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1. Introduction to convex geometry

Date: 27 February 2023
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3 linear programs
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1.1 Motivation
Many problems that humans, certain animals and, more recently, machines face
can be recast as a constrained optimization problem. These problems can take
many shapes and forms, but often have a finite number of variables (or degrees
of freedom). We succinctly collect them into an array, e.g. a �-dimensional
vector x = (F1, . . . , F� )) ∈ ℝ� (1D array) or a (Hermitian) � × � matrix
^ ∈ ℍ� (2D array).

The overall objective of an optimization problem is to maximize (or min-
imize) a real-valued function 5 in the parameters x . This function is called
the objective function. However, it is often the case that not all parameter
configurations are feasible. Additional constraints enforce membership in a
subset � ⊆ V of all possible vectors/matrices. The set � is called the set of
feasible solutions, or feasible set. We now have all the ingredients in place to
introduce a general optimization problem: general optimization problem

minimize
x ∈V

5 (x ) (1.1)

subject to x ∈ �.

Here, V is a placeholder for a finite-dimensional, real-valued inner product
space. We will mostly focus on

(
ℝ� , 〈·, ·〉

)
and

(
ℍ� , (·, ·)

)
.

This framework is very general and encompasses many well-known scientific
problems and objectives. What is more, such optimization problems can either
be easy or they can be hard. Let us gather some intuition by means of three
examples.
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Example 1.1 (linear system of equation). example: linear systemsFix a matrix G ∈ ℝ�′×� , a vector b ∈
ℝ�′, define the following subset � =

{
x ∈ ℝ� : Gx = b

}
and introduce a

trivial objective function 5 (x ) = 0 for all x ∈ ℝ� . Then, the following
optimization problem

minimize
x ∈V

0

subject to x ∈ �.

is equivalent to solving the linear system Gx = b . �

Linear systems are very important, but not (really) difficult. Standard
techniques, like Gaussian elimination, solve a linear system Gx = b in a
number of arithmetic operations that scales cubically in � . Such a polynomial
scaling is not great, but far from terrible.

Example 1.2 (training a binary classification model). example: training for binary
classification

Fix a dimension� and a class
of functions F from ℝ� → ℝ. Let (x B , GB ) with x B ∈ ℝ� and GB ∈ {±1} be a
collection of ) labeled training data points (e.g. pictures of cats and dogs with
the correct label). Then, the following optimization problem

minimize
5 :ℝ�→ℝ

∑)

B=1
( 5 (x B ) − GB )2 (1.2)

subject to 5 ∈ F

attempts to identify the function 5 within the function class F that performs
best in the sense that it minimizes the mean squared error (MSE) over the
labeled training data. �

Binary classification is a good introductory example for machine learning
and artificial intelligence. There, the overarching vision is to use copious
amounts of training data in order to extract (or learn) interesting functional
dependencies. This training stage corresponds to a complicated and very
high-dimensional optimization problem, see Eq. (1.2). And it is by no means
clear how to solve these problems in an optimal and resource-efficient fashion.
Indeed, the training stage is very resource-intensive for most state-of-the-art
ML models. Fortunately, empirical results highlight that it is not necessary to
find the global optimal solution to Eq. (1.2). Local optima, e.g. those identified
by stochastic gradient descent, already tend to perform verty well in practice.

Example 1.3 (quadratic binary optimization (QUBO)). example: quadratic binary
optimization (QUBO)

Let G ∈ ℝ�×� be a symmet-
ric � × � matrix. Then, the following optimization problem constitutes an
(unconstrained) quadratic binary optimization problem (QUBO):

maximize
x ∈ℝ�

x) Gx (1.3)

subject to x ∈ {±1}�

The name binary stems from the fact that every entry of x can only assume
binary values ±1. Some QUBOs are easy, while others are suspected to be very
hard. �
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QUBOs encompass many important problems in computer science, graph
theory and combinatorial optimization. Examples include MaxCUT and 3-Sat
(which requires additional constraints) and many more.Interestingly, there is
also an intimate connection between QUBOs and the Ising problem in quantum
many-body physics: interpret x ∈ {±1}< as a spin configuration and G as
a Hamiltonian. QUBO ≈ Ising modelThis correspondence is the original motivation for adiabatic
quantum computation (think D-wave), as well as the Quantum Approximate
Optimization Algorithm (QAOA).

1.2 Convex optimization
The three motivating examples highlight that optimization problems of the
form (1.1) can sometimes be easy (think: linear systems) and can sometimes
be hard (think: training and general QUBO). Whether a given optimization
problem is easy or hard depends on the underlying structure. Certain desirable
features of both the feasible set and the objective function can have a huge
impact on the feasibility of the underlying optimization problem. One such
structural property is convexity. It is defined for both sets and functions and
gives rise to entire families of well-behaved optimization problems.

1.2.1 Convex sets
Let V be a finite-dimensional, real-valued vector space.

Definition 1.4 (convex set). convex setA set - ⊆ V is a convex set if

>x + (1 − >)y for all x , y ∈ - and > ∈ [0, 1].

In words: if � contains two points, then it must also contain the line that
connects these two points.

Convexity is well-defined for any dimension � . Here are a couple of
example sets in different dimensions: examples of convex sets

• the space V itself is a convex set;
• all 2-dimensional polygons are convex sets;
• all 3-dimensional platonic solids are convex sets;
• the � -dimensional unit ball

{
x ∈ ℝ� : 〈x , x 〉 ≤ 1

}
is a convex set;

• the (�−1)-dimensional unit sphere
{
x ∈ ℝ� : 〈x , x 〉 = 1

}
is not convex;

• general point sets {x1, . . . , x# } ⊆ V are not convex, unless # = 1 (a
single point);

• the union of two unit balls with different origins is never convex.

These examples already hint at some desirable structural properties of
convex sets. First and foremost, convex sets are very interconnected: every
two points can be connected by a straight line. Moreover, the perimeter cannot
contain any dents. These desirable features are preserved by many geometric
operations. In particular, convexity-preserving

operations
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• affine shifts: if - is a convex set, then G- + b = {Gx + b : x ∈ - } is
also a convex set;

• intersection: if- ,. are convex set, then-∪. = {x ∈ V : x ∈ - and F ∈ . }
is also a convex set.

• convex hull: if - ⊆ V is a set (not necessarily convex), then

conv (- ) =
{∑#

7=1
>7x 7 : # ∈ ℕ, >7 ≥ 0,

∑#

7=1
>7 = 1, x1, . . . , x# ∈ -

}
is a convex set.

These examples tell us that convexity plays nicely with certain types of opera-
tions. But convexity doesn’t play nicely with others. For instance, the union of
two convex sets - ∪. is almost never convex.

Convex sets have a well-defined boundary that must not contain any dents.
This boundary constitutes of extreme points x ∈ - which have the particular
property that they cannot be represented as a probabilistic average of two other
points in the set: extreme points

x = By + (1 − B )z with B ∈ (0, 1) ⇒ y = z = x .

We conclude this subsection with two basic, but powerful, insights into the
geometry of convex sets. We don’t have time to provide a proof and refer to
standard textbooks instead.

Fact 1.5 (Krein-Millman theorem). convex sets are convex hull of
the boundary (Krein-Millman)

Under some mild regularity conditions (bound-
edness and closedness), every convex set - ⊆ V is the convex hull of its extreme
points. Equivalently, we can decompose every x ∈ - as

x =
∑#

7=1
>7x

★
7 ,

where >7 ≥ 0,
∑#
7=1 >7 = 1 and each x★

7
is an extreme point of - . �

Fact 1.6 (Separating hyperplane theorem). convex sets can be separated
with hyperplanes

Let - ⊆ V be a compact and closed
convex set and let y ∈ V be outside the set, i.e. y ∉ - . Then, there exists an
affine hyperplane � (a ,1) = {x ∈ V : 〈a , x 〉 = 1} ⊆ V that strictly separates
the point from the convex set:

〈a , y 〉 ≥ 1 while 〈a , x 〉 < 1 for all x ∈ - .

�

1.2.2 Convex functions
Let V be a finite-dimensional, real-valued vector space.

Definition 1.7 convex functionLet - ⊆ V be convex and let 5 : - → ℝ be a continuous function.
Then, this function is convex (on the domain - ) if

5 (>x + (1 − >)y ) ≤ > 5 (x ) + (1 − >) 5 (y ) (1.4)

for all x , y ∈ - and > ∈ [0, 1]. In words: probabilistic averages of function
values exceed function values of the probabilistic average.
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The ’reverse’ of a convex function is a concave function. A function 5 : -ℝ
is concave if and only if −5 is a convex function. 5 concave⇔ −5 convexHere are a couple of simple
examples:

• The exponential function exp : ℝ→ ℝ is convex.
• The logarithm log : ℝ+ → ℝ is concave.
• The trigonometric functions sin, cos : ℝ → ℝ are neither convex nor

concave. They can be either if we restrict attention to certain subintervals
of the real line.

• The absolute value function F ↦→ |F | and the ReLu function 5 (F) =

max {0, F} are both convex functions.
• The squared �2-norm function x ↦→ 〈x , x 〉 is a convex function from ℝ�

to ℝ+.

Exercise 1.8 Confirm all of these statements by establishing the defining property
for convexity/concavity for each of these functions.

Note that the convex functions mentioned above have one thing in common:
they have at most one minimum. This is, in fact, a general feature of convex
functions that is very desirable for optimization.

Theorem 1.9 (convex functions don’t have local minima). convex functions don’t have
local minima

Let � : V → ℝ be a
convex function. Then, every local minimum is also a global minimum.

Proof. Let x★ be a local minimum of 5 and assume that there exists another
point x ♯ that achieves a strictly smaller function value (e.g. a global minimum),
i.e. 5 (x ♯) < 5 (x★). Set x (>) = (1−>)x★+>x ♯ which traverses a line segment
from x (0) = x★ to x (1) = x ♯. Then, for every > > 0, convexity of 5 ensures

5 (x (>)) = 5
(
(1 − >)x★ + >x ♯

)
≤ (1 − >) 5 (x★) + > 5 (x ♯) < 5 (x★). (1.5)

This, however, contradicts our assumption that x★ is a local minimum. Rel. (1.5)
tells us that we can further decrease the function value by making an arbitrarily
small step away from x★. The only resolution is to concede that 5 (x ♯) < 5 (x★)
cannot be true to begin with. �

1.2.3 Convex optimization
We have now introduced and analyzed the concept of convexity for both sets and
functions. In each context, they are responsible for very desirable properties.

Definition 1.10 (general convex optimization problem). general convex optimizationLet - ⊆ V be a convex set
and let 5 : - → ℝ be a concave function. Then,

maximize
x ∈V

5 (x ) (1.6)

subject to x ∈ - ,

is a convex optimization problem.



6 Lecture 1: Introduction to convex geometry / DRAFT

This definition combines several desirable properties of an optimization
problem. Let us start with the objective function: concavity ensures that
every local maximum is also a global maximum. This ensures that iterative
optimization techniques, like gradient descent, cannot get stuck in local optima.
Next, note that the feasible set is a convex sets. This ensures that the set has a
well-defined boundary and plenty of space within to navigate. In particular, the
feasible set cannot contain any bottlenecks. Even better: every pair of feasible
points is connected by a straight line that is also feasible.

Example 1.11 The linear system problem from Example 1.1 is a convex opti-
mization problem. Indeed, the trivial function 5 (x ) = 0 is both convex and
concave and the feasible set {Gx = b } is an affine subspace and thus also
conves. In contrast, the training problem from Example 1.2 is typically not a
convex optimization problem. �

As a rule of thumb, convex optimization problems tend to be tractable opti-
mization problems. In fact, we have efficient algorithms for several important
subclasses of convex optimization.

It is worthwhile, however, to emphasize that this really is just a rule of
thumb. It is possible to come up with convex optimization problems that come
with complexity-theoretic obstacles. You will see one such example in the
problem section below.

Warning 1.12 Not all convex optimization problems are tractable. �

1.3 Linear programming
We set V to be ℝ� endowed with the standard inner product

〈x , y 〉 = x †y =
∑�

7=1
F7G7 ∈ ℝ.

This inner product readily allows us to write down a linear function as linear objective function

5 (x ) = 〈c , x 〉 =
∑�

7=1
07F7 with c ∈ ℝ� .

Every such function is both convex and concave. And, what is more, every
linear function from ℝ� to ℝ can be represented in this fashion.

Let us now turn our attention to the feasible set. It comprises ; linear
equality constraints ; linear equality constraints

〈a 7 , x 〉 = 17 for 1 ≤ 7 ≤ ;
with a1, . . . ,a; ∈ ℝ� and 11, . . . , 1; ∈ ℝ. Geometrically, each constraint of
this form defines a (� − 1)-dimensional hyperplane

� ((a 7 , 17 )) =
{
x ∈ ℝ� : 〈a , x 〉 = 1

}
⊂ ℝ� .

