Zur JKU Startseite
Institut für Biophysik
Was ist das?

Institute, Schools und andere Einrichtungen oder Angebote haben einen Webauftritt mit eigenen Inhalten und Menüs.

Um die Navigation zu erleichtern, ist hier erkennbar, wo man sich gerade befindet.

Proton transport and proton-coupled transport

PROTON

Secure, competitive, and sustainable energy production is a major challenge facing human societies. Biomimetic solutions such as the development of new biofuel cells are hampered by our thus far incomplete understanding of proton transfer reactions. The same holds for health threats to humanity: Curing diseases like cancer, obesity, chronic gastritis, gastric and duodenal ulcers, requires to pharmacologically interfere - in their molecular details - with yet unresolved proton transfer reactions.

Here we aim at clarifying the molecular reaction mechanism in the confines of interfacial water layers and proteinaceous cavities with emphasis on arrangement and mobility of proton relay moieties. Achieving this requires an interdisciplinary, multi-level approach comprising cutting edge technologies like second harmonic imaging, single molecule and time resolved fluorescence microscopy and spectroscopy, advanced calculations of proton transfer, bioengineering of membrane channel and transporter containing systems, synthetic design of biomimetic proton channels, solving protein structures and rational drug design.

PROTON will train 15 PhD students, who will acquire a solid state-of-the-art multidisciplinary scientific training in all kinds of proton migration/reaction systems, covering from basic science to industrial applications, thus preparing them to generate new scientific knowledge of the highest impact. In addition, practical training on transferable skills will increase their employability and qualify them for responsible positions in private and public sectors. Cross-disciplinary strategies and close collaboration with industry will enable them to resolve the molecular details of proton driven processes in all kinds of settings - enabling the improvement of biomimetic applications – up to fuel cells - and to identify lead substances which may serve to pharmacologically interfere with proton transport through membrane channels and transporters.

 

RESEARCH

Proton transfer is crucial in numerous biological and chemical processes, e.g. in cellular proton pumps or in hydrogen fuel cells. Even though their empirical study began with the origin of chemistry, many details of the proton transfer mechanism are still unresolved and understanding the way in which confined water mediates proton dynamics remains a fundamental challenge in chemistry and biochemistry. Transmembrane proton gradients are essential to life on earth as they are intricately linked to both photosynthesis and synthesis of adenosine triphosphate (ATP, the energy currency of life). Yet, once protons have crossed the membrane, they do not freely exchange with protons on the receiving site. An energy barrier with the height of ~30 kT opposes their release into the bulk. The mainly entropic nature of the barrier ensures high lateral proton mobility. However, besides being attributed to structured water,,the molecular origin of that barrier remained thus far elusive. Yet, newly developed label-free and charge-sensitive dynamic imaging techniques of lipid membrane hydration, hydration of active protein sites as well as their dipolar relaxation dynamics now offer the possibility to explore the interplay between structural features of the hydration shell and proton migration on the millisecond time scale. Likewise, technically demanding ab-initio molecular dynamics (MD) simulations of protons adjacent to lipid bilayers also promise insight into the molecular proton migration mechanism. By levering on these new methods for (i) visualising proton surface transport as well as (ii) assessing its energetics and combining them with approaches for deciphering the structure of G-protein-coupled receptors (GPCRs) and other proton-dependent membrane protein, the PROTON project will perform ground-breaking work in this field.

PROJECT RESULTS

van Bergen, W.; Žuna, K.; Fiala, J.; Pohl, E. E.; Heck, A. J. R.; Baggelaar, M. P., Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Differences in Protein Binding of EGFR-Directed Drugs., öffnet eine externe URL in einem neuen Fenster ACS Chemical Biology 2024, 19, (8), 1705-1718. DOI 10.1021/acschembio.3c00637.

Andrei, I. M.; Chen, W.; Baaden, M.; Vincent, S. P.; Barboiu, M., Proton- versus Cation-Selective Transport of Saccharide Rim-Appended Pillar[5]arene Artificial Water Channels, öffnet eine externe URL in einem neuen Fenster. Journal of the American Chemical Society 2023, 145, (40), 21904-21914. DOI 10.1021/jacs.3c06335.

