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ABSTRACT

Training residual networks without batch normalization is suprisingly challeng-
ing. Recently, normalizer-free variants were trained successfully, indicating that
it might be possible after all. We look at how normalizer-free these networks re-
ally are and how their results could teach us something about normalization and
signal propagation. These ideas were originally presented as a contribution to the
first blog post track at ICLR 20221. The main goal of this PDF version is to pro-
vide this content in a more traditional format2. Please, cite the original blog post
contribution when referencing this work.

1 INTRODUCTION

Since the advent of Batch Normalization (BN), almost every State-Of-The-Art (SOTA) method uses
some form of normalization. After all, normalization generally speeds up learning and leads to mod-
els that generalize better than their unnormalized counterparts. This turns out to be especially useful
when using some form of skip connections, which are prominent in Residual Networks (ResNets),
for example. However, Brock et al. (2021a) suggest that SOTA performance can also be achieved
using ResNets without normalization!

The fact that Brock et al. went out of their way to get rid of something as simple as BN in ResNets,
for which BN happens to be especially helpful, does raise a few questions:

1. Why get rid of BN in the first place?

2. How (easy is it) to get rid of BN in ResNets?

3. Is BN going to become obsolete in the near future?

4. Does this allow us to gain insights into why BN works so well?

5. Wait a second... Are they getting rid of normalization or just BN?

The goal of this blog post is to provide some insights w.r.t. these questions using the results from
Brock et al. (2021a).

2 NORMALIZATION

To set the scene for a world without normalization, we start with an overview of normalization layers
in neural networks. Batch Normalization (BN) is probably the most well-known method, but there
are plenty of alternatives. Despite the variety of normalization methods, they all build on the same
principle ideas.
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2.1 ORIGINS

The design of modern normalization layers in neural networks is mainly inspired by data normal-
ization (LeCun et al., 1998; Schraudolph, 1998; Ioffe & Szegedy, 2015). In the setting of a simple
linear regression, it can be shown (see e.g. LeCun et al., 1998) that the second-order derivative, i.e.,
the Hessian, of the objective is exactly the covariance of the input data, D:
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If the Hessian of an optimization problem is (close to) the identity, it becomes much easier to find a
solution (LeCun et al., 1998). Therefore, learning should become easier if the input data is whitened
— i.e., is transformed to have an identity covariance matrix. However, full whitening of the data
is often costly and might even degenerate generalization performance (Wadia et al., 2021). Instead,
the data is normalized to have zero mean and unit variance to get at least some of the benefits of an
identity Hessian.

When considering multi-layer networks, the expectation would be that things get more complicated.
However, it turns out that the benefits of normalizing the input data for linear regression directly
carry over to the individual layers of a multi-layer network (LeCun et al., 1998). Therefore, simply
normalizing the inputs to a layer — i.e., the outputs from the previous layer — should also help to
speed up the optimization of the weights in that layer. Using these insights, (Schraudolph, 1998)
showed empirically that centering the activations effectively speeds up learning.

Also initialization strategies commonly build on these principles (e.g. LeCun et al., 1998; Glorot &
Bengio, 2010; He et al., 2015). Since the initial parameters of a layer are independent of the inputs,
they can easily be tuned. When tuned correctly, it can be assured that the (pre)-activations of each
layer are normalized throughout the network before the first update. However, as soon as the network
is being updated, the distributions change and the normalizing properties of the initialization get lost
(Ioffe & Szegedy, 2015).

2.2 BATCH NORMALIZATION

In contrast to classical initialization methods, BN is able to maintain fixed mean and variance of the
activations as the network is being updated (Ioffe & Szegedy, 2015). Concretely, this is achieved by
applying a typical data normalization to every mini-batch of data, B:

x̂ =
x− µB
σB

. (2)

Here µ B = 1
|B|

∑
x ∈ Bx is the mean over the inputs in the mini-batch and σB is the correspond-

ing standard deviation. Also, note that the division is element-wise and generally is numerically
stabilized by some ε when implemented. In case a zero mean and unit variance is not desired, it is
also possible to apply an affine transformation y = γ ⊙ x̂ + β with learnable scale (γ) and mean
(β) parameters (Ioffe & Szegedy, 2015). Putting these formulas together in PyTorch (Paszke et al.,
2019) code, BN can be summarized as follows:

d e f b a t c h n o r m a l i z e ( x , gamma = 1 . , b e t a = 0 . , eps =1e − 5 ) :
mu = t o r c h . mean ( x , dim =( 0 , −1 , −2) )
v a r = t o r c h . v a r ( x , dim =( 0 , −1 , −2) )
x h a t = ( x − mu) / t o r c h . s q r t ( v a r + eps )
r e t u r n gamma * x h a t + b e t a

The above description explains the core operation of BN during training. However, during inference,
it is not uncommon to desire predictions for single samples. Obviously, this would cause trouble
because a mini-batch with a single sample has zero variance. Therefore, it is common to accumulate
the statistics that are used for normalization ( µ B and σ B2 ) over multiple mini-batches during
training. These accumulated statistics can then be used as estimators for the mean and variance
during inference. This makes it possible for BN to be used on single samples during inference.
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The original reason for introducing BN was to alleviate the so-called internal covariate shift, i.e. the
change of distributions as the network updates. More recent research has pointed out, however, that
internal covariate shift does not necessarily deteriorate learning dynamics (Santurkar et al., 2018).
Apparently, (Ioffe & Szegedy, 2015) also realized that simply normalizing the signal does not suffice
to achieve good performance:

[...] the model blows up when the normalization parameters are computed outside
the gradient descent step.

All of this seems to indicate that part of the success of BN is due to the effects it has on the gradient
signal. The affine transformation in BN simply scales the gradient, such that ∇x̂L = γ⊙∇yL. The
normalization operation, on the other hand, transforms the gradient, g = ∇x̂L, as follows:

∇xL =
1

σB

(
g − µg 1− cov(g, x̂)⊙ x̂

)
, (3)

where µg =
∑

x∈B ∇x̂L and cov(g, x̂) = 1
|B|

∑
x∈B g ⊙ x̂. Note that this directly corresponds to

centering the gradients, which is also supposed to improve learning speed (Schraudolph, 1998).