Hyperlpanes are convex sets. Constraint (1.3) demands that every feasible
x ∈ ℝ� must be contained in each of these hyperplanes. This is equivalent to
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demanding
x ∈ � (a1, 11) ∩ · · · ∩� (a; , 1;).

Note that this is the intersection of; convex sets (hyperplanes) and therefore
also convex. Here is a succinct representation of this intersection space:

� (a1, 11) ∩ · · · ∩� (a; , 1;) =
{
x ∈ ℝ� : 〈a1, x 〉 = 11, . . . , 〈a; , x 〉 = 1;

}
=

x ∈ ℝ
� :

©­­«
〈a1, x 〉

...

〈a; , x 〉

ª®®¬ =
©­­«
11
...

1;

ª®®¬


=
{
x ∈ ℝ� : Gx = b

}
(1.7)

with G =
∑;
7=1 e 7a

†
7
∈ ℝ;×� and b =

∑;
7=1 17e 7 . Here, e1, . . . , e; denotes

the standard basis of ℝ� .
Optimizing a linear objective function over a feasible set constrained by

linear equality constraints produces a linear optimization problem

maximize
x ∈ℝ�

〈c , x 〉 (1.8)

subject to Gx = b .

This is a promising start, but in itself not very exciting yet. To get a linear
program, we include one more convex object that has a qualitatively different
character. The nonnegative orthant in ℝ� is defined as convex cone constraint:

nonnegative orthant
ℝ�
+ =

{
x = (F1, . . . , F� )† ∈ ℝ� : F1, . . . , F� ≥ 0

}
⊆ ℝ� . (1.9)

In words: x ∈ ℝ�
+ if and only if every vector coordinate is nonnegative (F7 ≥ 0).

It is easy to check that ℝ�
+ is a convex set. We leave this as a simple exercise.

What is more, ℝ�
+ is actually a convex cone1.

Exercise 1.13 (nonnegative orthant). Show that the nonnegative orthant ℝ�
+ de-

fined in Eq. (1.9) is both a convex set (i.e. x , y ∈ ℝ�
+ ⇒ >x + (1 − >)y ∈ ℝ�

+
for all > ∈ [0, 1]) and a cone (i.e. x ∈ ℝ� ⇒ Ux ∈ ℝ�

+ for all U ≥ 0).

Convex cones can be used to define a partial ordering on the underlying
space. The nonnegative orthant in ℝ� leads to

x ≥ y if and only if x − y ∈ ℝ�
+ .

Note that this ordering relation admits a very simple explanation: x − y ∈ ℝ�
+

if and only if F7 − G7 ≥ 0 for all 1 ≤ 7 ≤ � , or equivalently: partial order induced by
nonnegative orthant

x ≥ y if and only if F7 ≥ G7 for all 1 ≤ 7 ≤ �.

In words: every entry of x is at least as large as the corresponding entry of
y . We use this observation to succinctly abbreviate the nonnegative orthant
condition itself as x ≥ 0, where 0 = (0, . . . , 0)† is the all-zeroes vector.

1Think of a pixelated ice cream cone whose tip is in the origin.
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A linear program is obtained by intersecting the feasible set in Eq. (1.8)
with the nonnegative orthant ℝ�

+ =
{
x ∈ ℝ� : x ≥ 0

}
. Since both sets are

convex, this intersection is convex as well.

Definition 1.14 (linear program (LP)). linear program (LP)A linear program (LP) is a vector-valued
optimization problem of the form

maximize
x ∈ℝ�

〈c , x 〉

subject to Gx = b

x ≥ 0,

where c ∈ ℝ� , b ∈ ℝ" (vectors) and G ∈ ℝ;×� (linear map). This is a convex
optimization problem with � optimization variables,; equality constraints
and one conic constraint.

Computational Primitive (Linear programming). LPs are very tractableLinear programs admit tractable
solutions whose runtime and memory scale (at most) polynomially in �
(problem dimension) and; (number of constraints).

You will hear more about different types of solution strategies in other
lectures.

1.4 Semidefinite programming
We set V to be ℍ� =

{
^ ∈ ℂ�×� : ^ † = ^

}
– the space of Hermitian � ×�

matrices – endowed with with the trace (or Frobenius) inner product:

(^ ,_ ) = tr (^_ ) =
∑�

7 ,8=1
^ 7 ,8_ 8 ,7 .

Note that ℍ� is a real-valued vector space with �2 degrees of freedom. The
objective function is again a linear function linear objective function

5 (^ ) = (I ,^ ) = tr (I^ ) with I ∈ ℍ� .

This linear function is both convex and concave. Let us now turn our attention
to the feasible set which is a subset of ℍ� . The first part is very similar to linear
programming and involves; linear equality constraints ; linear equality constraints

(G7 ,^ ) = 17 for 1 ≤ 7 ≤ ;

with G1, . . . ,G; ∈ ℍ� and 11, . . . , 1; ∈ ℝ. Geometrically, each of these
constraints defines a hyperplane of dimension (�2 − 1) (co-dimension 1) in
ℍ� . The intersection of; such hyperplanes again forms an affine intersection
space

^ ∈ � (G1, 11) ∩ · · · ∩� (G; , 1;).
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We can succinctly represent this intersection by defining

A : ℍ� →ℍ;

^ ↦→diag ((G1,^ ) , . . . , (G; ,^ )) ,

and H = diag(11, . . . , 1;). Here, diag(11, . . . , 1;) is the diagonal matrix with
11 on the first diagonal entry, 12 on the second diagonal entry and so on. So,
in summary all affine constraints can be subsumed as{

^ ∈ ℍ� : A(^ ) = H
}
, (1.10)

in complete analogy to Eq. (1.7) for linear programs. The difference between
linear programs (for vectors) and semidefinite programs (for matrices) instead
arises from considering a different type of cone and therefore, by extension, a
different type of partial ordering. The cone of positive semidefinite (psd) matrices
is defined as convex cone constraint:

positive-semidefinite (psd)
matricesℍ�

+ =
{
^ ∈ ℍ� : 〈y ,^ y 〉 = y †^ y ≥ 0 for all y ∈ ℂ�

}
. (1.11)

Equivalently, ^ ∈ ℍ�
+ if and only if every eigenvalue of ^ is nonnegative. It is

easy to check that the cone of psd matrices is a convex set, more precisely: a
convex cone.

Exercise 1.15 (cone of psdmatrices). Show that the set of psd matricesℍ�
+ defined

in Eq. (1.11) is both a convex set (i.e. ^ ,_ ∈ ℍ�
+ ⇒ >^ + (1 − >)_ ∈ ℝ�

+ for
all > ∈ [0, 1]) and a cone (i.e. ^ ∈ ℍ� ⇒ U^ ∈ ℍ�

+ for all U ≥ 0).

The cone of psd matrices induces the following partial ordering relation
among Hermitian � ×� matrices: partial order induced by psd

cone
^ � _ if and only if ^ −_ ∈ ℍ�

+ .

In words: a matrix ^ is at least as big as another matrix _ if their matrix
difference ^ −_ has exclusively nonnegative eigenvalues. We use this notation
convention to succinctly abbreviate the psd condition itself as ^ � U , where
U ∈ ℍ� is the all-zeroes matrix.

A semidefinite program is obtained by intersecting the feasible set in
Eq. (1.10) with the convex cone of psd matrices ℍ�

+ =
{
^ ∈ ℍ� : ^ � U

}
.

Since both sets are convex, the intersection is convex as well.

Definition 1.16 (semidefinite program (SDP)). semidefinite program (SDP)A semidefinite program (SDP) is an
matrix-valued optimization problem of the form

maximize
^ ∈ℍ�

(I ,^ )

subject to A(^ ) = H ,

^ � U ,

where I ∈ ℍ� , H ∈ ℍ; (matrices) and A : ℍ� → ℍ; (linear map). This
is a convex optimization problem with �2 optimization variables,; equality
constraints and one conic constraint.



10 Lecture 1: Introduction to convex geometry / DRAFT

Computational Primitive (semidefinite programming). LPs are kind of tractableSemidefinite programs
admit tractable solutions whose runtime and memory scale (at most) poly-
nomially in � (matrix dimension) and; (number of linear constraints).

You will hear more about different types of SDP solvers in other lectures. For
now, we content ourselves with stating that the memory and runtime demands
of SPD solvers grow much faster with problem dimension than LP solvers do.
This, in practice, restricts the use of SDPs to � . 1000 even with dedicated
hardware.

1.5 Problems
Problem 1.17 (Variance of random variables). Consider a discrete random variable,
i.e. a weighted distribution of real-valued numbers: - = (>7 , -7 ) with -7 ∈ ℝ,
>7 ≥ 1 and

∑#
7=1 >7 = 1. The first two (uncentered) moments are

`1(- ) = E [- ] =
∑#

7=1
>7-7 and `2(- ) = E

[
- 2] = ∑#

7=1
>7-

2
7 .

Prove that the variance is always a nonnegative number, i.e,

f2(- ) = `2(- ) − `1(- )2 ≥ 0.

Problem 1.18 (convex functions achieve maximum at boundary of convex sets). Let
- ⊆ V be a convex set and let 5 : - → ℝ be a convex function. Prove the
following helpful equality:

max
y ∈-

5 (y ) = max
x : extreme point of -

5 (x ).

In words: a convex function achieves its maximum value at an extreme point of
the underlying convex set. Hint: use the Krein-Millman theorem: every y ∈ -
can be decomposed as

∑
7 >7x 7 , where each x 7 ∈ - is an extreme point.

Problem 1.19 (some convex optimization problems are hard). Fix a matrix G ∈
ℝ�×� and consider the following convex optimization problem over symmetric
� ×� matrices:

maximize
^ ∈ℍ�

(G,^ ) = tr (G^ )

subject to ^ ∈ ( = conv
{
ss † : s ∈ {±1}�

}
1 Verify that this is a convex optimization problem, i.e. ( ⊂ ℍ� is a convex
set and 5 (^ ) = (G,^ ) is a concave (and convex) function.

2 Show that this convex optimization problem is equivalent (in the sense
that it yields the same optimal function value) as the QUBO problem
introduced in Eq. (1.3).

3 Conclude that convexity alone is not enough to ensure that the underlying
problem can be solved efficiently.
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In words: not all convex optimization problems are simple.

Problem 1.20 (two platonic solids in� dimensions). Consider V =
(
ℝ� , 〈·, ·〉

)
and

let ‖x ‖�1 =
∑�
7=1 |x 7 | and ‖x ‖�∞ denote the �1 and �∞-norm respectively.

Consider the following two subsets of ℝ� :

��1 =
{
x ∈ ℝ� : ‖x ‖�1 ≤ 1

}
and ��∞ =

{
x ∈ ℝ� : ‖x ‖�∞ ≤ 1

}
.

1 Show that both ��1 and ��∞ are convex sets.
2 What do these sets look like in � = 2 and � = 3 dimensions?
3 Determine all extreme points for ��1 and ��∞ . How many are there?
4 Show that both convex sets are exactly equal to the convex hull of the
extreme points you identified in (3).

Context: convex sets that are described as the convex hull of finitely many
extreme points are called (convex) polytopes.



2. Distinguishing quantum states

Date: 28 February 2023

Agenda:

1 Recap.: LPs & SDPs
2 Probability theory
3 Quantum mechanics
4 Distinguishing distribu-

tions:

4.1 maximum likeli-
hood rule (LP)

4.2 Holevo-Helstrom
theorem (SDP)

Today, we will show that the difference between classical probability theory
and quantum mechanics is a direct analogue of the difference between linear
programming (LP) and semidefinite programming (SDP).

2.1 Recapitulation: Linear and semidefinite programming
Let us start by recapitulating these two concepts.

Linear programming (LP)
We endow the space ℝ� with the standard inner product

〈x , y 〉 =
3∑
7=1

F7G7

and define the non-negative orthant nonnegative orthant

ℝ3
+ = {x ∈ ℝ� : F7 ≥ 0, 1 ≤ 7 ≤ 3}.

This induces a partial order on ℝ� given by

x ≥ y ⇔ x − y ∈ ℝ3
+ ⇔ F7 ≥ G7 , 1 ≤ 7 ≤ 3.

A linear program (LP) is an optimization problem of the following form: linear program (LP)

maximize
z ∈ℝ�

〈c , z 〉

subject to 〈a 7 , z 〉 = 17 1 ≤ 7 ≤ ;,

z ≥ 0.
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The vectors c ∈ ℝ� , a1, . . . ,a; ∈ ℝ; and numbers 11, . . . , 1; ∈ ℝ com-
pletely specify the problem. Problems of this form can be solved efficiently.
Linear programming is a powerful technique from both an analytical and
computational point of view.

