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Abstract

An Interpolatory Estimate
and Shift Operators

This thesis comprises two main parts. The first part, that is Chapter 2, focuses
on an interpolatory estimate for the vector–valued directional Haar projection. The
scalar–valued version of this interpolatory inequality was crucial in the work of S.
Müller, and was later extended by S. Müller, J. Lee and P. F. X. Müller, in order to
obtain sequential weak lower semi-continuity for integrals arising in the theory of
compensated compactness. In Chapter 2 we will establish a vector–valued version of
this interpolatory estimate by using martingale methods suitable for UMD–spaces.
With this vector-valued interpolatory key result at hand we will extend the result
of S. Müller, J. Lee and P. F. X. Müller on sequential weak lower semi-continuity
to vector–valued functions.

In the second part, Chapter 3, we will give a new proof for the estimates on the
shift operators Tm and Um, first established by T. Figiel. The proof of T. Figiel
involves hard combinatorics and has many cases to be considered, especially for
the structurally more complicated operator Um. We will use the well-known one-
third-trick to circumvent the hard combinatorics of T. Figiel and thereby reduce
the estimates for Tm to the simplest case. Furthermore, we will decompose the
more complex operator Um into five parts, where each of these parts behaves like
the much simpler operator Tm. So the one-third-trick in conjunction with this
decomposition of Um allows us not only to treat the operators Tm and Um equally,
but also to consider solely the simplest case for both operators.
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Kurzfassung

An Interpolatory Estimate
and Shift Operators

Diese Dissertation umfaßt zwei Hauptteile. Der Schwerpunkt des ersten Teils
ist eine interpolatorische Ungleichung für die vektorwertige direktionale Haarpro-
jektion, welche in Kapitel 2 behandelt wird. Die skalarwertige Version dieser inter-
polatorischen Ungleichung, war ausschlagebend in der Arbeit von S. Müller, welche
später von S. Müller, J. Lee and P. F. X. Müller erweitert wurde, um schwache Fol-
genunterhalbstetigkeit für aus dem Gebiet Compensated Compactness kommende
Integrale zu erhalten. In Kapitel 2 werden wir mittels für UMD Räume geeignete
Martingale Methoden eine vektorwertige Version dieser interpolatorischen Ungle-
ichung beweisen. Mit diesem vektorwertigen interpolatorischen Schlüsselergebnis
werden wir das Ergebnis von S. Müller, J. Lee and P. F. X. Müller über schwache
Folgenunterhalbstetigkeit auf vektorwertige Funktionen erweitern.

Im zweiten Teil, Kapitel 3, werden wir einen neuen Beweis für die Abschätzun-
gen für die Shift Operatoren Tm und Um, welche als erstes von T. Figiel bewiesen
wurden, angeben. Der Beweis von T. Figiel, insbesondere für den strukturell kom-
plexeren Operator Um, beinhaltet eine Vielzahl von Fallunterscheidungen und harte
Kombinatorik. Wir werden den wohlbekannten Eindrittel-Trick verwenden um die
harte Kombinatorik von T. Figiel zu umgehen, und somit die Abschätzungen für
Tm auf den einfachsten Fall zurückführen. Des Weiteren werden wir den kom-
plexeren Operator Um in fünf Teile zerlegen, die sich wie der wesentlich einfachere
Operator Tm verhalten. Also ermöglicht uns der Eindrittel-Trick zusammen mit
dieser Zerlegung des Operators Um nicht nur die Operatoren Tm und Um gleicher-
maßen zu behandeln, sondern auch für beide Operatoren nur den einfachsten Fall
zu betrachten.
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CHAPTER 1

Preliminaries

This brief section will provide notions and tools used frequently in what follows.
First, we will introduce the Haar system supported on dyadic cubes. Then the
notions of Banach spaces with the UMD–property and type and cotype of Banach
spaces will be discussed, briefly. We recall Kahane’s contraction principle and
Bourgain’s version of Stein’s martingale inequality. Then we turn to the shift
operators Tm, m ∈ Zn.

The Haar System.
For the Haar system supported on cubes we refer the reader to [Cie87].
Consider the collection of dyadic intervals at scale j ∈ Z given by

Dj =
{
[2−jk, 2−j(k + 1)[ : k ∈ Z

}
,

and the collection of the dyadic intervals

D =
⋃

j∈Z
Dj .

We define the L∞–normalized Haar system by

h[0,1[(t) = 1[0, 12 [
(t)− 1[ 12 ,1[

(t), t ∈ R,

and for every I ∈ D set

hI(t) = h[0,1[
( t− inf I

|I|
)
, t ∈ R,

where 1A denotes the characteristic function of a set A.
In arbitrary dimensions n ≥ 2 one can obtain a basis for Lp(Rn) as follows.

For every ε = (ε1, . . . , εn) ∈ {0, 1}n, ε 6= 0 define

h
(ε)
Q (t) =

n∏

i=1

hεiIi (ti),

where t = (t1, . . . , tn) ∈ Rn, Q = I1 × · · · × In, |I1| = . . . = |In|, Ii ∈ D , and by hεiIi
we denote the function

hεiIi =

{
hIi , εi = 1,

1Ii , εi = 0.

We shall call the collection of all such cubes Q by Q, so

Q =
{
I1 × · · · × In : Ii ∈ D , 1 ≤ i ≤ n, |I1| = · · · = |In|

}
.

For a dyadic cube Q ∈ Q the side length of Q is

sidelength(Q) = |I1|.
Finally, define the dyadic predecessor map π : Q → Q, where the dyadic pre-
decessor π(Q) is the unique cube M ∈ Q with M ⊃ Q and sidelength(M) =
2 · sidelength(Q). By πλ, λ ≥ 1 we denote the composition of the function π with
itself.
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14 1. PRELIMINARIES

Banach Spaces with the UMD–Property.
By Lp(Ω, µ;X) we denote the space of functions with values in X , Bochner–

integrable with respect to µ. If Ω = Rn and µ is the Lebesgue measure | · | on Rn,
then set Lp

X(Rn) = Lp(Rn, | · |;X), if unambiguous further abbreviated as Lp
X .

We say X is a UMD space if for every X–valued martingale difference sequence
{dj}j ⊂ Lp(Ω, µ;X) and choice of signs εj ∈ {−1, 1} one has

∥∥∑

j

εj dj
∥∥
Lp(Ω,µ;X)

≤ Up(X) ·
∥∥∑

j

dj
∥∥
Lp(Ω,µ;X)

, (0.1)

where Up(X) does not depend on εj or dj . The constant Up(X) is called UMD–
constant. We refer the reader to [Bur81].

Type and Cotype.
A Banach space X is said to be of type T, 1 < T ≤ 2, respectively of cotype

C, 2 ≤ C < ∞, if there are constants A(T, X) > 0 and B(C, X) > 0, such that for
every finite set of vectors {xj}j ⊂ X we have

∫ 1

0

∥∥∑

j

rj(t)xj
∥∥
X
dt ≤ A(T, X) ·

(∑

j

‖xj‖TX
)1/T

, (0.2)

respectively

∫ 1

0

∥∥∑

j

rj(t)xj
∥∥
X
dt ≥ B(C, X) ·

(∑

j

‖xj‖CX
)1/C

, (0.3)

where {rj}j is an independent sequence of Rademacher functions.
It is well known that if X is a UMD–space, then for every 1 < p <∞ the space

Lp
X(Rn) has (non–trivial) type and cotype (see [Mau75], [MP76] and [Ald79]).

Kahane’s Contraction Principle.
For every Banach space X , 1 ≤ p < ∞, finite set {xj}j ⊂ X and bounded

sequence of scalars {cj}j we have
(∫ 1

0

∥∥∥
∑

j

rj(t) cj xj

∥∥∥
p

X
dt

)1/p

≤ sup
j

|cj | ·
(∫ 1

0

∥∥∥
∑

j

rj(t)xj

∥∥∥
p

X
dt

)1/p

, (0.4)

where {rj}j denotes an independent sequence of Rademacher functions. For details
see [Kah85]. Below we give a short proof, see [Kah85].

Proof. By scaling inequality (0.4), we may assume |cj | ≤ 1, for all j. We
represent each cj as the series cj =

∑
k≥1 εjk 2

−k, with suitable εjk ∈ {±1} and
observe

(∫ 1

0

∥∥∥
∑

j

rj(t) cj xj

∥∥∥
p

X
dt

)1/p

≤
∑

k≥1

2−k

(∫ 1

0

∥∥∥
∑

j

rj(t) εjk xj

∥∥∥
p

X
dt

)1/p

=

(∫ 1

0

∥∥∥
∑

j

rj(t)xj

∥∥∥
p

X
dt

)1/p

.

The last equality holds true since
∑

j rj(t) εjk xj has the same distribution as∑
j rj(t)xj for all choices of signs εjk. �
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The Martingale Inequality of Stein – Bourgain’s Version.
Let (Ω,F, µ) be a probability space, and let F1 ⊂ . . . ⊂ Fm ⊂ F denote an

increasing sequence of σ–algebras. For every choice of f1, . . . , fm ∈ Lp(Ω, µ;X) let
r1, . . . , rm denote independent Rademacher functions, then

∫ 1

0

∥∥
m∑

i=1

ri(t) E(fi|Fi)
∥∥
Lp(Ω,µ;X)

dt ≤ C ·
∫ 1

0

∥∥
m∑

i=1

ri(t) fi
∥∥
Lp(Ω,µ;X)

dt, (0.5)

where C depends only on p and X .
The Banach space X having the UMD–property assures C < ∞. The scalar

valued version of (0.5) by E. M. Stein can be found in [Ste70b]. The vector valued
extension is due to J. Bourgain [Bou86]. The proof below is taken from [FW01].

Proof. For all 0 ≤ t ≤ 1 and x ∈ Ω we define

F (t, x) =
m∑

i=1

ri(t) fi(x),

and the sets
Gn = σ-algebra{r1, . . . , rn} × Fn

for all 1 ≤ n ≤ m. Note that {Gn}n is a filtration on the product space [0, 1]× Ω,
and observe that

E(F |Gn)(t, x) =
∑

i≤n

ri(t) E(fi|Fn).

We define Fn = E(F |Gn) for 1 ≤ n ≤ m, set F0 = 0, and note that F =
∑m

n=1 Fn−
Fn−1. If we additionally define gni = E(fi|Fn)−E(fi|Fn−1), 2 ≤ n ≤ m, 1 ≤ i ≤ m,
we see

(Fn − Fn−1)(t, x) = rn(t) E(fn|Fn)(x) +
∑

i<n

ri(t) gni(x).

In the above equation we make use of the convention of a sum over the empty set
being zero. Now we use the UMD–property on the martingale difference sequence
{Fn}n (with respect to the filtration {Gn}n) to obtain

∥∥F
∥∥p
Lp

X ([0,1]×Ω)
≥ Up(X)−p ·

∫

Ω

1∫

0

∥∥
m∑

n=1

rn(s) · (Fn − Fn−1)(t, x)
∥∥p
X
dt dx,

for all s ∈ [0, 1]. First, note that
m∑

n=1

rn(s)·(Fn−Fn−1)(t, x) =

m∑

n=1

rn(s) rn(t) E(fn|Fn)(x)+

m∑

n=1

∑

i<n

rn(s) ri(t) gni(x),

Second, with s and x fixed, consider the function

t 7→
m∑

n=1

rn(t) E(fn|Fn)(x) +
m∑

n=1

∑

i<n

rn(s) ri(s) ri(t) gni(x)

and observe it has the same distribution as
∑m

n=1 rn(s) · (Fn − Fn−1)(t, x), hence

∥∥F
∥∥p
Lp

X([0,1]×Ω)
≥ Up(X)−p ·

∫

Ω

1∫

0

∥∥
m∑

n=1

rn(t) E(fn|Fn)(x)

+

m∑

n=1

∑

i<n

rn(s) ri(s) ri(t) gni(x)
∥∥p
X
dt dx,
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for all s ∈ [0, 1]. Integrating the last estimate with respect to s and applying
Jensen’s inequality yields the desired result

∥∥F
∥∥p
Lp

X([0,1]×Ω)
≥ Up(X)−p ·

∫

Ω

1∫

0

∥∥
m∑

n=1

rn(t) E(fn|Fn)(x)
∥∥p
X
dt dx,

since
∫ 1

0
rn(s) ri(s) ds = 0, if i < n. �

The Shift Operator Tm.
For every m ∈ Zn let τm : Q → Q denote the rearrangement given by

τm(Q) = Q+m · sidelength(Q). (0.6)

The map τm induces the rearrangement operator Tm, as the linear extension of

TmhQ = hτm(Q), Q ∈ Q. (0.7)

Let X be a UMD space, then

‖Tm : Lp
X(Rn) → Lp

X(Rn)‖ ≤ C · log(2 + |m|)α, (0.8)

where 0 < α < 1 depends on X , and C = C(n, p,Up(X), α); This result is due
to T. Figiel, see [Fig88] and [Fig90]. An new proof of estimate (0.8) and other
results concerning shift operators are provided in Chapter 3 of this thesis.

The Riesz Transform.
For all 1 ≤ i0 ≤ n we define the Riesz transform Ri0 formally by

Ri0f = Ki0 ∗ f, (0.9)

Ki0(x) = cn
xi0

|x|n+1
, x = (x1, . . . , xn) ∈ Rn. (0.10)

Details may be found in [Ste70a] and [Ste93].

Supplementary Definitions.
Denote the standard Fourier multiplier 〈·〉 by

〈ξ〉 =
(
1 + |ξ|2

) 1
2 , (0.11)

for all ξ ∈ Rn.
The Haar spectrum of an operator T : Lp

X(Rn) → Lp
X(Rn), is defined by

Q \
{
Q ∈ Q : 〈Tu, h(ε)Q 〉 = 0, for all u ∈ Lp

X(Rn) and ε ∈ {0, 1}n \ {0}
}
. (0.12)

Given a collection of sets C , we denote by σ-algebra(C ) the smallest σ-algebra
containing C , i.e.

σ-algebra(C ) =
⋂{

A : A is a σ-algebra,C ⊂ A
}
.

Given a normed vector spaceX , we define the vector spaceXn as the cross prod-
uct of n identical copiesXn = X×· · ·×X endowed with the norm ‖(x1, . . . , xn)‖Xn =∑

i ‖xi‖X .



CHAPTER 2

An Interpolatory Estimate for the UMD–Valued
Directional Haar Projection

We prove an interpolatory estimate linking the directional Haar projection P (ε)

to the Riesz transform in the context of Bochner–Lebesgue spaces Lp
X , 1 < p <∞,

provided X is a UMD–space. If εi0 = 1, the result is the following inequality

‖P (ε)u‖Lp
X
≤ C · ‖u‖1/T(Lp

X)

Lp
X

‖Ri0u‖
1−1/T(Lp

X)

Lp
X

, (0.1)

where the constant C depends only on n, p, the UMD constant of X and the
Rademacher type T(Lp

X).
In order to obtain the interpolatory result (0.1) we analyze stripe operators Sλ,

λ ≥ 0 which are used as basic building blocks to dominate the directional Haar
projection. The main result on stripe operators (see Theorem 2.5) is the estimate

‖Sλu‖Lp
X
≤ C · 2−λ/C(Lp

X) ‖u‖Lp
X
, (0.2)

where the constant C depends only on n, p, the UMD constant of X and the
Rademacher cotype C(Lp

X). The proof of (0.2) relies on a uniform bound for the
shift operators Tm, 0 ≤ m < 2λ acting on the image of Sλ (see Theorem 2.2).

Based upon inequality (0.1) we prove a vector-valued result on sequential weak
lower semi-continuity of integrals of the form

u 7→
∫
f(u) dx,

where f : Xn −→ R+ is separately convex satisfying f(x) ≤ C · (1 + ‖x‖Xn)p.

17



18 2. INTERPOLATORY ESTIMATE

1. Main Results

1.1. A Brief History of Development.
The Calculus of Variations, in particular the theory of compensated compact-

ness has long been a source of hard problems in harmonic analysis. One develop-
ment started with the work of F. Murat and L. Tartar and especially in [Tar78,
Tar79, Tar83, Tar84, Tar90, Tar93], and [Mur78, Mur79, Mur81]. Briefly,
we will now review their framework below. Let A be a first-order linear differential
operator of the form

A =
n∑

i=1

Ai ∂i,

where Ai ∈ L(Rm,Rd), and denote its Symbol by A, given by

A(ξ) =

n∑

i=1

Ai ξi, ξ ∈ Rn.

One of their objectives was to impose exact conditions on a given function f :
Rd → R such that

lim inf
r→∞

∫

Rn

f(vr(x))ϕ(x) dx ≥
∫

Rn

f(v(x))ϕ(x) dx, (1.1)

for all ϕ ∈ C+
0 , vr → v weakly in Lp and A(vr) being precompact in W−1,p.

Particularly, f has to satisfy the growth condition 0 ≤ f(x) ≤ C (1 + |x|)p and be
A-quasi-convex. The function f is A-quasi-convex if

∫

[0,1]n

f(a+ u(x)) dx ≥ f(a)

for all smooth and [0, 1]n periodic functions u : Rn → Rd having mean zero and
A(u) = 0. Another requirement we specifically want to emphasize was for A to be
of constant rank, that is

#
{
rank(A(ξ)) : ξ 6= 0

}
= 1.

Imposing the constant rank hypothesis on A implicates that P(ξ) : Rm → Rm,
denoting the orthogonal projection onto ker(A(ξ)), is a smooth function being pos-
itively homogeneous of degree 0. As a consequence P is a Fourier multiplier, hence
T defined in the Fourier domain by T̂ u = P · û is bounded from Lp to itself. The
operator T was used to decompose a given function v into

v = u+ w, where u = Tv and w = v − Tv, (1.2)

with u and w satisfying

A(ur) = 0 and
∥∥wr

∥∥
Lp ≤ C

∥∥A(vr)
∥∥
W−1,p .

A reduction step allowed them to assume the sequence vr in (1.1) is [0, 1]n periodic,
has mean zero and satisfies A(vr) → 0 in W−1,p. These additional assumptions
combined with the decomposition vr = ur + wr according to (1.2) imply

A(ur) = 0 and ‖wr‖p → 0, (1.3)

and
∫
[0,1]n

ur = 0. Using that f is A-quasi-convex yields
∫

[0,1]n

f(a+ ur(x)) dx ≥ f(a) and ‖wr‖p → 0, (1.4)

from which one can obtain (1.1).



1. MAIN RESULTS 19

In [Mül99] S. Müller obtained analogous results for separately convex inte-
grands f , for which the constant rank condition is not satisfied. The method
introduced by S. Müller in [Mül99] consists of time–frequency localization in com-
bination with modern Calderon–Zygmund theory. The result is the following. Let
f : R2 → R be separately convex satisfying 0 ≤ f(z) ≤ C (1+ |z|2) and let U ⊂ R2

be open and suppose that

uj ⇀ u∞, vj ⇀ v∞, in L2
loc(U),

∂2uj ⇀ ∂2u∞, ∂1vj ⇀ ∂1v∞, in H−1
loc (U).

Then for every V ⊂ U
∫

V

f(u∞, v∞) ≤ lim inf
j→∞

∫

V

f(uj , vj) dx. (1.5)

The basis of the result were interpolatory estimates for the directional Haar pro-
jection P (ε), ε ∈ {0, 1}n \ {0}, defined as follows. Let u ∈ Lp(Rn), with n ≥ 2 and
1 < p <∞ be fixed, then P (ε) : Lp(Rn) −→ Lp(Rn) is given by

P (ε)u =
∑

Q∈Q

〈u, h(ε)Q 〉h(ε)Q |Q|−1,

where Q is the collection of dyadic cubes and h(ε)Q denotes Haar function supported
on Q having mean zero in coordinate i whenever εi = 1. For details see (3.1) in
Section 3 on page 43. The crucial interpolatory estimate in [Mül99] was

‖P (ε)u‖L2(R2) ≤ C ‖u‖1/2L2(R2) ‖Ri0u‖1−1/2
L2(R2), (1.6)

where Ri0 denotes the Riesz transform in direction i0 ∈ {1, 2}, 0 6= (ε1, ε2) = ε ∈
{0, 1}2, and εi0 = 1. The formal definition of Ri0 is supplied in Chapter 1.

This inequality was extended by J. Lee, P. F. X. Müller and S. Müller in [LMM07]
to arbitrary 1 < p <∞ and dimensions n ≥ 2 to

‖P (ε)u‖Lp(Rn) ≤ C ‖u‖1/min(2,p)
Lp(Rn) ‖Ri0u‖1−1/min(2,p)

Lp(Rn) , (1.7)

where ε ∈ {0, 1}n \ {0}, εi0 = 1. This interpolatory result was crucial in order to
establish

lim inf
r→∞

∫

Rn

f(vr(x))ϕ(x) dx ≥
∫

Rn

f(v(x))ϕ(x) dx, (1.8)

for all ϕ ∈ C+
0 , vr → v weakly in Lp and A0(vr) being precompact in W−1,p, where

(
A0(u)

)
i,j

=

{
∂iu

(j) i 6= j,

0 i = j.

Note that A0 does not have constant rank. The function f was required to be sepa-
rately convex and satisfy 0 ≤ f(x) ≤ C (1+ |x|)p. In [Mül99] as well as [LMM07]
the decomposition (1.2) based on Fourier multipliers is replaced by

v = P (v) + (v − P (v)), v = (v(1), . . . , v(n)),

where Pv = (P (e1)v(1), . . . , P (en)v(n)) and the ek are the standard unit vectors. For
the first part P (v) they used the following form of Jensen’s inequality

f

( ∫

[0,1]n

P (v) dx

)
≤
∫

[0,1]n

f(P (v)) dx. (1.9)
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For the second part v− P (v) the interpolatory results (1.6) respectively (1.7) were
used to dominate v − P (v) by

∥∥v − P (v)
∥∥
p
≤ C

∥∥v
∥∥θ
p
·
(∑

i

∑

j 6=i

∥∥Ri(v
(j))
∥∥
p

)1−θ

, (1.10)

for some 0 < θ < 1. Again, one can assume that vr is [0, 1]n periodic, has mean
zero and A0(vr) → 0 in W−1,p. Consequently, Ri(v

(j)
r ) → 0 in Lp, for all i 6= j,

and inequality (1.10), which was deduced by the interpolatory result (1.7), implies
∥∥vr − P (vr)

∥∥
p
→ 0. (1.11)

Rescaling (1.9) and using (1.11) shows
∫

[0,1]n

f(a+ P (vr)(x)) dx ≥ f(a) and ‖vr − P (vr)‖p → 0, (1.12)

which are the same key properties as for the classical decomposition vr = ur +wr ,
see (1.4), from which one can obtain (1.8), again.

Let us emphasize that the methods to obtain the key properties (1.4) for the
decomposition vr = ur+wr are based on Fourier multipliers requiring the operator
A to satisfy the constant rank hypothesis. Note that the operator A0 is not of
constant rank, and the methods used to establish the key properties (1.12) for the
decomposition v = P (v) + v−P (v) are based on Jensen’s inequality (1.9), and the
crucial interpolatory result (1.7).