Chu, B.; Roke, S.; Marchioro, A., Does the ionic distribution in the electrical double layer modify second harmonic scattering?, öffnet eine externe URL in einem neuen Fenster The Journal of Chemical Physics 2024, 160, (19). DOI 10.1063/5.0198247.

Chu, B.; Biriukov, D.; Bischoff, M.; Předota, M.; Roke, S.; Marchioro, A., Evolution of the electrical double layer with electrolyte concentration probed by second harmonic scattering., öffnet eine externe URL in einem neuen Fenster Faraday Discuss 2023, 246, (0), 407-425. DOI 10.1039/d3fd00036b.

Sosa, Y.; Kapur, B.; Hurtak, J.; Kingsley, L. J.; Wu, H.; Gruber, S.; Nar, H.; Khattabi, S.; Moral, J. S.; Lucas, M. F.; Martin, C.; Lončar, N.; Buono, F.; Pefaur, N.; Nixon, A. E.; Song, J. J., In silico enzyme screening identifies an SDR ketoreductase from Thermus caliditerrae as an attractive biocatalyst and promising candidate for protein engineering., öffnet eine externe URL in einem neuen Fenster Frontiers in Chemical Biology 2024, 3. DOI 10.3389/fchbi.2024.1425501.

Lee, S.; Poojari, C. S.; Maznichenko, A.; Roesel, D.; Swiderska, I.; Pohl, P.; Hub, J. S.; Roke, S., Dynamic Second Harmonic Imaging of Proton Translocation Through Water Needles in Lipid Membranes., öffnet eine externe URL in einem neuen Fenster Journal of the American Chemical Society 2024. DOI 10.1021/jacs.4c02810.

Geistlinger, K.; Schmidt, J. D. R.; Beitz, E., Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH., öffnet eine externe URL in einem neuen Fenster PNAS Nexus 2023, 2, (2), pgad007. DOI 10.1093/pnasnexus/pgad007.

Jain, H.; Karathanou, K.; Bondar, A.-N., Graph-Based Analyses of Dynamic Water-Mediated Hydrogen-Bond Networks in Phosphatidylserine: Cholesterol Membranes., öffnet eine externe URL in einem neuen Fenster Biomolecules 2023, 13, (8), 1238.

Knyazev, D. G.; Silverstein, T. P.; Brescia, S.; Maznichenko, A.; Pohl, P., A New Theory about Interfacial Proton Diffusion Revisited: The Commonly Accepted Laws of Electrostatics and Diffusion Prevail., öffnet eine externe URL in einem neuen Fenster Biomolecules 2023, 13, (11), 1641.

Biswal, S.; Agmon, N., Collagen Structured Hydration., öffnet eine externe URL in einem neuen Fenster Biomolecules 2023, 13, (12), 1744.

Andrei, I. M.; Chaix, A.; Benkhaled, B. T.; Dupuis, R.; Gomri, C.; Petit, E.; Polentarutti, M.; van der Lee, A.; Semsarilar, M.; Barboiu, M., Selective Water Pore Recognition and Transport through Self-Assembled Alkyl-Ureido-Trianglamine Artificial Water Channels., öffnet eine externe URL in einem neuen Fenster Journal of the American Chemical Society 2023, 145, (39), 21213-21221. DOI 10.1021/jacs.3c02815.

Epalle, N. H.; Beitz, E., Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport., öffnet eine externe URL in einem neuen Fenster Biomolecules 2022, 12, (12). DOI 10.3390/biom12121794.

Kapur, B.; Baldessari, F.; Lazaratos, M.; Nar, H.; Schnapp, G.; Giorgetti, A.; Bondar, A.-N., Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68., öffnet eine externe URL in einem neuen Fenster Computational and Structural Biotechnology Journal 2023, 21, 4370-4384. DOI https://doi.org/10.1016/j.csbj.2023.08.034, öffnet eine externe URL in einem neuen Fenster.

Bingxin Chu, Arianna Marchioro, Sylvie Roke; Size dependence of second-harmonic scattering from nanoparticles: Disentangling surface and electrostatic contributions, öffnet eine externe URL in einem neuen FensterJ. Chem. Phys. 7 March 2023; 158 (9): 094711. https://doi.org/10.1063/5.0135157, öffnet eine externe URL in einem neuen Fenster

Abhinav, Jurkiewicz P, Hof M, Allolio C, Sýkora J. Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions, öffnet eine externe URL in einem neuen Fenster. Biomolecules. 2022 Dec 17;12(12):1894. doi: 10.3390/biom12121894. PMID: 36551322; PMCID: PMC9775051.

