possible inputs F ∈ {0, 1}∗. A single,
fixed TM can process inputs of arbitrary length < = |F |. This allows us to also
capture the language � by a single TM" that works for all input sizes. We say
that TMs are a uniform model of computation.

Alternatively, we can also use circuits to decide whether F ∈ �. circuits are a non-uniform
model of computation

, because
we need separate circuits for each input length <. So, we need an entire circuit
family {�<}<∈ℕ – one for each input size < – to cover a general language
�. Each circuit family member �< is a (Boolean) circuit that has exactly <
input bits and one output bit (; = 1). We say that a circuit family {�<}<∈ℕ
decides/recognizes the language � if

F ∈ {0, 1}< is contained in � if and only if �< (F) = 1,

and the above equivalence is true for all possible input lengths < ∈ ℕ. This
is a non-uniform model of computation. Recall from the last lecture, that each
circuit �< is comprised of elementary gates (¬, ∨, ∧). Large circuits require
many elementary gates, while small circuits get by with only a few. This cost is
measured by the circuit size A (�<) that counts the total number of elementary
gates.

It is reasonable to expect that the circuit size A (�<) should grow with
the number of input bits <. This is reminiscent of the observation that TMs
take longer to process large inputs in the sense that the runtime) (<) must
grow with input length < = |F |. Capturing the rate of growth gave rise to TM
complexity classes like P (the recognizing TM runtime scales polynomially in
input length) and EXP (the recognizing TM runtime scales exponentially in
input length). For circuit complexity, the crucial question is: given a language
�, how fast does the recognizing circuit size grow if we increase input length
<? This is captured by the following definition.

Definition 13.1 (size-bounded (circuit) computations). size-bounded (circuit)
computations

Let 5 : ℕ→ ℝ+ be a func-
tion. We say that a language � ⊆ {0, 1}∗ is in SIZE (5 (<)) if there exists a
circuit family {�<}<∈ℕ such that A (�<) ≤ $ (5 (<)) and for every F ∈ {0, 1}< ,
F ∈ � if and only if �< (F) = 1.

This is the circuit counterpart of our definition of TM time complexity
classes from Lecture 6.

Example 13.2 (PALINDROME ∈ SIZE(<)). Consider the language (binary) Palindrome ={
F ∈ {0, 1}∗ : FR = F

}
, where FR is the reverse of bitstring F . The following

circuit recognizes palindrome structure among bitstrings of (even) length < = 4:

F0
F1
F2
F3

=

=

∧ G = 1 iff FR = F3F2F1F0 = F0F1F2F3 = F

.

127 Lecture 13: Circuit size-bounded computations

It is comprised of 2 = </2 logical equalities (‘=’) and 1 = </2 − 1 ∧-gates.
This construction readily generalizes to all inputs of even length < and a slight
modification allows for handling odd input lengths as well (ignore the central
input bit). If we further decompose each logical equality into 5 elementary
gates (i (0, 1) = (0 ∨ 1̄) ∧ (0̄ ∨ 1)), we obtain a palindrome recognizing
circuit family {�<}<∈ℕ that obeys A (�<) = 5b</2c + b</2−1c =$ (<). Hence,
Palindrome ∈ SIZE(<). �

Next, recall that there is a one-to-one correspondence between languages
� and Boolean formulas:

5� (F) =
{
1 if F ∈ �,
0 else if F ∉ �.

If we also fix the input length to < = |F |, this becomes a logical formula with
< input bits and one output bit (; = 1). And in the last lecture, we have
seen that every logical function 5< : {0, 1}< → {0, 1}; can be represented by
a circuit �< . In fact, Theorem 12.5 asserts that this circuit has size (at most)
A (�<) ≤ <2<+1. Combined with Definition 13.1, this allows us to draw the
following conclusion:

Corollary 13.3 exponential-size circuits can
compute ‘everything’

Every language � ⊆ {0, 1}∗ is contained in SIZE (<2<).
This statement hints at the existence of a circuit family for every language

conceivable – a curiously strong statement, given that we know that some
languages cannot be computed with Turing machines. More on that later. For
now, we emphasize that Corollary 13.3 only provides size-bounds that scale
exponentially in input length < (think EXP, but for circuits). The following
definition isolates languages that come with circuits that have more favorable
resource scaling.

Definition 13.4 (PSIZE). PSIZE = circuit analoge of PThe problem class PSIZE contains all languages that
can be decided using polynomial-size circuit families. More formally,

PSIZE =
⋃

9 ≥1
SIZE

(
<9

)
,

where SIZE
(
<9

)
has been introduced in Definition 13.1.

PSIZE is the circuit-based analogue of P which encompasses all problems
that can be solved in polynomial runtime on a Turing machine (TM). In fact,
these two problem classes are related. Recall from last lecture, that any TM
computation on length-< inputs can be represented by a circuit whose size
scales (at most) quadratically in the TM runtime) (<). This was the content of
Theorem 12.5 and has the following implication.

Corollary 13.5 (P ⊆ PSIZE). P ⊆ PSIZEEvery language � ⊆ {0, 1}∗ that a TM can decide in
polynomial runtime (in input length) can also be decided by a polynomial-sized
circuit family. In formulas: � ∈ P implies � ∈ PSIZE.

128 Lecture 13: Circuit size-bounded computations

We see that every language that comes with a polynomial-runtime TM can
also be decided by a polynomial-size circuit family. But what about the converse
direction: can we convert any polynomial-size circuit into a polynomial-runtime
TM computation? The answer turns out to be no: the two complexity classes
are actually outrageously different. The discrepancy is best illustrated by the
following example which is based on unary encodings of natural numbers: unary encoding of natural

numbers
< ∈ ℕ is represented as 1< = 1 · · · 1︸︷︷︸

< times

∈ {0, 1}< .

Example 13.6 (the unary halting problem is in PSIZE). the halting problem is in
PSIZE

Consider a unary encoding
of the halting problem from Lecture 5:�Halt = {1< : the TM"< halts on input 1<} ⊆ {0, 1}∗ . (13.1)

In this variant of the language, we encode Turing numbers < in unary and ask
whether the associated TM"< halts for one particular length-< input, namely
F = 1< . This variant of the halting problem is known to be semi-decidable,
i.e. we can use TMs to identify yes-instances, but have no chance to identify
no-instances in general. In particular, �Halt ∉ P, because the language class P
can only contain languages that are decidable.

However, �Halt ∈ PSIZE. This is because unary languages only contain
one relevant input per input size <. And we can use a single ‘hardwired’
bit to indicate whether 1< is part of the language or not. This construction
is illustrated in Figure 13.1 and actually covers all unary languages. The
semi-decidable language introduced in Eq. (13.1) is one particular example. �

Example 13.6 identifies a language that is in PSIZE, but definitely not in P
(it’s not even computable). This has the following immediate consequence.

