Andreas Winkler
Betreuung: Univ.-Prof. Dipl.-Ing. Dr. Bernhard Zagar
Ergebnisse aus dem Projektseminar wurden unter dem Titel "Transdermal Measurement of Red Blood Cell Motion in Superficial Capillaries, öffnet eine externe URL in einem neuen Fenster" im Tagungsband der Konferenz "The Eighth IASTED International Conference on Visualization, Imaging and Image Processing, VIIP 2008", veröffentlicht.
Mit den heutzutage ständig leistungsfähiger werdenden elektronischen Rechnern steigen die Möglichkeiten in der digitalen Signalverarbeitung. Man kann so immer komplexere Rechenvorgänge in einer für die entsprechenden Anwendungen zumutbaren Zeit erledigen und damit bessere und aufwendigere mathematische Methoden anwenden.
Viele Methoden in der digitalen Signalverarbeitung basieren auf der Annahme, dass die zu Grunde liegenden, zufälligen Signale statistisch stationär sind, dass sich also ihre Parameter, die im Allgemeinen aus physikalischen Mechanismen resultieren, nicht mit der Zeit ändern. Einige der von Menschen generierten Signale (vor allem in der Übertragungstechnik) und auch in der Natur vorkommende Ereignisse (Klima- und Wetterdaten, bio-medizinische Daten, etc.) haben aber Parameter, die sich periodisch in der Zeit ändern. Hier kommen die Theorie zyklisch stationärer Prozesse sowie Spektren höherer Ordnung ins Spiel. Mit der zyklischen Autokorrelationsfunktion als Erweiterung der herkömmlichen Autokorrelationsfunktion sowie der spektralen Korrelationsdichte als Erweiterung des herkömmlichen Leistungsdichtespektrums ist es beispielsweise möglich, zwei Signale, die quasi dasselbe Frequenzband benutzen, sauber zu trennen. Als weiteres Beispiel erlauben es die Spektren höherer Ordnung, Phasenkopplungen von Komponenten in einem Signal zu detektieren, um nur einen sehr kleinen Teil der Möglichkeiten zu nennen.
Diese Projektseminararbeit beschäftigt sich mit der Theorie sowie der Ausarbeitung der entsprechenden Algorithmen und beinhaltet einige exemplarische Anwendungsbeispiele
21. Oktober 2009