In the end, everyone seems to agree that one of the main benefits of BN is that it enables higher
learning rates (Ioffe & Szegedy, 2015; Bjorck et al., 2018; Santurkar et al., 2018; Luo et al., 2019),
which results in faster learning and better generalization. An additional benefit is that BN is scale-
invariant and therefore much less sensitive to weight initialization (Ioffe & Szegedy, 2015; Ioffe,
2017).

2.3 ALTERNATIVES

Why would we ever want to get rid of BN then? Although BN provides important benefits, it also
comes with a few downsides:

• BN does not work well with small batch sizes (Ba et al., 2016; Salimans & Kingma, 2016;
Ioffe, 2017). For a batch size of one, we have zero standard deviation, but also with a few
samples, the estimated statistics are often not accurate enough.

• BN is not directly applicable to certain input types (Ba et al., 2016, also see Figure 1)
and performs poorly when there are dependencies between samples in a mini-batch (Ioffe,
2017).

• BN uses different statistics for inference than those used during training (Ba et al., 2016;
Ioffe, 2017). This is especially problematic if the distribution during inference is different
or drifts away from the training distribution.

• BN does not play well with other regularization methods (Hoffer et al., 2018). This is
especially known for L2-regularization (Hoffer et al., 2018) and dropout (Li et al., 2019).

• BN introduces a significant computational overhead during training (Ba et al., 2016; Sali-
mans & Kingma, 2016; Gitman & Ginsburg, 2017). Because of the running averages, also
memory requirements increase when introducing BN.

Therefore, alternative normalization methods have been proposed to solve one or more of the prob-
lems listed above while trying to maintain the benefits of BN.

One family of alternatives simply computes the statistics along different dimensions (see Figure 2).
Layer Normalization (LN) is probably the most prominent example in this category (Ba et al.,
2016). Instead of computing the statistics over samples in a mini-batch, LN uses the statistics of
the feature vector itself. This makes LN invariant to weight shifts and scaling individual samples.
BN, on the other hand, is invariant to data shifts and scaling individual neurons. LN generally out-
performs BN in fully connected and recurrent networks but does not work well for convolutional
architectures according to (Ba et al., 2016). Group Normalization (GN) is a slightly modified ver-
sion of LN that also works well for convolutional networks (Wu & He, 2018). The idea of GN is
to compute statistics over groups of features in the feature vector instead of all features. For con-
volutional networks that should be invariant to changes in contrast, statistics can also be computed
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Tabular Images Sequential

Figure 1: Different input types in terms of their typical batch size (|B|), the number of channel-
s/features (C) and the size of the signal (S) (e.g. width times height for images). Image inspired by
(Wu & He, 2018).

BN LN INGN

Figure 2: Normalization methods (Batch, Layer, Instance and Group Normalization) and the parts
of the input they compute their statistics over. |B|, C, and S are batch size, number of channels/fea-
tures and signal size, respectively (cf. Figure 1). The lightly shaded region for LN indicates the
additional context that is typically used for image data. Image has been adapted from (Wu & He,
2018).

over single image channels for each sample. This gives rise to a technique known as Instance Nor-
malization (IN), which proved especially helpful in the context of style transfer (Ulyanov et al.,
2017).

Instead of normalizing the inputs, it is also possible to get a normalizing effect by rescaling the
weights of the network (Arpit et al., 2016). Especially in convolutional networks, this can sig-
nificantly reduce the computational overhead. With Weight Normalization (WN) (Salimans &
Kingma, 2016), the weight vectors for each neuron are normalized to have unit norm. This idea
can also be found in a(n independently developed) technique called Normalization Propaga-
tion (NP)(Arpit et al., 2016). However, in contrast to WN, NP accounts for the effect of (ReLU)
activation functions. In some sense, NP can be interpreted as a variant of BN where the statistics
are computed theoretically (in expectation) rather than on the fly. Spectral Normalization (SN), on
the other hand, makes use of an induced matrix norm to normalize the entire weight matrix (Miyato
et al., 2018). Concretely, the weights are scaled by the reciprocal of an approximation of the largest
singular value of the weight matrix.

Whereas WN, NP and SN still involve the computation of some weight norm, it is also possible to
obtain normalization without any computational overhead. By creating a forward pass that induces
attracting fixed points in mean and variance, Self-Normalizing Networks (SNN) Klambauer et al.
(2017) are able to effectively normalize the signal. To achieve these fixed points, it suffices to
carefully scale the ELU activation function (Clevert et al., 2016) and the initial variance of the
weights. Additionally, Klambauer et al. (2017) provide a way to tweak dropout so that it does not
interfere with the normalization. Maybe it is useful to point out that SNNs do not consist of explicit
normalization operations. In this sense, an SNN could already be seen as an example of normalizer-
free networks.
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ResNet DenseNet Highway

Figure 3: Variations on skip connections in ResNets, Densenets and Highway networks. The white
blocks correspond to the input / skip connection and the blue blocks correspond to the output of the
non-linear transformation. The greyscale blocks are values between zero and one and correspond to
masks.

3 SKIP CONNECTIONS

With normalization out of the way, we probably want to tackle the skip connections. After all,
(Brock et al., 2021a) mainly aim to rid Residual Networks (ResNets) of normalization. Although
skip connections already existed long before ResNets were invented, they are often considered as
one of the main contributions by the work of (He et al., 2016b). In some sense, it almost seems as if
skip connections could only become popular after BN was invented. Especially if we consider the
effects of skip connections on the statistics of signals flowing through the network.

3.1 HISTORY

Shortcut or skip connections make it possible for information to bypass one or more layers in a
neural network. Mathematically, they are typically expressed using a formalism of the form

y = x+ f(x), (4)

where f represents some non-linear transformation (He et al., 2016b;a). This non-linear transfor-
mation is typically a sub-network that is commonly referred to as the residual branch or residual
connection. When the outputs of the residual branch have different dimensions, it is typical to use a
linear transformation to match the output dimension of the skip connection with that of the residual
connection.