Lemma 13.7 (PSIZE * P). PSIZE * PThere are languages � that are contained in PSIZE,
but not in P. In formulas: PSIZE * P.

We deduced this statement from a rogue example that doesn’t quite seem
to play according to the rules. As visualized in Figure 13.1, the circuit that
decides the halting problem relies on external advice. It does not talk about
how this advice is obtained in the first place. And, because of that, the actual
description of the circuit seems incomplete and hard (perhaps even impossible)
to actually implement. It seems reasonable to restrict our attention to circuit
families that have a complete and efficient description in terms of a directed,
acyclic graph, see Definition 12.2 from Lecture 12. A single blueprint will not
do the job, because different input lengths < necessitate the construction of
different circuits �< . It is more appropriate to demand the existence of an
efficient computer program that takes < as an input and provides a blueprint for
the associated circuit �< . This intuition is captured by the following definition.

Definition 13.8 (P-uniform circuit families & languages). P-uniform circuit families &
languages

A circuit family �< is P-
uniform if there exists a polynomial runtime TM which takes 1< as input

129 Lecture 13: Circuit size-bounded computations

∧

∧

∧

<
in
pu

tb
its ∧

<
consult sage entity (oracle):
does"< halt on input 1<?
forward 1 if ‘yes’ and 0 if ‘no’

0/1

Figure 13.1 A linear-size circuit family {�<}<∈ℕ that answers the unary halting
problem: �< (F) = 1 if F = 1< (proper unary encoding) and the TM"< halts
on input 1< (halting problem); otherwise �< (F) = 0. The circuit contains <
∧-gates (A (�<) = <) and consists of two parts. The blue part merely checks
whether the unary encoding is correct. The red part contributes one additional
bit that answers the halting problem by hard-wiring the correct answer into
the circuit. This is contingent on external advice by a sage and/or powerful
entity, often called an oracle. This may seem like cheating, but does not violate
our definitions of circuits and circuit size.

and outputs a description of the circuit �< (e.g. in terms of a bit encoding
of the underlying directed, acyclic graph). Likewise, we say that a language
� ⊆ {0, 1}∗ is P-uniform, if we can decide it with a P-uniform circuit family.

Note that P-uniform circuits always have polynomial size (otherwise, it
would take the TM too long to write down an explicit description). The
circuit family illustrated in Figure 13.1 is definitely not P-uniform. But all other
polynomial-size circuits we have encountered so far, are1. As soon as we are able
to actually write down a circuit family that only contains polynomially many
gates (in input length <), we can also devise a polynomial-runtime TM that
computes explicit descriptions for any input size <. And, in turn, we can also
construct a TM that takes a P-uniform circuit description as input and simulates
its computations on a work tape with only polynomial overhead (P-uniform
circuit computations are contained in P). Conversely, the constructive proof
of Theorem 12.5 provides a P-uniform circuit for every polynomial-runtime
TM computation (restricted to a fixed input length). Together, these two
implications yield the following equivalence relation.

Theorem 13.9 (P = P-uniform languages). P = P-uniform languagesA language � has P-uniform circuits
if and only if � ∈ P.

1This claim is contingent on a unary encoding of input length: |1< | = < ensures that we
can afford TM runtimes that scale polynomially in <. If we encoded < in binary instead, the
resulting input length |x<y | = dlog2 (<)e would be exponentially smaller. And even very simple
poly-size circuits, like size-$ (<) = circuits from Example 13.2, would take exponential runtime
(in |x<y |) to write down, because we need$ (2 |x<y |) gates.

130 Lecture 13: Circuit size-bounded computations

Roughly speaking, ‘sensible’ polynomial-size circuits and polynomial-time
TMs capture the same class of computational problems.

13.2 Turing machines that take advice
We have seen that efficiently constructible circuit families and polynomial-
runtime TMs capture the same class of computing problems. And yet, already a
single bit of ‘magic’ information can empower polynomial-size circuits to solve
problems that are uncomputable for TMs, see Example 13.6. This interesting
observation about circuits has a counterpart for TMs. P/poly=TMs that take advice

Definition 13.10 (the problem class P/poly). We say that a language � ⊆ {0, 1}∗ is
in P/poly if membership can be decided by a polynomial-time TM" that also
has access to a single, polynomially bounded advice string. More formally, for
each input length< ∈ ℕ there is a single bitstring 0< with length |0< | = poly(<)
and a poly(<)-runtime TM" such that F ∈ �⇔" (F, 0<) = 1.

The advice string 0< captures the concept of external advice, e.g. obtained
by consulting an oracle (a sage entity), as illustrated in Figure 13.1. The
following example showcases that this form of advice can be very empowering.

Example 13.11 (all unary languages are in P/poly). A language � is unary if it is a
subset of {1< : < ∈ ℕ}. For each input length <, there is only one interesting
question: is 1< = 1 . . . 1 ∈ � or not? This binary question can always be
answered by a single bit of advice: 0< = 1 if 1< ∈ � and 0< = 0 else if 1< ∉ �.
The TM" then simply accepts or rejects based on this single advice bit (which
can certainly be done in polynomial time). Remarkably, this class of problems
includes uncomputable languages, like �Halt introduced in Eq. (13.1). �

We see that a single advice string can turn uncomputable problems into
efficiently computable ones. In particular �Halt ∈ P/poly. Advice for solving a
given problem can come in many shapes. For P/poly it comes in the form of a
bitstring that only depends on input length. For PSIZE it comes in the form of
a blueprint for a (polynomial-size) circuit that allows us to tackle the problem.
The following statement points out that these two forms of advice are actually
equivalent (in a theoretical computer science sense).

Theorem 13.12 (P/poly = PSIZE). P/poly = PSIZEA language � ⊆ {0, 1}∗ is in P/poly if and
only if it is also in PSIZE. In formulas: P/poly = PSIZE.

We leave the proof as an instructive exercise. Theorem 13.12 relates a natural
circuit complexity class (PSIZE) to an interesting model of TM computation
(P/poly).

External advice can be used to model problem-solving strategies that go
beyond simply sitting down and developing an algorithm to tackle a certain
challenge. The simplest example is academic collaboration (and supervision):
ask somebody else, preferrably a well-established expert in the topic, for advice
on how to solve your problem.

131 Lecture 13: Circuit size-bounded computations

But, there are other, more automated, ways to obtain advice. machine learning can be
modeled as computation with
advice

Several
machine learning (ML) models also fall into this category. Let us take binary
image classification – by means of support vector machines or neural networks –
as an illustrative example. There, the task is to develop an algorithm that can
classify elements of sets into two groups. E.g. does a given image depict a dog
or a cat?