Geistlinger K, Schmidt JDR, Beitz E. Lactic Acid Permeability of Aquaporin-9 Enables Cytoplasmic Lactate Accumulation via an Ion Trap., öffnet eine externe URL in einem neuen Fenster Life. 2022;12(1):120. doi.org/10.3390/life12010120

Andrei I-M, Barboiu M. Biomimetic Artificial Proton Channels., öffnet eine externe URL in einem neuen Fenster Biomolecules.2022; 12(10):1473. doi.org/10.3390/biom12101473 

Žuna K, Jovanović O, Khailova LS, Škulj S, Brkljača Z, Kreiter J, Kotova EA, Vazdar M, Antonenko YN, Pohl EE. Mitochondrial Uncoupling Proteins (UCP1-UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4-Dinitrophenol in Mitochondria and Planar Bilayer Membranes. Biomolecules., öffnet eine Datei 2021 Aug 9;11(8):1178. doi: 10.3390/biom11081178. PMID: 34439844; PMCID: PMC8392417.

Nerlich C, Epalle NH, Seick P, Beitz E. Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials, öffnet eine Datei. Pharmaceuticals (Basel). 2021 Nov 20;14(11):1191. doi: 10.3390/ph14111191. PMID: 34832972; PMCID: PMC8624176.

Jakobowska I, Becker F, Minguzzi S, Hansen K, Henke B, Epalle NH, Beitz E, Hannus S. Fluorescence Cross-Correlation Spectroscopy Yields True Affinity and Binding Kinetics of Plasmodium Lactate Transport Inhibitors, öffnet eine Datei. Pharmaceuticals (Basel). 2021 Aug 2;14(8):757. doi: 10.3390/ph14080757. PMID: 34451854; PMCID: PMC8399565.

Lee S, Roesel D, Roke S. Imaging Cu2+ binding to charged phospholipid membranes by high-throughput second harmonic wide-field microscopy, öffnet eine externe URL in einem neuen Fenster. J Chem Phys. 2021 Nov 14;155(18):184704. doi: 10.1063/5.0063362. PMID: 34773948.

Licsandru E, Andrei IM, van der Lee A, Barboiu M. Self-Assembled H-Bonding Superstructures for Alkali Cation and Proton Transport, öffnet eine Datei. Front Chem. 2021 May 6;9:678962. doi: 10.3389/fchem.2021.678962. PMID: 34026736; PMCID: PMC8134729.

Köpnick AL, Jansen A, Geistlinger K, Epalle NH, Beitz E.Basigin drives intra cellular accumulation of l-lactate by harvesting protons and substrate anions, öffnet eine Datei. PLoS One. 2021 Mar 26;16(3):e0249110. doi: 10.1371/journal.pone.0249110. PMID: 33770122; PMCID: PMC7996999

Boytsov, D.; Brescia, S.; Chaves, G.; Koefler, S.; Hannesschlaeger, C.; Siligan, C.; Goessweiner-Mohr, N.; Musset, B.; Pohl, P., Trapped Pore Waters in the Open Proton Channel HV1., öffnet eine externe URL in einem neuen Fenster Small 2023, 19, (16), 2205968. DOI https://doi.org/10.1002/smll.202205968, öffnet eine externe URL in einem neuen Fenster.

Bondar, A.-N.; Alfonso-Prieto, M., Hydrogen-bond networks for proton couplings in G-Protein coupled receptors. , öffnet eine externe URL in einem neuen FensterFrontiers in Physics 2022, 10. DOI 10.3389/fphy.2022.963716.

Kreiter, J.; Tyschuk, T.; Pohl, E. E., Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2. , öffnet eine externe URL in einem neuen FensterBiomolecules 2024, 14, (1), 21.

Andrei, I.-M.; Strilets, D.; Fa, S.; Baaden, M.; Ogoshi, T.; Barboiu, M., Combinatorial Screening of Water/Proton Permeation of Self-Assembled Pillar[5]arene Artificial Wa, öffnet eine externe URL in einem neuen Fensterter Channel Libraries. Angewandte Chemie International Edition 2023, 62, (42), e202310812. DOI https://doi.org/10.1002/anie.202310812, öffnet eine externe URL in einem neuen Fenster.