One can rewrite the interpolatory inequality (1.7) using the notion of type
T(Lp(Rn)) = min(2, p)

‖P (ε)u‖Lp(Rn) ≤ C ‖u‖1/T(Lp(Rn))
Lp(Rn) ‖Ri0u‖|1−1/T(Lp(Rn))

Lp(Rn) . (1.13)

It is in this form that (1.7) can be given a vector–valued extension, see esti-
mate (1.14). In [Mül99] and [LMM07] the proofs of (1.6) respectively (1.7) are
based on two consecutive time–frequency localizations of the operator P (ε), based
on Littlewood–Paley and wavelet expansions. The Lp–estimates in [LMM07] were
obtained by systematically interpolating between the spaces H1, L2 and BMO. In
this thesis we obtain vector–valued extensions of (1.13), see Theorem 1.1, work-
ing directly on Lp

X avoiding interpolation and using martingale methods, instead.
Having Theorem 1.1 at our disposal allows us to extend the result of [LMM07] on
sequential weak lower semi-continuity, that was inequality (1.8), to vector-valued
functions detailed in Theorem 1.2 on the facing page.

1.2. The Main Results.
S. Müller asks in [Mül99] whether it is possible to obtain (1.6) in such a way

that the original time–frequency decompositions are replaced by the canonical
martingale decomposition of T. Figiel (see [Fig90]). This thesis provides an
affirmative answer to this question. The details of the decomposition are worked
out in section 3. This allows us to extend the interpolatory estimate (1.13) to the
Bochner–Lebesgue space Lp

X(Rn), provided X satisfies the UMD–property. With
this vector-valued interpolatory estimate we obtain a vector-valued extension of the
result of [LMM07] on sequential weak lower semi-continuity, as well.

Let 1 < p < ∞, and let X be a UMD space ([Mau75]) with type T(X). It is
well known thatX has non–trivial type T(X) > 1 and cotype C(X) <∞ ([Mau75],
[MP76] and [Ald79]). Consequently, Lp

X(Rn) has non–trivial type T(Lp
X(Rn)) and

cotype given by min(p,T(X)) and max(p,C(X)), respectively (see [LT91, section
9.2, page 247]).
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The main inequality of this thesis reads as follows.

Theorem 1.1. Let 1 < p < ∞ and X be a Banach space with the UMD–
property. Denote by T(Lp

X(Rn)) the (non–trivial) type of Lp
X(Rn). Let

ε = (ε1, . . . , εn) ∈ {0, 1}n with εi0 = 1.

Then for every u ∈ Lp
X(Rn)

‖P (ε)u‖Lp
X(Rn) ≤ C · ‖u‖1/T(Lp

X(Rn))

Lp
X(Rn)

‖Ri0u‖
1−1/T(Lp

X(Rn))

Lp
X(Rn)

, (1.14)

where the constant C depends only on n, p, the UMD constant of X and the type
T(Lp

X(Rn)).

For the proof of Theorem 1.1 see subsection 1.4 on page 23.
The Lp–estimates of Theorem 1.1 on the facing page are obtained directly from

estimates of rearrangement operators avoiding the detour to the endpoint spaces
H1 and BMO. The basic tools for the proof of the above theorem are vector–valued
estimates of stripe operators Sλ, developed in section 2. We also point out that the
L2–estimates for the stripe operator are obvious in the scalar case, but form the
main obstacle in the vector valued case.

The vector-valued interpolatory estimate (1.14) allows us to extend the scalar
valued result (1.8) on sequential weak lower semi-continuity to the vector-valued
result Theorem 1.2 below. Note that the only additional hypothesis is (1.19), which
is superfluous in the scalar-valued case.

Theorem 1.2. Let X be a Banach space with the UMD property and 1 < p <
∞. Let A0 : Lp(Rn;Xn) → W−1,p(Rn;Xn ×Xn) denote the differential operator
given by

(
A0(u)

)
i,j

=

{
∂iu

(j) i 6= j,

0 i = j,
(1.15)

where u = (u(j))nj=1. Assume the function f : Xn → R is separately convex and
satisfies

0 ≤ f(x) ≤ C · (1 + ‖x‖Xn)p, (1.16)

for all x ∈ Xn, where C > 0 does not depend on x. Let the sequence {vr} ⊂
L(Rn;Xn) be such that

vr → v weakly in Lp(Rn;Xn), (1.17)

A0(vr) precompact in W−1,p(Rn;Xn ×Xn), (1.18)

and
∥∥(〈v(j)r − v(j), h

(ej)
Q 〉

)n
j=1

∥∥
Xn → 0 for all Q ∈ Q. (1.19)

Then we have

lim inf
r→∞

∫

Rn

f
(
vr(x)

)
ϕ(x) dx ≥

∫

Rn

f
(
v(x)

)
ϕ(x) dx, (1.20)

for all ϕ ∈ C+
0 (Rn).

The proof of Theorem 1.2 may be found in subsection 1.5 on page 23.
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1.3. The Main Inequality and Interpolation.
The interpolatory main result, Theorem 1.1, represents a result on interpolation

of operators, linking the identity map, the Riesz transforms and the directional Haar
projection. We would now like to give a reformulation of Theorem 1.1 which places
it in the context of structure Theorems for the so called K–method of interpolation
spaces. To this end, we first introduce the K–functional, cite the relevant structure
theorem (Proposition 1.3) and apply it to the interpolatory inequality (1.14).

Define the K–functional

K(f, t) = inf
{
‖g‖E0 + t ‖h‖E1 : f = g + h, g ∈ E0, h ∈ E1

}
,

for all f ∈ E0 + E1 and t > 0, and the interpolation space

(E0, E1)θ,1 =
{
f : f ∈ E0 + E1, ‖f‖θ,1 <∞

}
,

where 0 < θ < 1, endowed with the norm

‖f‖θ,1 =
∫ ∞

0

t−θK(f, t)
dt

t
.

The following Proposition 1.3 interprets interpolatory estimates such as the
ones obtained in Theorem 1.1 in terms of continuity of the identity map between
interpolation spaces. The following proposition is a result of general interpolation
theory (see [BS88, Proposition 2.10, Chapter 5]).

Proposition 1.3. Let (E0, E1) be a compatible couple and suppose 0 < θ < 1.
Then the estimate

‖f‖E ≤ C ‖f‖θ,1 (1.21)

holds for some constant C and all f in (E0, E1)θ,1 if and only if

‖f‖E ≤ C ‖f‖1−θ
E0

‖f‖θE1

holds for some constant C and for all f in E0 ∩ E1.

In the following we will specify the spaces E, E0 and E1 so that the two
equivalent conditions of the above proposition match precisely the assertions of
Theorem 1.1.

Application of Proposition 1.3 to Theorem 1.1.
Fix 0 6= ε ∈ {0, 1}n, let R denote one of the Riesz transform operators

Ri : Lp
X(Rn) → Lp

X(Rn)

defined in Chapter 1, where εi = 1, and abbreviate P (ε) by P . If we define the
Banach spaces

E = Lp
X(Rn)/ ker(P ), ‖u+ ker(P )‖E = ‖Pu‖Lp

X(Rn),

E0 = Lp
X(Rn), ‖u‖E0 = ‖u‖Lp

X(Rn),

E1 = Lp
X(Rn)/ ker(R), ‖u+ ker(R)‖E1 = ‖Ru‖Lp

X(Rn),

then Proposition 1.3 together with Theorem 1.1 yields

(E0, E1)θ,1 →֒ E.

In other words, there exists a constant C > 0 such that

‖u‖E ≤ C · ‖u‖θ,1,
for all u ∈ (E0, E1)θ,1.

We summarize this brief discussion in the following
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Theorem 1.4. Let 1 < p < ∞, and let X be a Banach space with the UMD–
property. Denote by T(Lp

X(Rn)) the (non–trivial) type of Lp
X(Rn). Furthermore,

let
ε = (ε1, . . . , εn) ∈ {0, 1}n with εi0 = 1,

and define

E0 = Lp
X(Rn), ‖u‖E0 = ‖u‖Lp

X(Rn),

E1 = Lp
X(Rn)/ ker(Ri0 ), ‖u+ ker(Ri0 )‖E1 = ‖Ri0u‖Lp

X(Rn),

Then there exists a constant C > 0 such that

‖P (ε)u‖Lp
X(Rn) ≤ C · ‖u‖θ,1, (1.22)

for all u ∈ Lp
X(Rn), where θ = 1− 1/T(Lp

X).

The connection to general interpolation theory was pointed out by S. Geiss.

1.4. Proof of Theorem 1.1.
The subsequent proof of Theorem 1.1 merges the vector valued results of

this thesis, particularly Theorem 3.6 and 3.4. Besides replacing the scalar val-
ued estimates with our vector valued analogues we repeat the scalar valued proof
in [LMM07].

Proof. Within this proof we shall abbreviate Lp
X(Rn) by Lp

X .
First, define M ∈ N by

2M−1 ≤
∥∥Ri0 : Lp

X → Lp
X

∥∥ · ‖u‖Lp
X

‖Ri0u‖Lp
X

≤ 2M . (1.23)

Second, use decomposition (3.2) and (3.8), that is

P (ε) = P− +
∑

l≥0

P
(ε)
l ,

and observe,

‖P (ε)u‖Lp
X
≤ ‖P (ε)

− R−1
i0
Ri0u‖Lp

X
+

M∑

l=0

‖PlR
−1
i0
Ri0u‖Lp

X
+

∞∑

l=M

‖Plu‖Lp
X
.

If we apply Theorem 3.6 on page 57 to the first two sums, and inequality (3.43) in
Theorem 3.4 on page 49 to the latter sum, we get

‖P (ε)
− R−1

i0
Ri0u‖Lp

X
. ‖Ri0u‖Lp

X
,

‖PlR
−1
i0
Ri0u‖Lp

X
. 2l/T(Lp

X) · ‖Ri0u‖Lp
X
,

and

‖Plu‖Lp
X
. 2

−l(1− 1

T(L
p
X

)
) · ‖u‖Lp

X
.

Thus we can dominate ‖P (ε)u‖Lp
X

by a constant multiple of

‖Ri0u‖Lp
X
+

M∑

l=0

2l/T(Lp
X) · ‖Ri0u‖Lp

X
+

∞∑

l=M

2
−l(1− 1

T(L
p
X

)
) · ‖u‖Lp

X
.

Evaluating the geometric series yields

‖P (ε)u‖Lp
X
. 2M/T(Lp

X) ‖Ri0u‖Lp
X
+ 2

−M(1− 1

T(L
p
X

)
) ‖u‖Lp

X
,

and plugging in M concludes the proof. �
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1.5. Proof of Theorem 1.2.
We will divide the proof into four steps. Define the projection P : Lp(Rn;Xn) −→

Lp(Rn;Xn) by
P (v) = (P (e1)v(1), . . . , P (en)v(n)),

where v = (v(j))nj=1, and

P (ε)u =
∑

Q∈Q

〈u, h(ε)Q 〉h(ε)Q |Q|−1,

for all u ∈ Lp(Rn;X), ε ∈ {0, 1}n \ {0}.
In the first step we will see how the interpolatory estimate (1.14) is used to

obtain ∥∥P (wr)− wr

∥∥
Lp(Rn;Xn)

→ 0,

wheneverwr → 0 weakly in Lp(Rn;Xn) and
{
A0(wr)

}
is precompact inW−1,p(Rn;Xn×

Xn).
In the second stage of the proof we will show

f
(
EM (Pv)

)
≤ EM

(
f(Pv)

)
,

where

EM u =
∑

Q∈QM

( 1

|Q|

∫

Q

u(x) dx
)
· 1Q

for all u ∈ Lp(Rn;Xn). Recall that QM is the collection of dyadic cubes having
measure 2−M·n.

Besides using vector-valued analogues, the first two steps are essentially the
same as in the scalar-valued case (see [Mül99] and [LMM07]).

The third step of the vector-valued proof is different. This is where the addi-
tional hypothesis (1.19) enters. It is there where we obtain the weak lower semi-
continuity

lim inf
r→∞

∫

Rn

f(vr)ϕdx ≥
∫

Rn

f(v)ϕdx,

assuming that v is a finite sum of Haar functions, and ϕ has support in (0, 1)n.
The restrictions on v and ϕ will be lifted in in the last step by approximation.

Proof of Theorem 1.2. Step 1. Within this proof we shall use the abbre-
viations W−1,p for W−1,p(Rn;Xn ×Xn) and Lp for Lp(Rn;Xn).

Recall that the projection P : Lp −→ Lp is given by

P (v) = (P (e1)v(1), . . . , P (en)v(n)),

where v = (v(j))nj=1. We will show that
∥∥P (wr)− wr

∥∥
Lp → 0, (1.24)

whenever wr → 0 weakly in Lp and
{
A0(wr)

}
is precompact in W−1,p. Note that

the operator A0 : Lp −→W−1,p being bounded implies
∥∥A0wr

∥∥
W−1,p −→ 0, as r → ∞.

We will prove (2.16) using the interpolatory main result Theorem 1.1 on page 20.
To this end, we dominate the Riesz transform by operators T1 and T2, mapping
{wr}r into a zero-convergent sequence. Let the smooth function ψ : Rn −→ [0, 1]
satisfy supp(ψ) ⊂ {ξ : |ξ| ≤ 1} and ψ(ξ) = 1, if |ξ| ≤ 1/2. Then, for every u ∈ Lp

X

we have
Riu = T1Ri(u) + T2 F

−1
(
〈ξ〉−1ξi Fu

)
, (1.25)
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where T1(f) = F−1(ψ · Ff), T2(f) = F−1
(
m ·Ff

)
and m(ξ) = (1−ψ(ξ)) · 〈ξ〉 · |ξ|−1 .

Observe that
∣∣∂αξ ψ(ξ)

∣∣ ≤ Aα, for all α and ξ,
∣∣∂αξ m(ξ)

∣∣ ≤ Aα · |ξ|−|α| for all α and ξ 6= 0.

This means m is a Fourier multiplier of order 0, and by [McC84, Theorem 1.1] we
know that T2 maps Lp

X(Rn) boundedly into itself. LetK = F−1ψ, then T1f = K∗f ,
and by partial integration one can see

∣∣K(x)
∣∣ ≤ Aα · |x−α|,

for all α and x 6= 0. Thus, K ∈ L1
C(Rn), and Theorem 4.3 on page 60 implies T1

maps Lp
X(Rn) compactly into itself. Now we insert w(j)

r , j 6= i in (1.25) and gain
∥∥Ri(w

(j)
r )
∥∥
Lp

X

≤
∥∥T1Ri(w

(j)
r )
∥∥
Lp

X

+
∥∥T2 : Lp

X → Lp
X

∥∥ ·
∥∥∂iw(j)

r

∥∥
W−1,p

X

.

Since T1Ri is compact and w(j)
r → 0 weakly in Lp

X , we infer
∥∥T1Ri(w

(j)
r )
∥∥
Lp

X

→ 0.
The operator T2 being bounded and ‖A0(wr)‖W−1,p

X
−→ 0 as r → ∞, implies that

the latter term tends to zero as well, hence
∥∥Ri(w

(j)
r )
∥∥
Lp

X

−→ 0, for all i 6= j as r → ∞. (1.26)

Finally, we will apply the interpolatory estimate (1.14) to P (wr)−wr, observe
∥∥P (wr)− wr

∥∥
Lp ≤ C ·

∑

j

∥∥w(j)
r

∥∥θ
Lp

X

·
∥∥Rj∗w

(j)
r

∥∥1−θ

Lp
X

, (1.27)

where 0 < θ < 1, and j∗ is an arbitrary index in {1, . . . , n} \ {j}. Combining (1.26)
and (1.27) yields the desired result (2.16).

Proof of Theorem 1.2. Step 2. We will prove the following version of Jensen’s
inequality for separately convex functions f on the range of P ,

f
(
EM (Pv)

)
≤ EM

(
f(Pv)

)
, (1.28)

where

EM u =
∑

Q∈QM

( 1

|Q|

∫

Q

u(x) dx
)
· 1Q

for all u ∈ Lp, keeping in mind that Lp = Lp(Rn;Xn), and QM is the collection of
dyadic cubes having measure 2−M·n.

First we will show

f

( ∫

[0,1]n

P (v) dx

)
≤
∫

[0,1]n

f(P (v)) dx. (1.29)

Once we have established (3.22), rescaling and translating (3.22) yields the desired
inequality (2.17).

Define the Haar projections P (ε)
k u =

k∑

j=−∞

∑

Q∈Qj

〈u, h(ε)Q 〉h(ε)Q |Q|−1, for every

u ∈ Lp
X , k ∈ Z, and furthermore

Pkv =
(
P

(e1)
k v(1), . . . , P

(en)
k v(n)

)
,

for all v ∈ Lp, k ∈ Z.
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Let k ≥ 0, then
∫

[0,1]n

f(Pk(v)) dx =
∑

Q∈Qk|[0,1]n

∫

Q

f
(
(P

(ej)
k (v(j)))nj=1

)
dx

=
∑

Q∈Qk|[0,1]n

∫

Q

f
(
(P

(ej)
k−1 (v

(j)) + c
(j)
Q h

(ej)
Q )nj=1

)
dx.

Observe that P (ej)
k−1 (v

(j)) | Q = a
(j)
Q is constant, and h

(ej)
Q (x) = h

(ej)
Q (xj), for all

x ∈ Q and 1 ≤ j ≤ n. Since f is separately convex, we apply Jensen’s inequality
to each direction ej , 1 ≤ j ≤ n yielding
∫

[0,1]n

f(Pk(v)) dx ≥
∑

Q∈Qk|[0,1]n
|Q| · f

((
1∣∣I(j)Q

∣∣

∫

I
(j)
Q

a
(j)
Q + c

(j)
Q h

(ej)
Q (xj) dxj

)n

j=1

)

=
∑

Q∈Qk|[0,1]n
|Q| · f

(
(P

(ej)
k−1(v

(j)))nj=1

)
,

where
∏n

j=1 I
(j)
Q = Q. Hence,

∫

[0,1]n

f(Pk(v)) dx ≥
∫

[0,1]n

f(Pk−1(v)) dx,

for all k ≥ 1. Since P−1(v) is constant on [0, 1]n, we certainly have
∫

[0,1]n

f(P−1(v)) dx = f

( ∫

[0,1]n

P−1(v) dx

)
,

so by induction on k ≥ 0 we gain
∫

[0,1]n

f(Pk(v)) dx ≥ f

( ∫

[0,1]n

Pk−1(v) dx

)
,

for all k ≥ 1. If we let k → ∞, the last inequality yields estimate (3.22), from
which (2.17) follows immediately by rescaling and translating (3.22), as mentioned
above.

Proof of Theorem 1.2. Step 3. First, we will assume that v is a finite
Haar series, and supp(ϕ) ⊂ (0, 1)n.

Let B ⊂ Q be a finite collection of pairwise disjoint dyadic cubes such that

v =
∑

Q∈B

cQ 1Q. (1.30)

Now define
fQ(x) = f(x+ cQ), for all Q ∈ Q and x ∈ Rn. (1.31)

Theorem 4.1 on page 58 asserts that
∣∣fQ(x) − fQ(y)

∣∣ ≤ A(n, p, cQ) ·
(
1 + ‖x‖Xn + ‖y‖Xn

)p−1 · ‖x− y‖Xn , (1.32)

for all x, y ∈ Xn. We shall abbreviate A(n, p, cQ) by A. If we set wr = vr − v,
then since wr → 0, weakly in Lp and {A0(wr)}r is precompact in W−1,p. We know
from (2.16) in the first step of the proof that

∥∥P (wr)− wr

∥∥
Lp −→ 0, as r → ∞. (1.33)
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Let Q ∈ B be an arbitrary dyadic cube. A glance at (1.30) and (1.31) shows
∫

Q

f(vr)ϕdx =

∫

Q

fQ(wr)ϕdx

=

∫

Q

fQ(Pwr)ϕdx+

∫

Q

(
fQ(wr)− fQ(Pwr)

)
ϕdx.

In view of the Lipschitz estimate (1.32), the latter term is bounded by

A ·
∥∥1 + ‖wr‖Xn + ‖Pwr‖Xn

∥∥p/q
Lp(0,1)n

·
∥∥wr − Pwr

∥∥
Lp ,

where 1
p + 1

q = 1. Since supr
∥∥wr

∥∥
Lp ≤ C, for some constant C, we gain

∫

Q

f(vr)ϕdx ≥
∫

Q

fQ(Pwr)ϕdx −A · C ·
∥∥wr − Pwr

∥∥
Lp . (1.34)

We introduce the conditional expectation EM

∫

Q

fQ(Pwr)ϕdx =

∫

Q

fQ(Pwr) EM ϕdx+

∫

Q

fQ(Pwr) (ϕ − EM ϕ) dx, (1.35)

for every M ∈ Z. If M is sufficiently large, then
∫

Q

fQ(Pwr) EM ϕdx =

∫

Q

EM

(
fQ(Pwr)

)
EM ϕdx

and applying Jensen’s inequality on the range of P , that is inequality (2.17), yields
∫

Q

fQ(Pwr) EM ϕdx ≥
∫

Q

fQ
(
EM (Pwr)

)
EM ϕdx

=

∫

Q

fQ(0) EM ϕdx+

∫

Q

(
fQ(EM (Pwr))− fQ(0)

)
EM ϕdx

(1.36)

Using the Lipschitz estimate (1.32) and the Lp boundedness of {wr}r as above, we
can dominate last term of (1.36) by

A · C ·
∥∥EM Pwr

∥∥
Lp(0,1)n

.

Combining this with (1.34), (1.35), (1.36), and using the estimate fQ(Pwr) ≤
A(cQ) · (1 + ‖Pwr‖Xn)p, in the latter term of (1.35), we gain

∫

Q

f(vr)ϕdx ≥
∫

Q

fQ(0) EM ϕdx−A · C ·
∥∥EM Pwr

∥∥
Lp(0,1)n

− C ·
∥∥ϕ− EM ϕ

∥∥
∞ −A · C ·

∥∥wr − Pwr

∥∥
Lp .

(1.37)

Now let us consider

EM Pwr =
∑

2−Mn <|K|<2Mn

(
〈P (ej)w(j)

r , h
(ej)
K 〉h(ej)K |K|−1

)n
j=1

+
∑

|K|≥2Mn

(
〈P (ej)w(j)

r , h
(ej)
K 〉h(ej)K |K|−1

)n
j=1
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then with M fixed, the first term converges to zero as r → ∞ in view of (1.19).
The Lp(0, 1)n norm of the latter term is dominated by

∑

|K|≥2Mn

K⊃[0,1]n

‖wr‖Lp |K| 1q−1 ≤ C · 2Mn( 1
q−1),

where 1
p + 1

q = 1. Plugging this into (1.37) and considering (3.21) we have that

lim inf
r→∞

∫

Q

f(vr)ϕdx ≥
∫

Q

fQ(0) EM ϕdx−C ·
∥∥ϕ− EM ϕ

∥∥
L∞(0,1)n

−C · 2Mn( 1
q−1),

for all M . Letting M → ∞, recalling (1.31) and (1.30) and noting fQ(0) = f(v(x)),
x ∈ Q, we obtain

lim inf
r→∞

∫

Q

f(vr)ϕdx ≥
∫

Q

f(v)ϕdx,

for every Q ∈ Q. Since B is a finite collection, summation over Q ∈ B yields

lim inf
r→∞

∫

B∗

f(vr)ϕdx ≥
∫

B∗

f(v)ϕdx,

where B∗ =
⋃

Q∈BQ. Repeating the argument above with fQ replaced by f shows
that

lim inf
r→∞

∫

(B∗)c

f(vr)ϕdx ≥
∫

(B∗)c

f(v)ϕdx.