Suppose, for simplicity, that all images are comprised of < black/white
pixels, i.e. each input can be encoded into a bitstring of length <. Given an
input F ∈ {0, 1}< , our task is to decide whether the associated picture describes
a dog or a cat. If we also assume that every picture we can obtain either
corresponds to a dog or a cat, this question boils down to binary decision
problem: check if

F ∈ Dog< =
{
F ∈ {0, 1}< : F encodes an image of a dog

}
. (13.2)

Sitting down and developing an algorithm for this decision problem from first
principles is probably very difficult. But this is not what we do in ML. There,
we use large amounts of training data – i.e. ! labeled pictures (F: , G:) of dogs
and cats (G: = +1 for dogs and G: = −1 for cats) – to train a labelling function
5♯ : {0, 1}< → {0, 1} by minimizing some empirical risk function ' : ℝ→ ℝ+:

minimize
5 ∈function class

∑!

:=1
' (5 (F:) − G:) . (13.3)

Different function classes give rise to different ML models. Likewise, different
risk functions lead to different optimizers. Choosing the right ML model
endowed with the right risk function is a nontrivial task that would go beyond
the scope of this introductory lecture. For us, it suffices to delineate that the
training stage can be very expensive in terms of computational resources. The
obtained solution 5♯ : {0, 1}< → {0, 1} can, however, typically be stored and
computed efficiently (in the number of pixels <). This feature allows us to
interpret a binary encoding x 5♯y ∈ {0, 1}poly(<) of the obtained ML model
as a single advice string 0< that helps us to solve the binary classification
problem (13.2) on new inputs. Indeed, it is now easy to devise a TM (algorithm)

" : (F, x 5♯y) ↦→ 5♯(F) ∈ {0, 1} .

Since 5♯ is easy to store and compute, this TM operates in polynomial runtime.
And if the training stage was successful, 5♯(F) should be a good approximation
for the true label (cat or dog). While probably not perfect, this TM does
stand a good chance at successfully solving the binary classification problem,
because it uses additional advice obtained from processing a large number of
cat- and dog-images in a separate training stage. The impressive empirical and
theoretical success of ML showcases that this type of advice can make a huge
difference. We refer to Figure 13.2 for a visual illustration.

Our analogy between ML and P/poly is apt, but not (yet) perfect. When
analyzing ML models, one needs to take into account probabilistic models of

132 Lecture 13: Circuit size-bounded computations

tr
ai
ni
ng

im
ag
es

x 5♯y

training stage:
fit ML model 5♯
to training data

F prediction stage:
evaluate ML model for new input F

G = 5♯(F)

Figure 13.2 Machine learning as a polynomial-runtime algorithm that takes advice:
On the surface, a machine learning model for binary classification labels <-pixel
images F ∈ {0, 1}< by computing an efficient label function 5♯ : {0, 1}< →
{0, 1} (blue box). This label function, however, is the result of a resource-
intensive training stage (red box) that is contingent on access to many labeled
training data points. We can model the entire process by a polynomial-runtime
TM that has access to a single, polynomial-length advice string x 5♯y obtained
from the training stage.

computation: it is typically enough for a trained ML model to succeed with high
probability. And although possible, our deterministic models of computation
are too rigid to appropriately capture such probabilistic concepts.

13.3 The Karp-Lipton Theorem
Superficially, our definition of P/poly (Definition 13.10) resembles the definition
of the problem class NP from Lecture 7. relations between P/poly and

NP
Recall that a language � is in NP

if for every F ∈ �, there exists a polynomial-size G (the ‘certificate’) and a
polynomial-runtime TM" (the ‘verifier’) such that" (F, G) = 1. Conversely, if
F ∉ �, then" (F, G) = 0 for all certificates G (soundness). It seems tempting to
relate the poly-length advice string 0< in the definition of P/poly to poly-length
certificates G of membership in the definition of NP. But, there are several
noteworthy differences:

(i) The certificate of NP-membership G depends on the actual input F . In
particular, different length-< inputs F can (and in general will) have
different certificates. In contrast, problems in P/poly must get by with
a single advice string 0< that must cover all possible length-< inputs
simultaneously. This suggests that NP-certificates can be more expressive
than P/poly advice strings.

(ii) Languages� inNP are always computable. In particular, for F ∈ �, we can
actually compute the associate certificate G in exponential runtime. And,
if we don’t find a certificate, soundness ensures that F ∉ �. The advice
string 0< in P/poly does not have such a restriction. As Example 13.6
highlights, it can even be uncomputable. Viewed from this perspective
P/poly seems less restrictive than NP.

133 Lecture 13: Circuit size-bounded computations

The two arguments point in opposite directions and a direct comparison
between NP and P/poly seems challenging. Example 13.11, in particular, asserts

PSIZE = P/poly * NP,

because the former includes variants of the halting problem, while NP certainly
does not. But what about the converse direction? If the inclusionNP ⊆ P/poly =

PSIZEwere true, it would have profound implications on the computing world as
we know it. This would imply that every problem that is easy to verify (� ∈ NP)
can also be computed by a circuit family of polynomial size (� ∈ PSIZE). So, we
could in principle build efficient hardware that solves important NP-problems,
like 3-SAT, traveling salesperson and the like. The ‘only’ catch is that we may not
be able to identify such short circuits efficiently (they are contingent on oracle
advice that we don’t have access to). But this doesn’t have to be a complete
dealbreaker. Certain NP-problems, take 3-SAT for instance, seem important
enough to merit a large, (multi-)government financed research project (think:
CERN or the Manhattan project) with the goal of discovering circuit solutions
up to, say, <max = 100 000 input bits by brute force, if need be. Once these
circuits are discovered, we could easily integrate them in existing computing
hardware. Such special-purpose chips could then be used to efficiently solve
NP-problems (via reduction to 3-SAT) up to a large threshold input length <tot.
While this is not enough to rigorously deduce P = NP (we would only know
efficient circuits up to threshold size <tot), a practical equality would follow for
problems that are not too huge. And, in turn, virtually all practical implications
of P = NP would carry over as well. E.g. we could jeopardize every encryption
scheme that does not use a huge key.

Some of these implications seem utopic and, frankly, too good to be true. So,
we might expect that the inclusion NP ⊆ PSIZE may not be true to begin with.
The following seminal result by Karp and Lipton provides rigorous evidence in
this direction.

Theorem 13.13 (Karp-Lipton Theorem). NP * PSIZE unless PH
collapses to 2nd level

If NP ⊆ PSIZE (equivalently: NP ⊆
P/poly), then the polynomial hierarchy collapses to the second level, i.e.
PH = �>

2 .