Semidefinite programming
We denote the space of � ×� hermitian matrices as ℍ� = {^ ∈ ℂ�×� : ^ ∗ =
^ } and endow it with the Frobenius (or Hilbert-Schmidt) inner product

(^ ,_ ) = tr(^_ ).

Remark 2.1 We note that while members of ℍ� can have complex entries, ℍ�

is not closed under multiplication with complex numbers and thus forms a
32-dimensional vector space over the real numbers.

A matrix ^ ∈ ℍ� is positive semidefinite (psd), if 〈x ,^ x 〉 ≥ 0 for all
x ∈ ℂ� . The set of psd matrices ℍ�

+ ⊂ ℍ� forms a convex cone. psd coneThis cone
induces the following partial ordering on ℍ� :

^ � _ ⇔ ^ −_ ∈ ℍ�
+ .

We succinctly write ^ � U to indicate that ^ ∈ ℍ� is psd.
A semidefinite program (SDP) is an optimization program of the following

form semidefinite program (SDP)

maximize
^ ∈ℍ�

(I ,^ )

subject to (G7 ,^ ) = 17 1 ≤ 7 ≤ ;,

^ � U .

This optimization is completely specified by the matrices I ,G1, . . . ,G; ∈ ℍ�

and; numbers 11, . . . , 1; ∈ ℝ.
Like LPs, SDPs are very useful both in theory and practice. We note that

LPs and SDPs arose in totally analogous ways from the triples (ℝ� , 〈·, ·〉, ≥)
and (ℍ� , (·, ·), �). We will now show that the difference between classical
probability theory and quantum mechanics can equally be understood as
replacing the former, with the latter triple.

2.2 (Discrete) probability theory
Probability theory is modeled by probability triples consisting of a sample space
(which contains all potential outcomes), a set of events (to which we might
want to assign probabilities), and a probability rule (assigning a probability to
each and every event). In the setting of discrete probability theory, the set of all
possible outcomes is finite (|Ω| = �). In this case, we can simply choose the
power set of Ω as the set of events and correspondingly, the probability triple is
fully characterized by a probability density vector that assigns a probability to
each outcome in Ω. Let e = (1, . . . , 1)) denote the all-ones vector in ℝ�
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Definition 2.2 (probability density). A probability density vector is a vector (probability) density vector

p =
©­­«
>1
...

>�

ª®®¬ ∈ ℝ� : p ≥ 0, 〈e ,p〉 =
�∑
7=1

>7 = 1.

Probability theory is concerned with characterizing the likelihood of events
or, equivalently, the distribution of measurement outcomes.

Definition 2.3 (measurement). events/measurementsMeasurements are resolutions of the identity (vec-
tor):

{h0 : 0 ∈ �} ⊂ ℝ� : h0 ≥ 0, 0 ∈ � and
∑

0 ∈�
h0 = 1.

Here, � is a (finite) set of potential measurement outcomes.

We still need a final ingredient to describe how probability densities (as
vectors in ℝ�) and measurements {h0 : 0 ∈ �} relate to the probability of
different measurement outcomes.

Definition 2.4 (probability rule). probability ruleFor a probability density p ∈ ℝ� and a mea-
surement {h0 : 0 ∈ �} ⊂ ℝ� define the probability rule

Pr [0 |p] = 〈h0 ,p〉, for all 0 ∈ �.

This assigns a probability to each possible outcome 0 of the measurement.

Example 2.5 (Fair dice roll). example: dice rollingThe probability density of a fair dice roll is a flat
distribution over 6 potential events: p = 1

61 ∈ ℝ
6. Suppose that we wish to

test whether a single dice roll results in either, {1, 2}, {3, 4}, or {5, 6}. This
measurement may be associated with the following resolution of identity:

ℎ {1,2} =

©­­­­­­­«

1
1
0
0
0
0

ª®®®®®®®¬
, ℎ {3,4} =

©­­­­­­­«

0
0
1
1
0
0

ª®®®®®®®¬
, ℎ {5,6} =

©­­­­­­­«

0
0
0
0
1
1

ª®®®®®®®¬
,

The probability rule then readily implies:

Pr [{1, 2} |p] = Pr [{3, 4} |p] = Pr [{5, 6} |p] = 1
3
.

�

We introduce the probability simplex in ℝ� , probability simplex

Δ�−1 B
{
F ∈ ℝ� : x ≥ 0, 〈e , x 〉 = 1

}
,

and observe that it equal to the convex hull of the standard basis vectors
e1 = (1, 0, . . . , 0)) , . . . , e� = (0, . . . , 0, 1)) :

Δ�−1 = conv {e1, . . . , e3 } .
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Definition 2.6 (pure probability distribution). pure probability distributionA probability distribution p ∈ Δ�−1
is called pure, if it is an extreme point of Δ�−1. This is the case if and only if
the probability distribution is deterministic.

The essential concepts of classical probability theory are summarized in
Table 2.1

Concept Explanation Mathematical formulation

probability density normalized, non-negative vectors p ∈ ℝ� p ≥ 0, 〈1,p 〉 = 1
measurement resolution of the identity {h0 : 0 ∈ � } h0 ≥ 0,

∑
0∈� h0 = 1

probability rule standard inner product Pr [0 |p ] = 〈h0 ,p 〉

Table 2.1 Axioms for classical probability theory: The structure of discrete proba-
bility theory is captured by the following geometric configuration: ℝ� endowed
with the partial order ≥ and the identity element 1 = (1, . . . , 1)) . This closely
resembles linear programming.

2.3 (Finite-dimensional) quantummechanics
The postulates of quantum mechanics naturally arise from an extension of clas-
sical probability theory. Replace the triple

(
ℝ� , ≥, 1

)
, by the triple

(
ℍ� , �, I

)
.

Here, I is the identity matrix, i.e. [I]7 ,8 = X7 ,8 . The analogous object to a
probability density vector is a (probability) density matrix.

Definition2.7 (densitymatrix). (probability) density matrixThe state of a� -dimensional quantummechanical
system is fully described by a density matrix

1 ∈ ℍ� : 1 � U , (I, 1) = tr(1) = 1.

In analogy to measurements in classical probability theory, we define a
quantum measurement as follows.

Definition 2.8 (measurement). measurementA measurement is a resolution of the identity
(matrix):

{N 0 : 0 ∈ �} : N 0 � U , 0 ∈ �,
∑
0 ∈�

N 0 = I.

Once more, we need a way to describe how density matrices and measure-
ments can be combined to tell us something about quantum measurements and
their outcomes. This is captured by the following rule.

Definition 2.9 (Born’s rule). Born’s (probability) ruleFor a density matrix 1 ∈ ℍ� and a measurement
{N 0 : 0 ∈ �} ⊂ ℍ� , we have the following probability rule:

Pr[0 |d] = (N 0 , 1) for 0 ∈ �. (2.1)

If a measurement is performed on a quantum mechanical density matrix,
two things happen:
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1 we obtain a random measurement outcome 0 ∈ � that is distributed
according to Eq. (2.1) (‘god does play dice’).

2 the quantum system described by 1 ceases to exist (‘wavefunction col-
lapse’).

Concept Explanation Mathematical formulation

Probability density normalized, psd matrix 1 ∈ ℍ� 1 � U , (I, 1) = 1
measurement resolution of the identity {N 0 : 0 ∈ � } N 0 � U ,

∑
0∈� N 0 = I

probability rule standard inner product Pr [0 |1 ] = (N 0 , 1)

Table 2.2 Axioms for quantum mechanics: The structure of quantum mechanics
is captured by the following geometric configuration: ℍ� endowed with the
psd order � and the identity matrix I. This closely resembles semidefinite
programming.

The fundamental axioms of quantum mechanics are a straightforward
generalization of classical probability theory, see Table 2.2. The transition
from classical to quantum probability theory resembles a transition from linear
programming to semidefinite programming.

Example 2.10 (Stern-Gerlach experiment). example: Stern-GerlachFix� = 2 (single “spin”) and consider
the density matrix

1 =

(
1 0
0 0

)
and two distinct potential measurements:{

N (H)±

}
=

{
1
2
I ± 1

2

(
1 0
0 −1

)}
=

{(
1 0
0 0

)
,

(
0 0
0 1

)}
,{

N (F)±

}
=

{
1
2
I ± 1

2

(
0 1
1 0

)}
=

{
1
2

(
1 1
1 1

)
,
1
2

(
1 −1
−1 1

)}
.

The resulting probabilities are then given by

Pr[+, (H) |1] =
((
1 0
0 1

)
,

(
1 0
0 0

))
= 1,

Pr[−, (H) |1] = 0,

Pr[+, (F) |1] =
(
1
2

(
1 1
1 1

)
,

(
1 0
0 0

))
=

1
2
,

Pr[−, (F) |1] = 1
2
.

This may seem surprising. The state 1 provides completely deterministic mea-
surement outcomes for

{
N (H)±

}
. Yet, the outcomes for

{
N (F)±

}
are completely

random. This interesting feature of quantum mechanics is the basis of the
famous Stern-Gerlach experiment (1923). �
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The union of all possible quantum states form a convex set in ℍ� which we
call quantum state space: quantum state space

S
(
ℍ�

)
=

{
^ ∈ ℍ� : ^ � U , (I,^ ) = tr(^ ) = 1

}
.

This is the quantum analogue of the classical probability simplex.

Definition 2.11 (pure density matrix). pure density matrixA density matrix 1 ∈ S(ℍ� ) is called pure if
it has rank-one, i.e. 1 = xx ∗ with x ∈ ℂ3 normalized to unit Euclidean length.

Pure quantum states correspond to extreme points of the convex set S(ℍ� )
and one can show

S� = conv
{
xx ∗ : x ∈ ℂ3 , 〈x , x 〉 = 1

}
.

This is the quantum version of the decomposition of the standard simplex into
the convex hull of its extreme points: Δ3−1 = conv {e1, . . . , e3 }. Classical
density vectors are extreme if and only if they are one-sparse, i.e. only one
component is different from zero. Quantum density matrices are extreme if
and only if they have rank-one. This is the natural matrix generalization of
sparsity: a rank-one matrix is one-sparse in its eigenbasis.

In contrast to pure density vectors (classical), pure density matrices (quan-
tum) are not necessarily deterministic. We have encountered this feature in
Example 2.10.

2.4 Distinguishing quantum and classical probability distributions
In the last two sections we have illustrated the common structure of classical
probability theory and quantum mechanics. Extending these parallels, we will
now show the optimality of the maximum likelihood rule, and the Holevo-
Helstrom theorem. Both address the task of distinguishing two probability
densities in the single-shot limit.

2.4.1 Classical: the maximum likelihood rule
Suppose that we perfectly know descriptions of two probability distributions
p ,q ∈ ℝ� and choose to play the following game: challenge: distinguish

classical distributions
a referee chooses one of

these distributions uniformly at random and hands it to us. We are allowed to
perform a single measurement and – based on its outcome – we must guess
which probability distribution was handed to us. We win the game if the guess
was correct, otherwise we lose.

Let us now try to come up with an optimal guessing strategy. Since we are
faced with a binary question, our decision should take the form of a binary
measurement: {

h> ,h?
}
: h? = 1 − h> and 1 � h> � 0.



18 Lecture 2: Distinguishing quantum states / DRAFT

A brief computation yields the following probability of guessing the distribution
correctly, based on this binary measurement:

>succ =
1
2
Pr [> |p] + 1

2
Pr [? |q ] = 1

2
(
〈h> ,p〉 + 〈h? ,q〉

)
=
1
2

(
〈h> ,p〉 + 〈e ,q〉 − 〈h> ,q〉

)
=
1
2
+ 1
2
〈hp ,p − q〉

We may rewrite the inner-product in the last line as
∑3
7=1

[
h>

]
7

(
[p]7 − [q ]�

)
.

The factor 1/2 in front of the expression should not be surprising: we can
always achieve a success probability of 1/2 by mere guessing. Optimizing over
measurements

{
h> ,h?

}
allows us to further improve upon this basic strategy.

This optimization problem assumes the form of a linear program: optimal distinguishing
strategy (LP)

maximize
h> ∈ℝ�

1
2
+ 1
2
〈p − q ,h>〉

subject to 1 ≥ h> ≥ 0.

This linear program is simple enough to solve it analytically. The optimal
measurement is Maximum Likelihood rule[

h♯
>

]
7
=

{
1, if >7 > ?7

0, else.
for 1 ≤ 7 ≤ 3.