Note that wr(x) = vr(x), for all x ∈ (B∗)c. Adding the latter two estimates yields

lim inf
r→∞

∫

Rn

f(vr)ϕdx ≥
∫

Rn

f(v)ϕdx, (1.38)

under the additional restrictions of v being a finite Haar series and ϕ having support
in (0, 1)n.

Proof of Theorem 1.2. Step 4. Consider the auxiliary operators Pk, k ≥
1 given by

Pku =
∑

ε6=0

∑

j : |j|≤k

∑

Q∈Qj

Q⊂B(0,k)

〈u, h(ε)Q 〉h(ε)Q |Q|−1,

where B(0, k) = {x ∈ Rn : |x| ≤ k}. Due to the UMD–property and the uniform
boundedness principle

∥∥Pk − Id : Lp → Lp
∥∥ −→ 0, as k → ∞.

Now we will lift the restriction that v is a finite Haar series. We know from Step 1
that ∥∥wr − P (wr)

∥∥
W−1,p −→ 0,

where wr = vr − v. Let k ≥ 1 and consider
∥∥Pk wr − P Pk wr

∥∥
Lp ≤

∥∥Pk : Lp → Lp
∥∥ ·
∥∥wr − P (wr)

∥∥
Lp .

If we apply Step 3 to Pk(vr) in place of vr, and Pkv instead of v we gain from (1.38)

lim inf
r→∞

∫

Rn

f(Pkvr)ϕdx ≥
∫

Rn

f(Pkv)ϕdx, (1.39)

for all k ≥ 1. In view of the Lipschitz estimate (1.32) and Pk → Id, we may lift the
restriction of v being a finite Haar series.
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Now we lift the restriction supp(ϕ) ⊂ (0, 1)n, so let ϕ ∈ C+
0 (Rn) be arbitrary.

Let ηk ∈ C+
0 (0, 1)n, k ≥ 1 be functions such that 0 ≤ ηk ≤ 1 and ηk → 1(0,1)n

point-wise. Now extend ηk periodically to Rn, and note that

lim inf
r→∞

∫

Rn

f(vr)ϕdx ≥ lim inf
r→∞

∫

Rn

f(vr)ϕηk dx

=
∑

|Q|=1

lim inf
r→∞

∫

Rn

f(vr) 1Q ϕηk dx,

for all k ≥ 1. Since 1Q · ϕ · ηk ∈ C+
0 (Q), translating the integration domain of

inequality (1.38) from [0, 1]n to the dyadic cube Q yields

lim inf
r→∞

∫

Rn

f(vr)ϕdx ≥
∫

Rn

f(v)ϕηk dx,

for all k ≥ 1. Letting k → ∞ concludes the proof of Theorem 1.2. �
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2. The Stripe Operator Sλ

Here we define and study the stripe operator Sλ (defined in (2.6)), mapping
hQ, Q ∈ Q onto the blocks gQ,λ, each supported on a dyadic stripe (see (2.3), (2.5)
and the Figures 1 and 2). The vector–valued estimates given by

‖Sλu‖Lp
X(Rn) ≤ C · 2−λ/C(Lp

X(Rn))‖u‖Lp
X(Rn), (2.1)

constitute the main technical component of the first part of this thesis (see Theo-
rem 2.5 on page 38).

The crucial points in the proof of (2.1) are the cotype inequality (0.3) and
Corollary 2.4, that is the uniform equivalence

1

C
· ‖Sλu‖Lp

X(Rn) ≤ ‖Tm·e1Sλu‖Lp
X(Rn) ≤ C · ‖Sλu‖Lp

X(Rn), (2.2)

for all 0 ≤ m ≤ 2λ − 1 and u ∈ Lp
X(Rn), where C does not depend on u, λ and

m. In other words, the operators Tm, 0 ≤ m ≤ 2λ − 1 act as isomorphisms on the
image of Sλ, with norm independent of m and λ. This is in contrast to the well
known norm estimates ‖Tm : Lp

X(Rn) → Lp
X(Rn)‖ ≈ log(2 +m)α, see (0.7). More

details are supplied in Section 2 in the second part of this thesis.

2.1. Preparation.
Within this section the superscripts (ε) are omitted and we generically denote

by hQ one of the functions
{
h
(ε)
Q : ε ∈ {0, 1}n \ {0}

}
.

For every Q ∈ Q and λ ≥ 0 define the dyadic stripe

Uλ(Q) =
{
E ∈ Q : πλ(E) = Q, inf

x∈E
x1 = inf

q∈Q
q1
}
, (2.3)

where x1 respectively q1 denotes the orthogonal projection of x ∈ Rn respectively
q ∈ Rn onto the vector e1 = (1, 0, . . . , 0). Recall that πλ(E) is the unique Q ∈ Q
such that |Q| = 2λn |E| and Q ⊃ E. The dyadic stripe Uλ(Q) is illustrated in
Figure 1. Additionally, set

Uλ =
⋃

Q∈Q

Uλ(Q). (2.4)

Q

si
d
el
en
g
th
(Q

)

U
λ
(Q

)

E

2−λ sidelength(Q)

e1
e2

Figure 1. Dyadic stripe Uλ(Q) in dimension n = 2.
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Q
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)

g Q
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2−λ sidelength(Q)

e1
e2

Figure 2. Stripe functions gQ,λ in dimension n = 2.

We define the stripe functions gQ,λ by

gQ,λ =
∑

E∈Uλ(Q)

hE , (2.5)

and the stripe operator Sλ by

Sλu =
∑

Q∈Q

〈u, hQ〉 gQ,λ |Q|−1, (2.6)

for all u ∈ Lp
X(Rn).

The stripe functions are visualized in Figure 2.

2.2. Shift Operators Acting on Dyadic Stripes.
In Lemma 2.1 we prove a measure estimate regarding one-dimensional dyadic

stripes Sλ, λ ≥ 1 defined in (2.8) and the action of dyadic shift maps τm, 0 ≤ m ≤
2λ−1 given by

τm(I) = I +m · |I|, I ∈ D .

These estimates will then enter inequality (2.2), where we prove the uniform
estimates

1

C
·
∥∥u
∥∥
Lp

X(R) ≤
∥∥Tm u

∥∥
Lp

X(R) ≤ C ·
∥∥u
∥∥
Lp

X(R), (2.7)

for all u supported on Sλ and 0 ≤ m ≤ 2λ − 1. The constant C does not depend
on λ or m. The shift operator Tm is defined in (0.7). A more detailed discussion of
Tm may be found in Section 2 of Chapter 3.

The subsequent Corollary 2.4 on page 36 states that Tm acts as an isomorphism
on the image of Sλ, with norm independent of m and λ, provided 0 ≤ m ≤ 2λ − 1.

Before we state Lemma 2.1, we build up some notation. Recall πλ : D → D is
given by

πλ(I) = J,

where J is the uniquely determined J ∈ D such that |J | = 2λ |I| and J ⊃ I. Finally,
define the one-dimensional stripe Sλ by

Sλ = {I ∈ D : inf I = inf πλ(I)}. (2.8)

Lemma 2.1. For every λ ≥ 1 let 0 ≤ m ≤ 2λ−1 and

τm(I) = I +m · |I|, I ∈ D .
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Let B ⊂ Sλ such that for all J,K ∈ B with |J | 6= |K| either

|J | ≤ 1

4
|K| or |K| ≤ 1

4
|J |.

Then the estimates

∣∣∣∣I ∩
λ−1⋃

d=1

⋃

J∈B
|J|=2−d |I|

J ∪ τm(J)

∣∣∣∣ ≤
2

3
|I|,

and

∣∣∣∣τm(I) ∩
λ−1⋃

d=1

⋃

J∈B
|J|=2−d |I|

J ∪ τm(J)

∣∣∣∣ ≤
2

3
|I|,

hold true for all I ∈ B.

Proof. First we claim that for every I ∈ B ∪ τm(B), 1 ≤ d ≤ λ − 1 and
J,K ∈ B with |J | = |K| = 2−d |I| holds true that whenever

(J ∪ τm(J)) ∩ I 6= ∅ and (K ∪ τm(K)) ∩ I 6= ∅, then J = K. (2.9)

We assume that the asserted implication (2.9) is incorrect. Hence we can find
intervals I ∈ B ∪ τm(B), and J,K ∈ B with J 6= K, |J | = |K| = 2−d |I| where
1 ≤ d ≤ λ− 1, such that

(J ∪ τm(J)) ∩ I 6= ∅ and (K ∪ τm(K)) ∩ I 6= ∅.

Since J 6= K we know from the definition of B that

dist(τm(J), τm(K)) = dist(J,K) ≥ (2λ − 1) |J |,

consequently

dist(J ∪ τm(J),K ∪ τm(K)) ≥ (2λ − 1−m) |J |.

We know I intersects both, J ∪ τm(J) and K ∪ τm(K), so

|I| ≥ dist(J ∪ τm(J),K ∪ τm(K)) + 2 |J |
≥ (2λ −m+ 1)) 2−d |I|
≥ (2λ−1 + 1) 2−d |I|
> |I|,

which is obviously a contradiction.
Hence (2.9) holds true, which means that for all 1 ≤ d ≤ λ − 1, every interval

I ∈ B ∪ τm(B) intersects at most one element of the set

{J ∪ τm(J) ∈ B : |J | = 2−d |I|}.

If such a J exists, we denote it by Jd(I) ∈ B, and define Jd(I) = ∅ otherwise. Note
that for small shift widths m or small J it may happen that Jd(I)∪ τm(Jd(I)) ⊂ I.
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Using (2.9) we see that for every I ∈ B ∪ τm(B)

∣∣I ∩
λ−1⋃

d=1

⋃

J∈B
|J|=2−d |I|

J ∪ τm(J)
∣∣ ≤

λ−1∑

d=1

∣∣I ∩
(
Jd(I) ∪ τm(Jd(I))

)∣∣

≤
λ−1∑

d=1

2 · |Jd(I)|

≤ 2 ·
∞∑

d=1

2−2d |I|

=
2

3
|I|.

The last inequality follows since for J,K ∈ B, if |J | 6= |K|, then either |J | ≤ |K|/4
or |K| ≤ |J |/4. �

For m ∈ Z the shift operator Tm is given by

TmhI = hτm(I), I ∈ D ,

where τm(I) = I +m · |I|, I ∈ D , (see (0.6) and (0.7)). We will now investigate
the action of Tm restricted to functions supported on the dyadic stripe Sλ, λ ≥ 0
defined in (2.8), that was

Sλ = {I ∈ D : inf I = inf πλ(I)}.
Observe that Sλ is the spectrum of the stripe operator Sλ, when it is restricted to
lines in direction (1, 0, . . . , 0). This will be discussed in more detail in the subsequent
Corollary 2.4 on page 36. For now, we dedicate ourselves to the one-dimensional
case.

Theorem 2.2. Let X be a Banach space with the UMD property and 1 < p <
∞. For λ ≥ 0 define the linear subspace Zλ of Lp

X(R) by

Zλ =
{ ∑

I∈Sλ

uI hI |I|−1 : uI ∈ X
}
∩ Lp

X(R). (2.10)

Then there exists a constant C > 0 such that for all integers λ and m satisfying
0 ≤ m ≤ 2λ − 1 we have that

1

C
·
∥∥u
∥∥
Lp

X(R) ≤
∥∥Tm u

∥∥
Lp

X(R) ≤ C ·
∥∥u
∥∥
Lp

X(R), (2.11)

for all u ∈ Zλ, where C depends only on p and the UMD constant of X. In other
words, Tm acts as an isomorphism on Zλ with norm independent of m and λ.

Proof. With λ ≥ 0 fixed, we will first prove
1

C
·
∥∥u
∥∥
Lp

X(R) ≤
∥∥Tm u

∥∥
Lp

X(R) ≤ C ·
∥∥u
∥∥
Lp

X(R), (2.12)

for all 0 ≤ m ≤ 2λ−1 and u ∈ Zλ. Once we have (2.12), it is easy to see by
symmetry that we also have

1

C
·
∥∥T2λ−1 u

∥∥
Lp

X(R) ≤
∥∥Tmu

∥∥
Lp

X(R) ≤ C ·
∥∥T2λ−1 u

∥∥
Lp

X(R), (2.13)

for all 2λ−1 − 1 ≤ m ≤ 2λ − 1 and u ∈ Zλ. Certainly, (2.12) together with (2.13)
implies (2.11), since we may join (2.12) and (2.13) at the intersection of the two
collections of operators

{Tm : 0 ≤ m ≤ 2λ−1} and {Tm : 2λ−1 − 1 ≤ m ≤ 2λ − 1},



34 2. INTERPOLATORY ESTIMATE

that is at m = 2λ−1 or at m = 2λ−1 − 1.
We begin the proof of (2.12) by defining the four collections

B0
odd =

⋃

j∈Z

λ−1⋃

k=0
k odd

Sλ ∩ D2jλ+k , B0
even =

⋃

j∈Z

λ−1⋃

k=0
k even

Sλ ∩ D2jλ+k ,

B1
odd =

⋃

j∈Z

λ−1⋃

k=0
k odd

Sλ ∩ D(2j+1)λ+k , B1
even =

⋃

j∈Z

λ−1⋃

k=0
k even

Sλ ∩ D(2j+1)λ+k .

Let B denote one of those four collections. The collection B consists of λ consec-
utive levels, followed by a gap of λ levels, followed by λ consecutive levels and so
on. Within this proof we shall refer to intervals located in the same λ consecutive
levels of B as block.

We claim the existence of a filtration {Fj}j , such that for every j ∈ Z and
I ∈ B ∩ Dj exists an atom A(I) of Fj satisfying the inequalities

|A(I)| ≤ 2 |I|, |I ∩A(I)| ≥ 1

3
|I|, |τm(I) ∩A(I)| ≥ 1

3
|I|. (2.14)

Now, for each I ∈ B we will define atoms inductively, beginning at the finest
level of a block. More precisely, fix an arbitrary b ∈ Z such that for all I, I ′ ∈ B
with |I| = 2−b and |I ′| < |I| follows |I ′| ≤ 2−λ |I|. Initially, define

A(I) = I ∪ τm(I), (2.15)

for I ∈ B ∩ Db. Assume we already constructed atoms A(J) if 2−b ≤ |J | ≤ 2−j .
Then define for every I ∈ B ∩ Dj−1 the atom A(I) by

A(I) =
(
I ∪ τm(I)

)
\
( b⋃

k=j

⋃

J∈B∩Dk

A(J)
)
. (2.16)

Applying Lemma 2.1 on page 30 to the atoms A(I) ⊂ I ∪ τm(I) inside the block
b, b− 1, . . . , b− (λ− 1) we gain

|I ∩A(I)| = |I| − |I ∩
b⋃

k=b−(λ−1)

⋃

J∈B∩Dk

A(J)| ≥ 1

3
|I|,

and analogously

|τm(I) ∩A(I)| ≥ 1

3
|I|,

which yields (2.14). Finally we define the collection

Aj =
{
A(I) : I ∈ B ∩ Dj

}
, (2.17)

and the filtration
Fj = σ-algebra

( ⋃

i≤j

Ai

)
. (2.18)

What is left to show is that every A ∈ Aj is an atom for the σ–algebra Fj .
To see this we reason as follows. First note that each two atoms are either

localized in the same block, or are separated by at least λ levels. If atoms A(I) and
A(I ′) are in the same block, then they do not intersect per construction (see (2.15)
and (2.16)). Whenever A(I) and A(I ′) intersect and |I ′| ≤ 2−λ |I|, then since

A(I ′) ⊂ (I ′ ∪ τm(I ′)) ⊂ πλ(I ′)

we have
πλ(I ′) ∩A(I) 6= ∅.
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Clearly, A(I) comprises of cubes K which are at least as big as πλ(I ′), so note
|πλ(I ′)| ≤ |K|, hence

A(I ′) ⊂ A(I).

This means that
⋃

j Aj is a nested collections of sets, thus every A ∈ Aj is an atom
for the σ–algebra Fj.

Now we are prepared to estimate the shift operator Tm. To this end we let
u ∈ Zλ be fixed throughout the rest of the proof. Having (2.14) at hand and
knowing that the collection Aj comprises of atoms of Fj , observe

1I ≤ 18 · E
(
E
(
1τm(I) |Fj

) ∣∣Dj

)
, (2.19)

and analogously

1τm(I) ≤ 18 · E
(
E
(
1I |Fj

) ∣∣Dj

)
. (2.20)

The UMD property and Kahane’s contraction principle applied to |hI | ≤ 1I
yields

‖u‖p
Lp

X(R) ≈
∫ 1

0

∥∥∑

j∈Z
rj(t) I(u)j

∥∥p
Lp

X(R)dt,

where ( · )j denotes the restriction of the Haar expansion to intervals in Dj , and
IhI = 1I . More precisely, if

u =
∑

j∈Z

∑

I∈Dj

uI hI |I|−1,

then
I(u )j =

∑

I∈Dj

uI 1I |I|−1.

So applying Kahane’s contraction principle in view of (2.19) yields

‖u‖p
Lp

X(R) .
∫ 1

0

∥∥∑

j∈Z
rj(t) E

(
E
(
I(Tmu)j |Fj

) ∣∣Dj

)∥∥p
Lp

X (R).

Using Stein’s martingale inequality (0.5) with respect to the filtration {Dj}j gives

‖u‖p
Lp

X(R) .
∫ 1

0

∥∥∑

j∈Z
rj(t) E

(
I(Tmu)j |Fj

)∥∥p
Lp

X(R).

Now we apply Stein’s martingale inequality with respect to the filtration {Fj}j and
gain

‖u‖p
Lp

X(R) .
∫ 1

0

∥∥∑

j∈Z
rj(t) I(Tmu)j

∥∥p
Lp

X(R).

Subsequently, we apply Kahane’s contraction principle to 1τm(I) ≤ |hτm(I)| and
make use of the UMD property to dispose of the Rademacher functions and obtain

‖u‖p
Lp

X(R) . ‖Tmu‖pLp
X(R).

Repeating this argument with the roles of u and Tmu reversed, and using (2.20)
instead of (2.19) we get the converse inequality

‖Tmu‖pLp
X(R) . ‖u‖p

Lp
X(R).

A fortiori, we proved (2.12), that was
1

C
·
∥∥u
∥∥
Lp

X(R) ≤
∥∥Tm u

∥∥
Lp

X(R) ≤ C ·
∥∥u
∥∥
Lp

X(R),

for all λ ≥ 0, 0 ≤ m ≤ 2λ−1 and u ∈ Zλ, where C depends only on p and the UMD
constant of X .



36 2. INTERPOLATORY ESTIMATE

Observe that due to symmetry we may use the same argument for the operators
Tm, 2λ−1 ≤ m ≤ 2λ − 1, if we reverse the sign of the shift operation and replace u
by T2λ−1u. Therefore inequality (2.13) holds true as well. That was

1

C
·
∥∥T2λ−1 u

∥∥
Lp

X(R) ≤
∥∥Tmu

∥∥
Lp

X(R) ≤ C ·
∥∥T2λ−1 u

∥∥
Lp

X(R),

for all 2λ−1 − 1 ≤ m ≤ 2λ − 1 and u ∈ Zλ, where C depends only on p and the
UMD constant of X .

Joining the last two inequalities via T2λ−1 (or T2λ−1−1) as indicated above
concludes the proof. �

Remark 2.3. The central difficulty of the proof was finding the filtration
{Fj}j , given by (2.18), such that each collection Aj , given by (2.17), comprises
of atoms A(I) of Fj . This was achieved by subtracting the atoms A(J) succeeding
A(I) within a block (see (2.15) and (2.16)). Note that the measure estimates in
Lemma (2.1) implied inequality (2.14). As a consequence, we obtained inequal-
ity (2.19) and (2.20), which enabled us to shift hI to hτm(I) by means of Kahane’s
contraction principle and Bourgain’s version of Stein’s martingale inequality.

For a detailed exposition and the development of a method how one can es-
timate rearrangement operators that admit a supporting tree, we refer the reader
to [KM09] and [MS91]. Given a rearrangement τ such that |τ(I)| = |I|, a sup-
porting tree is essentially the existence of a filtration having the properties of {Fj}j
listed above, with τm replaced by τ .

In order to shift an essential portion of hI to hτm(I), one can replace Bour-
gain’s version of Stein’s martingale inequality by the martingale transforms used
in [Fig88, Proposition 2, Step 0]. To this end, we need additional symmetry prop-
erties (see (2.21)), which were not required for the first proof. We will refine the
above construction of the filtration {Fj}j for our purposes. The details are given
in the proof below.

Alternative Proof of Theorem 2.2. We modify the construction of the
above collections B, by taking only every fourth level instead of every second level,
and denote each of those collections by C . Hence, for all J,K ∈ C , if |J | 6= |K| we
have either

|J | ≤ 1

16
|K| or |K| ≤ 1

16
|J |.

Considering the proof of Lemma 2.1 on page 30 we see that
∣∣∣∣I ∩

λ−1⋃

d=1

⋃

J∈C
|J|=2−d |I|

J ∪ τm(J)

∣∣∣∣ ≤
2

15
|I|,

and
∣∣∣∣τm(I) ∩

λ−1⋃

d=1

⋃

J∈C
|J|=2−d |I|

J ∪ τm(J)

∣∣∣∣ ≤
2

15
|I|.

So if we construct the atoms A(I) according to (2.15) and (2.16) (with B replaced
by C ), we gain instead of (2.14) the inequalities

|A(I)| ≤ 2 |I|, |I ∩A(I)| ≥ 13

15
|I|, |τm(I) ∩A(I)| ≥ 13

15
|I|.
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In what follows we denote the left and right dyadic successor of I by I0 and I1,
respectively. To be more precise, I0, I1 ∈ D , |I0| = |I1| = |I|/2, and inf I0 = inf I,
sup I1 = sup I. Consequently, if we define

B(I) =
(
A(I) ∩ (A(I) ∩ I1 − |I|/2)

)
∪
(
A(I) ∩ (A(I) ∩ I0 + |I|/2)

)

∪
(
A(I) ∩ (A(I) ∩ τm(I)1 − |I|/2)

)
∪
(
A(I) ∩ (A(I) ∩ τm(I)0 + |I|/2)

)

and furthermore

C(I) =
(
B(I) ∩ (B(I)−m · |I|)

)
∪
(
B(I) ∩ (B(I) +m · |I|)

)
,

we see that

|C(I)| ≤ 2 |I|, |I ∩C(I)| ≥ 7

15
|I|, |τm(I) ∩ C(I)| ≥ 7

15
|I|.