This theorem states that NP-complete problems, like SAT, are even harder
than one might think. Circuits, in particular are probably not the answer. interpretation: (probably) no

small circuits for SAT solving
Sup-

pose that we were able to develop efficient algorithms that design polynomial-
size circuits capable of solving SAT. Then, this would imply NP = P (because
P-uniform circuits are equivalent to P). The Karp-Lipton Theorem addresses
the next best thing: polynomial-size circuits that solve SAT exist, but may be
hard to find. This is captured by the assumption SAT ∈ NP ⊆ PSIZE = P/poly.
Karp and Lipton started with this assumption and deduced a collapse of the
polynomial hierarchy to the 2nd level. This is the third strongest collapse
assertion after P = NP (0th level collapse) and NP = co-NP (1st level collapse).
So, polynomial-size circuits for SAT solving probably don’t exist at all!

134 Lecture 13: Circuit size-bounded computations

The proof of Theorem 13.13 is based on a reduction from �>
2 to �>

2 . The
first step involves identifying a nice problem that is complete for the class �>

2 .

Proposition 13.14 (A complete problem for �>
2). The language Π2SAT contains

(binary encodings of) Boolean formulas i : {0, 1}2< → {0, 1} that obey

∀G0 ∈ {0, 1}< ∃G1 ∈ {0, 1}< i (G0, G1) = 1. (13.4)

This language is complete for the problem class �>
2 introduced in Lecture 11.

We leave the proof as an exercise and use Proposition 13.14 off the shelf as
a starting point for proving the Karp-Lipton Theorem.

Proof of Theorem 13.13. We will use the assumption NP ⊆ PSIZE to deduce
�>

2 ⊆ �>
2 . The latter statement is enough to deduce that the polynomial

hierarchy collapses to the 2nd level, see Theorem 11.15 from Lecture 11.
To show �>

2 ⊆ �>
2 , it is enough to focus on the �>

2 -complete problem
Π2SAT from Proposition 13.14. If we fix G0 ∈ {0, 1}< in the first quantifier of
Eq. (13.4), the remaining part of the formula looks like an instance of SAT:

∃G1 ∈ {0, 1}< i (G0, G1) = ∃G1 ∈ {0, 1}< ĩG0 (G1) = 1.

This is where our assumption NP ∈ PSIZE comes into play. It guarantees
that there is a circuit family {�<}<∈ℕ with size A (�<) = poly(<) such that
�< (xiy, G0) = 1 if and only if ĩG0 (·) = i (G0, ·) is satisfiable.

Next, recall from the exercises that we can use yes/no answers to a SAT-
problem to actually identify a satisfying assignment of the formula in question
(if it exists). The same trick also works for circuits: we can cleverly combine a
linear number of �< -circuits to create a new circuit � ′< that takes input string
(xiy, G0) and produces a <-bit string D = � ′< (xiy, G0) that is guaranteed to
obey i (G0, D) = 1. The size of this new circuit family is still polynomial in <.

Note that our arguments don’t provide us with an explicit construction of
the � ′< -circuits. We merely know that such circuits must exist and must work
for any choice of G0 ∈ {0, 1}< . Moreover, we can encode each poly-size � ′< into
a bitstring x� ′<y of polynomial length. In formulas: if NP ∈ PSIZE, then truth
of Eq. (13.4) must imply

∃x� ′<y ∀G0 ∈ {0, 1} i
(
G0,�

′
< (xiy, G0)

)
= 1 (13.5)

(and |x� ′<y | = poly(<)). Conversely, if Eq. (13.4) is false, then Eq. (13.5) must
be false as well. So, NP ∈ PSIZE would imply that Eq. (13.4) and Eq. (13.5) are
actually equivalent!

This is beginning to look dangerous. After all, Eq. (13.4) is a complete
problem for �>

2 , while Eq. (13.5) looks like a problem in �>
2 (an ∃-quantifier

followed by a ∀-quantifier that hit a Boolean formula of polynomial size).
Indeed, it is not difficult to show that the truth of Eq. (13.5) can be evaluated
in �>

2 (all circuits involved can be represented by bit encodings of polynomial
size). This allows us to conclude that NP ⊆ PSIZE would imply �>

2 ⊆ �>
2 . �

135 Lecture 13: Circuit size-bounded computations

piece of advice: don’t use SAT
reductions too liberally

We conclude this lecture with a word of caution. The Karp-Lipton Theorem
(Theorem 13.13) highlights that SAT is (probably) even harder than one has
initially thought. Statements like this caution us to not use SAT-reductions too
liberally. In computer science and computer engineering, especially at JKU, it is
common practice to take a problem of interest and map it to an instance of SAT.
Powerful empirical SAT- and QBF-solvers – several of which have actually been
developed by (former) JKU researchers Armin Biere and Martina Seidl – can
then be employed to tackle the reduced problem. Statements like P ≠ NP and
NP * PSIZE (which are widely believed to be true) provide strong evidence
that such a solution path should not work in full generality. SAT really is a
hard problem (at least in the worst case). And the actual problem you started
out with might actually be strictly simpler (unless you have already convinced
yourself that it is actually NP-complete or harder). This might, in particular, be
true for problems related to hardware/circuit design, where PSIZE = P/poly
occurs naturally and may cover several interesting problem instances.

Problems
Problem 13.15 (Proof of Theorem 13.9). Prove the following claim: A language �
has P-uniform circuits if and only if � ∈ P.

Problem 13.16 (Proof of Theorem 13.12). Prove the following claim: A language
� ⊆ {0, 1}∗ is in P/poly if and only if it is also in PSIZE.

Problem 13.17 (Proof of Proposition 13.14). Prove the following claim: the lan-
guage Π2SAT defined in Eq. (13.4) is complete for the problem class �>

2 .
Hint: modify the proof of the Cook-Levin theorem from Lecture 8.

https://cca.informatik.uni-freiburg.de/en/team/prof-dr-armin-biere
https://www.jku.at/institut-fuer-symbolic-artificial-intelligence/team/martina-seidl/

14. Circuit lower bounds & Circuit-SAT

Date: 27 January 2022

Agenda

Agenda:

1 Circuit lower bounds
2 Circuit-SAT & an

alternative proof of the
Cook-Levin Theorem

Today we continue and finalize our circuit-based analysis of computational
complexity. In the first part, we will exploit a nice feature of circuits: there is
only a finite amount of distinct circuits that we can construct by using a fixed
number of A elementary gates. And we can actually count them. Such counting
arguments will allow us to rigorously prove reassuring statements, like (circuit)
size does matter: larger circuits can compute strictly more functions than small
ones. Being able to count is another distinct advantage of circuits over Turing
machines (TMs). Analogous statements also exist for TMs – longer runtimes
allow us to compute strictly more functions – but are harder to establish.