The associated guessing strategy is called the maximum likelihood rule: upon
observing measurement outcome 7 , we guess p if [p]7 ≥ [q ]7 and otherwise q .
In words: we choose the distribution that is most likely to provide the outcome
that we observed. The associated optimal success probability is total variational distance

>
♯
succ =

1
2
+ 1
2
〈h♯

p ,p − q〉 =
1
2
+ 1
4

3∑
7=1

|>7 − ?7 | =
1
2
+ 1
4
‖p − q ‖�1

and the bias – the amount by which we improve over the naive guessing strategy
– is proportional to the total variational distance 1

2 ‖p −q ‖�1 of the distributions.

2.4.2 Quantum: the Holevo-Helstrom Theorem
Let us now consider the analogous problem in the quantum setting. A referee
hands us a black box that contains one of two quantum states: 1 or 2 . Assume
that we know the density matrices associated with both states and the referee
chooses each of them with equal probability.

Similarly to before, we are allowed to perform a single quantum measure-
ment to guess which state we obtained. Note that this single-shot limit is very
appropriate here. A quantum measurement necessarily destroys the quantum
state.
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Again, we can base our guessing rule on a two-outcome measurement (the
question is binary):

N d ,N f = I −N d .

If we observe d , we guess 1, otherwise we guess 2 . In analogy to the last
section, we compute the success probability associated with such a guessing
strategy:

>succ =
1
2
Pr[N d |1] +

1
2
Pr[N f |2 ] =

1
2

(
N d , 1

)
+ 1
2
(N f ,2 )

=
1
2

( (
N d , 1

)
+ (I, 1) −

(
N d ,2

) )
=
1
2
+ 1
2

(
N 1 , 1 − 2

)
Next, we optimize this expression over all possible choices of measurements: optimal distinguishing

strategy (SDP)
maximize
N d ∈ℍ�

1
2
+ 1
2

(
N d , 1 − 2

)
subject to I � N d � U .

Holevo-Helstrom ruleThis is a semidefinite program that is simple enough to solve analytically.
Apply an eigenvalue decomposition to ^ = 1 − 2 =

∑3
7=1 b7x 7x

∗
7
. Set V + =∑3

7=1 I {b7 > 0} x 7x ∗7 and V− =
∑3
7=1 I {b < 0} x 7x ∗7 . These are orthogonal

projectors onto the positive- and negative ranges of ^ = 1 − 2 . They are
the natural generalizations of the maximum likelihood rule to the quantum
setting and are called Holevo-Helstrom measurements (or rule). In particular,
the choice N ♯

> = V + is optimal and results in the following optimal success
probability: trace distance

>
♯
succ =

1
2
+ 1
4
‖1 − 2 ‖1

Here, ‖G‖1 = tr (|^ |) quad with |^ | =
√
^ 2 denotes the nuclear (or trace)

norm. It is the natural quantum generalization of the total variational distance.

Theorem 2.12 (Holevo-Helstrom). Holevo-Helstrom theoremThe optimal success probability for dis-
tinguishing two quantum states 1,2 ∈ ℍ� with a single measurement
is

>
♯
succ =

1
2
+ 1
4
‖1 − 2 ‖1.

The optimal measurement is the projector onto the positive range of 1 − 2
and depends on the states in question.

This observation dates back to Holevo1 [Hol73] and Helstrom [Hel69] and
plays a prominent role in modern quantum information theory. For instance,
when estimating density matrices from experimental observations, error bars
are typically reported in the nuclear norm.

1Alexander Holevo received the Claude E. Shannon Award in 2016 for his outstanding
contributions to quantum information theory.
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2.5 Problems
Problem 2.13 (distinguishing two types of dices). Consider the following two clas-
sical probability distributions for � = 6: p = (0, 1/3, 0, 1/3, 0, 1/3, 0, 1/3)† ∈
ℝ6 and q = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)† ∈ ℝ6. These describe a die that
only ever yields even numbers and a die that is fair. How would you attempt to
distinguish the two possibilities with a single coin toss?

Problem 2.14 (distinguishing two types of quantum states). Consider the following
two quantum states in a � dimensions: 1 =77 † (arbitrary pure state) and
2 = I�/� (maximally mixed state). How would you attempt to distinguish
the two possibilities with a single quantum measurement?

Problem 2.15 (Linear programs for �1-norm). Set e = (1, . . . , 1)) ∈ ℝ� , fix a
vector a ∈ ℝ� and consider the following two linear programs:

maximize
z ∈ℝ�

〈a , z 〉,

subject to e ≥ z ≥ −e

and

minimize
y ∈ℝ�

〈e , y 〉,

subject to y ≥ a , y ≥ −a .

1 Show that both compute the �1-norm of a , i.e. ‖a ‖�1 =
∑�
7=1 | [a]7 |.

2 Let ‖a ‖�2 =
√
〈a ,a〉 =

√∑�
7=1 [a]

2
7 and ‖a ‖�∞ = max1≤7 ≤� | [a]7 |

denote the �2 and �∞-norms of a . Use these LPs to show

‖a ‖�2 ≤ ‖a ‖�1 ≤ � ‖a ‖∞ for all a ∈ ℝ� .

Problem 2.16 (Simpler LPs for TV distance). Set e = (1, . . . , 1)) ∈ ℝ� and let
a = p − q be the difference of two probability vectors (p 7 ,q 7 ≥ 0 and
〈e ,p〉 = 〈e ,q〉 = 1). Show that the following two simplified linear programs
compute (two times) the total variational distance ‖p − q ‖�1 between these
distributions:

maximize
z ∈ℝ�

2〈a , z 〉,

subject to e ≥ z ≥ 0

and

minimize
y ∈ℝ�

〈e , y 〉,

subject to y ≥ a .
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Problem 2.17 (SDPs for trace norm and trace distance). Consider a Hermitian ma-
trix G ∈ ℍ� with eigenvalue decomposition G =

∑�
7=1 _7a 7a

†
7
. The trace

(Schatten-1) norm is defined as ‖G‖1 = tr ( |G |), where |G | =
√
G2 =∑�

7=1 |_7 |a 7a
†
7
is the matrix absolute value. In other words, ‖G‖1 =

∑�
7=1 |_7 |

is the �1-norm of the vector of eigenvalues (_1, . . . , _� ) ∈ ℝ� .

1 Write down a pair of semidefinite programs that compute the trace norm
of G.

2 Can you simplify these SDPs if you are promised that G = 1 − 2 is the
difference of two density matrices?

Hint: take inspiration from Problem 2.15 and Problem 2.16 which are conceptu-
ally very similar.
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3. Distinguishing quantum channels

Date: 01 March 2023

Agenda:

1 Background: quantum
channels

2 induced trace distance
3 diamond distance
4 SDP for diamond dis-

tance

3.1 Motivation and background
In the last lecture, we have asked ourselves a well-motivated question from
quantum information: what is the best strategy to distinguish two (known)
quantum states?

Today, we will continue this line of thought by moving from quantum states
to quantum channels that describe evolutions of quantum mechanical systems.
Formally speaking, quantum channels are linear maps F : ℍ� → ℍ�′ that
map density matrices to density matrices in a strong sense.

Definition 3.1 (quantum channel). quantum channelA linear map F : ℍ� → ℍ�′ is called a
quantum channel if

1 F⊗ I�̃ (_ ) � 0 for all_ ∈ ℍ� ⊗ ℍ�̃ (complete positivity);
2 (I,A(^ )) = (I,^ ) for all ^ ∈ ℍ� (trace preserving).

Here, I(^ ) = ^ denotes the identity operation (do nothing) on ℍ�̃ .

Quantum channels model physical evolutions in both open and closed
systems. In the context of quantum computation/simulation this includes ideal
unitary evolutions as well as practical implementation errors.

Example 3.2 (Some prominent single-qubit channels). Fix � = 2, i.e. a single
qubit and consider the four Pauli matrices

I =
(
1 0
0 1

)
, ^ =

(
0 1
1 0

)
, _ =

(
0 −i
i 0

)
, ` =

(
1 0
0 −1

)
∈ ℍ2.

These matrices are Hermitian and unitary (]] † =] †] =] 2 = I). Many
prominent single-qubit channels are defined in terms of these Pauli matrices:
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1 identity: I(1) = I1I = 1,
2 bit flip: X(1) = ^ 1^ ,
3 dephasing: Z(1) = ` 1` ,
4 depolarizing: D(1) = 1

4 (I1I + ^ 1^ +_ 1_ + ` 1` ) = (I,1)2 I.

These channels are all extreme in the sense that their effect is strong as it can
be. We obtain less severe versions of these channels by considering probabilistic
mixtures between F(channel) and I (do nothing):

F> (1) = (1 − >)I(1) + >F(1) with > ∈ [0, 1].

�

The objective of today’s lecture is the channel distinguishability problem: objective: distinguish two
quantum channels

let
F1,F2 be two known quantum channels. One of them is chosen uniformly at
random (with probability 1/2 each) and handed to you. You get one channel
invocation – i.e. choose an input state, feed it into the channel to obtain an
output state – and have to decide which channel it is. What is the best you can
do?

3.2 Induced trace distance
One straightforward solution strategy is to reduce the problem of distinguishing
channels to the problem of distinguishing quantum states. This can be achieved
by fixing an input state (at will) 1 ∈ ℍ� and feed it into the unknown channel:

1out = F1(1) or 1out = F2(1).

This reduces the task at hand to a problem we already know. With a 2-outcome
measurement (N , I −N ), we obtain

>succ =
1
2
Pr [N |F1(1)] +

1
2
Pr [I −N |F2(1)]

=
1
2
+ 1
2
(N ,F1(1) − F2(1)) .

This formula is valid for any measurement I � N � U and any input state
1 � 0, (I, 1) = 1. We can take inspiration from the previous lecture and
optimize over the measurement N to obtain

V1 (F1,F2) = max
I�N �0

(N ,F1(1) − F2(1)) =
1
2
‖F1(1) − F2(1)‖1 .

Doing so produces the trace distance between the two output states. But now,
more is possible. We can also optimize the input state:

V (F1,F1) =
1
2

max
1�0,(I,1)=1

‖F1(1) − F2(1)‖1 .
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This is now a distance measure (norm) between the channel F1 and the channel
F2. We delineate it explicitly by writing

‖F1 − F2‖1→1 := 2V (F1,F2) = max
1�0,(I,1)=1

‖(F1 − F2) (1)‖1 . (3.1)

Viewed as a norm, this distance measure is called the induced trace norm. We
can use insights from convex geometry to streamline this optimization problem
somewhat.

Lemma 3.3 (induced trace distance). induced trace distanceLet F1,F2 : ℍ� → ℍ�′ be two quantum
channels. Then, the induced trace distance from Eq. (3.1) is equivalent to the
following optimization problem over pure input states:

‖F1 − F2‖1→1 = max
u ∈ℂ� ,〈u ,u 〉=1




F1

(
uu†

)
− F2

(
uu†

)



1
.

Proof. Let 1♯ be the density matrix that achieves the optimal value on the
left hand side. Apply an eigenvalue decomposition to decompose it as 1♯ =∑�
7=1 >7u 7u

†
7
with >7 ≥ 0 and

∑�
7=1 >7 = 1. Now, note that the function

5 (1) = ‖(F1 − F2) (1)‖1 is a convex function on the space of all density
matrices. Optimality of 1♯ and the definition of convexity now ensure

max
1�0,(O ,1)=1

5 (1) =5
(
1♯

)
= 5

(∑�

7=1
>7u 7u

†
7

)
≤

∑�

7=1
>7 5

(
u 7u

†
7

)
≤ max

1≤7 ≤�
5

(
u 7u

†
7

)
≤ max

u ∈ℂ� ,〈u ,u 〉=1
5

(
uu†

)
.

An inequality in the converse direction readily follows from noting that 1 = uu†

is a strict subset of all possible density matrices. �

3.3 Diamond distance
The induced trace distance is the product of a good candidate solution for
distinguishing two quantum channels. But, it is not the end of the story. We
can do even more by taking the laws of quantum information theory seriously.
Entanglement, in particular, allows us to strongly correlate our input state
with an additional quantum system that does not participate in the channel
evolution. entanglement-assisted

channel distinguishabilityMore formally, this is achieved by considering an input state 1 ∈ ℍ� ⊗ℍ�̃ '
ℍ��̃ , where �̃ ≥ 0 is the dimension of the auxiliar system. We then apply the
unknown channel to the first � -level system while leaving the second �̃ -level
system untouched. Note that the dimension �̃ of the auxiliar system is now
also a parameter that can be optimized. Optimizing this parameter, as well as
the input state 1 and a 2-outcome measurement at the very end produces a
distance measure that really reflects the best quantum strategy conceivable for
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distinguishing two known quantum channels. This distance measure (norm) is
called the diamond distance (or completely bounded trace distance):

‖F1 − F2‖� = sup
�̃ ∈ℕ

max
u ∈ℂ�̃ ,〈u ,u 〉=1



(F1 − F2) ⊗ I�̃ (uu∗)



1 (3.2)

Here, we have re-used our observation from Lemma 3.3 to restrict our op-
timization over input states to exclusively pure states. This formula looks
daunting – especially the supremum over all possible auxiliar dimension �̃
should command respect. Fortunately, it is possible to show that we do not
really need to consider all possible auxiliar dimensions �̃ ∈ ℕ.
Fact 3.4 The supremum over �̃ ∈ ℕ in Eq. (3.2) is achieved at �̃ = � . �

We refer to Ref. [Wat11] for an elegant and rigorous proof. Instead, we
capitalize on this observation to deliver a formal and (somewhat) readable
definition of the diamond distance.