Roesel, D.; Eremchev, M.; Schönfeldová, T.; Lee, S.; Roke, S., Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective., öffnet eine externe URL in einem neuen Fenster Applied Physics Letters 2022, 120, (16). DOI 10.1063/5.0085807.

Bondar, A.-N.; Barboiu, M., Protons at bio-interfaces., öffnet eine externe URL in einem neuen Fenster Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865, (4), 184139. DOI https://doi.org/10.1016/j.bbamem.2023.184139, öffnet eine externe URL in einem neuen Fenster.

Köpnick, A. L.; Geistlinger, K.; Beitz, E., Cysteine 159 delineates a hinge region of the alternating access monocarboxylate transporter 1 and is targeted by cysteine-modifying inhibitors., öffnet eine externe URL in einem neuen Fenster Febs j 2021, 288, (20), 6052-6062. DOI 10.1111/febs.16024.

Bondar, A. N., Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters., öffnet eine externe URL in einem neuen Fenster Adv Protein Chem Struct Biol 2022, 128, 199-239. DOI 10.1016/bs.apcsb.2021.09.002.

Bondar, A. N., Proton-Binding Motifs of Membrane-Bound Proteins: From Bacteriorhodopsin to Spike Protein S, öffnet eine externe URL in einem neuen Fenster. Front Chem 2021, 9, 685761. DOI 10.3389/fchem.2021.685761.

Ragaller, F.; Andronico, L.; Sykora, J.; Kulig, W.; Rog, T.; Urem, Y. B.; Abhinav; Danylchuk, D. I.; Hof, M.; Klymchenko, A.; Amaro, M.; Vattulainen, I.; Sezgin, E., Dissecting the mechanisms of environment sensitivity of smart probes for quantitative assessment of membrane properties., öffnet eine externe URL in einem neuen Fenster Open Biol 2022, 12, (9), 220175. DOI 10.1098/rsob.220175.

Sykora, J.; Prokop, Z.; Damborsky, J.; Abhinav; Hof, M.; Amaro, M., Dynamics and Hydration of Proteins Viewed by Fluorescence Methods: Investigations for Protein Engineering and Synthetic Biology. , öffnet eine externe URL in einem neuen FensterIn Fluorescence Spectroscopy and Microscopy in Biology, Šachl, R.; Amaro, M., Eds. Springer International Publishing: Cham, 2023; pp 509-532.

Schmidt, J. D. R.; Beitz, E., Mutational widening of constrictions in a formate–nitrite/H+ transporter enables aquaporin-like water permeability and proton conductance., öffnet eine externe URL in einem neuen Fenster Journal of Biological Chemistry 2022, 298, (1), 101513. DOI https://doi.org/10.1016/j.jbc.2021.101513, öffnet eine externe URL in einem neuen Fenster.

CONSORTIUM/CONTACT

Beneficiaries

Name Dept./Division/Lab Contry PhD student_Name Scientist-in-charge
Johannes Keppler University of Linz (JKU) Institute of Biophysics, öffnet eine externe URL in einem neuen Fenster Austria

Anna Maznichenko

Stefania Brescia

Peter Pohl, öffnet eine externe URL in einem neuen Fenster
Le Centre National de la Recherche Scientifique (CNRS)

Institut Européen des Membranes, öffnet eine externe URL in einem neuen Fenster / Adaptive Supramolecular Nanosystems Team

France Luliana –Marilena Andrei  Mihail Barboiu, öffnet eine externe URL in einem neuen Fenster
Christian-Albrechts - Universität zu Kiel (CAU)

Department of Pharmaceutical and Medicinal Chemistry, öffnet eine externe URL in einem neuen Fenster

Germany Nathan Hugo Epalle Eric Beitz, öffnet eine externe URL in einem neuen Fenster
Hebrew University of Jerusalem (HUJI) Institute of Chemistry, öffnet eine externe URL in einem neuen Fenster Israel Satyaranjan Bharambar Biswal  Noam Agmon, öffnet eine externe URL in einem neuen Fenster

Freie Universitaet Berlin (FUB)

Department of Physics, öffnet eine externe URL in einem neuen Fenster Germany Honey Jain 