In the second part of this lecture, we revisit one of the central statements of
this course from a circuit perspective. The Cook-Levin theorem states that every
problem in NP can be reduced to an instance of 3-SAT. We already presented
a self-contained proof sketch in Lecture 8, but this required honest work. To
close the lecture with a bang, we illustrate how a detour via circuit-land yields
a much more streamlined proof.

14.1 Circuit lower bounds
In this section, we explore connections between Boolean formulas 5 : {0, 1}< →
{0, 1} and Boolean circuits with < inputs and one output (; = 1). For each
input size <, there are only a finite number of (distinct) Boolean formulas. In
fact, we can easily count them.

137 Lecture 14: Circuit lower bounds & Circuit-SAT

circuit:
A elementary gates
with 1 output and

(at most) 2 inputs each
<
in
pu

tn
od

es

1 output node

Figure 14.1 Illustration of a general Boolean circuit geometry: We can group circuit
nodes into three distinct categories. Input nodes (red), a central block (blue)
that contains the actual logical gates, as well as a single output node (green).

Proposition 14.1 doubly-exponential growth of
the number of Boolean
functions (in input length <)

The number of distinct Boolean functions 5 : {0, 1}< → {0, 1}
is exactly #fct(<) = 22

<
.

Proof. There are a total of 2< different input configurations. A Boolean formula
maps each of them to either 0 or 1. This produces a total of 22

<
choices – two

possibilities for each input configuration – each of which produces a distinct
Boolean function. �

A similar situation arises when studying circuits with one output (; = 1). If
we fix the number of inputs <, as well as the circuit size A (i.e. the total number
of elementary gates), we can also only obtain a finite number of functionally
distinct circuits.

Proposition 14.2 exponential growth of the
number of circuits (in size A)

The number of distinct size circuits with < inputs, ; = 1
output and size at most A is upper bounded by #circuit(<, A) = <2A (4A)A .

This is a rather crude upper bound. As soon as the circuit size A exceeds the
number of inputs < (A ≥ <), we obtain a much simpler functional dependence:

#circuit(<, A) = <2A (4A)A ≤ (4A)3A = A$ (A) . (14.1)

Proof of Proposition 14.2. Consider a general circuit with < inputs, A elementary
gates and; = 1 output. Then we can always decompose such a circuit into
3 distinct blocks that are visualized in Figure 14.1: one block subsumes all <
inputs (left, red), one circuit block that contains the A gates (center, blue) and
one block that contains the single output node (right, green), see Figure 14.1.

The central part consists of A elementary gates (∨, ∧ or ¬) that have exactly
1 output each. These outputs must either lead to another elementary gate or to
the output node. This gives a total of (A − 1) + 1 = A choices per elementary
gate. Since there are A elementary gates in total, there can be (at most) A A

different network configurations within the blue and green part of the circuit.
Moreover, each of the A gates involved can either be a ∨-gate, a ∧-gate or a
¬-gate. We also allow for a fourth option – no gate at all – to also cover circuits
that have size smaller than A . This freedom of choice produces an additional
number of 4A different gate assignments.

138 Lecture 14: Circuit lower bounds & Circuit-SAT

Finally, we must count the number of ways how input bits can be fed into
the circuit properly. Each of the A elementary gates has at most 2 inputs. Each
of them can correspond to any of the < input bits. So, there are (at most) <2

different configurations to choose from. Since the circuit is comprised of A
elementary gates, this produces a maximum number of <2A different interfaces
between input and circuit blocks. Putting everything together produces a
maximum circuit count of

#circuit(<, A) ≤ <2A × A A × 4A = <2A (4A)A .

�

Note that the total number of Boolean functions grows doubly-exponentially
with input length < (#fct(<) = 22

<
). In contrast, the maximum number of

circuits only grows exponentially with circuit size A (#circuit ≤ A$ (A) provided
that A ≥ <). This exponential discrepancy allows us to derive a powerful lower
bound on circuit size.

Theorem 14.3 (circuit lower bounds). ‘almost all’ functions require
exponentially large circuits

‘Almost all’ Boolean functions 5 : {0, 1}< →
{0, 1} require circuits � 5 of exponential size (in <): A

(
� 5

)
≥ 2</(6<).

The attribute ‘almost all’ is colloquial and deserves further explanation.
It means that the fraction of Boolean functions 5 that have circuits with the
advertised size bound only cover a vanishingly small fraction of all possible
Boolean functions. More precisely, we will show that

nr. of 5 s that have circuits of size A (� 5) ≤ 2</(6<)
total nr. of Boolean functions with < inputs

<
1
√
22<

. (14.2)

This bound on the fraction has an appealing probabilistic interpretation. Sup-
pose that we choose a Boolean function 5 : {0, 1}< → {0, 1} uniformly at
random (from all possible choices). Then, the probability that this function
admits a ‘short’ circuit is exponentially small in <: probabilistic interpretation of

‘almost’ all’
Pr5 :{0,1}<→{0,1}

[
5 has circuit � 5 of size A

(
� 5

)
≤ 2</(6<)

]
<

1
√
22<

.

Proof of Theorem 14.3. A given size-A circuit � with < inputs describes exactly
one Boolean function 5 : {0, 1}< → {0, 1}. Let us now set Amax = 2</(6<) �
<. Then, Eq. (14.1) tells us that there are at most

#circuit (<, Amax) ≤ (4Amax)3Amax =
(4
6<2

<
)2</(2<)

< (2<)2
</(2<)

= 22
</2

circuits with size Amax or smaller. This is also an upper bound on the number of
Boolean functions that can be represented by such circuits (note that, two or
more seemingly distinct circuits can describe the same Boolean function). But
22

</2 =
√
22< is still (exponentially) small when compared to #fct(<) = 22

<
–

the total number of distinct Boolean functions from Proposition 14.1. In fact,
taking the ratio of these two numbers produces the upper bound in Eq. (14.2):
#circuit(<, Amax)/#fct(<) < 22

</2/22< = 2−2
</2 = 1/

√
22< . �

139 Lecture 14: Circuit lower bounds & Circuit-SAT

Theorem 14.3 provides a lower bound on the circuit size required to represent
almost all Boolean functions in < variables. It plays nicely with the deterministic
upper bound on maximum circuit size that we have derived in Corollary 13.3
from Lecture 13. Almost all Boolean functions 5 : {0, 1}< → {0, 1} have circuit
representations � 5 that obey two-sided bounds on typical

circuit size
2</(6<) ≤ A

(
� 5

)
≤ 2< × (2<). (14.3)

In this display, lower and upper bound are remarkably close. The corrections
1/(6<) on the l.h.s. and (2<) on the r.h.s. are exponentially smaller than the
leading contribution of 2< .

