

DEVELOPING AN EXTRACTOR FOR MINING
VARIABILITY FROM PRODUCT VARIANTS

Keywords: code comparison, variability mining, variant analysis

Current Situation

Extracting variability information from source code or other artifact types

of a set of given product variants is a complex task that requires differ-

encing files. This is currently mostly done by performing simple line-by-

line comparisons. Even though these approaches are sufficient for de-

tecting major additions or deletions, they are not well-suited for identify-

ing and extracting variability. While there exist tools that better support

these tasks, they are mostly restricted to specific use-cases.

Background

Software Product Lines (SPL) allow systematic reuse of common code across different variants of a

system. While this approach is well-known, due to high upfront effort this technique is often not applied

from project startup. When the number and size of variants increase over time, at some point it is no

longer possible to maintain and manage variability. At this point, the transformation into a SPL is de-

sired. However, doing this manually is not feasible. Therefore, automatically extracting and analyzing

variability information is needed. An approach, that can perform this process for any type and combi-

nation of artifact types is currently in development, which utilizes extractors for individual artifacts.

Content of the Thesis

The goal of this thesis is to develop an extractor, that can compare an arbitrary number of variant files

of a specific artifact type (e.g., source code of a programming language, spreadsheets, config files

etc.) for commonalities/variabilities, filter them for relevance (e.g., moved code, split statements can be

omitted) and provides information about their occurrences (in which variant does variability x appear).

The artifact type, for which the extractor is written, can be chosen based on the interest and

knowledge of the student. Integrating this extractor into a flexible framework for variability mining is

also desired. The extraction process itself should be implemented and tested using Java.

Requirements

- Java programming skills required

- Knowledge about the artifact type, for which the extractor is implemented, is advantageous

- Excellent German or English skills

Learning Outcomes

- Learning about software variability, it’s location and extraction

- Getting to know and apply comparison and analysis methods

- Apply versioning systems in practice (Git)

- Working in a scientific process

Betreuung:

<picture>

DI Alexander Stummer

alexander.stummer@jku.at

Master’s Thesis