Since it often helps to have a few lines of code to understand these vague descriptions, an imple-
mentation of the skip connections from (He et al., 2016a) is given below. The comments aim to
highlight the differences with the ResNets from (He et al., 2016b). For a complete implementation
of this skip connection module, we refer to the code in appendix A.1 at the end of this post.

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . p r e a c t ( x ) # d i f f 1 : compute g l o b a l pre − a c t i v a t i o n s
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
# r e t u r n t o r c h . r e l u ( r e s i d u a l + s k i p ) ( d i f f 2 )
r e t u r n r e s i d u a l + s k i p

Skip connections became very popular in computer vision due to the work of He et al. (2016b).
However, they were already commonly used as a trick to improve learning in multi-layer networks
before deep learning was even a thing (Ripley, 1996). Similar to normalization methods, skip con-
nections can improve the condition of the optimization problem by making it harder for the Hessian
to become singular (van der Smagt & Hirzinger, 1998). However, skip connections also have bene-
fits in the forward pass: e.g., (Srivastava et al., 2015) argue that information should be able to flow
through the network without being altered. He et al. (2016b), on the other hand, claim that learning
should be easier if the network can focus on the non-linear part of the transformation (and ignore
the linear component).

The general formulation of skip connections that we provided earlier, captures the idea of skip
connections very well. As you might have expected, however, there are plenty of variations on the

5



exact formulation (a few of which are illustrated in Figure 3). Strictly speaking, even He et al.
(2016b) do not adhere to their own formulation because they apply an activation function on what
we denoted as y (He et al., 2016a, see code snippet). In DenseNets (Huang et al., 2017a), the outputs
of the skip and residual connections are concatenated instead of aggregated by means of a sum. This
retains more of the information for subsequent layers. Other variants of skip connections make
use of masks to select which information is passed on. Highway networks (Srivastava et al., 2015)
make use of a gating mechanism similar to that in Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997). These gates enable the network to learn how information from the skip
connection is to be combined with that of the residual branch. Similarly, Transformers (Vaswani
et al., 2017) could be interpreted as a variation on highway networks without residual branches.
This comparison does only hold, however, if you are willing to interpret the attention mask as some
form of complex gate for the skip connection.

3.2 MOMENT CONTROL

Traditional initialization techniques manage to provide a stable starting point for the propagation
of mean and variance in fully connected layers, but they do not work so well in ResNets. The key
problem is that the variance can not remain constant when simple additive skip connections are
used. After all, the variance is linear and unless the non-linear transformation branch would output
a zero-variance signal, the output variance must be greater than the input variance. Moreover, if the
signal would have a strictly positive mean, also the mean would start drifting when residual layers
are chained together. Luckily, these drifting effects can be mitigated to some extent, e.g. by using
BN. However, are there alternative approaches and if yes, what are these approaches?

Before we come to possible solutions, it might be useful to point out that these drift effects are due
to the simple additive skip connections used in ResNets. For example, the gating mechanism that
is used to control the skip connection in highway networks makes the mean shift much less of a
problem than in ResNets. In the case of DenseNets, the concatenation does not affect either mean
or variance if the residual branch produces outputs with similar statistics as the inputs. Therefore,
we mainly focus on these simple additive skip connections in ResNets.

Similar to standard initialization methods, the key idea to counter drifting in ResNets is to stabilize
the variance propagation. To this end, a slightly modified formulation of skip connections is typically
used (e.g. Szegedy et al., 2016; Balduzzi et al., 2017; Hanin & Rolnick, 2018):

y = αx+ βf(αx), (5)

which is equivalent to the original formulation when α = β = 1. The key advantage of this formu-
lation is that the variance can be controlled (to some extent) by tuning the newly introduced scaling
factors α and β. In terms of code, these modifications could look something like

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . p r e a c t ( s e l f . a l p h a * x )
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
r e t u r n s e l f . b e t a * r e s i d u a l + s k i p

A very simple counter-measure to the variance explosion in ResNets is to set α = 1/
√
2 (Balduzzi

et al., 2017). Assuming that the residual branch approximately preserves the variance, the variances
of y and x should be roughly the same. In practice, however, it seems to be more common to tune
the β factor instead of α (Balduzzi et al., 2017). For instance, simply setting β to some small value
(e.g., in the range [0.1, 0.3]) can already help ResNets (with BN) to stabilize training (Szegedy et al.,
2016). It turns out that having small values for β can help to preserve correlations between gradients,
which should benefit learning (Balduzzi et al., 2017).

Similar findings were established through the analysis of the variance propagation in ResNets by
(Hanin & Rolnick, 2018). Eventually, they propose to set β = bl after the l-th skip connection, with
0 < b < 1 to make sure that the sum of scaling factors from all layers converges. Arpit et al. (2019)
additionally take the backward pass into account and show that β = L−1 provides stable variance
propagation in a ResNet with L skip connections. Learning the scaling factor β in each layer can
also make it possible to keep the variance under control (Zhang et al., 2019; De & Smith, 2020).
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4 NORMALIZER-FREE RESNETS

It could be argued that the current popularity of skip connections is due to BN. After all, without
BN, the skip connections in ResNets would have suffered from the drifting effects discussed earlier
(sec. 3.2). However, this does not take away that BN does have a few practical issues (sec. 2.3) and
there are alternative techniques to control these drifting effects. Therefore, it makes sense to research
the question of whether BN is just a useful or a necessary component of the ResNet architecture.

4.1 OLD IDEAS

Whereas some alternative normalization methods aim to simply provide normalization in scenarios
where BN does not work so well, other methods have been explicitly designed to reduce or get rid
of the normalization computations (e.g. Arpit et al., 2016; Salimans & Kingma, 2016; Klambauer
et al., 2017). Even the idea of training ResNets without BN is practically as old as ResNets them-
selves. With their Layer-Sequential Unit-Variance (LSUV) initialization, Mishkin & Matas (2016)
showed that it is possible to replace BN with good initialization for small datasets (CIFAR-10).
Similarly, Arpit et al. (2019) are able to close the gap between WN and BN by reconsidering weight
initialization in ResNets.