Definition 3.5 (diamond distance). diamond distanceLet F1,F2 : ℍ� → ℍ� be two quantum
channels. Then, their diamond distance is defined as

‖F1 − F2‖� = max
u ∈ℂ� ⊗ℂ� ,〈u ,u 〉=1

‖(F1 − F2) ⊗ I� (uu∗)‖1 . (3.3)

More generally, we can define the diamond norm for any type of map
Φ : ℍ� → ℍ�′, not only channel differencesΦ = F1 −F2. The diamond norm
has several appealing properties: diamond norm is

sub-multiplicative
1 The diamond norm is sub-multiplicative under the composition of maps:

‖Φ1 ◦Φ2‖� ≤ ‖Φ1‖� ‖Φ2‖� . (3.4)

2 The diamond norm is sub-multiplicative under taking tensor products of
maps:

‖Φ1 ⊗ Φ2‖� ≤ ‖Φ1‖� ‖Φ2‖� . (3.5)

Exercise 3.6 Prove Rel. (3.4) and Rel. (3.5).

These two properties are important and very desirable. The strong opti-
mization over input states and output measurements also endow the diamond
distance with a ‘worst case’ character. It is one of the largest (and most
pessimistic) distance measures conceivable, because it uses every trick in the
quantum information toolbox. This worst-case character has awarded the dia-
mond distance a prominent role in the analysis of error channels and how their
effect propagates. Understanding this is central for quantum error correction
and fault tolerance. Virtually all rigorous threshold theorems that exist do
require gate errors that are bounded in diamond distance.

3.4 SDP for diamond distance
We will now show that it is possible to compute the diamond distance between
two channels F1,F2 : ℍ� → ℍ�′ by evaluating a semidefinite program (SDP).



26 Lecture 3: Distinguishing quantum channels / DRAFT

As a first step, we need a convenient representation of the channels that is
compatible with the SDP paradigm (linear objective function and constraints
in matrix space). The Choi matrix is one such channel representation. It
corresponds to the quantum state that arises from preparing a (pure) maximally
entangled state on ℍ� ⊗ ℍ� and inputting one half of it to the channel F7
while leaving the other half unchanged (do nothing). More formally, let


 = 88† ∈ ℍ� ⊗ ℍ� with 8 =
1
√
�

∑�

7=1
e 7 ⊗ e 7 ∈ ℂ� ⊗ ℂ�

be a maximally entangled (Bell) state. We then define the Choi matrix of
channel F7 : ℍ� → ℍ�′ as Choi matrix

P (F7 ) = F7 ⊗ I� (Ω) ∈ ℍ�′ ⊗ ℍ� ' ℍ��′. (3.6)

Choi matrices enjoy a prominent role in the study of quantum channels. This is
largely due to the following fact.

Fact 3.7 (Choi-Jamiolkowski isomorphism). The Choi matrix (3.6) establishes a
linear one-to-one correspondence (isomorphism) between Hermicity preserving
maps F : ℍ� ⊗ ℍ�′ and Hermitian matrices in ℍ�′ ⊗ ℍ� . Moreover, a map F

is a quantum channel if and only if its Choi matrix P (F) is a quantum state. �

We refer to standard quantum information sources, like Watrous’ book, for
a more detailed context and proof. For us it suffices to note that the Choi matrix
is linear. And, therefore, we can readily extend this context to differences of
quantum channels:

P (F1 − F2) = P (F1) − P (F2) ∈ ℍ�′ ⊗ ℍ� .

This representation allows us to state the main result of today’s lecture.

Theorem 3.8 (SDP for diamond distance). SDP for diamond distanceLet F1,F2 : ℍ� → ℍ�′ be two
quantum channels. Then, the following SDP only depends on the Choi matrix
P (F1 − F2) ∈ ℍ�′ ⊗ ℍ� and computes the diamond distance ‖F1 − F2‖�:

maximize
] ∈ℍ�′⊗ℍ� ,1∈ℍ�

2� (P (F1 − F2) ,] ) (3.7)

subject to I�′ ⊗ 1 �] , tr (1) = 1,
] , 1 � 0.

Proof. We start with the definition of the diamond distance from Definition 3.5:

‖F1 − F2‖� = max
u ∈ℂ� ⊗ℂ� ,〈u ,u 〉=1

‖(F1 − F2) ⊗ I� (uu∗)‖1 . (3.8)

Next, we use the following mathematical trick to rewrite any pure bipartite
input state:

u =
√
� (I� ⊗ H)8 with H ∈ ℂ�×� , (H ,H) = 1.
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To see why this is true, note that He 8 =
∑�
7=1 H 7 ,8e 8 and, therefore

√
� (I� ⊗ H)8 =

∑�

8=1
(I�e 8 ) ⊗ (He 8 )

=
∑�

8=1
e 8 ⊗

(∑�

7=1
H 7 ,8e 7

)
=
∑�

7 ,8=1
H 7 ,8e 8 ⊗ e 7 .

This general formula is expressive enough to represent any pure bipartite state
u ∈ ℂ� ⊗ ℂ� . Moreover, the normalization constraint translates to

1 = 〈u ,u〉 =
∑�

7 ,8=1

��H 8 ,7

��2 = (H ,H) .
We can now use this reparametrization of u (and also u†) to rewrite Eq. (3.8)
as

‖F1 − F2‖� = max
H ∈ℂ�×� ,‖H ‖2=1




(F1 − F2) ⊗ I�

(√
� (I� ⊗ H)88∗(I� ⊗ H†)

√
�

)



1

= max
H ∈ℂ�×� ,‖H ‖2=1

�



(F1 − F2) ⊗ I�

(
(I� ⊗ H)
(I� ⊗ H†)

)



1

= max
H ∈ℂ�×� ,‖H ‖2=1

�


(I� ⊗ H) (F1 − F2) ⊗ I� (
) (I� ⊗ H†)




1

= max
H ∈ℂ�×� ,‖H ‖2=1

�


(I� ⊗ H)P (F1 − F2) (I� ⊗ H†)




1

Here, we have used the critical fact that (F1 − F2) ⊗ I� acts like the identity
on the second tensor factor. This has allowed us to commute (I� ⊗ H) and
(I� ⊗H†) through the channel action and recognize the Choi matrix P (F1−F2)
at the center.

Next, we note that this Choi matrix is Hermitian and also traceless and
the adjungation with I� ⊗ H does not change that. This allows us to use our
insights from last lecture (Helstrom’s theorem) to express the trace distance as
a maximization over 2-outcome measurements (Q , I�′ ⊗ I� − Q ) on the space
ℍ�′ ⊗ ℍ� . This produces the following optimization problem for ‖F1 − F2‖�:

maximize
Q ∈ℍ�′⊗ℍ� ,H ∈ℂ�×�

2�
(
I ⊗ H†)Q (I ⊗ H), P (F1 − F2)

)
subject to I�′ ⊗ I� � Q � 0, (H ,H) = 1,

This now almost looks like a SDP, but the constraint on H is not quite convex
yet. We can resolve this final issue with a bit of reformulation and pattern
recognition. Introduce

] =

(
I�′ ⊗ H†

)
Q (I�′ ⊗ H) ∈ ℍ�′ ⊗ ℍ�

and note that I�′ ⊗ I� � Q � 0 is equivalent to demanding I�′ ⊗ H†H �
] � 0. Finally, we set 1 = H†H which must obey 1 � U (think: Cholesky
decomposition) and the normalization constraint of H translates to

tr(1) = tr
(
H†H

)
= (H ,H) = 1.
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This is now a nice linear constraint and we are done. �

3.5 Problems
Problem 3.9 (Sub-multiplicativity of the diamond norm). LetΦ1 : ℍ� → ℍ�′ and
Φ2 : ℍ�′ → ℍ�′′ be two linear maps (e.g. two channel differences). Show
that the diamond norm (3.3) obeys

‖Φ1 ◦Φ2‖� ≤ ‖Φ1‖� ‖Φ2‖� and ‖Φ1 ⊗ Φ2‖� ≤ ‖Φ1‖� ‖Φ2‖� .

Problem 3.10 (diamond distance for single-qubit Pauli channels). Fix � = 2 and
consider the single-qubit Pauli channel W(1) =] 1] with] ∈ {^ ,_ ,` }.

1 Compute the diamond distance between Wand I (do nothing).
2 Fix > ∈ [0, 1] and set W> (1) = (1 − >)I(1) + >W(1). Compute the
diamond distance between W> and I (do nothing).

Problem 3.11 (diamond distance between identity and Hadamard). Consider the
following unitary single-qubit channels: I(1) = I1I and H(1) = N1N ,
where

N = N † =
1
√
2

(
1 1
1 −1

)
∈ ℍ2.

Show (by whatever means you see fit) that ‖I−H‖� = 2, i.e. the diamond
distance between these two channels is maximal.

Problem 3.12 (diamond distance between identity and depolarizing channel). Fix
� ≥ 2 and let I, D> : ℍ� → ℍ� be identity and depolarizing channel,
i.e. I(1) = 1 and D> (1) = (1 −>)1 +> (I,1)�

I for some > ∈ [0, 1]. Show that

‖I− D‖� ≥ 2>
(
1 − 1

�2

)
.

Do you think that this lower bound on the diamond distance is optimal?

Problem 3.13 (More general diamond norm SDP). The SDP from Theorem 3.8 only
applies to linear mapsΦ : ℍ� → ℍ�′ that are trace-annihilating (tr (Φ(^ )) =
0 for all ^ ), e.g. differences between two quantum channels. Modify the
diamond distance SDP such that it applies to general Hermicity-preserving
maps.

Lecture bibliography
[Wat11] J. Watrous. Theory of Quantum Information (lecture notes). 2011.
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4 synopsis

4.1 Motivation: SDPs as proof technique
Today we will use the complete structure of semidefinite programs and use it
as a mathematical proof technique. We will show by means of an example on
how to use SDPs for structure recognition.

The starting point is a more thorough treatment of SDPs and their structural
properties. We refer to standard references for a thorough treatment. Formally,
a SDP is specified by a triple (A,IH) where A : ℍ� → ℍ; is a linear map
and I ∈ ℍ� , as well as H ∈ ℍ; are matrices. A primal SDP in standard form
then corresponds to

maximize
` ∈ℍ�

(I ,` ) (primal SDP)

subject to A(` ) = H ,

` � 0

The associated dual problem in standard form is primal-dual SDP pair in
standard form

minimize
_ ∈ℍ;

(_ ,H) (dual SDP)

subject to A∗ (_ ) � I .

Here, A∗ : ℍ; → ℍ� is the adjoint of A : ℍ� → ℍ; . It is defined as the
(unique) map that obeys

(_ ,A(` )) = (A∗(_ ),` ) for all ` ∈ ℍ� and_ ∈ ℍ; .
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Note that this definition is very similar to the formal definition of the adjoint
matrix1.

As the name suggests, primal and dual SDP are dual versions of the same
problem. Weak duality weak dualitystates that primal objective values are always be bounded
by dual objective values:

(I ,` ) ≤ (A∗(_ ),` ) = (_ ,A(` )) = (_ ,H)

for every ` ∈ ℍ� with A(` ) = H , ` � U (primal feasible point) and_ ∈ ℍ;

with A∗(_ ) � I (dual feasible).

Definition 4.1 (strong duality). strong dualityA primal-dual SDP pair satisfies strong duality if
there exists a primal feasible point ` ♯ and a dual feasible point_ ♯ such that(
I ,` ♯

)
=

(
_ ♯,H

)
. In other words: primal and dual SDP produce the same

optimal function value.

Most SDP pairs do satisfy strong duality. Standard results, like Slater’s
conditions, allow to quickly verify strong duality in concrete instances. All SDPs
discussed in these lecture have this feature. The following technical statement
follows from strong duality (without proof).