Since C(I) ⊂ A(I), the C(I), I ∈ C do not intersect inside a block. Retrac-
ing our steps, we may replace A(I) by C(I) in the above proof. Observe that
additionally we have the following identities at our disposal

C(I) ∩ τm(I) = C(I) ∩ I +m · |I|,
C(I) ∩ I1 = (C(I) ∩ I0) + |I|/2, (2.21)

which allow us to use the martingale transform in the proof of [Fig88, Proposition
2, Step 0]. Elaborating on this martingale transform we define

dI,1 =
1

2
(hI + hτm(I)) · 1C(I), and dI,2 =

1

2
(hI − hτm(I)) · 1C(I), (2.22)

and due to (2.21) we see that {dI,1, dI,2 : I ∈ C } is a martingale difference se-
quence. Furthermore, note that

{hI · 1C(I) : I ∈ C } and {hτm(I) · 1C(I) : I ∈ C }
are martingale difference sequences, as well. Observe

dI,1 + dI,2 = hI · 1C(I) and dI,1 − dI,2 = hτm(I) · 1C(I), (2.23)

thus we can swap hI · 1C(I) with hτm(I) · 1C(I), according to [Fig88, Lemma 2].
So we shifted hI · 1C(I) to hτm(I) · 1C(I) by means of the martingale transfor-

mation given by (2.23) instead of applying Bourgain’s version of Stein’s martingale
inequality for this purpose. �

The following Corollary 2.4 connects the one-dimensional Theorem 2.2 on
page 32 with the multidimensional stripe operators Sλ. In Figure 3 on the next
page the action of the shift operators Tm, 0 ≤ m ≤ 2λ − 1 on the image of Sλ is
visualized.

Corollary 2.4. Let X be a UMD space. Let 1 < p < ∞, n ∈ N and denote
by e1 the unit vector (1, 0, . . . , 0) ∈ Rn.

Then there exists a constant C > 0, such that for all integers λ and m satisfying
0 ≤ m ≤ 2λ − 1 and every u ∈ Lp

X(Rn)

1

C
·
∥∥Sλu

∥∥
Lp

X(Rn)
≤
∥∥Tm·e1 Sλu

∥∥
Lp

X (Rn)
≤ C ·

∥∥Sλu
∥∥
Lp

X(Rn)
, (2.24)

where C depends only on n, p and the UMD constant of X. In other words, Tm
acts as an isomorphism on the image of Sλ with norm independent of m and λ.

Proof. We recall the definitions (2.3) and (2.4), that was

Uλ =
{
E ∈ Q : πλ(E) = Q, inf

x∈E
x1 = inf

q∈Q
q1
}
,
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Figure 3. Shifting the image of a stripe operator Sλ in dimension
n = 2.

and by ·1 we denoted the projection onto the first coordinate. Observe that due to
the definitions (2.5) and (2.6) we have

image(Sλ) ⊂
{ ∑

Q∈Uλ

uQ hQ |Q|−1 : uQ ∈ X
}
∩ Lp

X(Rn).

With this in mind we will apply Theorem 2.2 on page 32 to every line in direction
e1.

Fix u ∈ Lp
X , define v = Sλu and denote by vx the function v(·, x), for all

x ∈ Rn−1. Observe that for all x ∈ Rn−1 and t ∈ R we have the identity
(
Tm·e1v

)
(t, x) = (Tmvx)(t),

hence
∥∥Tm·e1v

∥∥p
Lp

X(Rn)
=

∫

Rn−1

∫

R

∥∥(Tmvx
)
(t)
∥∥p
X
dt dx =

∫

Rn−1

∥∥Tmvx
∥∥p
Lp

X(R) dx.

Note vx ∈ Zλ, for almost every x ∈ Rn, so we may use Theorem 2.2 to get
∫

Rn−1

∥∥Tmvx
∥∥p
Lp

X(R) dx ≈
∫

Rn−1

∥∥vx
∥∥p
Lp

X(R) dx =
∥∥v
∥∥p
Lp

X(Rn)
.

Substituting v = Sλu finishes the proof of the Corollary. �

2.3. Estimates for the Stripe Operator.
Before we formulate and prove the main result on stripe operators Sλ we will

recapitulate the definition of Sλ (see (2.6)). The dyadic stripe Uλ(Q) (for details
see (2.3)) was the collection

{
E ∈ Q : πλ(E) = Q, inf

x∈E
x1 = inf

q∈Q
q1
}
,

where πλ(E) is the uniqueQ ∈ Q such that |Q| = 2λn |E| andQ ⊃ E. Furthermore,
x1 respectively q1 denotes the orthogonal projection of x ∈ Rn respectively q ∈ Rn

onto the vector e1 = (1, 0, . . . , 0). Then the stripe operator Sλ is given by the linear
extension of

SλhQ = gQ,λ,
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Figure 4. High frequency cover of the cube Q obtained by shifts
of the stripe functions gQ,λ.

and the stripe functions were in (2.5) defined by

gQ,λ =
∑

E∈Uλ(Q)

hE .

Having verified Corollary 2.4 on page 36 we will now present our main theorem
on stripe operators.

Theorem 2.5. Let X be a UMD space, 1 < p < ∞ and n ∈ N. For λ ≥ 0 let
Sλ denote the stripe operator given by

Sλu =
∑

Q∈Q

〈u, hQ〉 gQ,λ|Q|−1,

for all u ∈ Lp
X(Rn). If Lp

X(Rn) has cotype C(Lp
X(Rn)), then there exists a constant

C > 0 such that for every u ∈ Lp
X(Rn) and λ ≥ 0

‖Sλu‖Lp
X(Rn) ≤ C · 2−λ/C(Lp

X(Rn)) ‖u‖Lp
X(Rn), (2.25)

where the constant C depends only on n, p, the UMD constant of X and the cotype
C(Lp

X(Rn)).

Proof. The UMD property and Kahane’s contraction principle shows that the
estimate holds true if we restrict λ to 0 ≤ λ ≤ 1.

So from now on we may assume λ ≥ 2. The definition of the dyadic stripe Uλ

(see (2.3) and (2.4)) implies that

τk·e1 (Uλ) ∩ τm·e1(Uλ) = ∅, (2.26)

if 0 ≤ k < m ≤ 2λ − 1. Furthermore one has the high frequency cover of Q ∈ Q
given by

2λ−1⋃

m=0

τm·e1
(
Uλ(Q)

)
=
{
E ∈ Q : πλ(E) = Q

}
,

thus

|hQ| =
∣∣∣∣
2λ−1∑

m=0

Tm·e1 gQ,λ

∣∣∣∣ (2.27)

by the definition of gQ,λ (see Figure 4).
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Now let u ∈ Lp
X(Rn) be fixed. For the rest of the proof will abbreviate Lp

X(Rn)
by Lp

X and C(Lp
X) by C. We want to bound ‖u‖Lp

X
from below by the means of the

stripe operator Sλ.
First, the UMD property allows us to introduce Rademacher means

‖u‖Lp
X
≈
∫ 1

0

∥∥∥
∑

j

rj(t)
∑

Q∈Qj

uQ hQ |Q|−1
∥∥∥
Lp

X

dt.

Second, Kahane’s contraction principle applied to (2.27) on the right hand side
yields

‖u‖Lp
X
≈
∫ 1

0

∥∥∥
∑

j

rj(t)
∑

Q∈Qj

uQ

2λ−1∑

m=0

Tm·e1 gQ,λ |Q|−1
∥∥∥
Lp

X

dt. (2.28)

Third, if we set

d(j,m) = Tm·e1
∑

Q∈Qj

gQ,λ if j ∈ Z and 0 ≤ m ≤ 2λ − 1,

and define the lexicographic ordering relation

(j,m) < (j′,m′) iff

{
j < j′, or
j = j′ and m < m′,

then
{
d(j,m) : j ∈ Z, 0 ≤ m ≤ λ

}
with respect to “<” generates a martingale

difference sequence. So in view of (2.26) and the UMD property we may introduce
the following new Rademacher means in (2.28)

∫ 1

0

∥∥∥
2λ−1∑

m=0

rm(t) Tm·e1
∑

Q∈Q

uQ gQ,λ |Q|−1
∥∥∥
Lp

X

dt.

Hence we have

‖u‖Lp
X
≈
∫ 1

0

∥∥∥
2λ−1∑

m=0

rm(t) Tm·e1
∑

Q∈Q

uQ gQ,λ |Q|−1
∥∥∥
Lp

X

dt. (2.29)

Fourth, with gQ,λ = SλhQ in mind, we apply the cotype inequality (0.3)
to (2.29) and see

‖u‖Lp
X
&
( 2λ−1∑

m=0

∥∥Tm·e1 Sλu
∥∥C
Lp

X

)1/C

.

Finally, utilizing Corollary 2.4 on page 36 concludes the proof

( 2λ−1∑

m=0

∥∥Tm·e1 Sλu
∥∥C
Lp

X

)1/C

≈
( 2λ−1∑

m=0

∥∥Sλu
∥∥C
Lp

X

)1/C

= 2λ/C ‖Sλu‖Lp
X
.

�

Repeating the proof of Theorem 2.5 without Corollary 2.4 and using T. Figiel’s
bound (0.8) for the shift operator Tm directly, would lead to the weaker result

‖Sλu‖Lp
X(Rn) ≤ C · λα 2−λ/C(Lp

X(Rn)) ‖u‖Lp
X(Rn), (2.30)

where the exponent 0 < α < 1 is the exponent occurring in T. Figiel’s estimate (0.8).
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Figure 5. The dyadic stripe Uλ(Q) embedded in the ring domain
Vλ(Q) in dimension n = 2. The picture is drawn as if C = 1.

2.4. The Ring Domain Operator.
We define the ring domain operator Hλ, supported in the vicinity of the set of

discontinuities of Haar functions. We will show that Hλ can be written as a finite
sum of continuous images of stripe operators Sλ. Thus the estimate (2.5) for the
stripe operator conveys to the ring domain operator, that is

‖Hλu‖Lp
X(Rn) ≤ C · 2−λ/C(Lp

X(Rn)) ‖u‖Lp
X(Rn). (2.31)

For every Q denote by D(Q) the set of discontinuities of the Haar function hQ
and define for all λ ≥ 0.

Dλ(Q) = {x ∈ Rn : dist(x,D(Q)) ≤ C · 2−λ sidelength(Q)}.
Note that for all λ ≥ 0 and Q ∈ Q we have

|Dλ(Q)| ≤ C · 2−λ |Q|, (2.32)

where C does not depend on λ and Q. Now we cover the set Dλ(Q) using dyadic
cubes E(Q) with sidelength(E(Q)) = 2−λ · sidelength(Q), and call the collection of
those cubes Vλ(Q). To be more precise

Vλ(Q) =
{
E ∈ Q : sidelength(E) = 2−λ sidelength(Q), E ∩Dλ(Q) 6= ∅

}
, (2.33)

and we define
Vλ =

⋃

Q∈Q

Vλ(Q). (2.34)

The set covered by Vλ(Q) is illustrated by the shaded region in Figure 5, wherein
the dashed lines represent the set of discontinuities D(Q). The cardinality #Vλ(Q)
does not depend on the choice of Q, so we note

#Vλ(Q) ≈ 2λ(n−1). (2.35)
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Finally, define the functions dQ,λ associated to the ring domain Vλ(Q) by

dQ,λ =
∑

E∈Vλ(Q)

hE , (2.36)

and the ring domain operator Hλ by

Hλu =
∑

Q∈Q

〈u, hQ〉 dQ,λ|Q|−1. (2.37)

In the subsequent theorem the ring domain operator Hλ is dominated by the
stripe operator Sλ. This is done by covering the ring domain function dQ,λ with
continuous mappings of the dyadic stripe functions gQ,λ (see identity (2.40)).

Theorem 2.6. Let X be a UMD space, 1 < p < ∞ and n ∈ N. Let λ ≥ 0 let
Hλ denote the ring domain operator given by

Hλu =
∑

Q∈Q

〈u, hQ〉 dQ,λ|Q|−1,

for all u ∈ Lp
X(Rn).

Then we can dominate Hλ by Sλ, that is
∥∥Hλu

∥∥
Lp

X

≤ C ·
∥∥Sλu

∥∥
Lp

X

, (2.38)

for all u ∈ Lp
X(Rn), where the constant C depends only on n, p and the UMD

constant of X.

A fortiori, we have the following estimate for Hλ.

Corollary 2.7. Let X be a UMD space, 1 < p < ∞ and n ∈ N. If Lp
X(Rn)

has cotype C(Lp
X(Rn)), then there exists a constant C > 0 such that for every

u ∈ Lp
X(Rn) and λ ≥ 0

‖Hλu‖Lp
X(Rn) ≤ C · 2−λ/C(Lp

X(Rn)) ‖u‖Lp
X(Rn), (2.39)

where the constant C depends only on n, p, the UMD constant of X and the cotype
C(Lp

X(Rn)).

Proof of Corollary 2.7. Once we have proved Theorem 2.6 we obtain
Corollary 2.7 simply by plugging in the estimate for the stripe operator (2.25). �

Proof of Theorem 2.6. Let q denote the lower left corner of Q, that is
q = (q1, . . . , qn), where

qi = inf
{
xi : (x1, . . . , xn) ∈ Q

}
, for all 1 ≤ i ≤ n.

Furthermore, denote by Mi the orthogonal transformation swapping e1 and ei, that
is the linear extension of

Mi e1 = ei, Mi ei = e1, Mi ej = ej for all j /∈ {1, i},
and finally define

Li gQ,λ = gQ,λ

(
Mi(x+ q)− q

)
,

for all Q ∈ Q.
Then we can find a constant C > 0 and functions |c(i)Q | ≤ 1, 1 ≤ i ≤ n such

that

dQ,λ =

n∑

i=1

Li

⌈C−1⌉∑

m=⌊−C⌋
Tm·e1

(
Id+T(2λ−1−1)·e1 + T(2λ−1)·e1

)
c
(i)
Q gQ,λ. (2.40)
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The ring domain Vλ(Q) and the dyadic stripe Uλ(Q) are pictured in Figure 5 on
page 40. Since Li is a bounded operator on Lp

X we can dominate
∥∥Hλu

∥∥
Lp

X

by

⌈C−1⌉∑

m=⌊−C⌋

n∑

i=1

∥∥∥Tm·e1
(
Id+T(2λ−1−1)·e1 + T(2λ−1)·e1

)
Sλ

∑

Q∈Q

uQ c
(i)
Q hQ |Q|−1

∥∥∥
Lp

X

.

If we use inequality (0.8) for Tm·e1 , ⌊−C⌋ ≤ m ≤ ⌈C−1⌉, and estimate the operators
T(2λ−1−1)·e1Sλ and T(2λ−1)·e1Sλ by means of (2.24), we obtain

∥∥∥Tm·e1
(
Id+T(2λ−1−1)·e1 + T(2λ−1)·e1

)
Sλv

∥∥∥
Lp

X

≤ C1 ·
∥∥Sλv

∥∥
Lp

X

,

for all v ∈ Lp
X , where the constant C1 is independent of v, m and λ. Combining

the last two inequalities we see that
∥∥Hλu

∥∥
Lp

X

≤ 2 · C · C1 ·
n∑

i=1

∥∥ ∑

Q∈Q

uQ c
(i)
Q SλhQ |Q|−1

∥∥
Lp

X

.

Finally, exploiting the UMD property in order to use Kahane’s contraction principle
on the functions |c(i)Q | ≤ 1, 1 ≤ i ≤ n with respect to the martingale difference

sequence
{∑

Q∈Qj
uQ c

(i)
Q SλhQ |Q|−1 : j ∈ Z

}
with filtration

{
Qj+λ : j ∈ Z

}

concludes the proof. �
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3. Decomposition of the Directional Haar Projection P (ε)

Given 1 < p < ∞ and an integer n ≥ 2, the directional Haar projection
P (ε) : Lp

X(Rn) −→ Lp
X(Rn) is defined by

P (ε)u =
∑

Q∈Q

〈u, h(ε)Q 〉h(ε)Q |Q|−1, (3.1)

for all u ∈ Lp
X .

In order to estimate the directional Haar projection P (ε), we will decompose
P (ε) in section 3.1 into a series of mollified operators

∑
l P

(ε)
l , following [LMM07].

Subsequently, wavelet expansions are used in [LMM07] to further analyze P (ε)
l .

On the contrary, we will decompose P (ε)
l into a series of ring domain operators∑

λ(l) cλ(l)Hλ(l), using martingale methods feasible in UMD–spaces. In section 3.2
we will use T. Figiel’s canonical martingale approach (see [Fig90]) to find a suitable
representation for P (ε)

l . In the following section 3.3 we define the main cases for
the further decomposition of P (ε)

l , which we shall then dominate by weighted series
of ring domain operators Hλ in section 3.4. We conclude the first part of this thesis
with section 3.5, where we reduce the estimates for P (ε)

l R−1
i0

to inequalities for P (ε)
l .

3.1. Decomposition of P (ε) into P
(ε)
l .

We give a brief overview of the Littlewood–Paley decomposition used in [LMM07],
and continue with further decompositions in section 3.2 and 3.3, different from the
methods in [LMM07].

We utilize a compactly supported, smooth approximation of the identity, to
obtain a decomposition of the directional projection P (ε) into a series of mollified
operators P (ε)

l ,
P (ε) =

∑

l∈Z
P

(ε)
l . (3.2)

To this end, we fix b ∈ C∞
c (]0, 1[n) such that∫

b(x) dx = 1, and
∫
xi b(x1, . . . , xi, . . . , xn) dxi = 0, (3.3)

for all 1 ≤ i ≤ n. For every integer l define

∆lu = u ∗ dl, where dl(x) = 2lnd(2lx) and d(x) = 2n b(2 x)− b(x). (3.4)

For all u ∈ Lp
X(Rn) holds true that

u =
∑

l∈Z
∆lu, (3.5)

with the series converging in Lp
X . Denoting Qj ⊂ Q the collection of all dyadic

cubes having measure 2−jn, we set

P
(ε)
l u =

∑

j∈Z

∑

Q∈Qj

〈u,∆j+l(h
(ε)
Q )〉h(ε)Q |Q|−1, (3.6)

and observe that by (3.5) for all u ∈ Lp
X

P (ε)u =
∑

l∈Z
P

(ε)
l u,

where equality holds in the sense of Lp
X . Setting f (ε)

Q,l = ∆j+lh
(ε)
Q , if Q ∈ Qj , we

rewrite (3.6) as
P

(ε)
l u =

∑

Q∈Q

〈u, f (ε)
Q,l〉h

(ε)
Q |Q|−1. (3.7)
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In contrast to [LMM07] we will rather estimate the operator

P− =
∑

l<0

Pl, (3.8)

instead of estimating each Pl, l < 0 separately.

3.2. The Integral Kernels K(ε)
l and K

(ε)
− of P (ε)

l and P
(ε)
− .

From now onwards, we deviate significantly from the methods in [LMM07].
In this section we identify the integral kernel K(ε)

l of the operator P (ε)
l . Then we

will expand K
(ε)
l into a Haar series according to T. Figiel’s martingale approach

(see [Fig90]).

Note that
(
P

(ε)
l u

)
(x) =

∫
K

(ε)
l (x, y)u(y) dy, (3.9)

where

K
(ε)
l (x, y) =

∑

Q∈Q

h
(ε)
Q (x) f

(ε)
Q,l(y) |Q|−1. (3.10)

Now we expand K(ε)
l into the series

∑

α,β∈{0,1}n

(α,β) 6=0

∑

K,M,Q∈Q :
|K|=|M|

〈h(ε)Q , h
(α)
K 〉〈f (ε)

Q,l, h
(β)
M 〉|K|−1|M |−1|Q|−1h

(α)
K (x)h

(β)
M (y). (3.11)

We distinguish the following settings for the parameter β:
(1) β 6= 0,
(2) β = 0.

Note that due to the condition (α, β) 6= 0 in (3.11), case (2) certainly implies α 6= 0.
To ease the notation, we will make use of the following convention. We shall

write hQ, denoting one of the functions h(γ)Q , γ ∈ {0, 1}n \ {0}, and 1Q for the
characteristic function h0Q. We may do so since the UMD–property and Kahane’s
contraction principle enable us to interchange equally supported Haar functions
having mean zero.

Using this notation, expansion (3.11) reduces in both cases to

Kl(x, y) =
∑

M,Q∈Q

〈fQ,l, hM 〉|M |−1|Q|−1hQ(x)hM (y), (3.12)

which is exactly the Haar expansion of Kl in the y–coordinate. Expansion (3.11)
breaks up the Haar functions h(ε)Q into smaller pieces and reassembles them, sub-
sequently. We might have seen the algebraic form (3.12) simply by plugging the
Haar series of u into the operator P (ε)

l . However, after a few purely algebraic
manipulations, Figiel’s expansion in both coordinates yields identity (3.12).

Now we present an accurate justification for identity (3.12). To this end, we
fix β ∈ {0, 1}n \ {0}, α ∈ {0, 1}n and rewrite the inner sum of (3.11)

∑

K,M,Q∈Q:
|K|=|M|

〈hQ, h(α)K 〉 〈fQ,l, hM 〉 |K|−1|M |−1|Q|−1h
(α)
K (x)hM (y)

=
∑

M,Q∈Q

〈fQ,l, hM 〉 |M |−1|Q|−1hM (y)
∑

K∈Q:
|K|=|M|

〈hQ, h(α)K 〉|K|−1h
(α)
K (x).
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In both cases α = 0 and α 6= 0 we have
∑

K∈Q:
|K|=|M|

〈hQ, h(α)K 〉 |K|−1h
(α)
K (x) = hQ(x),

for all Q, M and x ∈ Rn. This is true for the sum being either the conditional
expectation of hQ, or exploiting the orthogonality of the Haar basis, respectively.
Hence we obtain (3.12).

Let β = 0, which implies α 6= 0 as noted before, therefore the inner sum
of (3.11) reads

∑

K,M,Q∈Q :
|K|=|M|

〈hQ, hK〉 〈fQ,l, 1M 〉 |K|−1|M |−1|Q|−1 hK(x) 1M (y)

=
∑

M,Q∈Q :
|M|=|Q|

〈fQ,l, 1M 〉 |M |−1|Q|−1hQ(x) 1M (y).

Developing the y–component of the last expression into a Haar series yields
∑

K,M,Q∈Q :
|M|=|Q|

〈fQ,l, 1M 〉 〈hK , 1M 〉 |K|−1|M |−1|Q|−1hQ(x)hK(y)

=
∑

K,Q∈Q

hQ(x)hK(y) |K|−1|Q|−1
∑

M$K

|M|=|Q|

〈fQ,l, 1M 〉 〈hK , 1M 〉 |M |−1

=
∑

K,Q∈Q

hQ(x)hK(y) |K|−1|Q|−1
〈
fQ,l,

∑

M$K
|M|=|Q|

1M 〈hK , 1M 〉 |M |−1
〉
.

Observe that the inner sum with K and Q fixed is the conditional expectation of
hK at a finer scale. Hence hK is reproduced, so

∑

M$K

|M|=|Q|

1M 〈hK , 1M 〉 |M |−1 = hK ,

and we gain

Kl(x, y) =
∑

K,Q∈Q

〈fQ,l, hK〉|K|−1|Q|−1hQ(x)hK(y).