We can use Eq. (14.3) to prove that larger circuits can compute strictly
more Boolean functions than smaller ones. Such statements are known as
hierarchy theorems and capture the intuition that increasing computing power –
in this case: circuit size – should allow us to compute more things. We content
ourselves with establishing a simple statement in this direction. Recall that the
problem class SIZE (((<)) contains all languages � that can be decided by a
circuit family whose size grows as$ (((<)) (Definition 13.1 from Lecture 13).

Theorem 14.4 (hierarchy theorem for circuit sizes (special case)). (circuit) size does matter for
computing power

There are <-
variable Boolean functions that can be computed by circuits of size$ (<2),
but cannot be computed by circuits of size$ (<). In formulas: SIZE (<) ⊂
SIZE(<) (strict inclusion).

Proof. Consider Boolean functions 6 : {0, 1}< → {0, 1} that only act nontriv-
ially on the first � input bits, the remaining inputs are ignored. Such functions
only have � nontrivial input bits and we can adjust Eq. (14.3) accordingly
(replace < by �). If we set � = 1.5 log(<), the two bounds tell an interesting
story. The upper bound is valid for all 6 functions and asserts

6 ∈ SIZE
(
2� × (2�)

)
= SIZE

(
3<1.5 log(<)

)
⊆ SIZE

(
<2) ,

because 3<1/5 log(<) = $ (<2). Almost all functions 6 also obey the lower
bound in Eq. (14.3). Choose one of them to conclude

6 ∉ SIZE
(
2�/(6�)

)
= SIZE

(
<1.5/(9 log(<))

)
⇒ 6 ∉ SIZE (<) ,

because < =$
(
<1.5/(9 log(<))

)
. Hence, there are (many) functions that can

be computed in quadratic size, but not in linear size. �

The proof argument above can be adjusted to cover all types of different
size functions.

Theorem 14.5 (hierarchy theorem for circuit sizes (general case)). Let (, (′ :
ℕ → ℕ be two functions that obey (′(<), ((<) ≤ 2</(100<) and fix
n > 0. Then, size hierarchy theorem: larger

circuit sizes yield strictly more
computing power(′(<) ≥ ((<) log1+n (((<)) ⇒ SIZE (((<)) ⊂ SIZE ((′(<)) (14.4)

140 Lecture 14: Circuit lower bounds & Circuit-SAT

(strict inclusion).

We leave a rigorous proof as an instructive, if somewhat tedious, exercise.
In words, Eq. (14.4) showcases that (circuit) size does matter: larger circuit sizes
yield strictly more computing power.

A similar hierarchy theorem can be derived for Turing machine (TM)
runtimes. Recall that the problem class DTIME() (<)) contains all languages
that can be decided by a TM with runtime $ () (<)) (Definition 6.6 from
Lecture 6).

Theorem 14.6 (hierarchy theorem for TM runtimes (general case)). Now, let) ,) ′ :
ℕ→ ℕ be two functions and fix n > 0. Then, time hierarchy theorem:

longer TM runtimes yield
strictly more computing
power

) ′(<) ≥) (<) log1+n () (<)) ⇒ DTIME () (<)) ⊂ DTIME () ′(<))
(14.5)

(strict inclusion).

In words, Eq. (14.5) states that (TM) runtime does matter: longer runtimes
yield strictly more computing power.

Although remarkably similar, the proofs of these two hierarchy theorems
are very different. Eq. (14.4) ultimately follows from a counting argument over
all possible circuit configurations of a given size. Such counting arguments
don’t work for TM runtimes, because TMs can loop. Eq. (14.5) instead follows
from a contradiction argument that is reminiscent of our proof that the halting
problem is uncomputable (see Lecture 5). We refer to [AB09, Section 3.1] for
details.

14.2 CIRCUIT-SAT & an alternative proof of the Cook-Levin theorem
By now, we have seen several examples that showcase how circuit-based
arguments provide a new perspective on the study of computational complexity.
Intuitive concepts like parallelized runtime (which is captured by circuit depth,
see Lecture 12) and computation with advice (which captures small circuits
with intricate blueprints, see Lecture 13) arise naturally when studying circuits,
but take quite some time and effort to properly capture in the TM model. But
circuits also provide us with new tools to derive powerful statements about
computational power. The size hierarchy theorem displayed in Eq. (14.4) comes
to mind. In addition, our current understanding of circuits also allows us to
re-derive other deep results about computational complexity. Let us illustrate
this for one of the key results presented in this lecture – the Cook-Levin Theorem
which we already discussed in Lecture 8.

Informally speaking, the Cook-Levin theorem states that every NP problem
can be reduced to an instance of 3-SAT with only a polynomial overhead. Or,
in the jargon from Lecture 9: 3-SAT is NP-complete. We refer to these two
lectures for a detailed discussion what these two statements formally mean.
For now, it is enough to recapitulate that our original proof sketch of the

141 Lecture 14: Circuit lower bounds & Circuit-SAT

Cook-Levin theorem had been quite involved. It turns out that circuits provide
a short cut that allows us to come up with a much more streamlined proof. This
new argument uses a detour over a circuit-variant of the Boolean satisfiability
problem.

Definition 14.7 (CIRCUIT-SAT). Circuit-SATWe say that a (Boolean) circuit � : {0, 1}< →
{0, 1} with < inputs and ; = 1 output is satisfiable, if there exists an input
string F ∈ {0, 1}< such that � (F) = 1. The language Circuit-SAT consists of
all (proper) bit encodings of Boolean circuits that are satisfiable:

Circuit-SAT = {x� y : � is a Boolean circuit that is satisfiable} ⊆ {0, 1}∗ .

Example 14.8 Consider the following circuit with < inputs and one output
(; = 1) that is comprised of two parts:

∧

∧

∧

¬

∧

The blue circuit part �blue is is satisfiable, because it computes an AND of
all < inputs. Setting F0 = · · · F<−1 = 1 yields �blue(F) = 1. Including
the red part as well yields a circuit �blue+red that is not satisfiable anymore:
�blue+red(F) = F0∧ · · ·∧F<−1∧ F̄<−1 = 0 for all possible choices of F0, . . . , F<−1
(F<−1 ∧ F̄<−1 = 0 for both F<−1 = 0 and F<−1 = 1). �

Circuit-SAT is actually an important problem in its own right. Many
challenges in hardware design can be reduced to an instance of this decision
problem. Discussing these relations would go beyond the scope of this intro-
ductory matter. For the task at hand – prove the Cook-Levin theorem – the
following rigorous statement suffices.

Theorem 14.9 (CIRCUIT-SAT is NP-hard). Circuit-SAT is NP-hardEveryNP-problem admits a polynomial-
time reduction to an instance of Circuit-SAT.