Theorem 4.2 (complementary slackness). complementary slacknessSuppose that (A,I ,J) character-
izes an SDP that obeys strong duality and let ` ♯ ∈ ℍ� and _ ♯ ∈ ℍ; be
optimal primal and dual feasible points (i.e. (I ,` ♯) = (J ,_ ♯)). Then,

A∗
(
_ ♯

)
` ♯ = I` ♯ and A(` ♯)_ ♯ = J_ ♯.

Note that the second condition is trivial. It merely restates the linear
constraints of the primal SDP. The first condition, however, is surprising. It
provides a relation between optimal primal and dual solutions in terms of an
equality between two matrix products. This matrix-valued equality subsumes
many scalar equalities (for each matrix entry) and can unravel a lot of structure.

Sometimes, these structural relations provide enough guidance to ‘guess’
the optimal solution of an SDP (in standard form) without having to actually
run any numerical solvers. This mindset uses SDPs as a mathematical proof
technique and we will do one such example today. It addresses the diamond
distance between two quantum channels which we introduced and discussed
in the last lecture.

4.2 Setting and main result
Let F1,F2 : ℍ� → ℍ�′ be two quantum channels. Last lecture, we introduced
the diamond distance between these channels: diamond distance

‖F1 − F2‖� = max
1�0,tr(1)=1

‖(F1 − F2) ⊗ I� (1)‖1 .

1For G ∈ ℂ�′×� , the adjoint G† ∈ ℂ�×�′ is the unique matrix that obeys 〈y ,Gz 〉 = 〈G†y , z 〉
for all z ∈ ℂ� and y ∈ ℂ�′ .
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The diamond distance quantifies the best achievable success probability when it
comes to distinguishing F1 from F2 with a single channel use. Mathematically
speaking it corresponds to maximizing a convex function (a shifted trace
distance) over a convex set (the set of all quantum states in ℍ� ⊗ ℍ�).
Convexity tells us that this maximum is achieved at the boundary of the convex
feasible set:

‖F1 − F2‖� = max
u ∈ℂ� ⊗ℂ� ,〈u ,u 〉=1




(F1 − F2) ⊗ I�

(
uu†

)



1
.

This optimization problem does not look very convex. Somewhat surprisingly,
it is nonetheless possible to reformulate this maximization of a convex function
over a (non-)convex set as a semidefinite program: primal SDP for diamond

distance
maximize

] ∈ℍ�′⊗ℍ� ,1∈ℍ�
2� (P (F1 − F2) ,] ) (4.1)

subject to I�′ ⊗ 1 �] , tr (1) = 1,
] , 1 � 0.

Here, P (F1 −F2) = P (F1) − P (F2) ∈ ℍ�′ ⊗ ℍ� denotes the difference of Choi
matrices. The SDP reformulation (4.1) has been the main insight from last
lecture and today we further explore this SDP reformulation.

As a first step, we convert this SDP into (primal) standard form. This can be
achieved by subsuming both optimization matrices into a single larger matrix
variable

` =
©­«
1 · ·
· ] ·
· · Y

ª®¬ ∈ ℍ�+�′�+�′� .

Here, the dots on the off-diagonal blocks are placeholders for arbitrary matrix
blocks. We need not constrain them, because optimization of the objective
function will implicitly force these matrix blocks to vanish identically. The final
block matrix Y is a so-called slack variable. It allows us to reformulate the
inequality constraint I�′ ⊗ 1 �] as an equality constraint: I�′ ⊗ 1 =] + Y
for some Y � 0. Doing so allows us to recast the SDP in Eq. (4.1) as a primal
SDP in standard form.

Proposition 4.3 (diamond distance SDP in primal standard form). diamond distance SDP in
standard form

The following
triple captures the diamond distance SDP in standard form:

I =
©­«
U U U
U 2� P U
U U U

ª®¬
� �� ′ �� ′

�

�� ′

�� ′
I =

(
1 U
U U

)1 �� ′

1
�� ′

,

and the linear map A : ℍ�+��′+��′ → ℍ1+��′ acts like

A
©­«
1 · ·
· ] ·
· · Y

ª®¬ =

(
tr (1) U1×��′
U��′×1 I� ⊗ 1 −] − Y

)
.
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It is a relatively straightforward if tedious exercise to show that the adjoint
map is

A∗
(
_ ·
· _

)
=

©­«
_I + tr1 (_ ) U U

U −_ U
U U −_

ª®¬ . (4.2)

This allows us to readily infer the dual formulation of our diamond distance
SDP.

Corollary 4.4 (diamond distance SDP in simplified dual form). dual SDP for diamond
distance

The following SDP
is the dual problem for computing ‖F1 − F2‖�:

minimize
_ ∈ℍ��′

_max (tr1 (_ )) (4.3)

subject to _ � 2� P (F1 − F2) ,
_ � 0,

where _max (tr1(_ )) is the largest eigenvalue of the partial trace of_ .

Exercise 4.5 (Proof of Corollary 4.4). Verify Eq. (4.2), formulate the dual SDP in
standard form and simplify it to obtain Corollary 4.4.

We are now ready to present the main result of today’s lecture. In the
following, we write |G | to denote the absolute value of a Hermitian matrix
G. This matrix is defined as |G | =

√
G2. If G =

∑
7 _7u 7u

†
7
is an eigenvalue

decomposition of G, then |G | = ∑
7 |_7 |u 7u†7 . This matrix is always positive

semidefinite. We will also need the partial trace (over the first tensor factor):

tr1 (Y ⊗Z ) = tr (Y )Z

and linearly extended to all of ℍ�′ ⊗ ℍ� .

Theorem 4.6 (simple diamond distance formula for certain channel differences).
analytic diamond distance for
certain channel differences

Let P (F1 − F2) ∈ ℍ�′ ⊗ ℍ� be the Choi matrix difference of two quantum
channels F1,F2 : ℍ� → ℍ�′. The following two statements are equivalent:

tr1 ( |P (F1 − F2) |) = 2 I� for some constant 2 ≥ 0.
(1)(2) ‖F1 − F2‖� = ‖P (F1 − F2)‖1

This equivalence relation has first been established in Ref. [Kli+16] and
combines two statements that are qualitatively very different. (1) is a property
of the Choi matrix that resembles the notion of extremely mixed subsystems
(think: maximal entanglement). This condition can be checked for entire
families of quantum channels.

Condition (2), on the other hand, tells us that the diamond distance is
much easier to compute than one might think. In particular, we do not need to
solve an SDP at all. The trace norm of the Choi matrix can be computed with
a single eigenvalue decomposition. Conceptually, (2) also tells us something
remarkable about the channel distinguishability protocol. There is no need
to optimize over bipartite input states at all. The maximally entangled (Bell)
state is guaranteed to achieve optimal distinguishability.
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4.3 Proof of Theorem 4.6
Let us now present the proof of Theorem 4.6. We will proceed in two steps:
show that (1) implies (2) and then show that (2) also implies (1). These steps
are technical, but use a standard template that is relatively straightforward
to execute. This standard template is very versatile and can be used to get
geometrical insights into many problems that are convex in nature. Sometimes,
these insights can subsequently be converted into a much shorter and more
elegant proof argument. We refer to Ref. [Mic+18] for a much shorter argument
that does not require duality or SDPs.

4.3.1 Part A: Property (1) implies Property (2)
This is the easy direction. Let us use P as shorthand notation for P (F1 − F2).
Property (1) ensures that this matrix obeys tr1 (|P |) = 2 I� for some constant
2 ≥ 0. Note that we can explicitly compute this constant by taking the
normalized trace:

2 =
1
�
tr (2 I� ) =

1
�
tr (tr1 ( |P |)) =

1
�
tr ( |P |) = 1

�
‖P ‖1. (4.4)

We can now use this structural assumption to guess a good solution for the
(simplified) dual SDP (4.3):

_ guess = � ( |P | + P )

A moment of thought reveals that _ guess � 2� P (because |P | � P ) and
_ guess � U (because |P | + P =

∑
7 ( |_7 | + _7 )u 7u†7 and |_7 | + _7 ≥ 0 for any

_7 ∈ ℝ). So,_ guess is dual feasible. Moreover, Property (1) ensures

tr1
(
_ guess

)
= �tr1 ( |P |) +�tr1 (P ) = 2�I� +U = ‖P ‖1I� . (4.5)

Here we have used our explicit computation of the constant 2 from Eq. (4.4)
and an important feature of Choi matrices: P (F7 ) = I�/� , because F7 is trace
preserving. This in turn demands

tr1(P ) = tr1 (P (F1)) − tr1 (P (F2)) =
1
�
I� −

1
�
I� = U . (4.6)

Eq. (4.5) is really the main insight, because it ensures that the optimal dual
SDP function value must obey

‖F1 − F2‖� =


tr1 (

_ ♯

)


∞ ≤



tr1 (
_ guess

)


∞ = ‖P ‖1 ‖I� ‖∞ = ‖P ‖1 .

In turn, this produces an upper bound on the actual value of the diamond
distance: An inequality in the converse direction readily follows from the
definition of the diamond distance:

‖F1 − F2‖� = max
u ∈ℂ� ⊗ℂ� ,〈u ,u 〉=1




(F1 − F2) ⊗ I�

(
uu†

)



1

≥



(F1 − F2) ⊗ I�

(
88†

)



1

= ‖P (F1 − F2)‖1 = ‖P ‖1 .
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4.3.2 Part B: Property (2) implies Property (1)
Now, we assume ‖F1 − F2‖� = ‖P (F1 − F2)‖1 and must use this information
to deduce structural insights about the absolute value of the Choi matrix. Again,
we use the shorthand notation P = P (F1 − F2) and guess a good solution for
the (simplified) primal SDP:

1guess =
1
�
I� and ] guess =

1
2�
(I�′ ⊗ I� + sign(P )) ,

where sign(P ) = ∑
7 sign(_7 )u 7u†7 if P =

∑
7 _7u 7u

†
7
. The matrix sign general-

izes the scalar sign function to matrices. The resulting eigenvalues take on +1,
0 and −1 which ensures that] guess � 0. In addition, 1guess is the maximally
mixed state and therefore feasible. Moreover,

I�′ ⊗ 1guess =
1
2�
(I�′ ⊗ I� + I�′ ⊗ I� ) �

1
2�
(I�′ ⊗ I� + sign(P )) =] guess.

This guess achieves a (simplified) primal SDP value of

2�
(
P ,] guess

)
= (P , I�′ ⊗ I� ) + (P , sign(P )) = tr (P ) + ‖P ‖1 = ‖P ‖1 ,

because P is traceless (recall from Eq. (4.6) that already the partial trace must
vanish). Property (2) ensures that this objective value is actually optimal and
so this (simplified) primal feasible pair is actually an optimal feasible point. We
can use it to readily extract a primal optimal point for the diamond distance
SDP in standard form from Proposition 4.3:

` ♯ =
©­«
1guess · ·
· ] guess ·
· · I�′ ⊗ 1guess −] guess

ª®¬
=

1
2�

©­«
2I� · ·
· I�′ ⊗ I� + sign(P ) ·
· · I�′ ⊗ I� − sign(P )

ª®¬ .
This is our starting point for applying Theorem 4.2 (complementary slackness).
We make the following ansatz for the dual optimal point

_ ♯ =

(
_♯ ·
· _̃ ♯

)
.

Complementary slackness the provides the following nontrivial relation between
the primal optimal point (which we know) and the dual optimal point (which
we don’t yet know): A∗

(
_ ♯

)
` ♯ = I` ♯, where A∗ is defined in Eq. (4.2)

and I is defined in Proposition 4.3. Relatively straightforward block matrix
multiplications yield

A∗
(
_ ♯

)
` ♯ =

(
_♯I� + tr1

(
_̃ ♯

)
U U

U −_̃ ♯ U
U U −_̃ ♯

)
1
2�

(
2I� · ·
· I�′ ⊗ I� + sign(P ) ·
· · I�′ ⊗ I� − sign(P )

)
=

1
2�

©­«
2_♯I� + 2tr1

(
_̃ ♯

)
U U

U −_̃ ♯ − _̃ ♯sign(P ) U
U U −_̃ ♯ + _̃ ♯sign(P )

ª®¬ ,
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as well as

I` ♯ =

(
U U U
U 2� P U
U U U

)
1
2�

(
2I� U U
U I��′ + sign(P ) U
U U I��′ − sign(P )

)
=
©­«
U U U
U (P + |P |) U
U U U

ª®¬ .
Complementary slackness (Theorem 4.2) equates these two matrix products
which really produces three different matrix-valued equations:

1
2�

(
2_♯I� + 2tr1

(
_̃ ♯

) )
=U ,

− 1
2�

(
_̃ ♯ + _̃ ♯sign (P )

)
=P + |P | ,

−_̃ ♯ + _̃ ♯sign(P ) =U ,

or equivalently:

_♯I� = − tr
(
_̃ ♯

)
,

_̃ ♯ + _̃ ♯sign(P ) = − 2� (P + |P |) ,
_̃ ♯sign(P ) =_̃ ♯.