Note that we may lift the restriction |Q| < |K|, since the sum (3.12) will be pa-
rameterized according to the ratio of the diameters of Q and M in section 3.3, and
split using the triangle inequality.

As a consequence we may assume the generic expansion (3.12) of the integral
kernel Kl(x, y) in order to estimate Pl.

We omit the superscripts (ε) and summarize the results of the preceding dis-
cussion in

Proposition 3.1. For each l ∈ Z let

Plu =
∑

Q∈Q

〈u, fQ,l〉hQ |Q|−1, (3.13)

where fQ,l = ∆j+l hQ, for all Q ∈ Qj (see (3.4) for details).
Then integral kernel Kl of Pl is given by

(
Plu
)
(x) =

∫
Kl(x, y)u(y) dy, (3.14)
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where

Kl(x, y) =
∑

M,Q∈Q

〈fQ,l, hM 〉 |M |−1|Q|−1hQ(x)hM (y). (3.15)

If we define
P− =

∑

l<0

Pl and fQ =
∑

l<0

fQ,l, (3.16)

then the integral kernel K− of P− is given by

K−(x, y) =
∑

M,Q∈Q

〈fQ, hM 〉 |M |−1|Q|−1hQ(x)hM (y). (3.17)

3.3. Decomposition of Pl – The Main Cases.
We will decompose the operator Pl guided by the different behavior of the

coefficients 〈fQ,l, hM 〉, l ≥ 0, M ∈ Q and 〈fQ,l, hM 〉, l < 0, M ∈ Q. This is
primarily caused by the different shape of the support of the functions fQ,l, l ≥ 0
and fQ,l, l < 0, (compare the support inclusions in (3.18) and (3.19)) in relation to
the size of the cubes M .

3.3.1. Estimates for the Coefficients.
First, we want to investigate the mollified Haar functions fQ,l, l ∈ Z. To this

end, let D(Q) denote the set of discontinuities of the Haar function hQ, then

Dl(Q) = {x ∈ Rn : dist(x,D(Q)) ≤ C · 2−l diam(Q)}.
If l ≥ 0, note that

∫
fQ,l(x) dx = 0, supp fQ,l ⊂ Dl(Q),

|fQ,l| ≤ C, Lip(fQ,l) ≤ C 2l (diam(Q))−1,

(3.18)

and if l ≤ 0, we have
∫
fQ,l(x) dx = 0, supp fQ,l ⊂ C 2|l|Q,

|fQ,l| ≤ C 2−|l|(n+1), Lip(fQ,l) ≤ C 2−|l|(n+2) (diam(Q))−1,

(3.19)

where the constant C does not depend on l and Q.
Recall that for Q ∈ Qj we defined

fQ,l = ∆j+l hQ = hQ ∗ dj+l = hQ ∗ (bj+l+1 − bj+l).

So taking the sum over l < 0 yields
∑

l<0

fQ,l = hQ ∗ bj ,

hence, the mollified Haar functions fQ defined in (3.16), are given by

fQ = hQ ∗ bj , for all Q ∈ Qj ,

where bj(x) = 2j n b(2j x). The functions fQ have the following properties, which
are easily verified. There exists a C > 0 independent of Q such that

∫
fQ(x) dx = 0, supp fQ ⊂ C ·Q,

|fQ| ≤ C, Lip(fQ) ≤ C · (diam(Q))−1,

(3.20)

for all Q ∈ Q.
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Proposition 3.2 stated below estimates the coefficients 〈fQ,l, hM 〉, l ≥ 0 respec-
tively 〈fQ, hM 〉. The different behavior of the inequalities is determined by the
ratio of the diameters of the cubes Q and M .

Proposition 3.2. For all dyadic cubes Q,M ∈ Q we have the following esti-
mates for the coefficients 〈fQ,l, hM 〉, l ≥ 0.

(1) If diam(Q) ≤ diam(M), then

|〈fQ,l, hM 〉| ≤ C · 2−l |Q|, (3.21)

(2) if 2−l diam(Q) ≤ diam(M) < diam(Q), we get

|〈fQ,l, hM 〉| ≤ C · 2−l diam(Q) (diam(M))n−1, (3.22)

(3) and if diam(M) < 2−l diam(Q) we obtain

|〈fQ,l, hM 〉| ≤ C · 2l diam(M)

diam(Q)
|M |. (3.23)

The constant C does not depend on l, Q and M .
Moreover, for all dyadic cubes Q,M ∈ Q we have the subsequent estimates for

the coefficients 〈fQ, hM 〉.
(1) If diam(M) ≤ diam(Q), then

|〈fQ, hM 〉| ≤ C · (diam(Q))−1 (diam(M))n+1, (3.24)

(2) while if diam(M) > diam(Q), we have

|〈fQ, hM 〉| ≤ C · |Q|. (3.25)

The constant C does not depend on Q and M .

Proof. First, we want to estimate 〈fQ,l, hM 〉, so we fix l ≥ 0 and Q,M ∈ Q.
If diam(Q) ≤ diam(M), then using |Dl(Q)| . 2−l |Q| and exploiting the bound-

edness of fQ,l and hM implies (3.21).
If 2−l diam(Q) ≤ diam(M) < diam(Q), then the measure estimate

|Dl(Q) ∩M | . 2−l diam(Q) (diam(M))n−1

together with inequality (3.18) yields (3.22).
If diam(M) < 2−l diam(Q), then in view of Lip(fQ,l) . 2l (diam(Q))−1 and∫

hM = 0 in inequality (3.18) we may infer (3.23).

Now we turn to the estimates for 〈fQ, hM 〉, Q,M ∈ Q.
If diam(M) ≤ diam(Q), we make use of

Lip(fQ) ≤ C (diam(Q))−1,

according to (3.20) and we gain (3.24).
For diam(M) > diam(Q), one can exploit

|fQ| ≤ C and supp fQ ⊂ C ·Q
in (3.20) to obtain (3.25). �

Remark 3.3. Observe that the coefficients 〈fQ,l, hM 〉 respectively 〈fQ, hM 〉
vanish, if the support of fQ,l respectively fQ is contained in a set where hM is
constant (see Figure 6 on page 50). More precisely, if we can find a K ∈ Q with
π(K) =M such that

supp fQ,l ⊂ K respectively supp fQ ⊂ K,

then certainly
〈fQ,l, hM 〉 = 0 respectively 〈fQ, hM 〉 = 0.
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So we note that for diam(M) > diam(Q) the cubes Q for which 〈fQ,l, hM 〉 6= 0
respectively 〈fQ, hM 〉 6= 0, cluster in the vicinity of D(M), the set of hM ’s discon-
tinuities.

3.3.2. Definition of the Main Cases.
For each l ≥ 0 we split the set Q×Q according to the cases in Proposition 3.2

on the preceding page into the three disjoint collections

Al =
{
(Q,M) : diam(Q) ≤ diam(M)

}
, (3.26)

Bl =
{
(Q,M) : 2−l diam(Q) ≤ diam(M) < diam(Q)

}
, (3.27)

Cl =
{
(Q,M) : diam(M) < 2−l diam(Q)

}
, (3.28)

respectively the two disjoint collections

A− =
{
(Q,M) : diam(M) ≤ diam(Q)

}
, (3.29)

B− =
{
(Q,M) : diam(M) > diam(Q)

}
. (3.30)

Then we define the integral kernels

Al(x, y) =
∑

(Q,M)∈Al

〈fQ,l, hM 〉hQ(x)hM (y) |Q|−1|M |−1, (3.31)

Bl(x, y) =
∑

(Q,M)∈Bl

〈fQ,l, hM 〉hQ(x)hM (y) |Q|−1|M |−1, (3.32)

Cl(x, y) =
∑

(Q,M)∈Cl

〈fQ,l, hM 〉hQ(x)hM (y) |Q|−1|M |−1, (3.33)

respectively

A−(x, y) =
∑

(Q,M)∈A−

〈fQ, hM 〉hQ(x)hM (y) |Q|−1|M |−1, (3.34)

B−(x, y) =
∑

(Q,M)∈B−

〈fQ, hM 〉hQ(x)hM (y) |Q|−1|M |−1, (3.35)

accordingly, and associate to each integral kernel the induced operator, precisely
(
Al u

)
(x) =

∫
Al(x, y)u(y) dy, (3.36)

(
Bl u

)
(x) =

∫
Bl(x, y)u(y) dy, (3.37)

(
Cl u

)
(x) =

∫
Cl(x, y)u(y) dy, (3.38)

respectively

(
A− u

)
(x) =

∫
A−(x, y)u(y) dy, (3.39)

(
B− u

)
(x) =

∫
B−(x, y)u(y) dy. (3.40)

Finally note that

Pl = Al +Bl + Cl, for all l ≥ 0, (3.41)
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and

P− = A− +B−. (3.42)

3.4. Estimates for Pl, l ≥ 0 and P−.
In section 3.3.2 on the preceding page we determined our decomposition of Pl,

l ≥ 0 and P− into

Pl = Al +Bl + Cl, respectively P− = A− +B−.

see (3.41) and (3.42).
We will show that each of the operators Al, B∗

l , C∗
l and A∗

−, B− can be con-
trolled by certain weighted series of ring domain operators; for details on Hλ we
refer the reader to section 2.4.

Combining the results for Al, Bl and Cl respectively A∗
− and B− yields Theo-

rem 3.4 below.

Theorem 3.4. Let X be a UMD space, 1 < p < ∞ and n ∈ N. Let Lp
X(Rn)

have type T(Lp
X(Rn)).

Then there exists a constant C > 0 such that for all l ≥ 0 and every u ∈ Lp
X(Rn)

we have

‖Plu‖Lp
X(Rn) ≤ C · 2−l(1− 1

T(L
p
X

(Rn))
) ‖u‖Lp

X(Rn), (3.43)

where the constant C depends only on n, p, the UMD constant of X and the type
T(Lp

X(Rn)).
Moreover, there exists a constant C > 0 such that for all u ∈ Lp

X(Rn)

‖P−u‖Lp
X(Rn) ≤ C · ‖u‖Lp

X(Rn), (3.44)

where the constant C depends only on n, p, the UMD constant of X and the type
T(Lp

X(Rn)).

The proof of the theorem is divided into seven parts
Section 3.4.1: Estimates for Al

Section 3.4.2: Estimates for Bl

Section 3.4.3: Estimates for Cl

Section 3.4.4: Summary for Pl

Section 3.4.5: Estimates for A−
Section 3.4.6: Estimates for B−
Section 3.4.7: Summary for P−

Keeping in mind that

Pl = Al +Bl + Cl, respectively P− = A− +B−,

we proved the theorem once we established the inequalities (3.45), (3.46) and (3.47),
summarized in section 3.4.4, respectively (3.48) and (3.49), summarized in sec-
tion 3.4.7.

3.4.1. Estimates for Al.
In view of (3.26), (3.31) and (3.36) note that diam(Q) ≤ diam(M), and so

we may utilize inequality (3.21) in Proposition 3.2 on page 47. Recall that it was
mentioned in Remark 3.3 that the coefficients 〈fQ,l, hM 〉 vanish if hM is constant
on the support of fQ,l.

This setting is illustrated in Figure 6 on the next page.
First we split the set Al (see (3.26)) into the disjoint collections Al,λ, λ ≥ 0,

given by
Al,λ =

{
(Q,M) ∈ Al : diam(Q) = 2−λ diam(M)

}
,
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Vl(Q)

Vl(Q
′)

Vl(Q
′′)

Vl(Q
′′′)
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)

D(Q)

Figure 6. The ring domains Vl(Q), Vl(Q
′), Vl(Q

′′), Vl(Q
′′′) are

contained in sets where the Haar function hM is constant.

and define the operator Al,λ accordingly, that is

Al,λu =
∑

(Q,M)∈Al,λ

〈fQ,l, hM 〉hQ uM |Q|−1 |M |−1,

for all u =
∑

K∈Q uK hK |K|−1. Obviously, the identity

Alu =

∞∑

λ=0

Al,λ u

holds true. Recalling that the coefficients 〈fQ,l, hM 〉 vanish if hM is constant on
the support of fQ,l (see Remark 3.3) and the definition of the ring domain (2.33),
we see that

{Q : 〈fQ,l, hM 〉 6= 0} ⊂ {Q : Q ∩Dλ(M) 6= ∅} = Vλ(M).

Using this fact, one has the identity

Al,λ u =
∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

〈fQ,l, hM 〉 |Q|−1 hQ,

hence glancing at inequality (3.21), utilizing the UMD–property and Kahane’s con-
traction principle, we obtain

‖Al,λu‖Lp
X(Rn) . 2−l

∥∥ ∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

hQ
∥∥
Lp

X(Rn)

= 2−l
∥∥ ∑

M∈Q

uM gM,λ |M |−1
∥∥
Lp

X(Rn)

= 2−l
∥∥Hλu

∥∥
Lp

X(Rn)
.

The last equality is the definition of the ring domain operator Hλ (see (2.37)).
Applying the triangle inequality, using the above estimate for Al,λ and invoking
Corollary 2.7 yields

‖Alu‖Lp
X(Rn) . 2−l

∞∑

λ=0

2−λ/C(Lp
X(Rn)) ‖u‖Lp

X(Rn).
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Figure 7. The cubes M , M ′ and M ′′ intersect the ring domain Vl(Q).

Evaluating the geometric series we obtain the estimate

‖Alu‖Lp
X(Rn) ≤ C · 2−l ‖u‖Lp

X(Rn), (3.45)

where the constant C depends on n, p, the UMD constant of X and the cotype
C(Lp

X(Rn)).

Remark 3.5. Note that with λ ≥ 0 fixed, the collections Vλ(M) are not disjoint
as M ranges over Q. But since the number of overlaps is bounded by a constant
depending solely on the dimension n and the constant appearing in the definition
of Dλ(Q), the above proof still applies.

3.4.2. Estimates for Bl.
In view of (3.27), (3.32) and (3.37) note that 2−l diam(Q) ≤ diam(M) <

diam(Q), and so we may utilize inequality (3.22) in Proposition 3.2 on page 47.
This setting is visualized in Figure 7.

This time we prefer to analyzeB∗
l , certainly with respect to the norm ‖·‖Lq

Y (Rn),
where Y = X∗ and 1

p + 1
q = 1. As before we parameterize the series according to

the ratio of the sizes of Q and M . So we split the set Bl (see (3.27)) into the
disjoint collections Bl,λ, λ ≥ 0, given by

Bl,λ =
{
(Q,M) ∈ Bl : diam(M) = 2−λ diam(Q)

}
,

and define the operator Bl,λ accordingly, that is

Bl,λu =
∑

(Q,M)∈Bl,λ

〈fQ,l, hM 〉hQ uM |Q|−1 |M |−1,

for all u =
∑

K∈Q uK hK |K|−1.
Note that for (Q,M) ∈ Bl,λ we have

{M : 〈fQ,l, hM 〉 6= 0} ⊂ {M : M ∩Dl(Q) 6= ∅} = Vλ(Q),
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hence we can rewrite B∗
l,λu as

B∗
l,λu =

∑

Q∈Q

uQ |Q|−1
∑

M∈Vλ(Q)

〈fQ,l, hM 〉 |M |−1hM .

Taking the norm, utilizing the UMD–property and applying Kahane’s contraction
principle to (3.22) yields the estimate

‖B∗
l,λu‖Lq

Y (Rn) . 2−l
∥∥ ∑

Q∈Q

uQ |Q|−1
∑

M∈Vλ(Q)

hM
∥∥
Lq

Y (Rn)

= 2−l
∥∥ ∑

Q∈Q

uQ gQ,λ|Q|−1
∥∥
Lq

Y (Rn)

= 2−l
∥∥Hλu

∥∥
Lq

Y (Rn)
.

The last equality is the definition of the ring domain operator Hλ (see (2.37)).
Recall

B∗
l u =

∞∑

λ=0

B∗
l,λ u,

so applying the triangle inequality, using the above estimate for B∗
l,λ and invoking

Corollary 2.7 yields

‖B∗
l u‖Lq

Y (Rn) . 2−l
l∑

λ=1

2λ
∥∥Hλu

∥∥
Lq

Y (Rn)
. 2−l

l∑

λ=1

2λ(1−1/C(Lq
Y (Rn)))

∥∥u
∥∥
Lq

Y (Rn)
.

Evaluating the geometric series we obtain the estimate

‖B∗
l u‖Lq

Y (Rn) ≤ C · 2−l/C(Lq
Y (Rn))

∥∥u
∥∥
Lq

Y (Rn)
, (3.46)

where the constant C depends only on n, q, the UMD constant of Y and the cotype
C(Lq

Y (Rn)).
3.4.3. Estimates for Cl.
In view of (3.28), (3.33) and (3.38) note that now diam(M) < 2−l diam(Q),

and so we may utilize inequality (3.23) in Proposition 3.2 on page 47.
This setting is visualized in Figure 8 on the next page.
As in the preceding case we aim at estimating the adjoint operator C∗

l ; so
with Y = X∗ and 1

p + 1
q = 1, the usual parameterization splits the collection Cl

(see (3.28)) into the disjoint collections Cl,λ, λ ≥ l + 1, given by

Cl,λ =
{
(Q,M) ∈ Bl : diam(M) = 2−λ diam(Q)

}
.

We define the operator Cl,λ accordingly, that is

Cl,λu =
∑

(Q,M)∈Cl,λ

〈fQ,l, hM 〉hQ uM |Q|−1 |M |−1,

for all u =
∑

K∈Q uK hK |K|−1. The adjoint operators C∗
l and C∗

l,λ are given by

C∗
l u =

∞∑

λ=l+1

∑

Q,M∈Cl,λ

〈fQ,l, hM 〉 |M |−1hM uQ |Q|−1

=

∞∑

λ=l+1

C∗
l,λu.

Observe that for (Q,M) ∈ Cl,λ holds true that

{M : 〈fQ,l, hM 〉 6= 0} ⊂ {M : M ∩Dl(Q) 6= ∅},
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Figure 8. The tiny cubes M , M ′ and M ′′ are contained in the
cover of the ring domain Vl(Q).

thus we have ∣∣ ∑

(Q,M)∈Cl,λ :
〈fQ,l,hM〉6=0

hM
∣∣ ≤

∣∣ ∑

M∈Vl(Q)

hM
∣∣ = |gQ,l|.

We proceed by applying essentially the same steps as in the preceding cases. Using
the UMD–property and subsequently Kahane’s contraction principle we obtain

‖C∗
l,λu‖Lq

Y (Rn) . 2l 2−λ
∥∥ ∑

Q∈Q

uQ gQ,l |Q|−1
∥∥
Lq

Y (Rn)

= 2l 2−λ
∥∥Hlu

∥∥
Lq

Y (Rn)
.

Hence, applying the triangle inequality and using the above estimate for C∗
l,λ gives

us
‖C∗

l u‖Lq
Y (Rn) .

∥∥Hlu
∥∥
Lq

Y (Rn)
.

Finally, Corollary 2.7 yields

‖C∗
l u‖Lq

Y (Rn) ≤ C · 2−l/C(Lq
Y (Rn)), (3.47)

where the constant C depends only on n, q, the UMD constant of Y and the cotype
C(Lq

Y (Rn)).
3.4.4. Summary for Pl.
First, note that for Y = X∗ and 1

p + 1
q = 1 holds true that

(Lp
X(Rn))∗ = Lq

Y (R
n) and

1

T(Lp
X(Rn))

+
1

C(Lq
Y (Rn))

= 1.

Second, we use that
∥∥B∗

l : Lq
Y (R

n) → Lq
Y (R

n)
∥∥ .

∥∥Bl : Lp
X(Rn) → Lp

X(Rn)
∥∥,

and
∥∥C∗

l : Lq
Y (R

n) → Lq
Y (R

n)
∥∥ .

∥∥Cl : Lp
X(Rn) → Lp

X(Rn)
∥∥,
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to combine the inequalities (3.45), (3.46), (3.47) via the identity

Pl = Al +Bl + Cl.

Thereby we obtain

‖Pl : Lp
X(Rn) → Lp

X(Rn)‖ ≤ C · 2−l(1− 1

T(L
p
X

(Rn))
)
,

where Lp
X(Rn) has type T(Lp

X(Rn)) and the constant C depends only on n, p, the
UMD constant of X and the type T(Lp

X(Rn)).
3.4.5. Estimates for A−.
In view of (3.29), (3.34) and (3.39) note that diam(M) ≤ diam(Q), and so we

may utilize inequality (3.24) in Proposition 3.2 on page 47. In this case the size of
the cube M cannot exceed the size of Q, so we may use inequality (3.24). We rather
want to estimate A∗

− than A−, therefore set Y = X∗ and q such that 1
p + 1

q = 1.

First, we split the set A− (see (3.29)) into the disjoint collections A−,λ, λ ≥ 0,
given by

A−,λ =
{
(Q,M) ∈ A− : diam(M) = 2−λ diam(Q)

}
,

and define the operator A−,λ accordingly, that is

A−,λu =
∑

(Q,M)∈A−,λ

〈fQ, hM 〉hQ uM |Q|−1 |M |−1,

for all u =
∑

K∈Q uK hK |K|−1. The adjoint operators A∗
− and A∗

−,λ are given by

A∗
−u =

∞∑

λ=0

∑

Q,M∈A−,λ

〈fQ, hM 〉uQ hM |Q|−1 |M |−1

=

∞∑

λ=0

A∗
−,λu.

Utilizing the UMD–property and subsequently Kahane’s contraction principle (0.4)
with respect to (3.24), we infer

∥∥A∗
−,λu

∥∥
Lq

Y (Rn)
. 2−λ

∥∥ ∑

Q∈Q

∑

(Q,M)∈A−,λ

M∩(C·Q) 6=∅

uQ |Q|−1hM
∥∥
Lq

Y (Rn)
.

For every Q ∈ Q we apply Kahane’s contraction principle to
∣∣ ∑

(Q,M)∈A−,λ

M∩(C·Q) 6=∅

hM
∣∣ ≤ |hQ|,

and note that we would actually need a constant number of shifts Tm, |m| ≤ C1

of hQ to cover the whole support of the sum on the left-hand side. In view of
estimate (0.8) we omit this detail and continue the proof with the estimate

∥∥A∗
−,λu

∥∥
Lq

Y (Rn)
. 2−λ

∥∥ ∑

Q∈Q

uQ |Q|−1
∑

(Q,M)∈A−,λ

M∩(C·Q) 6=∅

hM
∥∥
Lq

Y (Rn)

. 2−λ
∥∥u
∥∥
Lq

Y (Rn)
.

Summing over λ ≥ 0 yields

‖A∗
−u‖Lq

Y (Rn) ≤ C · ‖u‖Lq
Y (Rn), (3.48)

where the constant C depends only on n, q, the UMD constant of Y and the cotype
C(Lq

Y (Rn)).
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3.4.6. Estimates for B−.
In view of (3.30), (3.35) and (3.40) note that diam(M) > diam(Q), and so we

may utilize inequality (3.25) in Proposition 3.2 on page 47.
As usual we split the set B− (see (3.30)) into the disjoint collections B−,λ,

λ ≥ 1, given by

B−,λ =
{
(Q,M) ∈ B− : diam(Q) = 2−λ diam(M)

}
,

and define the operator B−,λ accordingly, that is

B−,λu =
∑

(Q,M)∈B−,λ

〈fQ, hM 〉hQ uM |Q|−1 |M |−1,

for all u =
∑

K∈Q uK hK |K|−1. Obviously, the identity

B−u =

∞∑

λ=1

B−,λ u

holds true. For all (Q,M) ∈ B−,λ we have the inclusions

{Q : 〈fQ, hM 〉 6= 0} ⊂ {Q : (C ·Q) ∩D(Q) 6= ∅} ⊂ Vλ(M).