This is a powerful statement that resembles the Cook-Levin theorem itself –
albeit with Circuit-SAT instead of 3-SAT. Regarding the proof, we have actually
already done most of the heavy lifting in Lecture 12. Theorem 12.10 states that
every polynomial-runtime TM" can be represented by a Boolean circuit �"
of polynomial-size. Theorem 14.9 is almost an immediate consequence of this
reformulation, see Figure 14.2 for a visual illustration.

Proof of Theorem 14.9. Suppose that � ⊆ {0, 1}∗ is a language in NP. Then, by
definition, we must be able to efficiently certify membership. More formally,
there exists a polynomial-runtime TM" (the ‘verifier’) such that F ∈ � if and
only if" (F, G) = 1 for some bitstring G ∈ {0, 1}<′ (the ‘certificate’). Moreover,

142 Lecture 14: Circuit lower bounds & Circuit-SAT

F

∃ G

1

TM"

runtime) (<)

F

∃ G

1

circuit �"

size$ () (<)2)

Figure 14.2 Circuit-SAT is NP-hard: All NP languages � have a TM verification
procedure (left): F ∈ � if and only if ∃G s.t." (F, G) = 1 and the TM runtime
obeys) (<) = poly(<), where < = |F |. We can now use Theorem 12.10 from
Lecture 12 to represent the entire TM computation as a circuit �" of size
$ () (<)2) = poly(<) (right). If we fix the input F , this poly-size circuit is
satisfiable if and only if F ∈ �. In formulas: �" (F, ·) ∈ Circuit-SAT⇔ F ∈ �.

< ′ = poly(<), where < = |F | (the certificate must be short). In formulas:

F ∈ � ⇔ ∃G ∈ {0, 1}<′ such that" (F, G) = 1. (14.6)

We can now use Theorem 12.10 to convert the TM" (for fixed input lengths)
into a Boolean circuit �" with two input strings �" : (F, G) ↦→ " (F, G). In
addition, we can hardwire fixed F -inputs into the circuit geometry to obtain a
modified circuit �",F : G ↦→ " (F, G) that now only depends on the G -input.
Doing so allows us to replace Eq. (14.6) by

F ∈ � ⇔ ∃G ∈ {0, 1}<′ such that �",F (G) = 1. (14.7)

The right hand side of this modified display is an instance of Circuit-SAT.
Given" and F , we can actually construct a description of the polynomial-size
circuit �",F in polynomial time. This follows from the fact that we proved
Theorem 12.10 by presenting an explicit and efficient construction. �

Lemma 14.10 (CIRCUIT-SAT ≤> 3-SAT). Circuit-SAT reduces to 3-SATEvery Circuit-SAT instance admits a
linear-time reduction to an instance of 3-SAT.

Proof. The reduction is visualized in Figure 14.3, here we supply additional
details, as well as a general construction. Let� : {0, 1}< → {0, 1} be a Boolean
circuit with size A . It suffices to show that the underlying functionality can be
represented by a 3-CNF i with < ′ = poly(<, A) variables and : ′ = poly(<, A)
clauses. Conveniently, the circuit � itself almost gets us there, because it
describes a composition of < elementary gates that have (at most) 2 inputs
and 1 output each (‘circuit computation is local’). We introduce a new dummy
variable for each of the A elementary gates:

input 0
input 1 67 H7 ∈ {0, 1} .

143 Lecture 14: Circuit lower bounds & Circuit-SAT

∨

∨

∧

∧
∨

F0
F1
F2
F3
F4
F5

H0

H1

H2

H3

H4
Hout

i� (F0, F1, F2, F3, F4, F5, H0, H1, H2, H3, H4, Hout)
= (H0 = (F0 ∨ F1)) ∧ (H1 = (F4 ∨ F5))
∧ (H2 = (H0 ∨ F2)) ∧ (H3 = (F3 ∨ H1))
∧ (H4 = (H2 ∨ H3)) ∧ (Hout = H4) ∧ Hout

Figure 14.3 Reducing Circuit-SAT to 3-SAT: We convert a Boolean circuit with
size A = 5 and < = 6 inputs (left) into a Boolean formula with < + A + 1 = 12
variables and A + 2 clauses (right). This is achieved by introducing Boolean
variables for inputs (gray), outputs of elementary gates (blue) and the output
bit (red). The Boolean formula i checks that all elementary gates have been
implemented correctly (logical equalities between gate inputs and gate output)
and that the output bit is 1 (true). Further Decomposing logical equalities
as (0 = 1) = (0 ∨ 1̄) ∧ (0̄ ∨ 1) produces a 3-CNF with (at most) 3(A + 1)
3-clauses. This 3-CNF is satisfiable if and only if the original circuit is.

We can now use logical equalities (‘=’) to enforce the correct execution of each
such gate:

67 = ∧ : H7 = (input 0 ∧ input 1),
67 = ∨ : H7 = (input 0 ∨ input 1) and
67 = ¬ : H7 = (¬input 0),

because ¬ only has a single input we need to consider. Subsequently, we can
rewrite logical equality as (0 = 1) = (0 ∨ 1̄) ∧ (0̄ ∨ 1) to further decompose
each of the above relations into 3-CNF comprised of (at most) 3 clauses.1

Our final formula i� has a total of (< + A + 1) input variables:

(F0, . . . , F<−1, H0, . . . , HA−1, Houtput).

The first < variables denote input bits, the central block contains A consistency-
check bits and the final bit records the value of the output node. The formula i�
itself and corresponds to taking the AND of all consistency enforcements AND
the final output variable. This produces a 3-CNF with (at most) : ′ = 3(A + 1)
clauses, i.e. the clause number of i� is linear in the size A of the original circuit.
The first 3A clauses ensure that the circuit computation is executed correctly
and isolating the last variable Houtput using 2 size-1 clauses ensures that the
formula i� is satisifable if and only if the circuit �" is. �

re-derivation of the
Cook-Levin Theorem

The Cook-Levin theorem is now an immediate consequence of Theorem 14.9
(NP ≤> Circuit-SAT) and Lemma 14.10 (Circuit-SAT ≤> 3-SAT).

Corollary 14.11 (Cook-Levin Theorem). 3-SAT isNP-complete, i.e. everyNP-problem
admits a polynomial-time reduction to an instance of 3-SAT.

1This is reminiscent of the Tseitin encoding [Tseitin1968complexity] which you might know
from Module IV of the Logic course.

Bibliography

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. “PRIMES is in P”. In: Ann. of Math.
(2) 160.2 (2004), pages 781–793. issn: 0003-486X. doi: 10.4007/annals.
2004.160.781. url: https://doi.org/10.4007/annals.2004.160.
781.