Inserting the third equality into the second one yields _̃ ♯ = −� (P + |P |). Note
that this is exactly the guess_ guess we made in the first part of the proof. But
this time it is a rigorous consequence of knowing the primal optimal solution
and using complementary slackness. We can insert this observation into the
remaining equation to conclude

_♯I� = − tr
(
_̃ ♯

)
= +�tr

(
P +

��P̃ ��) = U +�tr1 ( |P |) = �tr1 ( |P |) ,

because tr (P ) = U according to Eq. (4.6). This, however, is just Property (1) if
we divide by � and set 2 = _♯/� ∈ ℝ.

4.4 Consequences: diamond distance between Pauli channels
Let us now briefly move closer to standard quantum information and computa-
tion and consider channels on <-qubit systems, i.e. � = 2< . A <-qubit Pauli
matrix/operator is a <-fold tensor product of single-qubit Paulis: <-qubit Pauli operator

V =V 1 ⊗ · · · ⊗ V < with V 7 ∈
{
I,] F ,] G ,] H

}
,

] F =

(
0 1
1 0

)
, ] G =

(
0 −i
i 0

)
, ] H =

(
1 0
0 −1

)
There are in total 4< different <-qubit Pauli matrices and we can label them
by integers and use the convention V 1 = I ⊗ · · · ⊗ I = I� . Each <-qubit Pauli
matrix is Hermitian, i.e. V ∈ (ℍ2)⊗< ' ℍ� and obeys V 2 = I2 ⊗ · · · ⊗ I2 = I� .
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Different Pauli operators are mutually orthogonal: 〈V ,V ′〉 = tr (VV ′) = 0 if
V ≠ V ′. We say that a channel P : ℍ� → ℍ� is a (<-qubit) Pauli channel <-qubit Pauli channelif
we can write it as

P (1) =
∑4<

7=1
>7V 7 dV 7 with >7 ≥ 0 and

∑4<

7=1
>7 = 1.

Intuitively: we apply the <-qubit Pauli matrix V 7 (viewed as a unitary) with
probability >7 . Pauli channels are very important when modeling noise in
quantum computation. Examples include bit flip, phase flip, depolarizing
noise on single and multiple qubits. In this context, the most important Pauli
channel is I(1) = V 11V 1, aka do nothing or perfect execution of a certain
functionality. We can use our findings to derive an easy formula for diamond
distances between Pauli channels.

Proposition 4.7 easy formula for diamond
distance of Pauli channels

Fix � = 2< (< qubits) and let P1(1) =
∑4<
7=1 V 71V 7 and

P2(1) =
∑4<
7=1 ?7V 71V 7 be two Pauli channels. Then,

‖P1 −P2‖� =
∑4<

7=1
|>7 − ?7 | .

In words: the diamond distance between two Pauli channels is exactly given
by the total variational distance of the accompanying weight distributions.

Proof. This claim is almost an immediate consequence of Theorem 4.6. We
‘only’ have to recognize the relevant structure. Let us start by writing down the
Choi matrix of the difference:

P =P (P1) − P (P2) =
∑4<

7=1
(>7 − ?7 ) (V 7 ⊗ I� )88† (V 7 ⊗ I� )

=
∑4<

7=1
(>7 − ?7 )878

†
7

(4.7)

with w 7 = (V 7 ⊗ I)8 and 8 = (1/�)∑�
7=1 e 7 ⊗ e 7 . Now, note that all these

vectors are orthonormal and maximally entangled (think Bell basis, but more
general). Orthonormality is implied by

〈87 ,8 8 〉 =8†78 8 = 8†(V 7 ⊗ I(V 8 ⊗ I)8

=8∗
(
V 7V 8 ⊗ I�

)
w =

1
�
tr

(
V 7V 8

)
= X7 ,8 ,

while maximum entanglement follows from

tr1
(
878

†
7

)
=tr1

(
(V 7 ⊗ I)88†(V 7 ⊗ I)

)
=tr1

(
(V 2

7 ⊗ I)88†
)
= tr1

(
818

†
1

)
=

1
�
I� .

Orthnormality of the 87 s ensures that our formula from Eq. (4.7) is actually
an eigenvalue decomposition. This makes it very easy to compute the matrix
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absolute value, its partial trace and its trace norm:

|P | =
∑4<

7=1
|>7 − ?7 |878

∗
7 ,

tr1 ( |P |) =
∑4<

7=1
|>7 − ?7 | tr1

(
818

†
1

)
=

(∑4<

7=1
|>7 − ?7 |

)
1
�
I� = 2 I� ,

‖P ‖1 =tr ( |P |) = tr (tr1 ( |P |)) =
(∑4<

7=1
|>7 − ?7 |

)
tr

(
1
�
I�

)
=
∑4<

7=1
|>7 − ?7 | .

Here, we have also used the observation that each 87 is a maximally entangled
state. The second computation ensures that diamond distance and trace
distance are the same, the third display computes the latter. �

4.5 Problems
Problem 4.8 (dual SDP for diamond distance). Derive the dual SDP for the dia-
mond distance provided in Corollaty 4.4.

Problem 4.9 (Problems 3.10 and 3.12 with benefit of hindsight). 1 Fix � = 2
and compute the diamond distance between I(1) (do nothing) and
W> (1) = (1 − >)I(1) + >W(1) (Pauli channel) with > ∈ [0, 1] and
W(1) =] 1] with] ∈ {^ ,_ ,` }.

2 Fix� ≥ 2 and compute the diamond distance betweenI(1) (do nothing)
and D> (1) = (1 − >)1 + > (I,1)�

I.

Problem 4.10 (Diamond distance for tensor products of depolarizing channels). Fix
� = 2, < ∈ ℕ and let D>7 (1) = (1−>7 )1 +>7

(I,1)
�

I with 1 ≤ 7 ≤ < be different
single-qubit depolarizing channels. Compute the diamond distance between
the the <-fold tensor product of the identity I1 ⊗ · · · ⊗ I< (do nothing on
<-qubits) and tensor product D>1 ⊗ · · · ⊗ D>< of these depolarizing channels.
In formulas, compute

I⊗ · · · ⊗ I− D>1 ⊗ · · · ⊗ D><
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5. Complexity by design

Date: 03 March 2023

Agenda:

1 Motivation and state-
ment of results

2 Proof part 1: almost
all states have high
complexity (concentra-
tion+counting)

3 Proof part 2: complex-
ity by design (partial de-
randomization)

4 Generalizations and
follow-up work

The quantum complexity of a unitary transformation or quantum state is
defined as the size of the shortest quantum computation that executes the
unitary or prepares the state. It is reasonable to expect that the complexity of a
quantum state governed by a chaotic many-body Hamiltonian grows linearly
with time for a time that is exponential in the system size; however, because
it is hard to rule out a shortcut that improves the efficiency of a computation,
it is notoriously difficult to derive lower bounds on quantum complexity for
particular unitaries or states without making additional assumptions. To go
further, one may study more generic models of complexity growth. We provide
a rigorous connection between complexity growth and unitary  -designs,
ensembles that capture the randomness of the unitary group. This connection
allows us to leverage existing results about design growth to draw conclusions
about the growth of complexity.
This chapter discusses joint work with Nicholas Hunter Jones, Wissam Chemis-
sany, Fernando G.S.L. Brandão and John Preskill [Bra+21].

Warning5.1 (different notational conventions). This final lecture has a dedicated
quantum computing focus. We underscore this by switching notational
conventions: today, we use bra-ket notation |k〉 (column vector), 〈k |
(adjoint row vector) and normal text* ,+ for matrices. We refer to Table 5.1
for additional notation conventions. �
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symbol meaning
3 local dimension (qudits)
< number of qudits
� = 3< total Hilbert space dimension
G universal 2-qu3 it gate set
) ,' circuit sizes (i.e. nr. of gates)
V' set of all local size-' circuits

(with 2-local gates chosen from G)
Table 5.1 Summary of the notation conventions used in this talk.

5.1 Motivation and statement of results
The complexity of a circuit (quantum or classical) is defined as the minimal
number of elementary steps needed to evaluate the function. This depends on
the choice of model (‘gate set’), but only in a mild way. It allows us to assert
whether a given computational task is ‘easy’ (small complexity) or ‘hard’ (high
complexity).

In quantum physics, the notion of complexity extends meaningfully to
quantum states as well. State complexity measures the effort/time required to
produce |k〉 from a simple starting state |k0〉, e.g. a product state |0〉.

Here are two basic facts about the analysis of complexity:

• upper bounds are ‘easy’, because every circuit decomposition yields one
for free. Certain circuit families also come with universal upper bounds,
e.g. 2$ (<) for <-qubit quantum circuits and $ (<2/log(<)) for <-qubit
Clifford circuits.

• lower bounds are ‘hard’, because it requires us to rule out potential short-
cuts. In classical Boolean logic, complexity captures the notion of optimal
compilation. This problem sits in the second level of the polynomial
hierarchy. Quantum circuit compilation is even harder.

Circuit complexity has long been a prominent foundational concept in
(classical and quantum) computer science. Recently, state complexity has
been identified as a useful concept in quantum physics. Here are a couple of
examples:

a1 topological phases of matter (at zero temperature) can be classified using
the complexity of the ground state wave function;

a2 chaotic Hamiltonians produce long-time quantum evolutions that generate
highly complex states;

a3 the AdS/CFT-correspondence posits that the complexity of a quantum state
of the boundary theory corresponds to the volume in the bulk geometry,
which is hidden behind the event horizon of a black hole.

It is extremely difficult to study complexity growth for concrete Hamiltonian
evolutions. An alternative approach is to consider ensembles of circuits, and
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exp(Ω(n))
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Figure 5.1 Expected complexity growth in random circuits. Conjecture 5.2 states
that, for random quantum circuits acting on < qu3 its, the circuit complexity
grows linearly with circuit size (time) until it saturates at a value exponentially
large in <.

to derive lower bounds on complexity, which hold with high probability when
samples are selected from these ensembles. This together with the AdS/CFT
conjecture gave rise to the following conjecture:

Conjecture 5.2 (Brown, Susskind [BS18]). the complexity of random
circuits is conjectured to grow
linearly with size

Most local (random) circuits of size )
have a complexity that scales linearly in ) for an exponentially long time.

This conjecture is visualized in Figure 5.1 Today, we will prove a related
statement regarding the growth of state complexity under local random circuits
on < qui3 its (� = 3<). To achieve such a goal, we will work with the following
standard notion of state complexity.

Definition 5.3 (state complexity). formal definition of state
complexity

Let V' be the set of all size-' circuits on <
qui3 its with gates from a universal gate set G, let |k0〉 be a fixed ‘simple’ state.
For X ∈ (0, 1), we say that |k〉 ∈ ℂ� has X -complexity at most ' if

min
+ ∈V'

‖|k〉〈k | −* |k0〉〈k0 |* †‖1 ≤ X ,

or, equivalently
max
+ ∈V'

|〈k |+ |k0〉|2 ≥ 1 − X 2.

if this is the case, we write �X ( |k〉) ≤ ' .
Based on this formal definition, we will prove the following rigorous lower

bound on typical state complexity generated by local random circuits.

Theorem 5.4 (’polynomial’ growth in state complexity, informal). ‘polynomial’ state complexity
growth for exponentially long
time

‘Very many’
local random circuits of size ) produce states with complexity (at least)
Ω

(
) 1/(5+= (1) ) . This growth persists up to circuit sizes ) ≈

√
� = 3</2.

Similar statements are true for stronger notions of state and circuit com-
plexity as well. These are inspired by state and channel discrimination tasks
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and we will briefly discuss them in Section 5.5.

5.2 Proof part 1: Almost all states have high complexity
Let us start by analyzing the complexity of generic (i.e. Haar-random) <-qu3 it
states. These are states sampled uniformly from the complex unit sphere
in � = 3< dimensions. There, concentration of measure together with a
simple counting argument yield exponentially strong lower bounds on the state
complexity.

Lemma 5.5 (exponential concentration for Haar random states). exponential concentration for
Haar-random states

Fix |D〉 ∈ ℂ� (� =

3<) and let |ℎ〉 Haar∼ ℂ� be a Haar random state. Then,

Pr |ℎ 〉
[
|〈D,ℎ〉|2 ≥ g

]
≤ 2e−�g/2 for any g ≥ 0.