Successively using the UMD–property, Kahane’s contraction principle applied to
(3.25) and the inclusion above we obtain

∥∥B−,λu
∥∥
Lp

X(Rn)
.
∥∥ ∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

hQ
∥∥
Lp

X(Rn)

=
∥∥ ∑

M∈Q

uM gM,λ |M |−1
∥∥
Lp

X(Rn)

=
∥∥Hλu

∥∥
Lp

X(Rn)
.

The last equality is the definition of the ring domain operator Hλ (see (2.37)). The
main result on ring domain operators Corollary 2.7 yields

‖B−,λu‖Lp
X(Rn) . ‖Hλu‖Lp

X(Rn) . 2−λ/C(Lp
X(Rn)) ‖u‖Lp

X(Rn).

Hence, summation over λ ≥ 1 gives us

‖B−u‖Lp
X(Rn) ≤ C ‖u‖Lp

X(Rn), (3.49)

where the constant C depends only on n, p, the UMD constant of X and the cotype
C(Lp

X(Rn)).
3.4.7. Summary for P−.
First note that for Y = X∗ and 1

p + 1
q = 1 holds true

(Lp
X(Rn))∗ = Lq

Y (R
n) and

1

T(Lp
X(Rn))

+
1

C(Lq
Y (Rn))

= 1.

Second, we use that
∥∥A∗

− : Lq
Y (R

n) → Lq
Y (R

n)
∥∥ .

∥∥A− : Lp
X(Rn) → Lp

X(Rn)
∥∥,

to combine the inequalities (3.48) and (3.49) via the identity

P− = A− +B−

so that we obtain
‖P− : Lp

X(Rn) → Lp
X(Rn)‖ ≤ C,

where Lp
X(Rn) has type T(Lp

X(Rn)) and the constant C depends only on n, p, the
UMD constant of X and the type T(Lp

X(Rn)).
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3.5. Estimates for P (ε)
l R−1

i0
.

Following [LMM07] we will establish estimates for P (ε)
l R−1

i0
, l ∈ Z by reduc-

ing them to estimates for P (ε)
l . We exploit that

(
R−1

i0

)∗ maps the mollified Haar
functions f (ε)

Q,l to functions k(ε)Q,l having similar properties. Due to the algebraic
identity (3.50), this amounts to controlling the support of the kQ,l, besides factors
depending on l. Assuming εi0 = 1, we have

supp
(
Ei0 h

(ε)
Q

)
⊂ Q,

restricting the support of the functions kQ,l,i defined in (3.51), and exhibiting the
conditions asserted in (3.54) and (3.55).

We do not omit the superscripts (ε) at this time.

It is a well known fact that one can write the inverse of the Riesz transform
R−1

i0
as

R−1
i0

= Ri0 +
∑

1≤i≤n
i6=i0

Ei0∂iRi, (3.50)

where Ei0 is given by

Ei0f(x) =

∫ xi0

−∞
f(x1, . . . , xi0−1, s, xi0+1, . . . , xn) ds, x = (x1, . . . , xn).

Now we introduce the family of functions

k
(ε)
Q,l,i = ∆j+l

(
Ei0∂ih

(ε)
Q

)
, if Q ∈ Qj , (3.51)

and consider

P
(ε)
l R−1

i0
u =

∑

j∈Z

∑

Q∈Qj

〈
Ri0u,∆j+l(h

(ε)
Q )
〉
h
(ε)
Q |Q|−1

+
∑

1≤i≤n
i6=i0

∑

j∈Z

∑

Q∈Qj

〈
Ei0∂iRiu,∆j+l(h

(ε)
Q )
〉
h
(ε)
Q |Q|−1.

(3.52)

Since the Riesz transforms Ri, 1 ≤ i ≤ n are continuous on Lp
X(Rn), it is obvious

that the first sum of (3.52) can be treated as if it were Pl (also see (3.6)).
For the second sum of (3.52), we fix a coordinate i 6= i0, rearrange the operators

in the scalar product and use the functions defined in (3.51), hence
∑

j∈Z

∑

Q∈Qj

〈Ei0∂iRiu,∆j+l(h
(ε)
Q )〉h(ε)Q |Q|−1 =

∑

Q∈Q

〈Riu, k
(ε)
Q,l,i〉h

(ε)
Q |Q|−1.

Due to the continuity of the Riesz transforms Ri : Lp
X(Rn) → Lp

X(Rn) we may
estimate the following type of operator

K
(ε)
l,i u =

∑

Q∈Q

〈u, k(ε)Q,l,i〉h
(ε)
Q |Q|−1, (3.53)

instead of the second sum in (3.52).
In order to estimate K(ε)

l,i we need to analyze the analytic properties of the

functions k(ε)Q,l,i. If l ≥ 0, then
∫
k
(ε)
Q,l,i(x) dx = 0, supp k

(ε)
Q,l,i ⊂ D

(ε)
l (Q),

|k(ε)Q,l,i| ≤ C 2l, Lip(k
(ε)
Q,l,i) ≤ C 22l (diam(Q))−1,

(3.54)
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and for l ≤ 0∫
k
(ε)
Q,l,i(x) dx = 0, supp k

(ε)
Q,l,i ⊂ C 2|l|Q,

|k(ε)Q,l,i| ≤ C 2−|l|(n+1), Lip(k
(ε)
Q,l,i) ≤ C 2−|l|(n+2) (diam(Q))−1.

(3.55)

Note that the above properties of k(ε)Q,l,i depend particularly on the coordinate-wise
vanishing moments of b (3.3), introduced by ∆l in equations (3.4) and (3.6). Fur-
thermore observe the definition of k(ε)Q,l,i involves an integration of h(ε)Q with respect

to the variable xi0 . We specifically want to stress that if εi0 = 1, then Ei0 h
(ε)
Q is

compactly supported in Q, but if εi0 = 0, then supp
(
Ei0 h

(ε)
Q

)
is unbounded.

If we compare this with the properties (3.18) and (3.19) regarding the func-
tions f (ε)

Q,l, it turns out that the properties coincide if l ≤ 0, and that 2−l k
(ε)
Q,l,i,

satisfies the same conditions as f (ε)
Q,l, if l ≥ 0. Reconsidering the proof of Theo-

rem 3.4 on page 49, we note that those arguments where solely depending on the
analytic properties (3.18) and (3.19) of the functions f (ε)

Q,l. With regard to (3.54)

respectively (3.55), the same proofs are feasible with the functions k(ε)Q,l,i replacing

fQ,l if l ≤ 0, respectively 2−l k
(ε)
Q,l,i replacing fQ,l if l ≥ 0. Furthermore we have to

replace Pl by Kl,i, for every 1 ≤ i ≤ n.
Stringing this all together we obtain the following result from the estimates of

Theorem 3.4 on page 49.

Theorem 3.6. Let X be a UMD space, 1 < p <∞ and n ∈ N, and let Lp
X(Rn)

have type T(Lp
X(Rn)). Furthermore denote by Ri0 the Riesz transform acting in

direction i0 and let εi0 = 1.
Then there exists a constant C > 0 such that for every l ≥ 0 and all u ∈ Lp

X(Rn)
we have

‖P (ε)
l R−1

i0
u‖Lp

X(Rn) ≤ C · 2
l

T(L
p
X

(Rn)) ‖u‖Lp
X(Rn), (3.56)

where the constant C depends only on n, p, the UMD constant of X and the type
T(Lp

X(Rn)).
Moreover, there exists a constant C > 0 such that for all u ∈ Lp

X(Rn)

‖P (ε)
− R−1

i0
u‖Lp

X(Rn) ≤ C · ‖u‖Lp
X(Rn), (3.57)

where the constant C depends only on n, p, the UMD constant of X and the type
T(Lp

X(Rn)).
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4. Auxiliary Results

In order to keep this thesis self–contained we include here several auxiliary
results used in Chapter 2.

Lipschitz Estimate for Separately Convex Functions.
We record here a Lipschitz estimate for separately convex functions satisfying

convenient growth estimates on the Banach space X . The resulting inequality holds
true without any assumptions on the underlying normed vector space X .

Theorem 4.1. Let X be a normed vector space, n ≥ 1, f : Xn → R separately
convex and g : Xn → R, where g(x) = 1 +

∑n
i=1 ‖xi‖pX . If 0 ≤ f(x) ≤ g(x),

x ∈ X, then
∣∣f(x)− f(y)

∣∣ ≤ C ·
(
1 + ‖x‖Xn + ‖y‖Xn

)p−1 · ‖x− y‖Xn , (4.1)

for all x, y ∈ Xn. The constant C > 0 depends only on n and p.

Proof. Let x 6= y ∈ Xn, and with 1 ≤ k ≤ n fixed define

fk(t) = f(x1, . . . , xk−1, xk + t(yk − xk), xk+1, . . . , xn),

gk(t) = g(x1, . . . , xk−1, xk + t(yk − xk), xk+1, . . . , xn),

nk(t) =
∥∥xk + t(yk − xk)

∥∥
X
,

for all t ∈ R. We may assume that fk(0) ≤ fk(1), otherwise we would switch xk
and yk. Observe that nk(t) is increasing if t ≥ 2‖xk‖

‖yk−xk‖ , hence gk(t) is increasing if

t ≥ 2‖xk‖
‖yk−xk‖ .
Given t0 < t1 which will be specified later, we define the affine functions

ℓ1(t) = fk(0) + t · (fk(1)− fk(0)),

ℓ2(t) = gk(0) +
gk(t1)− gk(t0)

t1 − t0
· (t− t0),

and let t̄ denote the point where ℓ2(t̄) = 0, that is

t̄ = t0 −
gk(t0)

gk(t1)− gk(t0)
· (t1 − t0). (4.2)

Now we prove that if 1 ≤ t̄ < t0 < t1 and t0 ≥ 2‖xk‖/‖yk − xk‖, then

fk(1)− fk(0) ≤
gk(t1)− gk(t0)

t1 − t0
. (4.3)

Assume (4.3) does not hold true, then since fk(0) ≥ 0 and t̄ ≥ 1 we have ℓ1(t) >
ℓ2(t), for all t > t̄. Since fk(t) is convex, we know that fk(t) ≥ ℓ1(t), t ≥ t̄, hence
fk(t1) ≥ ℓ1(t1) > ℓ2(t1) = gk(t1), which contradicts fk(t) ≤ gk(t), t ∈ R.

Now we want to impose conditions on t0 < t1, such that t̄ ≥ 1. Observe,
gk(t1)− gk(t0)

t1 − t0
≥ p · nk(t0)

p−1 ·
(
nk(t1)− nk(t0)

)
/(t1 − t0)

≥ p · nk(t0)
p−1 ·

(
‖yk − xk‖ −

2‖xk‖
t1 − t0

)
,

and plugging this estimate into (4.2) we gain

t̄ ≥ t0 −
gk(t0)

p · ‖xk + t0(yk − xk)‖p−1 ·
(
‖yk − xk‖ − 2‖xk‖

t1−t0

) (4.4)

If we impose the following constraints
• (t1 − t0) · ‖yk − xk‖ ≥ 2C · ‖xk‖,
• t0 · ‖yk − xk‖ ≥ 2C · ‖xi‖, 1 ≤ i ≤ n,
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• t0 · ‖yk − xk‖ ≥ C,
• t0 · ‖yk − xk‖ ≥ 2 · ‖xk‖,

in order to estimate (4.4), we get

t̄ ≥ t0 −A1 −A2 −A3,

where

A1 =
1

p · (1− 1
C ) · ‖xk + t0(yk − xk)‖p−1 · ‖yk − xk‖

≤ t0
p · (C − 1)p

,

A2 =
∑

i6=k

‖xi‖p
p · ‖xk + t0(yk − xk)‖p−1 · ‖yk − xk‖ ·

(
1− 1

C

) ≤ t0 · (n− 1)

p · (C − 1)p
,

A3 =
‖xk + t0(yk − xk)‖

p · (1− 1
C ) · ‖yk − xk‖

≤ t0 · (1 + C)

p · (C − 1)
.

Using these estimates we gain

t̄ ≥ t0 ·
(
1− 1

p · (C − 1)p
− n− 1

p · (C − 1)p
− 1 + C

p · (C − 1)

)
= t0 · α. (4.5)

If we choose C large enough, so that α ≥ p−1
2p , and define

t0 =

n∑

i=1

C · ‖xi‖
‖yk − xk‖

+
C

‖yk − xk‖
+

1

α

t1 = 3t0,

(4.6)

so that t0 < t1 satisfies our constraints. Hence we can infer (4.5), and get 1 ≤ t̄ <
t0 < t1, t0 ≥ 2‖xk‖/‖yk − xk‖. Thus (4.3) yields

fk(1)− fk(0) ≤
gk(t1)− gk(t0)

t1 − t0
, (4.7)

where t0, t1 are defined in (4.6). A straightforward computation shows
gk(t1)− gk(t0)

t1 − t0
. 1 + ‖yk − xk‖X + ‖x‖Xn ,

and so we have
∣∣f(x1, . . . , xk−1, xk, xk+1, . . . , xn)− f(x1, . . . , xk−1, yk, xk+1, . . . , xn)

∣∣

.
(
1 + ‖yk − xk‖X + ‖x‖Xn

)p−1‖yk − xk‖X .
By induction one can verify

∣∣f(x)− f(y)
∣∣ ≤ C ·

(
1 + ‖x‖Xn + ‖y‖Xn

)p−1 · ‖x− y‖Xn ,

where C depends only on n and p. �

Convolution Operators on Lp
X.

So we recall a well–known criterion for compactness in vector–valued Lp
X . The

result is applied to vector–valued convolution operators with integrable kernel. The
conclusion holds without any assumption on the underlying Banach space X .

Theorem 4.2 (Kolmogorov–Riesz). Let X be a Banach space, 1 ≤ p < ∞
and F ⊂ Lp

X(Rn). Then F is precompact in Lp
X(Rn) if and only if the following

conditions are satisfied

(i) sup
f∈F

∫

Rn

∥∥f(x)
∥∥p
X
dx <∞,

(ii) sup
f∈F

∫

Rn

∥∥f(x+ h)− f(x)
∥∥p
X
dx

h→0−−−→ 0,
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(iii) sup
f∈F

∫

{|x|>R}

∥∥f(x)
∥∥p
X
dx

R→∞−−−−→ 0.

For more details see [Alt06, Theorem 2.5].

Theorem 4.3. Let K ∈ L1
C(Rn), 1 ≤ p < ∞ and X be a Banach space. Then

the convolution operator T given by

Tf = K ∗ f
maps Lp

X(Rn), 1 ≤ p <∞ compactly into itself.

Proof. Let 1 ≤ p < ∞. Given m ≥ 1, we define the operator Rmf =
f ·1{|x|≤m}. Note that Rm, m ≥ 1 are contractions from Lp

X to itself, and Rmf → f

in Lp
X , as m→ ∞. Thus, by the uniform boundedness principle we have

∥∥Rm−Id :

Lp
X → Lp

X

∥∥→ 0, as m→ ∞.
Let m ≥ 1 be fixed and B ⊂ Lp

X be a bounded set. Denoting Tm = Rm ◦ T
and F = Tm(B), we will verify the conditions (i)–(iii) of the Kolmogorov–Riesz
compactness criterion, see Theorem 4.2 on the preceding page, for the set F.

Due to Young’s Inequality we have

sup
f∈B

∥∥T f
∥∥
Lp

X

≤
∥∥K
∥∥
L1

C
· sup
f∈B

∥∥f
∥∥
Lp

X

,

thus F is bounded, and condition (i) is satisfied.
Now we verify (ii). For all h ∈ Rn we have

sup
f∈B

∫

Rn

∥∥Tmf(x+ h)− Tmf(x)
∥∥p
X
dx

≤ sup
f∈B

∫

Rn

∥∥
∫

Rn

(
K(x+ h− y)−K(x− y)

)
· f(y) dy

∥∥p
X
dx

Noting that the inner integral is a convolution, we can apply Young’s Inequality
and gain

sup
f∈B

∫

Rn

∥∥Tmf(x+ h)− Tmf(x)
∥∥p
X
dx ≤ sup

f∈B

‖f‖p
Lp

X
·
(∫

Rn

∣∣(K(x+ h)−K(x)
∣∣ dx

)p
.

Since B is bounded in Lp
X and the latter expression tends to zero as h → 0, we

have established condition (ii).
The last condition is satisfied since Tmf is supported in B(0,m).
Now we know that Tm : Lp

X −→ Lp
X is compact, and

∥∥Tm − T : Lp
X → Lp

X

∥∥ ≤
∥∥Rm − Id : Lp

X → Lp
X

∥∥ ·
∥∥T : Lp

X → Lp
X

∥∥.
Due to Young’s Inequality T is bounded, and

∥∥Rm − Id
∥∥→ 0, as m→ ∞, thus we

have established the Theorem. �
Fourier Multipliers on Lp

X.
The following is a well–known criterion for obtaining Fourier multiplier with

integrable kernel.

Theorem 4.4. Given a real number µ > 0 and a positive integer n let the
function m : Rn \ {0} −→ C, be such that

∣∣∂αξ m(ξ)
∣∣ ≤ A · 〈ξ〉−µ−|α|, for all multi-indices |α| ≤ n+ 1. (4.8)

If we define the kernel K formally by K = F−1m, then∫

Rn

|K(x)| dx ≤ C, (4.9)
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where the constant C depends only on A, n and µ.

Proof. First we let δ ∈ C∞
0 (−1, 1)n be such that 0 ≤ δ(ξ) ≤ 1 for all ξ, and

δ(ξ) = 1, if |ξ| ≤ 1/2. Then define δj(ξ) = δ(2−j−1 ξ) − δ(2−j ξ), for all j ≥ 1, and
δ0(ξ) = δ(ξ). Then 1 =

∑
j≥0 δj(ξ), for all ξ ∈ Rn. If we set

mj(ξ) = δj(ξ)m(ξ),

Kj(x) = (F−1mj)(x),

then Kj =
∑

j≥0Kj. Now let α be an arbitrary multi-index such that |α| ≤ n+ 1,
then integrating by parts and using (4.8) yields

|Kj(x)| ≤ |x−α| ·
∫

Rn

∣∣∂αξ mj(ξ)
∣∣ dξ

≤ A |x−α| ·
∫

Rn

〈ξ〉−µ−|α| dξ

≤ A |x−α| 2j(n−µ−|α|).

Thus we gain
|Kj(x)| ≤ A |x|−N 2j(n−µ−N),

for all 0 ≤ N ≤ n+ 1. Using this estimate for N = n− 1 and N = n we obtain

|Kj(x)| ≤ A |x|−n+µ/2 2−jµ/2,

Using the above estimates with N = n+ 1 if |x| ≥ 1, and the latter one if |x| ≤ 1,
then ∫

Rn

|Kj(x)| dx ≤ C · 2−j(−1−µ) + 2−j µ/2.

Since µ > 0 summing over j ≥ 0 yields estimate (4.9). �

Facts on the Sobolev Space W−1,p
X .

From now onwards the Banach space X has the UMD–property. We gather
some facts contributing to the proof of Theorem 1.2.

Theorem 4.5. Let X be a UMD space, n ≥ 1 and 1 < p <∞. If α ∈ S(Rn;C),
then there exists a constant C > 0 such that∥∥α · u

∥∥
W−1,p(Rn;X)

≤ C ·
∥∥u
∥∥
W−1,p(Rn;X)

(4.10)

for all u ∈W−1,p(Rn;X).

Proof. Note that in UMD spaces∥∥u
∥∥
W−1,p(Rn;X)

=
∥∥F−1

(
〈ξ〉−1Fu

)∥∥
Lp(Rn;X)

,

where 〈ξ〉 = (1 + |ξ|2)1/2, and F denotes the Fourier transform. Since

F−1
(
〈ξ〉−1F(α · u)

)
(x) =

∫

Rn

eix·η Fα(η) 〈η〉NTmη

(
F−1(〈ξ〉−1Fu)

)
dη,

where

Tmηf = F−1(mη(ξ)Ff(ξ)) mη(ξ) = 〈ξ〉 〈ξ + η〉−1〈η〉−N ,

we obtain∥∥α·u
∥∥
W−1,p(Rn;X)

≤
∥∥Fα(η) 〈η〉N

∥∥
L1(Rn;R) · sup

η∈Rn

∥∥Tmη

(
F−1(〈ξ〉−1Fu(ξ))

)∥∥
Lp(Rn;X)

.

Observe 〈ξ + η〉 · 〈η〉 ≥ c · 〈ξ〉, for a constant c > 0, hence
∣∣∂βξmη(ξ)

∣∣ ≤ A · 〈ξ〉−|β|,
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for all multi-indices β. Note that the constant A does not depend on η, if N = N(β)
is chosen sufficiently large. Setting N = n+2 will be good enough for our purposes.
Thus we know by [McC84, Theorem 1.1] that

∥∥Tmη : Lp(Rn;X) → Lp(Rn;X)
∥∥ ≤ C,

where C does not depend on η. Hence
∥∥α · u

∥∥
W−1,p(Rn;X)

≤ C ·
∥∥Fα(η) 〈η〉n+2

∥∥
L1(Rn;R) ·

∥∥F−1(〈ξ〉−1Fu(ξ))
∥∥
Lp(Rn;X)

,

with α being in S(Rn;C), and we proved the assertion. �

Theorem 4.6. Let X be a UMD space, n ≥ 1, 1 ≤ i ≤ n and 1 < p <∞. Then
there exist operators T1 mapping Lp(Rn;X) compactly into itself, and T2 mapping
Lp(Rn;X) boundedly into itself, such that

∥∥u
∥∥
W−1,p(Rn;X)

≤
∥∥T1u

∥∥
Lp(Rn;X)

+
∥∥T2

(
F−1〈ξ〉−1ξαFu

)∥∥
Lp(Rn;X)

(4.11)

for all multi-indices |α| = 1 and u ∈W−1,p(Rn;X).

Proof. As usual, we shall abbreviate Lp(Rn;X) by Lp
X and W−1,p(Rn;X) by

W−1,p
X . We may assume that α = (1, 0, . . . , 0) throughout the proof. Choose a

ψ ∈ C∞
0 (−1, 1) such that 0 ≤ ψ(t) ≤ 1, for all t, and ψ(t) = 1, if |t| ≤ 1/2. Using

the definition of the W−1,p
X for UMD spaces and splitting the Fourier spectrum

according to ψ and 1− ψ yields
∥∥u
∥∥
W−1,p

X

≤
∥∥F−1

(
ψ(ξ1)〈ξ〉−1Fu

)∥∥
Lp

X

+
∥∥F−1

(
ξ−1
1 (1− ψ(ξ1)) 〈ξ〉−1ξ1Fu

)∥∥
Lp

X

.