Ana-Nicoleta Bondar, öffnet eine externe URL in einem neuen Fenster

J. Heyrovský Institute of Physical Chemistry of the CAS, v. v. i. (UFCH) Department of Biophysical Chemistry, öffnet eine externe URL in einem neuen Fenster Czech Republic Abhinav  Martin Hof, öffnet eine externe URL in einem neuen Fenster
Universität des Saarlandes (USAAR) Theoretical Biophysics, öffnet eine externe URL in einem neuen Fenster Germany Alejandro Martinez  Jochen Hub, öffnet eine externe URL in einem neuen Fenster
University of Oslo (UiO) Centre for Molecular Medicine Norway, öffnet eine externe URL in einem neuen Fenster Norway

Mateu Montserrat 

Flore Kersten 

Hartmut Luecke, öffnet eine externe URL in einem neuen Fenster
University of Veterinary Medicine, Vienna (VMU) Institute of Physiology, Pathophysiology and Biophysics / Department or Biomedical Sciences, öffnet eine externe URL in einem neuen Fenster Austria   Elena E. Pohl, öffnet eine externe URL in einem neuen Fenster
Ecole Polytechnique Federale de Lausanne (EPFL) Laboratory for Fundamental BioPhotonics, öffnet eine externe URL in einem neuen Fenster Switzerland

Seonwoo Lee 

Bingxin Chu 

 

Sylvie Roke, öffnet eine externe URL in einem neuen Fenster
Boehringer Ingelheim Pharma GmbH & Co. KG, öffnet eine externe URL in einem neuen Fenster RSG MedChem Germany Bhav Kapur  Herbert Nar, öffnet eine externe URL in einem neuen Fenster
Intana Bioscience GmbH, öffnet eine externe URL in einem neuen Fenster   Germany Iga Jakóbowska  Stefan Hannus, öffnet eine externe URL in einem neuen Fenster

 

Partner Organisations

Name Country   Scientist-in-Charge E-Mail
Keysight Technologies GmbH Austria   Ferry Kienberger ferry_kienberger@keysight.com
Elements SRL Italy   Federico Thei  
Carl Zeiss AG Germany   Klaus Weisshart  
Evercyte GmbH Austria   Johannes Grillari johannes.grillari@boku.ac.at

Contact

Name Position Organization Phone E-Mail
Peter Pohl Coordinator of PROTON JKU +43 732 2468 7562 peter.pohl@jku.at
Denis Knyazev Project administrator JKU +43 732 2468 7573 denis.knyazev@jku.at

 

PARTNERS

, öffnet eine externe URL in einem neuen Fenster

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

, öffnet eine externe URL in einem neuen Fenster

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

, öffnet eine externe URL in einem neuen Fenster

THE HEBREW UNIVERSITY OF JERUSALEM

, öffnet eine externe URL

FREIE UNIVERSITÄT BERLIN

, öffnet eine externe URL in einem neuen Fenster

USTAV FYZIKALNI CHEMIE J. HEYROVSKEHO 

, öffnet eine externe URL in einem neuen Fenster

VETERINÄRMEDIZINISCHE UNIVERSITÄT WIEN

, öffnet eine externe URL in einem neuen Fenster

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

, öffnet eine externe URL in einem neuen Fenster

BOEHRINGER INGELHEIM PHARMA GMBH &CO KG

EVENTS & OUTREACH

KICK-OFF MEETING: 13.09.2019 - 15.09.2019 in Strobl

2nd TRAINING EVENT/ MID-TERM EVALUATION:, öffnet eine Datei 12.11.2020 - 18.11.2020 via ZOOM

3rd TRAINING EVENT:, öffnet eine Datei 23.03.2021-26.03.2021 via ZOOM

1st TRAINING EVENT/ EBSA SATELLITE MEETING:, öffnet eine Datei 22. - 24. July 2021 in Vienna

4th TRAINING EVENT: , öffnet eine Datei06.04.2022 -08.04.2022 in Biberach, Germany 

5th Training Event:, öffnet eine Datei 09.11.2022-12.11.2022 in Martinsried, Germany 

Final conference, öffnet eine Datei 18.07-21.07.2023 in Traunkirchen, Austria --> For external participants: if you’d like to take part in this event, please write to simone.schweiggl(at)jku.at. We will be happy to see you in Traunkirchen!