[AB09] S. Arora and B. Barak. Computational complexity. A modern approach.
Cambridge University Press, Cambridge, 2009, pages xxiv+579. isbn: 978-
0-521-42426-4. doi: 10.1017/CBO9780511804090. url: https://doi.
org/10.1017/CBO9780511804090.

[Kar72] R. M. Karp. “Reducibility Among Combinatorial Problems”. In: Complexity
of Computer Computations. The IBM Research Symposia Series. Plenum
Press, New York, 1972, pages 85–103. url: http://cgi.di.uoa.gr/
~sgk/teaching/grad/handouts/karp.pdf.

[KS17] C. Kingsford and D. Sleator. 15-451/561: Algorithms, Lec. 23: NP-completeness
(lecture notes). 2017. url: https://www.cs.cmu.edu/~15451-f17/
lectures/lec23-np.pdf.

[Sch20] W. Schreiner. Computability and Complexity. JKU Linz, Austria, 2020. url:
https://moodle.risc.jku.at/pluginfile.php/9330/course/
section/1427/main.pdf?time=1594822187866.

[Sip97] M. Sipser. Introduction to the theory of computation. PWS Publishing Com-
pany, 1997. isbn: 978-0-534-94728-6.

[Wat20] J. Watrous. Introduction to the Theory of Computing (lecture notes). University
of Waterloo, Canada, 2020. url: https://cs.uwaterloo.ca/~watrous/
ToC-notes/ToC-notes.03.pdf.

[Way01] K.Wayne. COS 423 Analysis of Algorithms Lectures: Polyonmial time reductions
(lecture notes). 2001. url: https://www.cs.princeton.edu/~wayne/
cs423/lectures/reductions-poly-4up.pdf.

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
https://www.cs.cmu.edu/~15451-f17/lectures/lec23-np.pdf
https://www.cs.cmu.edu/~15451-f17/lectures/lec23-np.pdf
https://moodle.risc.jku.at/pluginfile.php/9330/course/section/1427/main.pdf?time=1594822187866
https://moodle.risc.jku.at/pluginfile.php/9330/course/section/1427/main.pdf?time=1594822187866
https://cs.uwaterloo.ca/~watrous/ToC-notes/ToC-notes.03.pdf
https://cs.uwaterloo.ca/~watrous/ToC-notes/ToC-notes.03.pdf
https://www.cs.princeton.edu/~wayne/cs423/lectures/reductions-poly-4up.pdf
https://www.cs.princeton.edu/~wayne/cs423/lectures/reductions-poly-4up.pdf

	1 Motivation, overview and (some) background
	1.1 Motivating example: traveling salesperson (TSP)
	1.2 Overview of topics
	1.3 Background: alphabets and binary encodings

	2 Finite state automata
	2.1 Motivating examples
	2.1.1 Motivating example: automatic door
	2.1.2 Closer to actual computation: a parity checking machine

	2.2 Deterministic finite automata (DFAs)
	2.2.1 Formal definition
	2.2.2 DFA computations

	2.3 Nondeterministic finite automata (NFAs)
	2.3.1 Determinism vs. nondeterminism
	2.3.2 Nondeterministic finite state automata (NFAs)
	2.3.3 Equivalence between NFAs and DFAs

	3 Turing machines
	3.1 The palindrome challenge
	3.1.1 Palindromes

	3.2 Attempting to identify palindromes with finite state automata
	3.3 A better approach to identify (even) palindromes
	3.4 Turing machines
	3.4.1 Intuitive definition
	3.4.2 Formal definition
	3.4.3 Turing machine computations
	3.4.4 Specifications

	3.5 History

	4 Decision problems and languages
	4.1 Three points of view on computational challenges
	4.1.1 Decision problems
	4.1.2 Computing a Boolean function
	4.1.3 Languages

	4.2 Regular languages
	4.2.1 Recapitulation: finite state automata
	4.2.2 Regular languages
	4.2.3 Regular operations
	4.2.4 Fundamental limitations

	4.3 (Semi-)decidable languages
	4.3.1 Recapitulation: Turing machines
	4.3.2 Decidable languages
	4.3.3 Semidecidable languages
	4.3.4 Fundamental limitations

	4.4 The Church-Turing thesis

	5 Universal Turing machines and undecidability
	5.1 Bit encoding of Turing machines
	5.1.1 Encoding tuples into bitstrings
	5.1.2 Encoding Turing machines into bitstrings

	5.2 Universal Turing machines
	5.3 Uncomputable & undecidable decision problems
	5.3.1 Variants of halting problems
	5.3.2 Two undecidable languages
	5.3.3 Two uncomputable languages

	5.4 Interpretations and implications

	6 Time-bounded computations
	6.1 Motivation: multiplication vs. factorization
	6.1.1 Multiplication
	6.1.2 Integer factorization

	6.2 Big-O notation
	6.3 Time complexity
	6.4 P and EXP
	6.5 Example problems
	6.5.1 Elementary algebraic operations
	6.5.2 Elementary logical operations
	6.5.3 Computing the determinant of a matrix
	6.5.4 Criticisms and extensions

	7 The problem class NP
	7.1 Motivation: Factoring
	7.2 The problem class NP
	7.3 Examples
	7.4 Origin story: non-deterministic Turing machines
	7.5 Philosophical implications of P vs. NP

	8 The Cook-Levin Theorem
	8.1 k-SAT, aka Boolean satisfiability
	8.2 The Cook-Levin Theorem
	8.3 Proof sketch for Theorem 8.6
	8.4 Context and implications

	9 Karp reductions and NP-completeness
	9.1 Karp reductions
	9.2 Properties of Karp reductions
	9.3 NP-completeness
	9.4 A method for proving NP-completeness
	9.5 Implications

	10 Space complexity
	10.1 Space-bounded computations
	10.2 The problem class PSPACE
	10.3 The problem class NPSPACE
	10.4 PSPACE completeness and a PSPACE complete problem
	10.5 The essence of PSPACE: optimal strategies for 2-player games

	11 co-NP and the polynomial hierarchy
	11.1 Motivation: Factoring is special
	11.2 The problem class co-NP
	11.3 The Polynomial hierarchy

	12 Circuits
	12.1 (Logical) circuits
	12.2 Circuit size and circuit depth
	12.3 Representing logical functions as circuits
	12.4 Representing TM computations via circuits
	12.5 Circuits for universal TMs

	13 Circuit size-bounded computations
	13.1 (Circuit) size-bounded computations
	13.2 Turing machines that take advice
	13.3 The Karp-Lipton Theorem

	14 Circuit lower bounds & Circuit-SAT
	14.1 Circuit lower bounds
	14.2 Circuit-SAT & an alternative proof of the Cook-Levin theorem

	Bibliography