Getting rid of BN in ResNets was posed as an explicit goal by (Zhang et al., 2019), who proposed
the so-called FixUp initialization scheme. On top of introducing the learnable β parameters and the
L−1/(2k−2) scaling for all layers k in each of the L residual branches, they set the initial weights
for the last layer in each residual branch to zero and introduce scalar biases before every layer in the
network. With these tricks, Zhang et al. show that FixUp can provide almost the same benefits as
BN for ResNets in terms of trainability and generalization. Using a different derivation, De & Smith
(2020) end up with a very similar solution to train ResNets without BN, which they term SkipInit.
The key difference with FixUp is that the initial value for the learnable β parameter is set to be less
than 1/

√
L. As a result, SkipInit does not require the rescaling of initial weights in residual branches

or setting weights to zero, which are considered crucial parts of the FixUp strategy (Zhang et al.,
2019).

Also Shao et al. (2020) suggest to use a simple scaling strategy to replace BN in ResNets. They
propose to use a slightly modified scaling of the form, y = αx + βf(x), where α2 = 1 − β2 and
β2 = 1/(l + c) for the l-th skip connection. Here, c is an arbitrary constant, which was eventually
set to be the number of residual branches, L. For a single-layer ResNet (l = c = 1), this is
equivalent to setting α = 1/

√
2, as suggested by Balduzzi et al. (2017). However, the more general

approach should assure that the outputs of residual branches are weighted similarly at the output of
the network, independent of their depth.

4.2 IMITATING SIGNAL PROPAGATION

Although the results of prior work look promising, there is still a performance gap compared to
ResNets with BN. To close this gap, (Brock et al., 2021a) suggest studying the propagation of mean
and variance through ResNets by means of so-called Signal Propagation Plots (SPPs). These SPPs
simply visualize the squared mean and variance of the activations after each skip connection, as well
as the variance at the end of every residual branch (before the skip connection).

To compute these values, the forward pass of the network must be slightly tweaked. To this end,
we can define a new method or a function that simulates the forward pass and extracts the necessary
statistics for each skip connection, as in listing 1.

This allows us to analyse the statistics for a single skip connection. By propagating a white noise sig-
nal (e.g., torch.randn(1000, 3, 224, 224))) through the entire ResNet, we obtain the
data that allows us to produce SPPs. We refer to the end of this post for an example implementation
(see appendix A.3) of a full Normalizer-Free ResNet (NF-ResNet) with signal_prop method.

Figure 4 provides an example of the SPPs for a pre-activation ResNet or v2 ResNets (cf. He et al.,
2016a) with and without BN. The SPPs on the left clearly illustrate that BN transforms the expo-
nential growth to a linear increase in ResNets, as described in theory (e.g. Balduzzi et al., 2017;
De & Smith, 2020). When focusing on ResNets with BN (on the right of Figure 4), it is clear that
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Listing 1: code to extract data for SPP
@t o r c h . n o g r a d ( )
d e f s i g n a l p r o p ( s e l f , x , dim = (0 , −1 , − 2 ) ) :

# f o r w a r d code
x = s e l f . p r e a c t ( x )
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
o u t = r e s i d u a l + s k i p

# compute n e c e s s a r y s t a t i s t i c s
out mu2 = t o r c h . mean ( o u t . mean ( dim ) ** 2 ) . i t em ( )
o u t v a r = t o r c h . mean ( o u t . v a r ( dim ) ) . i t em ( )
r e s v a r = t o r c h . mean ( r e s i d u a l . v a r ( dim ) ) . i t em ( )
r e t u r n out , ( out mu2 , o u t v a r , r e s v a r )

Figure 4: Example Signal Propagation Plots (SPPs) for a pre-activation (v2) ResNet-50 at initial-
ization. SPPs show the squared mean (µ2) and variance (σ2) of the pre-activations after each skip
connection (x-axis), as well as the variance of the residuals before the skip connection (σ2

f , y-axis
on the right). The left plot illustrates the difference between ResNets with and without BN layers.
The plot on the right shows the same SPP for a ResNet with BN without the logarithmic scaling (cf.
BN->ReLU in Figure 1 of Brock et al., 2021a). Note that ResNet-50 has four sub-nets with 3, 4, 6
and 3 skip connections, respectively.

mean and variance are reduced after every sub-net, each of which consists of a few skip connections.
This reduction is due to the pre-activation block (BN + ReLU) that is inserted between every two
sub-nets in these ResNets (remember the code snippet from earlier?).

The goal of NF-ResNets is to get rid of the BN layers in ResNets while preserving the characteristics
visualized in the SPPs (Brock et al., 2021a). To get rid of the exponential variance increase in
unnormalized ResNets, it suffices to set α = 1/

√
Var[x] in our modified formulation of ResNets.

Here, Var[x] is the variance over all samples in the dataset, such that the α scaling effectively mirrors
the division by σB in BN (assuming a large enough batch size). Unlike BN, however, the scaling
in NF-ResNets is computed analytically for every skip connection. This is possible if the inputs to
the network are properly normalized (i.e., have unit variance) and if the residual branch, f , properly
preserves variance (i.e. is initialized correctly). The β parameter, on the other hand, is simply used
as a hyper-parameter to directly control the variance increase after every skip connection.