Let us define

T1f = F−1
(
m1 Ff

)
, m1(ξ) = ψ(ξ1) 〈ξ〉−1, ξ ∈ Rn,

T̃2f = F−1
(
m2(t)Ff

)
, m2(t) = t−1(1− ψ(t)), t ∈ R,

If we can establish that T1 is compact, and T̃2 is bounded, we proved (4.10).
Observe that since

|∂αξ m1(ξ)| ≤ C 〈ξ〉−|α|−1

|∂αt m2(t)| ≤ C 〈t〉−|α|−1

we can make use of Theorem 4.4 on page 60, thus the associated kernels K1 and
K2 are in L1(Rn,C) and L1(R1,C), respectively. A glance at Theorem 4.3 yields
that T1 maps Lp(Rn;X) compactly into itself, and T̃2 maps Lp(R1;X) compactly
into itself. A fortiori, the operator T2 given by

(T2f)(x1, x2 . . . , xn) =
(
T̃2(t 7→ f(t, x2, . . . , xn))

)
(x1)

maps Lp(Rn;X) boundedly into itself. �

Theorem 4.7. Let X be a UMD space, n ≥ 1 and 1 < p < ∞. If α ∈ S(Rn)
and

ur −→ u, weakly in Lp(Rn;X), (4.12)

∂iur −→ ∂iu, strongly in W−1,p(Rn;X), (4.13)

then
∂i
(
αur) −→ ∂i

(
αu), strongly in W−1,p(Rn;X). (4.14)
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Proof. First, define vr = ur − u, then∥∥∂i
(
αvr

)∥∥
W−1,p

X

≤
∥∥∂i(α) vr

∥∥
W−1,p

X

+
∥∥α∂i(vr)

∥∥
W−1,p

X

Due to Theorem 4.5, we may dominate the right hand-side by a constant multiple
of ∥∥vr

∥∥
W−1,p

X

+
∥∥∂ivr

∥∥
W−1,p

X

.

Now we apply Theorem 4.6 on the facing page to the first term and obtain∥∥vr
∥∥
W−1,p

X

≤
∥∥T1vr

∥∥
Lp

X

+
∥∥T2

(
F−1(〈ξ〉−1ξi Fvr)

)∥∥
Lp

X

,

where T1 : Lp
X −→ Lp

X is compact and T2 : Lp
X −→ Lp

X is bounded. To summarize,
we have

∥∥∂i
(
αvr

)∥∥
W−1,p

X

≤
∥∥T1vr

∥∥
Lp

X

+
(∥∥T2 : Lp

X → Lp
X

∥∥+ 1
)
·
∥∥∂ivr

∥∥
W−1,p

X

The first term converges to zero as r → ∞, since T1 is compact, and vr → 0 weakly
in Lp

X . A glance at (4.13) shows that the latter term vanishes as r → ∞, as well. �



CHAPTER 3

Shift Operators and the One–Third–Trick

We will present a new proof for the estimates on the shift operators Tm and
Um, first established by T. Figiel. For a dyadic interval I let τm(I) = I + m |I|,
and define the operators Tm and Um as the linear extension of

TmhI = hτm(I),

UmhI = 1τm(I) − 1I ,

where hI denotes the standard mean zero Haar function supported on I, and 1I
the characteristic function of I. The result of T. Figiel in [Fig88] was

‖Tm : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)α
,

‖Um : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)β
,

where the constant C > 0 depends only on p, X and α, β < 1. The Banach space
X has to be a UMD-space. The proof of T. Figiel involves hard combinatorics and
has many cases to be considered, especially for the structurally more complicated
operator Um.

In Section 1 we will use the well-known one-third-trick (see [Wol82] and
[CWW85]), to define the bilateral alternating one-third-trick operator S and its
unilateral variants S0 and S1, each mapping Lp

X isomorphic into itself.
In Section 2 we will use the operator S to avoid the hard combinatorics of T.

Figiel and reduce the estimates for Tm to the simplest case. The key feature of the
isomorphism S will be that it commutes with Tm, that is the identity

(S ◦ Tm)(u) = (Tm ◦ S)(u),
for all u ∈ Lp

X .
In Section 3 we will decompose the more complex operator Um into the five

parts
Um = Um ◦Q(0) +

∑

ε∈{0,1}

(
A(ε)

m +B(ε)
m

)
◦Q(1,0),

each behaving like the simpler operator Tm, for which we can assume the simplest
case. So the one-third-trick operators S, S0, S1 in conjunction with this decompo-
sition of Um allow us not only to treat the operators Tm and Um equally, but also
to consider solely the simplest case for both operators Tm and Um.

65
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1. The One–Third–Trick

In this section we will first introduce the bilateral alternating one-third-shift
operator S given by S(hI) = hσ(I), see (1.4). In Theorem 1.2 we establish that
S : Lp

X −→ Lp
X is an isomorphism by means of Bourgain’s version of Stein’s

martingale inequality. Finally, we will consider the unilateral variants S0 and S1 of
the one-third-shift operator, and establish in Theorem 1.3 that both are isomorphic
maps from Lp

X to itself, as well.
The one-third-trick may be found in [Wol82] and [CWW85].

1.1. Bilateral Alternating One-Third-Shift.
For every j ∈ Z let

sj = (−1)j 2−j/3, (1.1)
and define

s(I) = sj , (1.2)
for all intervals I having measure |I| = 2−j . Then define the one–third–shift map

σ(I) = I + s(I), (1.3)

and the one–third–shift operator

S(hI) = hσ(I), (1.4)

where by hσ(I) we denote the function hσ(I)(x) = hI(x−s(I)). The one–third–shift
of dyadic intervals for two consecutive levels is illustrated in Figure 1.

From this picture one can see that the collection of one–third–shifted dyadic
intervals σ(D) is nested, and D ∩σ(D) = ∅. Note that if a one–third–shifted dyadic
interval J ∈ σ(D) is contained in a non–shifted interval I ∈ D , then dist(J, Ic) ≥
|J |/3. For every given an interval I ∈ D exists a unique one–third–shifted interval
J ∈ σ(D), |J | = |I|/2 being contained in I. First observe that for every j ∈ Z and
I ∈ Dj we have

#
{
J ∈ σ(Dj+1) : J ∩ I 6= ∅

}
= 3,

#
{
J ∈ σ(Dj+1) : J ⊂ I

}
= 1.

So we can define ω(I) by

ω(I) = J, where J ∈ σ(D), |J | = |I|/2 and J ⊂ I, (1.5)

see Figure 2 on the facing page.
Note the basic properties summarized in

sj

sj+1

Level j

Level j + 1

Figure 1. One–third–shift of two consecutive levels of intervals.
In this illustration j is even.
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σ σ σ

1
3 |I| 1

2 |I| 1
6 |I|

I

ω(I)

Figure 2. The interval I has measure |I| = 2−j with j being even.

Lemma 1.1. The following statements are true.
(i) σ(D) is a nested collection of dyadic intervals, and D ∩ σ(D) = ∅.
(ii) ω : D −→ σ(D) is well defined and injective.
(iii) Let I ∈ D , then ω(I) ⊂ I.
(iv) For every I ∈ D we have dist(ω(I), Ic) = |I|/6.
(v) Let I, J ∈ D , |I| = |J |, then dist(ω(I), ω(J)) < |ω(I)| if and only if I = J .
(vi) For all I ∈ D we have the identity σ(I) = ω(I)∪

(
ω(I) + sign(s(I)) · |ω(I)|

)
.

Proof. The assertions are easily verified.
�

We need to build up some more notation. For all j ∈ Z and

u =
∑

I∈D

uI hI |I|−1

let (u)j restrict the function u to level j, precisely

(u)j =
∑

I∈Dj

uI hI |I|−1. (1.6)

Eventually, we define
I(u)j =

∑

I∈Dj

uI 1I |I|−1, (1.7)

and find due to Kahane’s contraction principle (0.4) that
∫ 1

0

∥∥∥
∑

j∈Z
rj(t) (u)j

∥∥∥
Lp

X

dt =

∫ 1

0

∥∥∥
∑

j∈Z
rj(t) I(u)j

∥∥∥
Lp

X

dt. (1.8)

The following theorem establishes that the one–third–shift operator S : Lp
X −→

Lp
X is an isomorphism.

Theorem 1.2. Let 1 < p <∞ and X a Banach space with the UMD–property,
then there exists a constant C > 0 such that

1

C

∥∥u
∥∥
Lp

X

≤
∥∥Su

∥∥
Lp

X

≤ C
∥∥u
∥∥
Lp

X

,

for all u ∈ Lp
X .

Proof. Let u =
∑

I∈D uI hI |I|−1 ∈ Lp
X be fixed throughout this proof and

set
v =

∑

I∈D

uI hω(I) |ω(I)|−1.
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Note that {ω(I) : I ∈ D} is nested, see Lemma 1.1, assertion (i) and (ii). Observe
we have due to Lemma 1.1, assertion (iii) that I(u)j = E(I(v)j |Dj), so the UMD–
property and Kahane’s contraction principle (0.4) yield

‖u‖Lp
X
.
∫ 1

0

‖
∑

j∈Z
rj(t) (u)j‖Lp

X
dt

=

∫ 1

0

‖
∑

j∈Z
rj(t) I(u)j‖Lp

X
dt

=

∫ 1

0

‖
∑

j∈Z
rj(t) E(I(v)j |Dj)‖Lp

X
dt.

Now we apply Stein’s martingale inequality (0.5) followed by identity (1.8) to pass
from I(v)j to (v)j , so

∫ 1

0

‖
∑

j∈Z
rj(t) E(I(v)j |Dj)‖Lp

X
dt .

∫ 1

0

‖
∑

j∈Z
rj(t) I(v)j‖Lp

X
dt

=

∫ 1

0

‖
∑

j∈Z
rj(t) (v)j‖Lp

X
dt.

Recalling definition (1.4) and applying Kahane’s contraction principle in consider-
ation of ω(I) ⊂ σ(I) (see identity (vi) in Lemma 1.1), we estimate

∫ 1

0

‖
∑

j∈Z
rj(t) (v)j‖Lp

X
dt ≤ 2 ·

∫ 1

0

‖
∑

j∈Z
rj(t) (Su)j‖Lp

X
dt,

so the UMD–property implies
∫ 1

0

‖
∑

j∈Z
rj(t) (v)j‖Lp

X
dt . ‖Su‖Lp

X
.

Thus, collecting the inequalities yields

‖u‖Lp
X
. ‖Su‖Lp

X
.

One can repeat the preceding argument with the roles of u and Su interchanged
and obtain the converse inequality

‖Su‖Lp
X
. ‖u‖Lp

X
.

�

1.2. Unilateral One-Third-Shift.
Now we want analyze modified versions σ0 and σ1 of the one-third-shift map

σ. To this end we define σ0, σ1 : D −→ σ(D),

σ0(I) = J, where J ∈ σ(D), |J | = |I| and sup J ∈ I, (1.9)
σ1(I) = J, where J ∈ σ(D), |J | = |I| and inf J ∈ I, (1.10)

see Figure 3 on the next page. This induces the one-third-shift operators S0 and
S1 given by the linear extension of

S0(hI) = hσ0(I), I ∈ D , (1.11)
S1(hI) = hσ1(I), I ∈ D . (1.12)

Observe that we have either

σ(I) = σ0(I) or σ(I) = σ1(I),
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σ0 σ1

I

σ0(I) σ1(I)

Figure 3. Unilateral One-Third-Shifts σ0 and σ1 applied to I ∈
D . In this picture the one-third-shift map σ shifts to the right, so
σ1(I) = σ(I).

depending on the direction in which σ one-third-shifts the interval I. Anyhow we
can see that

|I ∩ σ0(I)| ≥
1

3
|I|, |I ∩ σ1(I)| ≥

1

3
|I|,

for all I ∈ D . This is what enables us to apply the proof of Theorem 1.2 on page 67
with some small tweaks to obtain Theorem 1.3 below.

Theorem 1.3. Let 1 < p <∞ and X a Banach space with the UMD–property,
then there exists a constant C > 0 such that

1

C

∥∥u
∥∥
Lp

X

≤
∥∥S0u

∥∥
Lp

X

≤ C
∥∥u
∥∥
Lp

X

,

1

C

∥∥u
∥∥
Lp

X

≤
∥∥S1u

∥∥
Lp

X

≤ C
∥∥u
∥∥
Lp

X

,

for all u ∈ Lp
X .

Proof. Define ω0 and ω1 by

ω0(I) = J, where J ∈ σ(D), |J | = |I|/4 and sup J = supσ0(I),

ω1(I) = J, where J ∈ σ(D), |J | = |I|/4 and inf J = inf σ1(I),

for all I ∈ D . Now all we need to do is repeat the proof of Theorem 1.3 with ω
replaced by ωδ to estimate Sδ, for each δ ∈ {0, 1}. �
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2. The Shift Operator Tm

Here we will define and analyze the shift map τm and the shift operator Tm.
We will give an alternative proof for the estimate

‖Tm : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)α
,

first established by T. Figiel in [Fig88]. The proof of T. Figiel involves hard
combinatorics and considering a variety of different cases. We will use use the one–
third–shift operator S introduced in Section 1 to circumvent the hard combinatorics
of T. Figiel and thereby reduce the estimates for Tm to the simplest case.

For m ∈ Z define the shift map τm by

τm(I) = I +m |I|, (2.1)

for all I ∈ D ∪ σ(D). This induces the shift operator Tm, given by

TmhI = hτm(I), (2.2)

for all I ∈ D ∪ σ(D). It is crucial that the one–third–shift operator S defined
in (1.4) and the shift operator Tm commute, that is the identity

(S ◦ Tm)(u) = (Tm ◦ S)(u), (2.3)

for all u ∈ Lp
X . Analogously, we have that

(S0 ◦ Tm)(u) = (Tm ◦ S0)(u), (2.4)
(S1 ◦ Tm)(u) = (Tm ◦ S1)(u), (2.5)

for all u ∈ Lp
X , see (1.9), (1.10), (1.11) and (1.12).

We aim at splitting the dyadic intervals D into collections B
(δ)
i , such that we

may bound Tm ◦ Sδ on functions supported on σδ
(
B

(δ)
i

)
, δ ∈ {0, 1}. Note that if

δ = 0, then Sδ = Id and σδ = Id.

For a given a shift width m ∈ Z, m 6= 0, the following lemma splits the dyadic
intervals D into 16 + 4 · log2(|m|) disjoint collections B

(δ)
i . The collections are

constructed such that for all δ ∈ {0, 1} and I ∈ B
(δ)
i the intervals σδ(I) and(

τm ◦ σδ
)
(I) have the same dyadic predecessor with respect to σδ

(
B

(δ)
i

)
.

Lemma 2.1. For every integer m ∈ Z, m 6= 0 let τm denote the map given by

τm(I) = I +m |I|,
for all I ∈ D ∪ σ(D), see (2.1).

Then there exist a constant K(m) ≤ 7+2 · log2(|m|) and disjoint collections of
dyadic intervals B

(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1} with

D =
⋃

δ∈{0,1}

K(m)⋃

i=0

B
(δ)
i ,

such that {
I, τm(I), I ∪ τm(I) : I ∈ σδ(B

(δ)
i )
}

(2.6)

is a nested collection of sets, for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}.
Proof. Due to symmetry we may assume that m ≥ 1, and we set K(m) =

K(−m), if m ≤ −1. So fix a shift width m ≥ 2 and a λ ≥ 4 such that

2λ−3 ≤ m < 2λ−2, (2.7)
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1
3 2

−j 5
12 2

−j
2−j−λ

3
4 2

−j 1
4 2

−j

1
3 2

−j

1
3 2

−j−λ

2−j−λ

5
12 2

−j + 1
32

−j−λ 1
4 2

−j 1
3 (2

−j − 2−j−λ)

σ

I

σ(I)

J

σ(J)

Figure 4. The one–third–shift map σ acting on I ∈ D , |I| = 2−j

and J ∈ D , |J | = 2−j−λ, where J ⊂ I and τm(J) ∩ I = ∅. In this
picture λ is even.

and set L(m) = λ − 1. If m = 1, then let λ = 4 and set L(1) = 3. Now we split D
into disjoint collections Ai, 0 ≤ i ≤ L(m), by omitting L(m) consecutive levels of
D . More precisely, for every 0 ≤ i ≤ L(m) we define

Ai =
⋃

j∈Z

{
I ∈ D : |I| = 2−(λ·j+i)

}
. (2.8)

Next we want to divide each of the Ai into two collections A
(0)
i and A

(1)
i ,

such that every I ∈ A
(0)
i has the same predecessor in A

(0)
i as τm(I), and A

(0)
i is

maximal. As a consequence, the collection A
(1)
i consists all intervals I such that I

and τm(I) do not share the same predecessor. But, if we apply the one–third–shift
map σ to the collection A

(1)
i , then every I ∈ σ

(
A

(1)
i

)
has the same predecessor in

σ
(
A

(1)
i

)
as τm(I). We will now construct these two collections. To this end let G

denote one of the collections Ai, σ
(
Ai

)
, 0 ≤ i ≤ L(m) and define

C0(G , I) =
{
J ∈ G : |J | = 2−λ |I|, J ⊂ I and τm(J) ⊂ I

}
,

C1(G , I) =
{
J ∈ G : |J | = 2−λ |I|, J ⊂ I and τm(J) ∩ I = ∅

}
.

(2.9)

Revisiting the definition of the one–third–shift map (1.3) and considering the re-
striction (2.7) one can see that

σ
(
C1(Ai, I)

)
⊂ C0

(
σ(Ai), σ(I)

)
, (2.10)

for all I ∈ Ai, 0 ≤ i ≤ L(m). This means that all intervals J ∈ σ
(
C1(Ai, I)

)

are such that J and τm(J) share σ(I) as common predecessor with respect to the
collection σ

(
A

(1)
i

)
. In Figure 4 one can see the action of the one–third–shift map

σ on the collection Ai. Now define for every 0 ≤ i ≤ L(m) the following collections
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of dyadic intervals

A
(0)
i =

⋃{
C0(Ai, I) : I ∈ Ai

}
,

A
(1)
i = Ai \ A

(0)
i .

(2.11)

Finally, for all 0 ≤ i ≤ L(m) and δ ∈ {0, 1} we split A
(δ)
i into two disjoint

collections
B

(δ)
i and B

(δ)
i+L(m)+1, (2.12)

such that
B

(δ)
i ∩ τm

(
B

(δ)
i

)
= ∅, (2.13)

for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}, where we set K(m) = 2 ·L(m) + 1. Consider-
ing (2.7) and L(m) = λ− 1 we find that K(m) ≤ 7 + 2 · log2(m). For this purpose
consider the collection

E =
{
τk(I) : I ∈ D , inf I = 0, 0 ≤ k ≤ m− 1

}
,

and observe that

D =
⋃

j∈Z
j even

τj·m
(
E
)
∪
⋃

j∈Z
j odd

τj·m
(
E
)
= Deven ∪ Dodd.

Now define the collections

B
(δ)
i = A

(δ)
i ∩ Deven,

B
(δ)
i+L(m)+1 = A

(δ)
i ∩ Dodd,

(2.14)

for all 0 ≤ i ≤ L(m) and δ ∈ {0, 1}.
With regard to (2.10), (2.9) and noting that τm(I) ∈ Dodd if and only if I ∈

Deven, we verified (2.6), finishing this proof. �

Remark 2.2. Note that we actually proved the slightly stronger result

I ∪ τm(I) ⊂ πλ(I), (2.15)

for all I ∈ σδ
(
B

(δ)
i

)
, 0 ≤ i ≤ K(m), δ ∈ {0, 1}. Conceive the predecessor map π

with respect to σδ
(
D
)
. To be more precise let I ∈ σδ(D). Then π(I) is the unique

interval J ∈ σδ(D) such that J ⊃ I, and πλ = π ◦ · · · ◦ π.

Given 1 < p < ∞, a Banach space X with the UMD-property and m ∈ Z, we
define the projections

P
(δ)
i u =

∑

I∈B
(δ)
i

〈u, hI〉hI |I|−1, (2.16)

for all 0 ≤ i ≤ K(m), δ ∈ {0, 1} and u ∈ Lp
X . Note the identity

u =
∑

δ∈{0,1}

K(m)∑

i=0

P
(δ)
i u (2.17)

holds true for all u ∈ Lp
X , since the collections B

(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1} form

a partition of D , see Lemma 2.1.
Exploiting that the one–third–shift operator S is an isomorphism on Lp

X (see
Theorem 1.2), we will now estimate the shift operator Tm on the range of each P (δ)

i

in the subsequent theorem.
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Theorem 2.3. Let 1 < p < ∞ and X be a Banach space with the UMD–
property. Then for every m ∈ Z, 0 ≤ i ≤ K(m) and δ ∈ {0, 1} the inequality

∥∥Tm ◦ P (δ)
i u

∥∥
Lp

X

≤ C ·
∥∥P (δ)

i u
∥∥
Lp

X

, (2.18)

holds true for all u ∈ Lp
X, where the constant C depends only on p and X. The

projections P (δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1} are defined according to (2.16), and

K(m) ≤ 7 + 2 · log2(1 + |m|).

Proof. Note that due to symmetry once we established (2.18) for m ≥ 1, the
theorem is proved.

Recalling the properties of the partition B
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1} of D ,

see Lemma 2.1 on page 70, and we know that the collection
{
I, τm(I), I ∪ τm(I) : I ∈ σδ(B

(δ)
i )
}

(2.19)

is nested, for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}. Throughout this proof let m ∈ Z,
0 ≤ i ≤ K(m), δ ∈ {0, 1} and u ∈ P

(δ)
i (Lp

X) be fixed. According to (2.16) we may
assume that u has the representation

u =
∑

I∈B
(δ)
i

uI hI |I|−1.

For every J ∈ σδ(D) let

A(δ)(J) = J ∪ τm(J), (2.20)

and for all j ∈ Z define the collection

A
(δ)
j =

{
A(δ)(J) : J ∈ σδ(Dj)

}
. (2.21)

Then specify the filtration {F (δ)
j }j by

F
(δ)
j = σ-algebra

( ⋃

i≤j

A
(δ)
i

)
, (2.22)

and observe that due to (2.19) every A(δ)(J), J ∈ σδ(Dj) is an atom for F
(δ)
j . The

one–third–shift operator is given by

Sδu =
∑

I∈B
(δ)
i

uI hσδ(I) |I|−1 =
∑

J∈σδ(B
(δ)
i )

uσ−δ(J) hJ |J |−1, (2.23)

see (1.4) for details. We recall the notation

(u)j =
∑

|I|=2−j

uI hI |I|−1 and I(u)j =
∑

|I|=2−j

uI 1I |I|−1,

and note that

∥∥Tm Sδu
∥∥
Lp

X

≈
∫ 1

0

∥∥∑

j∈Z
rj(t) I

(
Tm Sδu

)
j

∥∥
Lp

X

dt,

see (1.6), (1.7) and (1.8). Obviously, I
(
Tm Sδu

)
j
≤ 2 ·E

(
I(Sδu)j|F (δ)

j

)
, hence Ka-

hane’s contraction principle and Bourgain’s version of Stein’s martingale inequality
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yield
∫ 1

0

∥∥∑

j∈Z
rj(t) I

(
Tm Sδu

)
j

∥∥
Lp

X

dt ≤
∫ 1

0

∥∥∑

j∈Z
rj(t) 2 · E

(
I(Sδu)j |F (δ)

j

)∥∥
Lp

X

dt

.
∫ 1

0

∥∥∑

j∈Z
rj(t) I(Sδu)j

∥∥
Lp

X

dt

≈
∥∥Sδu

∥∥
Lp

X

.

