Magdalena Pöttinger und Matthias Schmid
Die neuen LIT Breakfast Briefing bieten nicht nur spannende Einblicke in topaktuelle Forschungen, die aktuell an der JKU bearbeitet werden, sondern sie diskutieren diese auch vor dem Hintergrund aktueller gesellschaftlicher, wirtschaftlicher und technologischer Herausforderungen und prüfen ihre Anwendbarkeit.
Zwei Themen - 30 Minuten.
Und der Morgenkaffee ist inkludiert!
Datum: 12. Oktober 2021, 08.30-09.00 Uhr
Ort: LIT Open Innovation Center, Stufenforum
Programm:
- Magdalena Pöttinger (Institut für Polymer Injection Moulding and Process Automation):
Titel: Simulation-based selection of the machine settings of an injection molding machine with the use case of a ski boot
Abstract:
In order to produce a plastic component on an injection molding machine, many machine settings are necessary to determine. The manual selection of these machine settings involves a lot of material consumption, time, and skilled personnel. To support the machine operator in choosing an optimized machine setting, simulations and material characterization can be carried out before starting the injection molding machine. With the help of this assistance system, production on the injection molding machine can be more resource-efficient and sustainable. In addition, data can be recorded along the value chain and reproducibility can be guaranteed. In this project the ski boot is used as use case.
- Matthias Schmid (Institut für Polymer Injection Moulding and Process Automation):
Titel: A Simulation-Data-Based Machine Learning Model for Predicting Quality Parameters of the Plasticizing Process in Injection Molding
Abstract:
The optimal machine settings in polymer processing are usually the result of time-consuming and expensive trials. Oftentimes, the operator cannot be sure whether the operating point is efficient or not. This research presents a workflow that allows meaningful insights for the plasticizing process in injection molding to be determined with the help of a simulation-driven machine learning model. Given the material, screw geometry and relevant process parameters the model is able to predict quality parameters like melting- and pressure curves along the screw, melt temperature, mean residence time, mass flow rate and power consumption. Additionally, the trained model was implemented into the infrastructure of the LIT-Factory. This enables to obtain real time insights about the process on a specific injection molding machine.
Für Kaffee und Croissants ist gesorgt. Wir freuen uns über deine Teilnahme! 3G-Regel ist gültig.
Bitte um Anmeldung bis zum 10.10.2021!