It might be useful to point out that the proposed α scaling does not perfectly conform with our
general formulation for ResNets. After all, the pre-activation layers mostly end up affecting only the
inputs to the residual branch, such that y = x+ βf(αx) (see code in appendix A for details). Only
between the different sub-networks, which consist of multiple skip connections, the pre-activations
are applied globally and the signal will be normalized. This also explains the variance drops in
the SPPs for regular ResNets (see Figure 4). Note that this also means that the variance within
sub-networks of an NF-ResNets will increase in the same way as for a ResNet with BN. Although
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Figure 5: SPPs comparing an NF-ResNet-50 to a ResNet with BN at initialization. The NF-ResNet
in the left plot only uses the α and β scaling parameters (cf. NF, He Init in Figure 2 Brock
et al., 2021a). The right plot displays the behavior of an NF-ResNet with CWN (cf. NF, Scaled
WS in Figure 2 Brock et al., 2021a). Note that the variance of the residuals in the right plot should
give some insights as to why the curves do not overlap.

it would have been perfectly possible to maintain a steady variance, NF-ResNets are effectively
designed to mimic the signal propagation due to BN layers in regular ResNets.

As can be seen on the left plot in Figure 5, a plain NF-ResNet effectively imitates the variance
propagation of the baseline ResNet pretty accurately. The propagation of the squared mean in
NF-ResNets, on the other hand, looks nothing like that from the BN model. After all, the con-
siderations that lead to the scaling parameters only cover the variance propagation. On top of that,
it turns out that the variance of the residual branches (right before it is merged with the skip con-
nection) is not particularly steady. This indicates that the residual branches do not properly preserve
variance, which is necessary for the analytic computations of α to be correct.

It turns out that both of these discrepancies can be resolved by introducing a variant of CWN (Huang
et al., 2017b) to NF-ResNets. CWN simply applies WN after subtracting the weight mean from each
weight vector, which ensures that every output has zero mean and that the variance of the weights
is constant. Brock et al. (2021a) additionally rescale the normalized weights to account for the
effect of activation functions (cf. Arpit et al., 2016). The effect of including the rescaled CWN in
NF-ResNets is illustrated in the right part of Figure 5.

4.3 PERFORMANCE

Empirically, Brock et al. (2021a) show that NF-ResNets with standard regularization methods per-
form on par with traditional ResNets that are using BN. An important detail3 that is not apparent
from the text, however, is that their baseline ResNets use the (standard) BN->ReLU order and not
the ReLU->BN order, which served as the model for the signal propagation of NF-ResNets. This
is also why the SPPs in Figure 5, which depict the ReLU -> BN order, do not perfectly overlap,
unlike the figures in (Brock et al., 2021a).

Because BN does induce computational overhead, it seems natural to expect NF-ResNets to allow for
more computationally efficient models. Therefore, Brock et al. (2021a) also compare NF-ResNets
with a set of architectures that are optimized for efficiency. However, it turns out that some of these
architectures do not play well with the weight normalization that is typically used in NF-ResNets.
As a result, normalizer-free versions of EfficientNets (Tan & Le, 2019) lag behind their BN counter-
parts. When applied to (naive) RegNets (Radosavovic et al., 2020), however, the performance gap
between with EfficientNets can be reduced by introducing the NF-ResNet scheme. In subsequent
work, (Brock et al., 2021b) show that NF-ResNets in combination with gradient clipping are able to
outperform similar networks with BN.

3https://github.com/deepmind/deepmind-research/blob/
ba761289c157fc151c7f06aa37b812d8100561db/nfnets/resnet.py#L158-L159
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5 DISCUSSION

NF-ResNets show that it is possible to build networks without BN that are able to achieve competi-
tive prediction performance. It is not yet entirely clear whether the ideas of NF-ResNets could make
BN entirely obsolete, however. Therefore, it should be interesting to take a closer look at what the
limitations of NF-ResNets are. Assuming that the ideas in NF-ResNets can make BN (at least partly)
obsolete, this should also provide some insights as to what the important factors are to explain the
success of BN.

5.1 LIMITATIONS

First of all, the exact procedure for scaling residual branches is only meaningful for architectures
that make use of simple additive skip connections. This means that it is not possible to directly apply
the ideas behind NF-ResNets on arbitrary architectures to get rid of BN layers. Even similar archi-
tectures that make use a different kind of skip connection (e.g., DenseNets, Highway Networks, . . . )
are probably not compatible with this exact approach. Furthermore, NF-ResNets still rely on (other)
normalization methods to attain good performance — in contrast to what their name might suggest.
Brock et al. (2021a) emphasize that they effectively do away with activation normalization, but they
do rely on an adaptation of WN to replace BN. In this sense, it is arguable whether NF-ResNets are
truly normalizer-free. Finally, some of the problems with BN are not resolved or reintroduced when
building competitive NF-ResNets. E.g., there are still differences between training and testing when
using plain dropout regularization, CWN still introduces a certain computational overhead during
training, etc.

5.2 INSIGHTS

In the end, an NF-ResNet can be interpreted as consisting of different components that model parts
of what BN normally does. For example, the α scaling factor used in NF-ResNets clearly models
the division by the standard deviation of BN. It is also easy to see that the implicit regularization
that is attributed to BN can be replaced by explicit regularization schemes. Furthermore, the mean
subtraction in BN is practically implemented by the weight centering in CWN. Also, the scale-
invariance of the weights due to BN is re-introduced through CWN. However, the input scale-
invariance that BN introduces in each layer is lost when using CWN. When considering the entire
residual branch (or network), however, α does enable some sort of scale-invariance for the entirety of
this branch (or network). Finally, the affine transformation after the normalization in BN is modeled
by scaling the result of CWN. Note that the affine shift does not need to be modeled explicitly, since
CWN does not annihilate the regular bias parameters of the layers it acts upon, in contrast to BN.

Although the effects of BN on the forward pass seem to be modeled quite well by NF-ResNets, the
effects on the backward pass seem to be largely ignored by Brock et al. (2021a). This might indicate
that the performance differences might be explained by the effect of BN on the backward pass.
Follow-up work by Brock et al. (2021b) also suggest that these effects might not be unimportant.
After all, the gradient flow in NF-ResNets is only affected by the scaling factors, α and β, since
CWN does not otherwise affect the gradients w.r.t. the inputs. Therefore, regular NF-ResNets
do not have a gradient centering (Schraudolph, 1998) component, as can be found in BN layers.
However, an adaptive gradient clipping scheme (Brock et al., 2021b) seems to provide an effective
alternative to what BN does in the backward pass.