Combining the latter two estimates with Theorem 1.2 on page 67 proves∥∥Tm Sδu
∥∥
Lp

X

.
∥∥u
∥∥
Lp

X

. (2.24)

According to (2.3) the shift operator Tm and the one–third–shift operator S
commute, so we have the identity

Tmu =
(
S−δ ◦ Tm ◦ Sδ

)
(u),

and we obtain by an application of Theorem 1.2 on page 67∥∥Tmu
∥∥
Lp

X

.
∥∥(Tm ◦ Sδ

)
(u)
∥∥
Lp

X

. (2.25)

We conclude the proof by joining (2.25) and (2.24).
�

Remark 2.4. By slightly adjusting the construction of B
(δ)
i we could replace

Bourgain’s version of Stein’s martingale inequality by the martingale transforms
in [Fig88, Proposition 2, Step 0] in order to gain (2.24). To this end we will
basically have to replace λ by λ+ 1 and redefine C0 and C1 as follows

C0(I,Ai) =
{
J ∈ Ai : |J | = 2−λ |I|, J ⊂ I0 and τm(J) ⊂ I0

}

∪
{
J ∈ Ai : |J | = 2−λ |I|, J ⊂ I1 and τm(J) ⊂ I1

}
,

C1(I,Ai) =
{
J ∈ Ai : |J | = 2−λ |I|, J ⊂ I0 and τm(J) ∩ I0 = ∅

}

∪
{
J ∈ Ai : |J | = 2−λ |I|, J ⊂ I1 and τm(J) ∩ I1 = ∅

}
,

confer (2.8) and (2.9). This results in the collection
{
J0, τm(J)0, J1, τm(J)1, J ∪ τm(J) : J ∈ σδ(B

(δ)
i )
}

(2.26)

being nested for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}. With this modifications let us
define

d
(δ)
J,1 =

1

2

(
hJ + hτm(J)

)
and d

(δ)
J,2 =

1

2

(
hJ − hτm(J)

)
,

for all J ∈ σδ
(
B

(δ)
i

)
. Since (2.26) is nested,

{
d
(δ)
J,1, d

(δ)
J,2 : J ∈ σ

(
B

(δ)
i

)}
forms a

martingale difference sequence. Observe hJ = d
(δ)
J,1 + d

(δ)
J,2 and hτm(J) = d

(δ)
J,1 − d

(δ)
J,2,

hence we may swap hJ and hτm(J) without using Bourgain’s version of Stein’s
martingale inequality.
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3. A Martingale Decomposition for Um

In this section we will study the shift operator Um, and prove the estimate

‖Um : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)β
,

due to T. Figiel, see [Fig88]. The combinatorics of T. Figiel in order to estimate Um

are even harder than for the operator Tm. This is mainly due to the observation that
{TmhI}I∈A is a martingale difference sequence for any choice of A ⊂ D , whereas
whether {UmhI}I∈B forms a martingale difference sequence strongly depends on
the choice of B ⊂ D . Making use the one–third–shift operators introduced in
Section 1, we will decompose the operator Um into the five parts

Um = Um ◦Q(0) +
∑

ε∈{0,1}

(
A(ε)

m +B(ε)
m

)
◦Q(1,0)

each behaving like Tm. Thus, the one–third–trick allows us to reduce the estimates
for Um to the simplest case, as well.

For every m ∈ Z we defined in the (2.1) the shift map τm by

τm(I) = I +m |I|,
for all I ∈ D ∪ σ(D). Now we introduce the shift operator Um by setting

UmhI = 1τm(I) − 1I , (3.1)

for all I ∈ D∪σ(D). Essentially the same method we used to bound Tm for functions
supported on the collections B

(0)
i , 0 ≤ i ≤ K(m) qualifies for estimating Um. This

is primarily due to the fact that
{
UmhI : I ∈ B

(0)
i

}
forms a martingale difference

sequence, which is ensured by Lemma 2.1. The main obstacle is to estimate Um

on B
(1)
i , since

{
UmhI : I ∈ B

(1)
i

}
is not a martingale difference sequence. The

remedy to this problem is the martingale difference sequence decomposition of Um

into
UmhI = a

(ε)
I + b

(ε)
I − b

(ε)
τm(I), I ∈ B

(1,ε)
i

where

B
(1,0)
i =

{
I ∈ B

(1)
i : inf τm(I) 6= inf πλ(τm(I))

}
,

B
(1,1)
i =

{
I ∈ B

(1)
i : inf τm(I) = inf πλ(τm(I))

}
.

Recall that given δ ∈ {0, 1} and an interval I ∈ σδ(D), the interval π(I) is the
unique J ∈ σδ(D) such that J ⊃ I, and πλ = π ◦ · · ·◦π. The collections

{
a
(ε)
I : I ∈

B
(1,ε)
i

}
and

{
b
(ε)
I , b

(ε)
τm(I) : I ∈ B

(1,ε)
i

}
are martingale difference sequences, each,

see Theorem 3.1. This is what enables us to treat Um like Tm, which is elaborated
in Theorem 3.3.

First, we define α0, α1 : D −→ σ(D),

α0(I) = J, where J ∈ σ(D), |J | = |I| and sup J ∈ I, (3.2)
α1(I) = J, where J ∈ σ(D), |J | = |I| and inf J ∈ I. (3.3)

Note that αδ = σδ, δ ∈ {0, 1} where σδ was defined in Subsection 1.2. Second,
define the maps β0, β1 : D −→ β0(D),

β0(I) = α0(I) \ I, (3.4)
β1(I) = α1(I) ∩ I, (3.5)

and set

β(I) = β0(I) ∪ β1(I). (3.6)
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2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I|

β0(I) β1(I) β0(τm(I)) β1(τm(I))

α0(I) α1(I) α0(τm(I)) α1(τm(I))

I τm(I)

Figure 5. The support functions α0, α1, β0, β1 for I and τm(I).

Finally, let γ0, γ1 : D −→ D ,

γ0(I) = τ−1(I), (3.7)
γ1(I) = I, (3.8)

and define

γ(I) = γ0(I) ∪ γ1(I). (3.9)

The functions α0, α1, β0 and β1 are visualized in Figure 5 for an arbitrary I ∈ D .
With m ∈ Z, m 6= 0 fixed, we introduce the functions

a
(0)
I = 1α0(τm(I)) − 1α0(I), I ∈ D , (3.10)

b
(0)
I = 1β0(I) − 1β1(I), I ∈ D , (3.11)

and

a
(1)
I = 1α1(τm(I)) − 1α1(I), I ∈ D , (3.12)

b
(1)
I = 1I\β1(I) − 1I\β0(I), I ∈ D . (3.13)

see Figures 6 and 7. We define the operators A(ε)
m , B(ε) and B

(ε)
m as the linear

extension of

A(ε)
m hI = a

(ε)
I , I ∈ D , (3.14)

B(ε) hI = b
(ε)
I , I ∈ D , (3.15)

B(ε)
m hI = b

(ε)
I − b

(ε)
τm(I), I ∈ D , (3.16)

for ε ∈ {0, 1}. Note the identities

Um = A(ε)
m +B(ε)

m = A(ε)
m +B(ε) − B(ε) ◦ Tm, (3.17)

hold true for ε ∈ {0, 1}, see (3.10), (3.11), (3.12), (3.13) and Figures 6 and 7.
Now we split the collections B

(1)
i into

B
(1)
i = B

(1,0)
i ∪ B

(1,1)
i , (3.18)

where

B
(1,0)
i =

{
I ∈ B

(1)
i : inf sign(m) τm(I) 6= inf sign(m) πλ(τm(I))

}
, (3.19)

B
(1,1)
i =

{
I ∈ B

(1)
i : inf sign(m) τm(I) = inf sign(m) πλ(τm(I))

}
, (3.20)
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2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I|

+1

β0(I)

−1

β1(I)

b
(0)
I

−1

β0(τm(I))

+1

β1(τm(I))

−b(0)τm(I)

−1

α0(I) α1(I)

+1

α0(τm(I)) α1(τm(I))

a
(0)
I

I

τm(I)

−1

+1

UmhI

Figure 6. Martingale decomposition of Um to the left.

2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I| 2
3 |I| 1

3 |I|

−1

β0(I)

+1

β1(I)

b
(1)
I

+1

β0(τm(I))

−1

β1(τm(I))−b(1)τm(I)

−1

α0(I) α1(I)

+1

α0(τm(I)) α1(τm(I))

a
(1)
I

I

τm(I)

−1

+1

UmhI

Figure 7. Martingale decomposition of Um to the right.

for all 0 ≤ i ≤ K(m), m 6= 0. Next we define

Q
(0)
i u =

∑

I∈B
(0)
i

〈u, hI〉hI |I|−1,

Q
(1,ε)
i u =

∑

I∈B
(1,ε)
i

〈u, hI〉hI |I|−1,
(3.21)
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for all 0 ≤ i ≤ K(m) and ε ∈ {0, 1}. The collections B
(δ)
i are specified in

Lemma 2.1, and B
(1,ε)
i is defined in (3.19) and (3.20). Now, if we set

Q(0) =

K(m)∑

i=0

Q
(0)
i ,

Q(1,ε) =

K(m)∑

i=0

Q
(0,ε)
i ,

(3.22)

for all ε ∈ {0, 1}, then certainly

u = Q(0) u+Q(1,0) u+Q(1,1) u (3.23)

for all u ∈ Lp
X .

Note that Q(0)
i = P

(0)
i and P

(1)
i = Q

(1,0)
i + Q

(1,1)
i , where P (δ)

i , δ ∈ {0, 1} was
defined in (2.16).

The following theorem decomposes the operator Um into five parts, which form
martingale difference sequences, each.

Theorem 3.1. Let m ∈ Z and fix 0 ≤ i ≤ K(m). The collection B
(0)
i is

defined in Lemma 2.1 and B
(1,ε)
i , ε ∈ {0, 1} is given by (3.19) and (3.20). Then

the identity

Umu = Um ◦Q(0) u+
∑

ε∈{0,1}

(
A(ε)

m +B(ε)
m

)
◦Q(1,ε) u (3.24)

holds true for all u ∈ Lp
X . Furthermore, for every 0 ≤ i ≤ K(m), each of the

collections {
UmhI : I ∈ B

(0)
i

}
, (3.25)

as well as {
a
(ε)
I : I ∈ B

(1,ε)
i

}
(3.26)

and {
b
(ε)
I , b

(ε)
τm(I) : I ∈ B

(1,ε)
i

}
(3.27)

constitute martingale difference sequences, for every ε ∈ {0, 1}.
Proof. Within the proof we may assume that m is non-negative. So let m ∈ Z

be non-negative and 0 ≤ i ≤ K(m) be fixed throughout the rest of this proof.
Whenever we apply the predecessor map π to an interval I ∈ σδ

(
D
)
, we understand

it with respect to σδ
(
D
)
, where δ ∈ {0, 1}.

Observe, identity (3.24) follows immediately from (3.23) and (3.17).
First, note that Lemma 2.1 implies that

{
I, τm(I), I ∪ τm(I) : I ∈ B

(0)
i

}

is a nested collection of sets, hence
{
UmhI : I ∈ B

(0)
i

}

is a martingale difference sequence.
Second, we will show that

{
a
(0)
I : I ∈ B

(1,0)
i

}
forms a martingale difference

sequence. Henceforth, we shall abbreviate B
(1,0)
i by B. Now, fix I, J ∈ B, |J | < |I|

such that supp a(0)J ∩ supp a
(0)
I 6= ∅. Note that J ⊂

(
πλ(J)

)
11

, for all J ∈ B, where
K11, K ∈ D denotes the unique M ⊂ K, M ∈ D , |M | = |K|/4 such that supM =

supK. From this and the definition of B it is clear that supp a(0)J ⊂ α1(π
λ(J)) (see

also Remark 2.2), hence

∅ 6= α1(π
λ(J)) ∩ supp a

(0)
I =

(
α1(π

λ(J)) ∩ α0(I)
)
∪
(
α1(π

λ(J)) ∩ α0(τm(I))
)
.
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Since |J | < |I|, I, J ∈ B, we know that |α1(π
λ(J))| ≤ |I|, thus

either α1(π
λ(J)) ⊂ α0(I) or α1(π

λ(J)) ⊂ α0(τm(I)),

which finishes the second part of this proof.
The proof that

{
a
(1)
I : I ∈ B

(1,1)
i

}
forms a martingale difference sequence is

essentially the same, and we omit the details.
Third, we will show that

{
b
(0)
I , b

(0)
τm(I) : I ∈ B(1,0)

}
constitutes a martingale

difference sequence. Again, we shall abbreviate B
(1,0)
i by B. To this end, we

assume there exist I, J ∈ B ∪ τm(B), |J | < |I| such that

β(J) ∩ β(I) 6= ∅ and β(J) ∩ β(I)c 6= ∅. (A)

Since β(J) ⊂ γ(J), assumption (A) is covered by the following four cases.
(1) γ(J) ∩ I 6= ∅ and γ(J) ∩ Ic 6= ∅,
(2) γ(J) ∩ γ0(I) 6= ∅ and γ(J) ∩ γ0(I)c 6= ∅,
(3) γ(J) ⊂ I and inf β1(I) ∈ γ(J),
(4) γ(J) ⊂ γ0(I) and inf β0(I) ∈ γ(J).

If we assume case (1), then inf J = inf I or inf J = sup I. Anyhow, we have that
inf J = inf πλ(J), so we know J /∈

(
B ∪ τm(B)

)
, contradicting our assumption.

Case (2) is analogous to case (1). Note that we abbreviated B
(1,0)
i by B, so consider

the definition of B
(1)
i to see that J /∈ B

(1,0)
i , and consider (3.19) to determine that

also J /∈ τm(B
(1,0)
i ).

Let us now assume case (3) is true. This means that either inf I + 1
3 |I| ∈ γ(J)

or inf I + 2
3 |I| ∈ γ(J), depending on the sign of the one–third–shift for I. We fix

z ∈ {1, 2} and assume that
inf I +

z

3
|I| ∈ γ(J). (3.28)

Due to (3.19) we see that πλ(γ0(J)) = πλ(J), so if we set K = πλ(J), then

inf I +
z

3
|I| ∈ K.

This corresponds to either one of the following being true

inf I +
z

3
|I| = infK +

1

3
|K| or inf I +

z

3
|I| = infK +

2

3
|K|. (3.29)

If J ∈ B we know J ⊂ K11, thus

inf γ(J) ≥ infK +
3

4
|K| − 2−λ|K|

> infK +
2

3
|K|.

(3.30)

Recall that K11 denotes the unique M ⊂ K, M ∈ D , |M | = |K|/4 such that
supM = supK. The last strict inequality holds true since λ ≥ 4 per construction
of B, see (2.7) if |m| ≥ 2 and note the exception for |m| = 1 beneath. Combin-
ing (3.28) and (3.30) yields

inf I +
z

3
|I| > infK +

2

3
|K|,

which contradicts (3.29) in both cases.
If J ∈ τm(B) we know J ⊂ K00, where K00 denotes the unique M ⊂ K, M ∈ D ,
|M | = |K|/4 such that infM = infK. So we note

supγ(J) ≤ infK +
1

4
|K|+ 2−λ|K|

< infK +
1

3
|K|.

(3.31)
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The last strict inequality holds true since λ ≥ 4 per construction of B, see (2.7) if
|m| ≥ 2 and note the exception for |m| = 1 beneath. Combining (3.28) and (3.31)
yields

inf I +
z

3
|I| < infK +

1

3
|K|,

which contradicts (3.29) in both cases.
Case (4) is analogous to case (3).
Altogether we proved that our assumption (A) was false, therefore

β(J) ⊂ β0(I) or β(J) ⊂ β1(I)

for all I, J ∈ B, |J | < |I| such that β(J) ∩ β(I) 6= ∅. In other words, the support
of bJ is contained in a set where b(0)I is constant, hence

{
b
(0)
I , b

(0)
τm(I) : I ∈ B

(1,0)
i

}

constitutes a martingale difference sequence.
The proof that

{
b
(1)
I , b

(1)
τm(I) : I ∈ B(1,1)

}
constitutes a martingale difference

sequence is essentially the same argument, so we omit it. �

Remark 3.2. Specifically we want to emphasize that (3.25), (3.26) and (3.27)
imply that

{
Um ◦Q(0)

i hI : I ∈ D
}
,

as well as
{
A(ε)

m ◦Q(1,ε)
i hI : I ∈ D

}
,

and
{
B(ε)

m ◦Q(1,ε)
i hI : I ∈ D

}
,

constitute martingale difference sequences, for each 0 ≤ i ≤ K(m), ε ∈ {0, 1}.
Consider the splitting of D into the sets B

(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1}, see

Lemma 2.1 on page 70 for details, which we used in Theorem 2.3 on page 73 to
treat the shift operator Tm. Retracing our steps in the proof of Theorem 2.3 we
find that we could actually repeat this proof with the operator Tm replaced by any
of the operators Um ◦ Q(0), A(ε)

m ◦ Q(1,ε), B(ε)
m ◦ Q(1,ε), ε ∈ {0, 1}. The details are

elaborated in Theorem 3.3 below.

Theorem 3.3. For all m ∈ Z, 0 ≤ i ≤ K(m) and δ ∈ {0, 1} let B
(δ)
i denote

the collection specified in Lemma 2.1. Then for every 0 ≤ i ≤ K(m) and ε ∈ {0, 1}
we have the estimates

∥∥Um ◦Q(0)
i u

∥∥
Lp

X

≤ C ·
∥∥Q(0)

i u
∥∥
Lp

X

,
∥∥Um ◦Q(1,ε)

i u
∥∥
Lp

X

≤ C ·
∥∥Q(1,ε)

i u
∥∥
Lp

X

(3.32)

for all u ∈ Lp
X , where C depends only on p and X. Furthermore, we have the bound

K(m) ≤ 7 + 2 · log2(1 + |m|).

Proof. Let m ∈ Z and 0 ≤ i ≤ K(m) be fixed throughout the rest of the
proof.

First, we will estimate Um ◦Q(0)
i . Due to Theorem 3.1 respectively Remark 3.2

we know that
{
Um◦Q(0)

i hI : I ∈ D
}

forms a martingale difference sequence, which
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enables us to introduce Rademacher functions via the UMD–property. Hence
∥∥Um ◦Q(0)

i u
∥∥
Lp

X

≈
∫ 1

0

∥∥∥
∑

I∈B
(0)
i

rI(t) 〈u, hI〉Um hI |I|−1
∥∥∥
Lp

X

dt

=

∫ 1

0

∥∥∥
∑

I∈B
(0)
i

rI(t) 〈u, hI〉 (Id+Tm)hI |I|−1
∥∥∥
Lp

X

dt

for all u ∈ Lp
X . This is all we need to repeat the proof of Theorem 2.3 in Section 2

with Tm replaced by Id+Tm.
Now we turn to the estimate for Um ◦Q(1,ε)

i , with ε ∈ {0, 1} fixed throughout
the rest of the proof.

First, observe that

Um ◦Q(1,ε)
i u = A(ε)

m ◦Q(1,ε)
i u+B(ε)

m ◦Q(1,ε)
i u,

for all u ∈ Lp
X , see (3.17). Theorem 3.1 on page 78 ensures that both
{
A(ε)

m ◦Q(1,ε)
i hI : I ∈ D

}
and

{
B(ε)

m ◦Q(1,ε)
i hI : I ∈ D

}

form martingale difference sequences, which allows us to introduce Rademacher
means via the UMD–property, hence
∥∥A(ε)

m ◦Q(1,ε)
i u

∥∥
Lp

X

.
∫ 1

0

∥∥∥
∑

I∈B
(1,ε)
i

rI(t) 〈u, hI〉 a(ε)I |I|−1
∥∥∥
Lp

X

dt

and

∥∥B(ε)
m ◦Q(1,ε)

i u
∥∥
Lp

X

.
∫ 1

0

∥∥∥
∑

I∈B
(1,ε)
i

rI(t) 〈u, hI〉
(
b
(ε)
I − b

(ε)
τm(I)

)
hI |I|−1

∥∥∥
Lp

X

dt,

for all u ∈ Lp
X . Now we can essentially repeat the proof of Theorem 2.3 in Section 2,

for δ = 1 and with Tm replaced by A(ε)
m and B(ε)

m , respectively. We have to utilize the
unilateral operators S0 and S1 instead of S as well, see Subsection 1.2 on page 68.
If we do so, we end up with the estimates

∥∥A(ε)
m ◦Q(1,ε)

i u
∥∥
Lp

X

.
∫ 1

0

∥∥∥
∑

I∈B
(1,ε)
i

rI(t) 〈u, hI〉hαε(I) |I|−1
∥∥∥
Lp

X

dt

and

∥∥B(ε)
m ◦Q(1,ε)

i u
∥∥
Lp

X

.
∫ 1

0

∥∥∥
∑

I∈B
(1,ε)
i

rI(t) 〈u, hI〉 b(ε)I |I|−1
∥∥∥
Lp

X

dt,

for all u ∈ Lp
X . Thus, considering hαε(I) = SεhI and |b(ε)I | ≤ |S0hI | + |S1hI |,

see (1.9), (1.10), (1.11), (1.12) and combining our estimates for A(ε)
m and B(ε)

m with
the inequalities for the unilateral one-third-shift operators S0 and S1 in Theorem 1.3
on page 69 yields

∥∥Um ◦Q(1,ε)
i u

∥∥
Lp

X

.
∥∥S0 ◦Q(1,ε)

i u
∥∥
Lp

X

+
∥∥S1 ◦Q(1,ε)

i u
∥∥
Lp

X

.
∥∥Q(1,ε)

i u
∥∥
Lp

X

,

for all u ∈ Lp
X , concluding the proof. �

Inserting Theorem 2.3 on page 73 and Theorem 3.3 on the facing page into [Fig88,
Lemma 1] one can obtain [Fig88, Theorem 1] stated below for sake of completeness.
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Theorem 3.4. Let 1 < p < ∞, and X be a Banach space with the UMD–
property. For m ∈ Z let the map τm denote the shift map defined by

I 7→ I +m |I|.
Let Tm, Um denote the linear extensions of the maps

TmhI = hτm(I),

and

UmhI = 1τm(I) − 1I ,

respectively, then

‖Tm : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)α
,

‖Um : Lp
X → Lp

X‖ ≤ C
(
log2(2 + |m|)

)β
,

where the constant C > 0 depends only on p, X and 0 < α, β < 1. More precisely,
if Lp

X has type T and cotype C, then one can take α = 1
T
− 1

C
and β = 1− 1

C
.
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