This is a poor man’s variant of a beautiful measure concentration phe-
nomenon called Levy’s lemma. It applies much more generally and is best
proved via isoperometric inequalities. The argument presented here, however,
does provide valuable guidance on how to deal with ensembles that are not
quite Haar random. Our proof will be based on the following fact that is
somewhat folklore in the quantum information community, see e.g. [Kue19,
Lecture 05].

Fact 5.6 (Haar integration; folklore). Let |ℎ〉 Haar∼ ℂ� (� = 3<) be a Haar random
state. Then, for all 9 ∈ ℕ+

E |ℎ 〉
[
( |ℎ〉〈ℎ |)⊗9

]
=

∫
Haar
( |ℎ〉〈ℎ |)⊗9 d`(ℎ) =

(
� + 9 − 1

9

)−1
%∨9 , (5.1)

where %∨9 is the projector onto the totally symmetric subspace of
(
ℂ�

) ⊗9 . �

Proof of Lemma 5.5. Let us start by computing the moments of the random
variable |〈D,ℎ〉|2. For any 9 ∈ ℕ+ the Haar integration formula (Fact 5.6)
yields

E |ℎ 〉
[
|〈D,ℎ〉|29

]
=tr

(
( |D〉〈D |)⊗9 E |ℎ 〉

[
(|ℎ〉〈ℎ |)⊗9

] )
=tr

(
( |D〉〈D |)⊗9

(
� + 9 − 1

9

)−1
%∨9

)
(5.2)

=

(
� + 9 − 1

9

)
≤ 9 !
�9

. (5.3)

This moment behavior indicates sub-exponential moment growth. We can
now use some elementary tricks from probability theory to turn these moment
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bounds into an exponential concentration bound:

Pr |ℎ 〉
[
|〈D,ℎ〉|2 ≥ g

]
=Pr |ℎ 〉

[
� |〈D,ℎ〉|2/2 ≥ �g/2

]
=Pr |ℎ 〉

[
exp

(
� |〈D,ℎ〉|2/2

)
≥ exp (�g/2)

]
≤e−�g/2E

[
exp

(
� |〈D,ℎ〉|2/2

) ]
=e−�g/2

∑∞
9=0

1
9 !
�9

29
E |ℎ 〉

[
|〈D,ℎ〉|29

]
≤e−�g/2

∑∞
9=0

1
29

= 2e−�g/2.

The key step is Markov’s inequality (Pr [( ≥ U] ≤ E [(] /U for any nonnegative
random variable () in line three. �

Exponential concentration for Haar-random states implies the following
strong claim about the complexity minimal complexity.

Proposition 5.7 (Haar random states have almost maximal complexity). almost all states have almost
maximal state complexity

A Haar-
random state |ℎ〉 ∈ ℂ� obeys

Pr |ℎ 〉 [�X ( |ℎ〉) ≤ '] ≤ <2' |G|'e−� (1−X 2)/2 for any ' ∈ ℕ+.

This probability remains tiny until

' ≈ �

2 log(<) =
3<

2 log(<) .

Note that the Haar measure is fair in the sense that it assigns the same
infinitesimal weight to each � -dimensional quantum state. Laplace’s definition
of probability therefore allows us to interpret Eq. (5.7) as a bound on the relative
volume of complexity-' states. This volume remains tiny until ' approaches
the overall Hilbert space dimension � = 2< . In other words: almost all states
have almost maximal state complexity.

Proof of Proposition 5.7. Insert the definition of state complexity, see Defini-
tion 5.3, and apply a union bound (Boole’s inequality) to obtain

Pr |ℎ 〉 [�X ( |ℎ〉) ≤ '] =Pr |ℎ 〉
[
max
+ ∈V'

|〈+k0, ℎ〉|2 ≥ 1 − X 2
]

≤
∑

+ ∈V'
Pr

[
|〈+k0, ℎ〉|2 ≥ 1 − X 2] .

We can now apply Lemma 5.5 to each term in the sum. This produces

Pr |ℎ 〉 [�X ( |ℎ〉) ≤ '] ≤ |V' | e−� (1−X
2)/2

and the claim follows from counting the number of different circuits in V' . �
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5.3 Proof part 2: complexity by design
Our study of the complexity of Haar random states is a promising starting point.
But it doesn’t allow us to address less generic state ensembles. One solution is
to apply a partial derandomization based on the Haar integration formula (5.1).
Proposition 5.7 is contingent on the assumption that this formula is true for all
tensor powers 9 ∈ ℕ+ This allowed us to control all 9 moments of |〈D,ℎ〉|2
and arrive at an exponentially strong concentration formula (Lemma 5.5). We
can relax these assumptions by assuming that the Haar integration formula
is only approximately true for the first  tensor powers. Ensembles with this
property are called n-approximate  -designs.

Definition 5.8 (approximate  -design). (approximate)  -designFix n ∈ (0, 1) and a threshold  ∈ ℕ+.
We say that a state ensemble {>7 , |ℎ7 〉} ⊂ ℂ� forms an n-approximate  -design
if 




E |ℎ 〉 [( |ℎ〉〈ℎ |)⊗9 ] − (

� + 9 − 1
9

)−1
%∨9







1

≤ n for all 9 = 1, . . . ,  .

Note that for  = 1, this requirement is met by any state ensemble whose
average is close to the maximally mixed state. Sampling computational basis
states uniformly at random is one concrete example. Haar random states are
another extreme case that occurs when we let  tend to infinity. Adjusting
the design order  allows us to interpolate between those extremes. And,
remarkably, the typical state complexity associated with such ensembles varies
accordingly.

Proposition 5.9 (complexity by  -design). most  -design states have
complexity linear in  

Suppose that |ℎ〉 ∈ ℂ� is sampled
from an n-approximate  -design. Then,

Pr |ℎ 〉 [�X ( |ℎ〉)] ≤ <' |G|'
(

 

(1 − X 2)�

) 
for all ' ∈ ℕ+.

This probability remains tiny until

' ≈  (< − log( ))
log(<) .

Warning 5.10 Eq. (5.9) becomes vacuous once the design order  approaches
the total system size � = 3< . This puts an upper limit on the amount of
progress we can make by letting  become larger and larger. �

Proof of Proposition 5.9. We will do the proof for the extreme case n = 0. An
extension to n > 0 is relatively straightforward. The key ingredient is to
replace the Haar concentration formula with a weaker concentration bound
that only uses the first  moments. Fix |D〉 ∈ ℂ� arbitrary and g ≥ 0. Markov’s
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inequality then implies polynomial concentration for
 -designs

Pr |ℎ 〉
[
|〈D,ℎ〉|2 ≥ g

]
=Pr |ℎ 〉

[
|〈D,ℎ〉|2 ≥ g 

]
≤g− E

[
|〈D,ℎ〉|2 

]
=g−9

(
� +  − 1

 

)−1
≤

(
 

�g

) 
.

Here, we have made use of the assumption that the  -design approximation is
perfect (n = 0). This allows us to directly recycle the exact Haar integration
from Eq. (5.3). The claim then readily follows from retracing the steps of the
previous proof, but with this weaker polynomial concentration formula. �

5.4 Proof part 3: connection to local random circuits
Proposition 5.9 highlights that the complexity of a randomly selected  -design
state increases linearly with  until a certain threshold is met ( ≈ � = 3<).
But, so far,  -designs have ben a rather abstract concept. The following deep
result allows us to relate  -designs to random circuits of increasing size.

Fact 5.11 (local random circuits generate 9-designs [Haf22])). local random circuits form
 -designs

Local random circuits
of size ) = $

(
< 4+= (1) (< + log(1/n))

)
produce state ensembles * |k0〉

that form n-approximate  -designs. �

This is a very recent and substantial improvement of a seminal result by
Brandão, Horodecki andHarrow [BHH16]. Ourmain result is now an immediate
consequence of Proposition 5.9 and Fact 5.11. The detailed conversion is a bit
cumbersome, but here is the main gist.

Theorem 5.12 (’polynomial’ growth in state complexity, formal). ‘polynomial’ state complexity
growth (formal)

Fix |k0〉 ∈ ℂ�

and let* be a local random circuit of size ) . Then, with high probability

�X (* |k0〉) = Ω
(
) 1/(4+= (1)

)
,

where we have suppressed the dependence on < (nr. of qu3 its) and X . This
growth persists up to exponential circuit sizes ) ≈

√
� = 3</2.

It is also possible to turn this probabilistic statement into a quantitative
bound on the minimal number of high-complexity states that have this property.
It must grow exponentially in circuit depth as exp

(
Ω() 1/(5+= (1)) ) . The trick

is to exploit the fact that the weight distribution of a  -design cannot be too
spiky. This then implies a direct relation between the probability of producing
a high complexity state and the minimal number of high-complexity states
within the entire ensemble.
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5.5 Generalizations and follow-up work
The proof technique introduced above is very versatile and can be adjusted to
cover stronger notions of complexity as well. Circuit complexity is one such
example. We say that a unitary* ∈ U(�) has X -complexity at most ' if formal definition of circuit

complexity
min
+ ∈V'



* ·* † −+ ·+ †

� ≤ X . (5.4)

Here, ‖ · ‖� denotes the diamond distance of the two unitary channels involved.
If Eq. (5.4) holds, we write �X (* ) ≤ ' . It should be not surprising at this
point that circuit complexity also grows with circuit size.

Theorem 5.13 (‘polynomial’ growth in state complexity, informal). ‘polynomial’ circuit
complexity growth

‘Most’ local
random circuits of size ) produce unitaries with complexity (at least)
Ω

(
) 1/(5+= (1)) ) . This growth persists up to circuit sizes ) ≈

√
� = 3</2.

To prove this claim, it is helpful to first relate the diamond distance to
another property that is easier to control:

‖* ·* † −+ ·+ †‖� ≤ X ⇒
���tr (+ †* )���2 ≥ �2(1 − X 2).

This necessary condition is much easier to control. In particular, we can use
more general Haar integration techniques to bound moments and deduce
polynomial concentration bounds. The rest of the proof is then almost identical
to the state complexity case.

stronger/operational
definitions of complexity

Next, wewant to point out that it is possible to introduce stronger/operational
complexity notions for both states and unitary circuits. These are based on
the operational task of distinguishing the state/unitary in question from the
most useless state/channel conceivable. For states this is the maximally mixed
state g = I/� , while for channels this is the completely depolarizing channel
D(d) = tr(d)g . In both cases, the optimal single-shot distinguishability
protocols are known. They give rise to the trace distance ‖|k〉〈k | − g ‖1 and
the diamond distance ‖* ·* † − D‖�, respectively. But achieving these optimal
values requires measurement procedures whose complexity mimics that of the
state/unitary in question. This allows us to indirectly capture complexity by
limiting the circuit size allowed for executing distinguishing measurements.
A formal definition would go beyond the scope of this talk. Instead, we refer
to Figure 5.2 (state complexity) and Figure 5.3 (circuit complexity) for visual
illustrations. These stronger/operational notions of complexity imply the ones
used so far, but the converse is not necessarily true, as the following example
shows.

Example 5.14 Let |ℎ〉 be a Haar-random state on (< − 1) qu3 its and define the
<-qu3 it state |k〉 = |ℎ〉 ⊗ |0〉. Then, this state has exponential state complexity
according to Definition 5.3. But it is actually very easy to distinguish |k〉 from
g = I/� . A computational basis measurement on the last qubit (and ignoring
everything else) does the job with reasonable probability – especially if the
local dimension ? is large. �
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r

Figure 5.2 Pictographic illustration of strong state complexity. A black-box either
outputs a (known) pure state d = |k〉〈k |, or the maximally mixed state
d0 =

1
3
I. The task is to correctly guess which one it produced by applying a pre-

processing circuit+ (blue line pattern) of limited size @ and performing a simple
measurement (right). We say that |k〉 has strong/operational state complexity
at most @ if the probability of correctly distinguishing both possibilities is close
to optimal.

r′ r′′

|φ0〉

|φ0〉

Figure 5.3 Pictographic illustration of strong circuit complexity. A black box
(center) takes quantum states as inputs and applies either a unitary channel
U(d) = *d* †, or the depolarizing channel D(d) = g = I/� . The task is to
correctly guess which evolution occurred. The rules of the game allow short pre-
and post-processing circuits (blue line patterns) that may involve a quantum
memory. The final guess must be based on a simple measurement (right). We
say that* has strong/operational circuit complexity at most @ = @ ′ + @ ′′ if the
probability of correctly distinguishing both options is close to optimal.

This feature of strong/operational complexity delays the onset of complexity
growth up to circuit sizes that cover all qu3 its involved. Such a behavior
accurately addresses physical effects like operator growth and the switchback
effect in holography.

We conclude with a beautiful result by Haferkamp et al. that proves
Conjecture 5.2 for certain random circuit families acting on < qubits (3 = 2).
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