5.3 CONCLUSION

NF-ResNets show that it is possible to get rid of BN in ResNets without throwing away predictive
performance. However, NF-ResNets still rely on WN schemes to make the models competitive with
their BN counterparts. Therefore, it could be argued that NF-ResNets are not entirely normalizer-
free. It almost seems as if NF-ResNets are an example of how BN can be imitated using different
components, rather than how to get rid of it. This also means that it is hard to distil meaningful
insights as to why/how BN works so well. One thing that this approach does make clear is that the
backward dynamics due to BN should be part of the explanation.

In terms of the questions we set out to answer at the start, we could summarize as follows:
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1. Why get rid of BN in the first place?
The dependency on batch statistics does raise some concerns (sec. 2.3).

2. How (easy is it) to get rid of BN in ResNets?
Although it is one of the reasons why ResNets made skip connections so popular, there are
plenty of alternative tricks that can achieve similar effects (sec. 3.2).

3. Is BN going to become obsolete in the near future?
It does not look like BN will disappear soon, because the techniques to get rid of BN are
probably too specific to the ResNet architecture (sec. 5.1).

4. Does this allow us to gain insights into why BN works so well?
NF-ResNets practically copy the forward dynamcis of ResNets with BN, which seems to
suggest that the backward dynamics of BN play an important role(sec. 5.2).

5. Wait a second... Are they getting rid of normalization or just BN?
Despite their name, NF-ResNets merely replace BN by another normalization technique
(sec. 5.3).

TL;DR: NF-ResNets, rescaled ResNets with Centered Weight Normalization (CWN), can be used
to imitate the forward pass of ResNets with BN, but they do not help much to explain what makes
BN so successful.
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A EXTRA CODE SNIPPETS

To facilitate the implementation of pre-residual ResNets in PyTorch (Paszke et al., 2019) and to
give a full example of how to implement the signal propagation plotting, we provide additional code
snippets.

A.1 PRE-ACTIVATION RESNETS

The first snippet implements skip connections according to (He et al., 2016a). The comments aim
to highlight the differences with the ResNets from (He et al., 2016b), for which an implementation4

is included in the Torchvision library.

from t o r c h i m p o r t nn
from t y p i n g i m p o r t C a l l a b l e

c l a s s P r e R e s i d u a l B o t t l e n e c k ( nn . Module ) :

e x p a n s i o n = 4

d e f i n i t ( s e l f ,
i n p l a n e s : i n t ,
p l a n e s : i n t ,
s t r i d e : i n t = 1 ,
downsample : nn . Module = None ,
g r ou ps : i n t = 1 ,
b a s e w i d t h : i n t = 64 ,
d i l a t i o n : i n t = 1 ,
n o r m l a y e r : C a l l a b l e [ [ i n t ] , nn . Module ] = None ,
n o p r e a c t : boo l = F a l s e , # a d d i t i o n a l a rgument

) :
s u p e r ( ) . i n i t ( )
i f n o r m l a y e r i s None :

n o r m l a y e r = nn . BatchNorm2d

### pre − a c t i v a t i o n s ###
p r e a c t l a y e r s = [ ] i f n o p r e a c t e l s e [

n o r m l a y e r ( i n p l a n e s ) ,
nn . ReLU ( ) ,

]
i f downsample i s None :

s e l f . p r e a c t = nn . I d e n t i t y ( )
r e s i d u a l p r e a c t = p r e a c t l a y e r s

e l s e :
s e l f . p r e a c t = nn . S e q u e n t i a l (* p r e a c t l a y e r s )
r e s i d u a l p r e a c t = [ ]

### pre − a c t i v a t i o n s ###

k e r n e l s i z e = 3
wid th = g rou ps * ( p l a n e s * b a s e w i d t h / / 64)
s e l f . downsample = nn . I d e n t i t y ( ) i f downsample i s None e l s e downsample
s e l f . r e s i d u a l b r a n c h = nn . S e q u e n t i a l (

* r e s i d u a l p r e a c t , # i n c l u d e r e s i d u a l pre − a c t i v a t i o n s
nn . Conv2d ( i n p l a n e s , width , 1 , b i a s = F a l s e ) ,
n o r m l a y e r ( wid th ) , nn . ReLU ( ) ,
nn . Conv2d ( width , width , k e r n e l s i z e , s t r i d e , padd ing = d i l a t i o n ,

4https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/
resnet.py#L86-L141
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d i l a t i o n = d i l a t i o n , g r ou ps = groups , b i a s = F a l s e ) ,
n o r m l a y e r ( wid th ) , nn . ReLU ( ) ,
nn . Conv2d ( width , p l a n e s * s e l f . expans ion , 1 , b i a s = F a l s e ) ,
# n o r m l a y e r ( p l a n e s * s e l f . e x p a n s i o n ) ,

)

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . p r e a c t ( x ) # compute g l o b a l pre − a c t i v a t i o n s
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
# r e t u r n t o r c h . r e l u ( r e s i d u a l + s k i p )
r e t u r n r e s i d u a l + s k i p

A.2 NF-RESNETS

When comparing the code for a skip connection between an NF-ResNet and a regular ResNet with
BN, we find that there are only a few minor changes. So much so that it is more efficient to consider
the diff output than the full code.

@@ −4 ,3 +4 ,3 @@

− c l a s s P r e R e s i d u a l B o t t l e n e c k ( nn . Module ) :
+ c l a s s N F R e s i d u a l B o t t l e n e c k ( nn . Module ) :

@@ −16 ,3 +16 ,4 @@
d i l a t i o n : i n t = 1 ,

− n o r m l a y e r : C a l l a b l e [ [ i n t ] , nn . Module ] = None ,
+ a l p h a : f l o a t = 1 . ,
+ b e t a : f l o a t = 1 . ,

n o p r e a c t : boo l = F a l s e , # a d d i t i o n a l a rgument
@@ −20 ,4 +21 ,3 @@

s u p e r ( ) . i n i t ( )
− i f n o r m l a y e r i s None :
− n o r m l a y e r = nn . BatchNorm2d
+ s e l f . b e t a = b e t a

@@ −25 ,3 +25 ,3 @@
p r e a c t l a y e r s = [ ] i f n o p r e a c t e l s e [

− n o r m l a y e r ( i n p l a n e s ) ,
+ S c a l i n g ( a l p h a ) ,

nn . ReLU ( ) ,
@@ −41 ,8 +41 ,8 @@

* r e s i d u a l p r e a c t , # i n c l u d e r e s i d u a l pre − a c t i v a t i o n s
− nn . Conv2d ( i n p l a n e s , width , 1 , b i a s = F a l s e ) ,
− n o r m l a y e r ( wid th ) , nn . ReLU ( ) ,
+ nn . Conv2d ( i n p l a n e s , width , 1 , b i a s =True ) ,
+ nn . ReLU ( ) ,

nn . Conv2d ( width , width , k e r n e l s i z e , s t r i d e , padd ing = d i l a t i o n ,
− d i l a t i o n = d i l a t i o n , g r ou ps = groups , b i a s = F a l s e ) ,
− n o r m l a y e r ( wid th ) , nn . ReLU ( ) ,
− nn . Conv2d ( width , p l a n e s * s e l f . expans ion , 1 , b i a s = F a l s e ) ,
+ d i l a t i o n = d i l a t i o n , g r ou ps = groups , b i a s =True ) ,
+ nn . ReLU ( ) ,
+ nn . Conv2d ( width , p l a n e s * s e l f . expans ion , 1 , b i a s =True ) ,

# n o r m l a y e r ( p l a n e s * s e l f . e x p a n s i o n ) ,
@@ −55 ,2 +55 ,2 @@

# r e t u r n t o r c h . r e l u ( r e s i d u a l + s k i p )
− r e t u r n r e s i d u a l + s k i p
+ r e t u r n s e l f . b e t a * r e s i d u a l + s k i p
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The patch above shows that apart from removing the BN layers and introducing the α and β pa-
rameters, the BN layer in the pre-activation has to be replaced by the α scaling that is introduced
in NF-ResNets. These changes are effectively everything that needs to be done. To be fair, this
Scaling module is not standard in PyTorch, but it is easy enough to create it:

c l a s s S c a l i n g ( nn . Module ) :

d e f i n i t ( s e l f , s c a l e : f l o a t ) :
s e l f . s c a l e = s c a l e

d e f r e p r ( s e l f ) :
r e t u r n f ”{ s e l f . c l a s s . n a m e } ({ s e l f . s c a l e } ) ”

d e f f o r w a r d ( s e l f , x ) :
r e t u r n s e l f . s c a l e * x

Putting everything together, including the signal_prop method introduced earlier (sec. 4.2, the
resulting code should correspond to the following:

from t o r c h i m p o r t nn
from t y p i n g i m p o r t C a l l a b l e

c l a s s N F R e s i d u a l B o t t l e n e c k ( nn . Module ) :

e x p a n s i o n = 4

d e f i n i t ( s e l f ,
i n p l a n e s : i n t ,
p l a n e s : i n t ,
s t r i d e : i n t = 1 ,
downsample : nn . Module = None ,
g r ou ps : i n t = 1 ,
b a s e w i d t h : i n t = 64 ,
d i l a t i o n : i n t = 1 ,
a l p h a : f l o a t = 1 . ,
b e t a : f l o a t = 1 . ,
n o p r e a c t : boo l = F a l s e ,

) :
s u p e r ( ) . i n i t ( )
s e l f . b e t a = b e t a

### pre − a c t i v a t i o n s ###
p r e a c t l a y e r s = [ ] i f n o p r e a c t e l s e [

S c a l i n g ( a l p h a ) ,
nn . ReLU ( ) ,

]
i f downsample i s None :

s e l f . p r e a c t = nn . I d e n t i t y ( )
r e s i d u a l p r e a c t = p r e a c t l a y e r s

e l s e :
s e l f . p r e a c t = nn . S e q u e n t i a l (* p r e a c t l a y e r s )
r e s i d u a l p r e a c t = [ ]

### pre − a c t i v a t i o n s ###

k e r n e l s i z e = 3
wid th = g rou ps * ( p l a n e s * b a s e w i d t h / / 64)
s e l f . downsample = nn . I d e n t i t y ( ) i f downsample i s None e l s e downsample
s e l f . r e s i d u a l b r a n c h = nn . S e q u e n t i a l (

* r e s i d u a l p r e a c t ,
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nn . Conv2d ( i n p l a n e s , width , 1 , b i a s =True ) ,
nn . ReLU ( ) ,
nn . Conv2d ( width , width , k e r n e l s i z e , s t r i d e , padd ing = d i l a t i o n ,

d i l a t i o n = d i l a t i o n , g r ou ps = groups , b i a s =True ) ,
nn . ReLU ( ) ,
nn . Conv2d ( width , p l a n e s * s e l f . expans ion , 1 , b i a s =True ) ,

)

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . p r e a c t ( x )
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
r e t u r n s e l f . b e t a * r e s i d u a l + s k i p

@t o r c h . n o g r a d ( )
d e f s i g n a l p r o p ( s e l f , x , dim = (0 , −1 , − 2 ) ) :

# f o r w a r d code
x = s e l f . p r e a c t ( x )
s k i p = s e l f . downsample ( x )
r e s i d u a l = s e l f . r e s i d u a l b r a n c h ( x )
o u t = s e l f . b e t a * r e s i d u a l + s k i p

# compute n e c e s s a r y s t a t i s t i c s
out mu2 = t o r c h . mean ( o u t . mean ( dim ) ** 2 ) . i t em ( )
o u t v a r = t o r c h . mean ( o u t . v a r ( dim ) ) . i t em ( )
r e s v a r = t o r c h . mean ( r e s i d u a l . v a r ( dim ) ) . i t em ( )
r e t u r n out , ( out mu2 , o u t v a r , r e s v a r )

The code for a full NF-ResNet (with multiple multi-layer sub-nets) can be found in the code snippets
in appendix A.3.

A.3 MULTI-LAYER SPPS

In order to give an example of how to collect the SPP data for a multi-layer ResNet, the snippet
below provides code for an NF-ResNet. For the sake of brevity, the implementation for CWN has
been omitted here. This code is inspired by the ResNet implementation5 from Torchvision. If
you want to use this code, make sure that the NFResidualBottleneck module also provides a
signal_prop method, as introduced in sec. 4.2.

c l a s s NFResidualNetwork ( nn . Module ) :

@s t a t i c m e t h o d
d e f i n i t i a l i s a t i o n (m: nn . Module ) :

i f i s i n s t a n c e (m, nn . Conv2d ) :
nn . i n i t . k a i m i n g n o r m a l (m. we ig h t )
i f m. b i a s i s n o t None :

nn . i n i t . z e r o s (m. b i a s )

d e f i n i t ( s e l f , l a y e r s : t u p l e , n u m c l a s s e s : i n t = 1000 , b e t a : f l o a t = 1 . ) :
s u p e r ( ) . i n i t ( )
b l o c k = N F R e s i d u a l B o t t l e n e c k
s e l f . i n p l a n e s = 64
s e l f . e x p e c t e d v a r = 1 .
s e l f . b e t a = b e t a

s e l f . i n t r o = nn . S e q u e n t i a l (
nn . Conv2d ( 3 , 64 , k e r n e l s i z e =7 , s t r i d e =2 , padd ing = 3) ,

5https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/
resnet.py#L144-L249
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nn . ReLU ( ) ,
nn . MaxPool2d ( k e r n e l s i z e =3 , s t r i d e =2 , padd ing = 1) ,

)
s e l f . s u b n e t 1 = s e l f . m a k e s u b n e t ( b lock , 64 , l a y e r s [ 0 ] , n o p r e a c t =True )
s e l f . s u b n e t 2 = s e l f . m a k e s u b n e t ( b lock , 128 , l a y e r s [ 1 ] , s t r i d e =2)
s e l f . s u b n e t 3 = s e l f . m a k e s u b n e t ( b lock , 256 , l a y e r s [ 2 ] , s t r i d e =2)
s e l f . s u b n e t 4 = s e l f . m a k e s u b n e t ( b lock , 512 , l a y e r s [ 3 ] , s t r i d e =2)

s e l f . c l a s s i f i e r = nn . S e q u e n t i a l (
nn . ReLU ( ) ,
nn . Adapt iveAvgPool2d ( 1 ) ,
nn . F l a t t e n ( ) ,
nn . L i n e a r (512 * b l o c k . expans ion , n u m c l a s s e s ) ,

)

s e l f . a p p l y ( s e l f . i n i t i a l i s a t i o n )
# s e l f . a p p l y ( C e n t r e d W e i g h t N o r m a l i z a t i o n ( dim =( 1 , 2 , 3 ) ) )

d e f m a k e s u b n e t ( s e l f , b lock , p l a n e s : i n t , n u m l a y e r s : i n t ,
s t r i d e : i n t = 1 , n o p r e a c t : boo l = F a l s e ) :

downsample = None
i f s t r i d e != 1 or s e l f . i n p l a n e s != p l a n e s * b l o c k . e x p a n s i o n :

downsample = nn . Conv2d ( s e l f . i n p l a n e s , p l a n e s * b l o c k . expans ion , 1 , s t r i d e )

l a y e r s = [ ]
# compute e x p e c t e d v a r i a n c e a n a l y t i c a l l y
a l p h a = 1 . / s e l f . e x p e c t e d v a r ** . 5
s e l f . e x p e c t e d v a r = 1 . + s e l f . b e t a ** 2
l a y e r s . append ( b l o c k (

s e l f . i n p l a n e s , p l a n e s , s t r i d e , downsample ,
a l p h a = a lpha , b e t a = s e l f . be t a , n o p r e a c t = n o p r e a c t

) )
s e l f . i n p l a n e s = p l a n e s * b l o c k . e x p a n s i o n
f o r i n r a n g e ( 1 , n u m l a y e r s ) :

# t r a c k e x p e c t e d v a r i a n c e a n a l y t i c a l l y
a l p h a = 1 . / s e l f . e x p e c t e d v a r ** . 5
s e l f . e x p e c t e d v a r += s e l f . b e t a ** 2
l a y e r s . append ( b l o c k (

s e l f . i n p l a n e s , p l a n e s , a l p h a = a lpha , b e t a = s e l f . b e t a
) )

r e t u r n nn . S e q u e n t i a l (* l a y e r s )

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . i n t r o ( x )
x = s e l f . s u b n e t 1 ( x )
x = s e l f . s u b n e t 2 ( x )
x = s e l f . s u b n e t 3 ( x )
x = s e l f . s u b n e t 4 ( x )
r e t u r n s e l f . c l a s s i f i e r ( x )

@t o r c h . n o g r a d ( )
d e f s i g n a l p r o p ( s e l f , x , dim = (0 , −1 , − 2 ) ) :

x = s e l f . i n t r o ( x )

s t a t i s t i c s = [ (
t o r c h . mean ( x . mean ( dim ) ** 2 ) . i t em ( ) ,
t o r c h . mean ( x . v a r ( dim ) ) . i t em ( ) ,
f l o a t ( ’ nan ’ ) ,
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) ]
f o r s u b n e t i n ( s e l f . subne t1 , s e l f . subne t2 , s e l f . subne t3 , s e l f . s u b n e t 4 ) :

f o r l a y e r i n s u b n e t :
x , s t a t s = l a y e r . s i g n a l p r o p ( x , dim )
s t a t i s t i c s . append ( s t a t s )

# c o n v e r t l i s t o f t u p l e s t o t u p l e o f l i s t s
sp = t u p l e ( map ( l i s t , z i p (* s t a t i s t i c s ) ) )
r e t u r n s e l f . c l a s s i f i e r ( x ) , sp
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